xref: /illumos-gate/usr/src/uts/i86pc/os/timestamp.c (revision 9278ddffeeeafc4766f74c6e2327b83ada62329a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  *
26  * Copyright 2012 Nexenta Systems, Inc. All rights reserved.
27  */
28 
29 #include <sys/types.h>
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/disp.h>
33 #include <sys/var.h>
34 #include <sys/cmn_err.h>
35 #include <sys/debug.h>
36 #include <sys/x86_archext.h>
37 #include <sys/archsystm.h>
38 #include <sys/cpuvar.h>
39 #include <sys/psm_defs.h>
40 #include <sys/clock.h>
41 #include <sys/atomic.h>
42 #include <sys/lockstat.h>
43 #include <sys/smp_impldefs.h>
44 #include <sys/dtrace.h>
45 #include <sys/time.h>
46 #include <sys/panic.h>
47 #include <sys/cpu.h>
48 
49 /*
50  * Using the Pentium's TSC register for gethrtime()
51  * ------------------------------------------------
52  *
53  * The Pentium family, like many chip architectures, has a high-resolution
54  * timestamp counter ("TSC") which increments once per CPU cycle.  The contents
55  * of the timestamp counter are read with the RDTSC instruction.
56  *
57  * As with its UltraSPARC equivalent (the %tick register), TSC's cycle count
58  * must be translated into nanoseconds in order to implement gethrtime().
59  * We avoid inducing floating point operations in this conversion by
60  * implementing the same nsec_scale algorithm as that found in the sun4u
61  * platform code.  The sun4u NATIVE_TIME_TO_NSEC_SCALE block comment contains
62  * a detailed description of the algorithm; the comment is not reproduced
63  * here.  This implementation differs only in its value for NSEC_SHIFT:
64  * we implement an NSEC_SHIFT of 5 (instead of sun4u's 4) to allow for
65  * 60 MHz Pentiums.
66  *
67  * While TSC and %tick are both cycle counting registers, TSC's functionality
68  * falls short in several critical ways:
69  *
70  *  (a)	TSCs on different CPUs are not guaranteed to be in sync.  While in
71  *	practice they often _are_ in sync, this isn't guaranteed by the
72  *	architecture.
73  *
74  *  (b)	The TSC cannot be reliably set to an arbitrary value.  The architecture
75  *	only supports writing the low 32-bits of TSC, making it impractical
76  *	to rewrite.
77  *
78  *  (c)	The architecture doesn't have the capacity to interrupt based on
79  *	arbitrary values of TSC; there is no TICK_CMPR equivalent.
80  *
81  * Together, (a) and (b) imply that software must track the skew between
82  * TSCs and account for it (it is assumed that while there may exist skew,
83  * there does not exist drift).  To determine the skew between CPUs, we
84  * have newly onlined CPUs call tsc_sync_slave(), while the CPU performing
85  * the online operation calls tsc_sync_master().
86  *
87  * In the absence of time-of-day clock adjustments, gethrtime() must stay in
88  * sync with gettimeofday().  This is problematic; given (c), the software
89  * cannot drive its time-of-day source from TSC, and yet they must somehow be
90  * kept in sync.  We implement this by having a routine, tsc_tick(), which
91  * is called once per second from the interrupt which drives time-of-day.
92  *
93  * Note that the hrtime base for gethrtime, tsc_hrtime_base, is modified
94  * atomically with nsec_scale under CLOCK_LOCK.  This assures that time
95  * monotonically increases.
96  */
97 
98 #define	NSEC_SHIFT 5
99 
100 static uint_t nsec_scale;
101 static uint_t nsec_unscale;
102 
103 /*
104  * These two variables used to be grouped together inside of a structure that
105  * lived on a single cache line. A regression (bug ID 4623398) caused the
106  * compiler to emit code that "optimized" away the while-loops below. The
107  * result was that no synchronization between the onlining and onlined CPUs
108  * took place.
109  */
110 static volatile int tsc_ready;
111 static volatile int tsc_sync_go;
112 
113 /*
114  * Used as indices into the tsc_sync_snaps[] array.
115  */
116 #define	TSC_MASTER		0
117 #define	TSC_SLAVE		1
118 
119 /*
120  * Used in the tsc_master_sync()/tsc_slave_sync() rendezvous.
121  */
122 #define	TSC_SYNC_STOP		1
123 #define	TSC_SYNC_GO		2
124 #define	TSC_SYNC_DONE		3
125 #define	SYNC_ITERATIONS		10
126 
127 #define	TSC_CONVERT_AND_ADD(tsc, hrt, scale) {	 	\
128 	unsigned int *_l = (unsigned int *)&(tsc); 	\
129 	(hrt) += mul32(_l[1], scale) << NSEC_SHIFT; 	\
130 	(hrt) += mul32(_l[0], scale) >> (32 - NSEC_SHIFT); \
131 }
132 
133 #define	TSC_CONVERT(tsc, hrt, scale) { 			\
134 	unsigned int *_l = (unsigned int *)&(tsc); 	\
135 	(hrt) = mul32(_l[1], scale) << NSEC_SHIFT; 	\
136 	(hrt) += mul32(_l[0], scale) >> (32 - NSEC_SHIFT); \
137 }
138 
139 int tsc_master_slave_sync_needed = 1;
140 
141 static int	tsc_max_delta;
142 static hrtime_t tsc_sync_tick_delta[NCPU];
143 typedef struct tsc_sync {
144 	volatile hrtime_t master_tsc, slave_tsc;
145 } tsc_sync_t;
146 static tsc_sync_t *tscp;
147 static hrtime_t largest_tsc_delta = 0;
148 static ulong_t shortest_write_time = ~0UL;
149 
150 static hrtime_t	tsc_last = 0;
151 static hrtime_t	tsc_last_jumped = 0;
152 static hrtime_t	tsc_hrtime_base = 0;
153 static int	tsc_jumped = 0;
154 
155 static hrtime_t	shadow_tsc_hrtime_base;
156 static hrtime_t	shadow_tsc_last;
157 static uint_t	shadow_nsec_scale;
158 static uint32_t	shadow_hres_lock;
159 int get_tsc_ready();
160 
161 hrtime_t
162 tsc_gethrtime(void)
163 {
164 	uint32_t old_hres_lock;
165 	hrtime_t tsc, hrt;
166 
167 	do {
168 		old_hres_lock = hres_lock;
169 
170 		if ((tsc = tsc_read()) >= tsc_last) {
171 			/*
172 			 * It would seem to be obvious that this is true
173 			 * (that is, the past is less than the present),
174 			 * but it isn't true in the presence of suspend/resume
175 			 * cycles.  If we manage to call gethrtime()
176 			 * after a resume, but before the first call to
177 			 * tsc_tick(), we will see the jump.  In this case,
178 			 * we will simply use the value in TSC as the delta.
179 			 */
180 			tsc -= tsc_last;
181 		} else if (tsc >= tsc_last - 2*tsc_max_delta) {
182 			/*
183 			 * There is a chance that tsc_tick() has just run on
184 			 * another CPU, and we have drifted just enough so that
185 			 * we appear behind tsc_last.  In this case, force the
186 			 * delta to be zero.
187 			 */
188 			tsc = 0;
189 		}
190 
191 		hrt = tsc_hrtime_base;
192 
193 		TSC_CONVERT_AND_ADD(tsc, hrt, nsec_scale);
194 	} while ((old_hres_lock & ~1) != hres_lock);
195 
196 	return (hrt);
197 }
198 
199 hrtime_t
200 tsc_gethrtime_delta(void)
201 {
202 	uint32_t old_hres_lock;
203 	hrtime_t tsc, hrt;
204 	ulong_t flags;
205 
206 	do {
207 		old_hres_lock = hres_lock;
208 
209 		/*
210 		 * We need to disable interrupts here to assure that we
211 		 * don't migrate between the call to tsc_read() and
212 		 * adding the CPU's TSC tick delta. Note that disabling
213 		 * and reenabling preemption is forbidden here because
214 		 * we may be in the middle of a fast trap. In the amd64
215 		 * kernel we cannot tolerate preemption during a fast
216 		 * trap. See _update_sregs().
217 		 */
218 
219 		flags = clear_int_flag();
220 		tsc = tsc_read() + tsc_sync_tick_delta[CPU->cpu_id];
221 		restore_int_flag(flags);
222 
223 		/* See comments in tsc_gethrtime() above */
224 
225 		if (tsc >= tsc_last) {
226 			tsc -= tsc_last;
227 		} else if (tsc >= tsc_last - 2 * tsc_max_delta) {
228 			tsc = 0;
229 		}
230 
231 		hrt = tsc_hrtime_base;
232 
233 		TSC_CONVERT_AND_ADD(tsc, hrt, nsec_scale);
234 	} while ((old_hres_lock & ~1) != hres_lock);
235 
236 	return (hrt);
237 }
238 
239 hrtime_t
240 tsc_gethrtime_tick_delta(void)
241 {
242 	hrtime_t hrt;
243 	ulong_t flags;
244 
245 	flags = clear_int_flag();
246 	hrt = tsc_sync_tick_delta[CPU->cpu_id];
247 	restore_int_flag(flags);
248 
249 	return (hrt);
250 }
251 
252 /*
253  * This is similar to the above, but it cannot actually spin on hres_lock.
254  * As a result, it caches all of the variables it needs; if the variables
255  * don't change, it's done.
256  */
257 hrtime_t
258 dtrace_gethrtime(void)
259 {
260 	uint32_t old_hres_lock;
261 	hrtime_t tsc, hrt;
262 	ulong_t flags;
263 
264 	do {
265 		old_hres_lock = hres_lock;
266 
267 		/*
268 		 * Interrupts are disabled to ensure that the thread isn't
269 		 * migrated between the tsc_read() and adding the CPU's
270 		 * TSC tick delta.
271 		 */
272 		flags = clear_int_flag();
273 
274 		tsc = tsc_read();
275 
276 		if (gethrtimef == tsc_gethrtime_delta)
277 			tsc += tsc_sync_tick_delta[CPU->cpu_id];
278 
279 		restore_int_flag(flags);
280 
281 		/*
282 		 * See the comments in tsc_gethrtime(), above.
283 		 */
284 		if (tsc >= tsc_last)
285 			tsc -= tsc_last;
286 		else if (tsc >= tsc_last - 2*tsc_max_delta)
287 			tsc = 0;
288 
289 		hrt = tsc_hrtime_base;
290 
291 		TSC_CONVERT_AND_ADD(tsc, hrt, nsec_scale);
292 
293 		if ((old_hres_lock & ~1) == hres_lock)
294 			break;
295 
296 		/*
297 		 * If we're here, the clock lock is locked -- or it has been
298 		 * unlocked and locked since we looked.  This may be due to
299 		 * tsc_tick() running on another CPU -- or it may be because
300 		 * some code path has ended up in dtrace_probe() with
301 		 * CLOCK_LOCK held.  We'll try to determine that we're in
302 		 * the former case by taking another lap if the lock has
303 		 * changed since when we first looked at it.
304 		 */
305 		if (old_hres_lock != hres_lock)
306 			continue;
307 
308 		/*
309 		 * So the lock was and is locked.  We'll use the old data
310 		 * instead.
311 		 */
312 		old_hres_lock = shadow_hres_lock;
313 
314 		/*
315 		 * Again, disable interrupts to ensure that the thread
316 		 * isn't migrated between the tsc_read() and adding
317 		 * the CPU's TSC tick delta.
318 		 */
319 		flags = clear_int_flag();
320 
321 		tsc = tsc_read();
322 
323 		if (gethrtimef == tsc_gethrtime_delta)
324 			tsc += tsc_sync_tick_delta[CPU->cpu_id];
325 
326 		restore_int_flag(flags);
327 
328 		/*
329 		 * See the comments in tsc_gethrtime(), above.
330 		 */
331 		if (tsc >= shadow_tsc_last)
332 			tsc -= shadow_tsc_last;
333 		else if (tsc >= shadow_tsc_last - 2 * tsc_max_delta)
334 			tsc = 0;
335 
336 		hrt = shadow_tsc_hrtime_base;
337 
338 		TSC_CONVERT_AND_ADD(tsc, hrt, shadow_nsec_scale);
339 	} while ((old_hres_lock & ~1) != shadow_hres_lock);
340 
341 	return (hrt);
342 }
343 
344 hrtime_t
345 tsc_gethrtimeunscaled(void)
346 {
347 	uint32_t old_hres_lock;
348 	hrtime_t tsc;
349 
350 	do {
351 		old_hres_lock = hres_lock;
352 
353 		/* See tsc_tick(). */
354 		tsc = tsc_read() + tsc_last_jumped;
355 	} while ((old_hres_lock & ~1) != hres_lock);
356 
357 	return (tsc);
358 }
359 
360 /*
361  * Convert a nanosecond based timestamp to tsc
362  */
363 uint64_t
364 tsc_unscalehrtime(hrtime_t nsec)
365 {
366 	hrtime_t tsc;
367 
368 	if (tsc_gethrtime_enable) {
369 		TSC_CONVERT(nsec, tsc, nsec_unscale);
370 		return (tsc);
371 	}
372 	return ((uint64_t)nsec);
373 }
374 
375 /* Convert a tsc timestamp to nanoseconds */
376 void
377 tsc_scalehrtime(hrtime_t *tsc)
378 {
379 	hrtime_t hrt;
380 	hrtime_t mytsc;
381 
382 	if (tsc == NULL)
383 		return;
384 	mytsc = *tsc;
385 
386 	TSC_CONVERT(mytsc, hrt, nsec_scale);
387 	*tsc  = hrt;
388 }
389 
390 hrtime_t
391 tsc_gethrtimeunscaled_delta(void)
392 {
393 	hrtime_t hrt;
394 	ulong_t flags;
395 
396 	/*
397 	 * Similarly to tsc_gethrtime_delta, we need to disable preemption
398 	 * to prevent migration between the call to tsc_gethrtimeunscaled
399 	 * and adding the CPU's hrtime delta. Note that disabling and
400 	 * reenabling preemption is forbidden here because we may be in the
401 	 * middle of a fast trap. In the amd64 kernel we cannot tolerate
402 	 * preemption during a fast trap. See _update_sregs().
403 	 */
404 
405 	flags = clear_int_flag();
406 	hrt = tsc_gethrtimeunscaled() + tsc_sync_tick_delta[CPU->cpu_id];
407 	restore_int_flag(flags);
408 
409 	return (hrt);
410 }
411 
412 /*
413  * Called by the master in the TSC sync operation (usually the boot CPU).
414  * If the slave is discovered to have a skew, gethrtimef will be changed to
415  * point to tsc_gethrtime_delta(). Calculating skews is precise only when
416  * the master and slave TSCs are read simultaneously; however, there is no
417  * algorithm that can read both CPUs in perfect simultaneity. The proposed
418  * algorithm is an approximate method based on the behaviour of cache
419  * management. The slave CPU continuously reads TSC and then reads a global
420  * variable which the master CPU updates. The moment the master's update reaches
421  * the slave's visibility (being forced by an mfence operation) we use the TSC
422  * reading taken on the slave. A corresponding TSC read will be taken on the
423  * master as soon as possible after finishing the mfence operation. But the
424  * delay between causing the slave to notice the invalid cache line and the
425  * competion of mfence is not repeatable. This error is heuristically assumed
426  * to be 1/4th of the total write time as being measured by the two TSC reads
427  * on the master sandwiching the mfence. Furthermore, due to the nature of
428  * bus arbitration, contention on memory bus, etc., the time taken for the write
429  * to reflect globally can vary a lot. So instead of taking a single reading,
430  * a set of readings are taken and the one with least write time is chosen
431  * to calculate the final skew.
432  *
433  * TSC sync is disabled in the context of virtualization because the CPUs
434  * assigned to the guest are virtual CPUs which means the real CPUs on which
435  * guest runs keep changing during life time of guest OS. So we would end up
436  * calculating TSC skews for a set of CPUs during boot whereas the guest
437  * might migrate to a different set of physical CPUs at a later point of
438  * time.
439  */
440 void
441 tsc_sync_master(processorid_t slave)
442 {
443 	ulong_t flags, source, min_write_time = ~0UL;
444 	hrtime_t write_time, x, mtsc_after, tdelta;
445 	tsc_sync_t *tsc = tscp;
446 	int cnt;
447 	int hwtype;
448 
449 	hwtype = get_hwenv();
450 	if (!tsc_master_slave_sync_needed || (hwtype & HW_VIRTUAL) != 0)
451 		return;
452 
453 	flags = clear_int_flag();
454 	source = CPU->cpu_id;
455 
456 	for (cnt = 0; cnt < SYNC_ITERATIONS; cnt++) {
457 		while (tsc_sync_go != TSC_SYNC_GO)
458 			SMT_PAUSE();
459 
460 		tsc->master_tsc = tsc_read();
461 		membar_enter();
462 		mtsc_after = tsc_read();
463 		while (tsc_sync_go != TSC_SYNC_DONE)
464 			SMT_PAUSE();
465 		write_time =  mtsc_after - tsc->master_tsc;
466 		if (write_time <= min_write_time) {
467 			min_write_time = write_time;
468 			/*
469 			 * Apply heuristic adjustment only if the calculated
470 			 * delta is > 1/4th of the write time.
471 			 */
472 			x = tsc->slave_tsc - mtsc_after;
473 			if (x < 0)
474 				x = -x;
475 			if (x > (min_write_time/4))
476 				/*
477 				 * Subtract 1/4th of the measured write time
478 				 * from the master's TSC value, as an estimate
479 				 * of how late the mfence completion came
480 				 * after the slave noticed the cache line
481 				 * change.
482 				 */
483 				tdelta = tsc->slave_tsc -
484 				    (mtsc_after - (min_write_time/4));
485 			else
486 				tdelta = tsc->slave_tsc - mtsc_after;
487 			tsc_sync_tick_delta[slave] =
488 			    tsc_sync_tick_delta[source] - tdelta;
489 		}
490 
491 		tsc->master_tsc = tsc->slave_tsc = write_time = 0;
492 		membar_enter();
493 		tsc_sync_go = TSC_SYNC_STOP;
494 	}
495 	if (tdelta < 0)
496 		tdelta = -tdelta;
497 	if (tdelta > largest_tsc_delta)
498 		largest_tsc_delta = tdelta;
499 	if (min_write_time < shortest_write_time)
500 		shortest_write_time = min_write_time;
501 	/*
502 	 * Enable delta variants of tsc functions if the largest of all chosen
503 	 * deltas is > smallest of the write time.
504 	 */
505 	if (largest_tsc_delta > shortest_write_time) {
506 		gethrtimef = tsc_gethrtime_delta;
507 		gethrtimeunscaledf = tsc_gethrtimeunscaled_delta;
508 	}
509 	restore_int_flag(flags);
510 }
511 
512 /*
513  * Called by a CPU which has just been onlined.  It is expected that the CPU
514  * performing the online operation will call tsc_sync_master().
515  *
516  * TSC sync is disabled in the context of virtualization. See comments
517  * above tsc_sync_master.
518  */
519 void
520 tsc_sync_slave(void)
521 {
522 	ulong_t flags;
523 	hrtime_t s1;
524 	tsc_sync_t *tsc = tscp;
525 	int cnt;
526 	int hwtype;
527 
528 	hwtype = get_hwenv();
529 	if (!tsc_master_slave_sync_needed || (hwtype & HW_VIRTUAL) != 0)
530 		return;
531 
532 	flags = clear_int_flag();
533 
534 	for (cnt = 0; cnt < SYNC_ITERATIONS; cnt++) {
535 		/* Re-fill the cache line */
536 		s1 = tsc->master_tsc;
537 		membar_enter();
538 		tsc_sync_go = TSC_SYNC_GO;
539 		do {
540 			/*
541 			 * Do not put an SMT_PAUSE here. For instance,
542 			 * if the master and slave are really the same
543 			 * hyper-threaded CPU, then you want the master
544 			 * to yield to the slave as quickly as possible here,
545 			 * but not the other way.
546 			 */
547 			s1 = tsc_read();
548 		} while (tsc->master_tsc == 0);
549 		tsc->slave_tsc = s1;
550 		membar_enter();
551 		tsc_sync_go = TSC_SYNC_DONE;
552 
553 		while (tsc_sync_go != TSC_SYNC_STOP)
554 			SMT_PAUSE();
555 	}
556 
557 	restore_int_flag(flags);
558 }
559 
560 /*
561  * Called once per second on a CPU from the cyclic subsystem's
562  * CY_HIGH_LEVEL interrupt.  (No longer just cpu0-only)
563  */
564 void
565 tsc_tick(void)
566 {
567 	hrtime_t now, delta;
568 	ushort_t spl;
569 
570 	/*
571 	 * Before we set the new variables, we set the shadow values.  This
572 	 * allows for lock free operation in dtrace_gethrtime().
573 	 */
574 	lock_set_spl((lock_t *)&shadow_hres_lock + HRES_LOCK_OFFSET,
575 	    ipltospl(CBE_HIGH_PIL), &spl);
576 
577 	shadow_tsc_hrtime_base = tsc_hrtime_base;
578 	shadow_tsc_last = tsc_last;
579 	shadow_nsec_scale = nsec_scale;
580 
581 	shadow_hres_lock++;
582 	splx(spl);
583 
584 	CLOCK_LOCK(&spl);
585 
586 	now = tsc_read();
587 
588 	if (gethrtimef == tsc_gethrtime_delta)
589 		now += tsc_sync_tick_delta[CPU->cpu_id];
590 
591 	if (now < tsc_last) {
592 		/*
593 		 * The TSC has just jumped into the past.  We assume that
594 		 * this is due to a suspend/resume cycle, and we're going
595 		 * to use the _current_ value of TSC as the delta.  This
596 		 * will keep tsc_hrtime_base correct.  We're also going to
597 		 * assume that rate of tsc does not change after a suspend
598 		 * resume (i.e nsec_scale remains the same).
599 		 */
600 		delta = now;
601 		tsc_last_jumped += tsc_last;
602 		tsc_jumped = 1;
603 	} else {
604 		/*
605 		 * Determine the number of TSC ticks since the last clock
606 		 * tick, and add that to the hrtime base.
607 		 */
608 		delta = now - tsc_last;
609 	}
610 
611 	TSC_CONVERT_AND_ADD(delta, tsc_hrtime_base, nsec_scale);
612 	tsc_last = now;
613 
614 	CLOCK_UNLOCK(spl);
615 }
616 
617 void
618 tsc_hrtimeinit(uint64_t cpu_freq_hz)
619 {
620 	extern int gethrtime_hires;
621 	longlong_t tsc;
622 	ulong_t flags;
623 
624 	/*
625 	 * cpu_freq_hz is the measured cpu frequency in hertz
626 	 */
627 
628 	/*
629 	 * We can't accommodate CPUs slower than 31.25 MHz.
630 	 */
631 	ASSERT(cpu_freq_hz > NANOSEC / (1 << NSEC_SHIFT));
632 	nsec_scale =
633 	    (uint_t)(((uint64_t)NANOSEC << (32 - NSEC_SHIFT)) / cpu_freq_hz);
634 	nsec_unscale =
635 	    (uint_t)(((uint64_t)cpu_freq_hz << (32 - NSEC_SHIFT)) / NANOSEC);
636 
637 	flags = clear_int_flag();
638 	tsc = tsc_read();
639 	(void) tsc_gethrtime();
640 	tsc_max_delta = tsc_read() - tsc;
641 	restore_int_flag(flags);
642 	gethrtimef = tsc_gethrtime;
643 	gethrtimeunscaledf = tsc_gethrtimeunscaled;
644 	scalehrtimef = tsc_scalehrtime;
645 	unscalehrtimef = tsc_unscalehrtime;
646 	hrtime_tick = tsc_tick;
647 	gethrtime_hires = 1;
648 	/*
649 	 * Allocate memory for the structure used in the tsc sync logic.
650 	 * This structure should be aligned on a multiple of cache line size.
651 	 */
652 	tscp = kmem_zalloc(PAGESIZE, KM_SLEEP);
653 }
654 
655 int
656 get_tsc_ready()
657 {
658 	return (tsc_ready);
659 }
660 
661 /*
662  * Adjust all the deltas by adding the passed value to the array.
663  * Then use the "delt" versions of the the gethrtime functions.
664  * Note that 'tdelta' _could_ be a negative number, which should
665  * reduce the values in the array (used, for example, if the Solaris
666  * instance was moved by a virtual manager to a machine with a higher
667  * value of tsc).
668  */
669 void
670 tsc_adjust_delta(hrtime_t tdelta)
671 {
672 	int		i;
673 
674 	for (i = 0; i < NCPU; i++) {
675 		tsc_sync_tick_delta[i] += tdelta;
676 	}
677 
678 	gethrtimef = tsc_gethrtime_delta;
679 	gethrtimeunscaledf = tsc_gethrtimeunscaled_delta;
680 }
681 
682 /*
683  * Functions to manage TSC and high-res time on suspend and resume.
684  */
685 
686 /*
687  * declarations needed for time adjustment
688  */
689 extern void	rtcsync(void);
690 extern tod_ops_t *tod_ops;
691 /* There must be a better way than exposing nsec_scale! */
692 extern uint_t	nsec_scale;
693 static uint64_t tsc_saved_tsc = 0; /* 1 in 2^64 chance this'll screw up! */
694 static timestruc_t tsc_saved_ts;
695 static int	tsc_needs_resume = 0;	/* We only want to do this once. */
696 int		tsc_delta_onsuspend = 0;
697 int		tsc_adjust_seconds = 1;
698 int		tsc_suspend_count = 0;
699 int		tsc_resume_in_cyclic = 0;
700 
701 /*
702  * Let timestamp.c know that we are suspending.  It needs to take
703  * snapshots of the current time, and do any pre-suspend work.
704  */
705 void
706 tsc_suspend(void)
707 {
708 /*
709  * What we need to do here, is to get the time we suspended, so that we
710  * know how much we should add to the resume.
711  * This routine is called by each CPU, so we need to handle reentry.
712  */
713 	if (tsc_gethrtime_enable) {
714 		/*
715 		 * We put the tsc_read() inside the lock as it
716 		 * as no locking constraints, and it puts the
717 		 * aquired value closer to the time stamp (in
718 		 * case we delay getting the lock).
719 		 */
720 		mutex_enter(&tod_lock);
721 		tsc_saved_tsc = tsc_read();
722 		tsc_saved_ts = TODOP_GET(tod_ops);
723 		mutex_exit(&tod_lock);
724 		/* We only want to do this once. */
725 		if (tsc_needs_resume == 0) {
726 			if (tsc_delta_onsuspend) {
727 				tsc_adjust_delta(tsc_saved_tsc);
728 			} else {
729 				tsc_adjust_delta(nsec_scale);
730 			}
731 			tsc_suspend_count++;
732 		}
733 	}
734 
735 	invalidate_cache();
736 	tsc_needs_resume = 1;
737 }
738 
739 /*
740  * Restore all timestamp state based on the snapshots taken at
741  * suspend time.
742  */
743 void
744 tsc_resume(void)
745 {
746 	/*
747 	 * We only need to (and want to) do this once.  So let the first
748 	 * caller handle this (we are locked by the cpu lock), as it
749 	 * is preferential that we get the earliest sync.
750 	 */
751 	if (tsc_needs_resume) {
752 		/*
753 		 * If using the TSC, adjust the delta based on how long
754 		 * we were sleeping (or away).  We also adjust for
755 		 * migration and a grown TSC.
756 		 */
757 		if (tsc_saved_tsc != 0) {
758 			timestruc_t	ts;
759 			hrtime_t	now, sleep_tsc = 0;
760 			int		sleep_sec;
761 			extern void	tsc_tick(void);
762 			extern uint64_t cpu_freq_hz;
763 
764 			/* tsc_read() MUST be before TODOP_GET() */
765 			mutex_enter(&tod_lock);
766 			now = tsc_read();
767 			ts = TODOP_GET(tod_ops);
768 			mutex_exit(&tod_lock);
769 
770 			/* Compute seconds of sleep time */
771 			sleep_sec = ts.tv_sec - tsc_saved_ts.tv_sec;
772 
773 			/*
774 			 * If the saved sec is less that or equal to
775 			 * the current ts, then there is likely a
776 			 * problem with the clock.  Assume at least
777 			 * one second has passed, so that time goes forward.
778 			 */
779 			if (sleep_sec <= 0) {
780 				sleep_sec = 1;
781 			}
782 
783 			/* How many TSC's should have occured while sleeping */
784 			if (tsc_adjust_seconds)
785 				sleep_tsc = sleep_sec * cpu_freq_hz;
786 
787 			/*
788 			 * We also want to subtract from the "sleep_tsc"
789 			 * the current value of tsc_read(), so that our
790 			 * adjustment accounts for the amount of time we
791 			 * have been resumed _or_ an adjustment based on
792 			 * the fact that we didn't actually power off the
793 			 * CPU (migration is another issue, but _should_
794 			 * also comply with this calculation).  If the CPU
795 			 * never powered off, then:
796 			 *    'now == sleep_tsc + saved_tsc'
797 			 * and the delta will effectively be "0".
798 			 */
799 			sleep_tsc -= now;
800 			if (tsc_delta_onsuspend) {
801 				tsc_adjust_delta(sleep_tsc);
802 			} else {
803 				tsc_adjust_delta(tsc_saved_tsc + sleep_tsc);
804 			}
805 			tsc_saved_tsc = 0;
806 
807 			tsc_tick();
808 		}
809 		tsc_needs_resume = 0;
810 	}
811 
812 }
813