1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 * 26 * Copyright 2012 Nexenta Systems, Inc. All rights reserved. 27 * Copyright (c) 2014, 2016 by Delphix. All rights reserved. 28 * Copyright 2020 Joyent, Inc. 29 */ 30 31 #include <sys/types.h> 32 #include <sys/param.h> 33 #include <sys/systm.h> 34 #include <sys/disp.h> 35 #include <sys/var.h> 36 #include <sys/cmn_err.h> 37 #include <sys/debug.h> 38 #include <sys/x86_archext.h> 39 #include <sys/archsystm.h> 40 #include <sys/cpuvar.h> 41 #include <sys/psm_defs.h> 42 #include <sys/clock.h> 43 #include <sys/atomic.h> 44 #include <sys/lockstat.h> 45 #include <sys/smp_impldefs.h> 46 #include <sys/dtrace.h> 47 #include <sys/time.h> 48 #include <sys/panic.h> 49 #include <sys/cpu.h> 50 #include <sys/sdt.h> 51 #include <sys/comm_page.h> 52 #include <sys/bootconf.h> 53 #include <sys/kobj.h> 54 #include <sys/kobj_lex.h> 55 #include <sys/tsc.h> 56 #include <sys/prom_debug.h> 57 #include <util/qsort.h> 58 59 /* 60 * Using the Pentium's TSC register for gethrtime() 61 * ------------------------------------------------ 62 * 63 * The Pentium family, like many chip architectures, has a high-resolution 64 * timestamp counter ("TSC") which increments once per CPU cycle. The contents 65 * of the timestamp counter are read with the RDTSC instruction. 66 * 67 * As with its UltraSPARC equivalent (the %tick register), TSC's cycle count 68 * must be translated into nanoseconds in order to implement gethrtime(). 69 * We avoid inducing floating point operations in this conversion by 70 * implementing the same nsec_scale algorithm as that found in the sun4u 71 * platform code. The sun4u NATIVE_TIME_TO_NSEC_SCALE block comment contains 72 * a detailed description of the algorithm; the comment is not reproduced 73 * here. This implementation differs only in its value for NSEC_SHIFT: 74 * we implement an NSEC_SHIFT of 5 (instead of sun4u's 4) to allow for 75 * 60 MHz Pentiums. 76 * 77 * While TSC and %tick are both cycle counting registers, TSC's functionality 78 * falls short in several critical ways: 79 * 80 * (a) TSCs on different CPUs are not guaranteed to be in sync. While in 81 * practice they often _are_ in sync, this isn't guaranteed by the 82 * architecture. 83 * 84 * (b) The TSC cannot be reliably set to an arbitrary value. The architecture 85 * only supports writing the low 32-bits of TSC, making it impractical 86 * to rewrite. 87 * 88 * (c) The architecture doesn't have the capacity to interrupt based on 89 * arbitrary values of TSC; there is no TICK_CMPR equivalent. 90 * 91 * Together, (a) and (b) imply that software must track the skew between 92 * TSCs and account for it (it is assumed that while there may exist skew, 93 * there does not exist drift). To determine the skew between CPUs, we 94 * have newly onlined CPUs call tsc_sync_slave(), while the CPU performing 95 * the online operation calls tsc_sync_master(). 96 * 97 * In the absence of time-of-day clock adjustments, gethrtime() must stay in 98 * sync with gettimeofday(). This is problematic; given (c), the software 99 * cannot drive its time-of-day source from TSC, and yet they must somehow be 100 * kept in sync. We implement this by having a routine, tsc_tick(), which 101 * is called once per second from the interrupt which drives time-of-day. 102 * 103 * Note that the hrtime base for gethrtime, tsc_hrtime_base, is modified 104 * atomically with nsec_scale under CLOCK_LOCK. This assures that time 105 * monotonically increases. 106 */ 107 108 #define NSEC_SHIFT 5 109 110 static uint_t nsec_unscale; 111 112 /* 113 * These two variables used to be grouped together inside of a structure that 114 * lived on a single cache line. A regression (bug ID 4623398) caused the 115 * compiler to emit code that "optimized" away the while-loops below. The 116 * result was that no synchronization between the onlining and onlined CPUs 117 * took place. 118 */ 119 static volatile int tsc_ready; 120 static volatile int tsc_sync_go; 121 122 /* 123 * Used as indices into the tsc_sync_snaps[] array. 124 */ 125 #define TSC_MASTER 0 126 #define TSC_SLAVE 1 127 128 /* 129 * Used in the tsc_master_sync()/tsc_slave_sync() rendezvous. 130 */ 131 #define TSC_SYNC_STOP 1 132 #define TSC_SYNC_GO 2 133 #define TSC_SYNC_DONE 3 134 #define SYNC_ITERATIONS 10 135 136 #define TSC_CONVERT_AND_ADD(tsc, hrt, scale) { \ 137 unsigned int *_l = (unsigned int *)&(tsc); \ 138 (hrt) += mul32(_l[1], scale) << NSEC_SHIFT; \ 139 (hrt) += mul32(_l[0], scale) >> (32 - NSEC_SHIFT); \ 140 } 141 142 #define TSC_CONVERT(tsc, hrt, scale) { \ 143 unsigned int *_l = (unsigned int *)&(tsc); \ 144 (hrt) = mul32(_l[1], scale) << NSEC_SHIFT; \ 145 (hrt) += mul32(_l[0], scale) >> (32 - NSEC_SHIFT); \ 146 } 147 148 int tsc_master_slave_sync_needed = 1; 149 150 typedef struct tsc_sync { 151 volatile hrtime_t master_tsc, slave_tsc; 152 } tsc_sync_t; 153 static tsc_sync_t *tscp; 154 155 static hrtime_t tsc_last_jumped = 0; 156 static int tsc_jumped = 0; 157 static uint32_t tsc_wayback = 0; 158 /* 159 * The cap of 1 second was chosen since it is the frequency at which the 160 * tsc_tick() function runs which means that when gethrtime() is called it 161 * should never be more than 1 second since tsc_last was updated. 162 */ 163 static hrtime_t tsc_resume_cap_ns = NANOSEC; /* 1s */ 164 165 static hrtime_t shadow_tsc_hrtime_base; 166 static hrtime_t shadow_tsc_last; 167 static uint_t shadow_nsec_scale; 168 static uint32_t shadow_hres_lock; 169 int get_tsc_ready(); 170 171 /* 172 * Allow an operator specify an explicit TSC calibration source 173 * via /etc/system e.g. `set tsc_calibration="pit"` 174 */ 175 char *tsc_calibration; 176 177 /* 178 * The source that was used to calibrate the TSC. This is currently just 179 * for diagnostic purposes. 180 */ 181 static tsc_calibrate_t *tsc_calibration_source; 182 183 /* The TSC frequency after calibration */ 184 static uint64_t tsc_freq; 185 186 static inline hrtime_t 187 tsc_protect(hrtime_t a) 188 { 189 if (a > tsc_resume_cap) { 190 atomic_inc_32(&tsc_wayback); 191 DTRACE_PROBE3(tsc__wayback, htrime_t, a, hrtime_t, tsc_last, 192 uint32_t, tsc_wayback); 193 return (tsc_resume_cap); 194 } 195 return (a); 196 } 197 198 hrtime_t 199 tsc_gethrtime(void) 200 { 201 uint32_t old_hres_lock; 202 hrtime_t tsc, hrt; 203 204 do { 205 old_hres_lock = hres_lock; 206 207 if ((tsc = tsc_read()) >= tsc_last) { 208 /* 209 * It would seem to be obvious that this is true 210 * (that is, the past is less than the present), 211 * but it isn't true in the presence of suspend/resume 212 * cycles. If we manage to call gethrtime() 213 * after a resume, but before the first call to 214 * tsc_tick(), we will see the jump. In this case, 215 * we will simply use the value in TSC as the delta. 216 */ 217 tsc -= tsc_last; 218 } else if (tsc >= tsc_last - 2*tsc_max_delta) { 219 /* 220 * There is a chance that tsc_tick() has just run on 221 * another CPU, and we have drifted just enough so that 222 * we appear behind tsc_last. In this case, force the 223 * delta to be zero. 224 */ 225 tsc = 0; 226 } else { 227 /* 228 * If we reach this else clause we assume that we have 229 * gone through a suspend/resume cycle and use the 230 * current tsc value as the delta. 231 * 232 * In rare cases we can reach this else clause due to 233 * a lack of monotonicity in the TSC value. In such 234 * cases using the current TSC value as the delta would 235 * cause us to return a value ~2x of what it should 236 * be. To protect against these cases we cap the 237 * suspend/resume delta at tsc_resume_cap. 238 */ 239 tsc = tsc_protect(tsc); 240 } 241 242 hrt = tsc_hrtime_base; 243 244 TSC_CONVERT_AND_ADD(tsc, hrt, nsec_scale); 245 } while ((old_hres_lock & ~1) != hres_lock); 246 247 return (hrt); 248 } 249 250 hrtime_t 251 tsc_gethrtime_delta(void) 252 { 253 uint32_t old_hres_lock; 254 hrtime_t tsc, hrt; 255 ulong_t flags; 256 257 do { 258 old_hres_lock = hres_lock; 259 260 /* 261 * We need to disable interrupts here to assure that we 262 * don't migrate between the call to tsc_read() and 263 * adding the CPU's TSC tick delta. Note that disabling 264 * and reenabling preemption is forbidden here because 265 * we may be in the middle of a fast trap. In the amd64 266 * kernel we cannot tolerate preemption during a fast 267 * trap. See _update_sregs(). 268 */ 269 270 flags = clear_int_flag(); 271 tsc = tsc_read() + tsc_sync_tick_delta[CPU->cpu_id]; 272 restore_int_flag(flags); 273 274 /* See comments in tsc_gethrtime() above */ 275 276 if (tsc >= tsc_last) { 277 tsc -= tsc_last; 278 } else if (tsc >= tsc_last - 2 * tsc_max_delta) { 279 tsc = 0; 280 } else { 281 tsc = tsc_protect(tsc); 282 } 283 284 hrt = tsc_hrtime_base; 285 286 TSC_CONVERT_AND_ADD(tsc, hrt, nsec_scale); 287 } while ((old_hres_lock & ~1) != hres_lock); 288 289 return (hrt); 290 } 291 292 hrtime_t 293 tsc_gethrtime_tick_delta(void) 294 { 295 hrtime_t hrt; 296 ulong_t flags; 297 298 flags = clear_int_flag(); 299 hrt = tsc_sync_tick_delta[CPU->cpu_id]; 300 restore_int_flag(flags); 301 302 return (hrt); 303 } 304 305 /* Calculate the hrtime while exposing the parameters of that calculation. */ 306 hrtime_t 307 tsc_gethrtime_params(uint64_t *tscp, uint32_t *scalep, uint8_t *shiftp) 308 { 309 uint32_t old_hres_lock, scale; 310 hrtime_t tsc, last, base; 311 312 do { 313 old_hres_lock = hres_lock; 314 315 if (gethrtimef == tsc_gethrtime_delta) { 316 ulong_t flags; 317 318 flags = clear_int_flag(); 319 tsc = tsc_read() + tsc_sync_tick_delta[CPU->cpu_id]; 320 restore_int_flag(flags); 321 } else { 322 tsc = tsc_read(); 323 } 324 325 last = tsc_last; 326 base = tsc_hrtime_base; 327 scale = nsec_scale; 328 329 } while ((old_hres_lock & ~1) != hres_lock); 330 331 /* See comments in tsc_gethrtime() above */ 332 if (tsc >= last) { 333 tsc -= last; 334 } else if (tsc >= last - 2 * tsc_max_delta) { 335 tsc = 0; 336 } else { 337 tsc = tsc_protect(tsc); 338 } 339 340 TSC_CONVERT_AND_ADD(tsc, base, nsec_scale); 341 342 if (tscp != NULL) { 343 /* 344 * Do not simply communicate the delta applied to the hrtime 345 * base, but rather the effective TSC measurement. 346 */ 347 *tscp = tsc + last; 348 } 349 if (scalep != NULL) { 350 *scalep = scale; 351 } 352 if (shiftp != NULL) { 353 *shiftp = NSEC_SHIFT; 354 } 355 356 return (base); 357 } 358 359 /* 360 * This is similar to tsc_gethrtime_delta, but it cannot actually spin on 361 * hres_lock. As a result, it caches all of the variables it needs; if the 362 * variables don't change, it's done. 363 */ 364 hrtime_t 365 dtrace_gethrtime(void) 366 { 367 uint32_t old_hres_lock; 368 hrtime_t tsc, hrt; 369 ulong_t flags; 370 371 do { 372 old_hres_lock = hres_lock; 373 374 /* 375 * Interrupts are disabled to ensure that the thread isn't 376 * migrated between the tsc_read() and adding the CPU's 377 * TSC tick delta. 378 */ 379 flags = clear_int_flag(); 380 381 tsc = tsc_read(); 382 383 if (gethrtimef == tsc_gethrtime_delta) 384 tsc += tsc_sync_tick_delta[CPU->cpu_id]; 385 386 restore_int_flag(flags); 387 388 /* 389 * See the comments in tsc_gethrtime(), above. 390 */ 391 if (tsc >= tsc_last) 392 tsc -= tsc_last; 393 else if (tsc >= tsc_last - 2*tsc_max_delta) 394 tsc = 0; 395 else 396 tsc = tsc_protect(tsc); 397 398 hrt = tsc_hrtime_base; 399 400 TSC_CONVERT_AND_ADD(tsc, hrt, nsec_scale); 401 402 if ((old_hres_lock & ~1) == hres_lock) 403 break; 404 405 /* 406 * If we're here, the clock lock is locked -- or it has been 407 * unlocked and locked since we looked. This may be due to 408 * tsc_tick() running on another CPU -- or it may be because 409 * some code path has ended up in dtrace_probe() with 410 * CLOCK_LOCK held. We'll try to determine that we're in 411 * the former case by taking another lap if the lock has 412 * changed since when we first looked at it. 413 */ 414 if (old_hres_lock != hres_lock) 415 continue; 416 417 /* 418 * So the lock was and is locked. We'll use the old data 419 * instead. 420 */ 421 old_hres_lock = shadow_hres_lock; 422 423 /* 424 * Again, disable interrupts to ensure that the thread 425 * isn't migrated between the tsc_read() and adding 426 * the CPU's TSC tick delta. 427 */ 428 flags = clear_int_flag(); 429 430 tsc = tsc_read(); 431 432 if (gethrtimef == tsc_gethrtime_delta) 433 tsc += tsc_sync_tick_delta[CPU->cpu_id]; 434 435 restore_int_flag(flags); 436 437 /* 438 * See the comments in tsc_gethrtime(), above. 439 */ 440 if (tsc >= shadow_tsc_last) 441 tsc -= shadow_tsc_last; 442 else if (tsc >= shadow_tsc_last - 2 * tsc_max_delta) 443 tsc = 0; 444 else 445 tsc = tsc_protect(tsc); 446 447 hrt = shadow_tsc_hrtime_base; 448 449 TSC_CONVERT_AND_ADD(tsc, hrt, shadow_nsec_scale); 450 } while ((old_hres_lock & ~1) != shadow_hres_lock); 451 452 return (hrt); 453 } 454 455 hrtime_t 456 tsc_gethrtimeunscaled(void) 457 { 458 uint32_t old_hres_lock; 459 hrtime_t tsc; 460 461 do { 462 old_hres_lock = hres_lock; 463 464 /* See tsc_tick(). */ 465 tsc = tsc_read() + tsc_last_jumped; 466 } while ((old_hres_lock & ~1) != hres_lock); 467 468 return (tsc); 469 } 470 471 /* 472 * Convert a nanosecond based timestamp to tsc 473 */ 474 uint64_t 475 tsc_unscalehrtime(hrtime_t nsec) 476 { 477 hrtime_t tsc; 478 479 if (tsc_gethrtime_enable) { 480 TSC_CONVERT(nsec, tsc, nsec_unscale); 481 return (tsc); 482 } 483 return ((uint64_t)nsec); 484 } 485 486 /* Convert a tsc timestamp to nanoseconds */ 487 void 488 tsc_scalehrtime(hrtime_t *tsc) 489 { 490 hrtime_t hrt; 491 hrtime_t mytsc; 492 493 if (tsc == NULL) 494 return; 495 mytsc = *tsc; 496 497 TSC_CONVERT(mytsc, hrt, nsec_scale); 498 *tsc = hrt; 499 } 500 501 hrtime_t 502 tsc_gethrtimeunscaled_delta(void) 503 { 504 hrtime_t hrt; 505 ulong_t flags; 506 507 /* 508 * Similarly to tsc_gethrtime_delta, we need to disable preemption 509 * to prevent migration between the call to tsc_gethrtimeunscaled 510 * and adding the CPU's hrtime delta. Note that disabling and 511 * reenabling preemption is forbidden here because we may be in the 512 * middle of a fast trap. In the amd64 kernel we cannot tolerate 513 * preemption during a fast trap. See _update_sregs(). 514 */ 515 516 flags = clear_int_flag(); 517 hrt = tsc_gethrtimeunscaled() + tsc_sync_tick_delta[CPU->cpu_id]; 518 restore_int_flag(flags); 519 520 return (hrt); 521 } 522 523 /* 524 * TSC Sync Master 525 * 526 * Typically called on the boot CPU, this attempts to quantify TSC skew between 527 * different CPUs. If an appreciable difference is found, gethrtimef will be 528 * changed to point to tsc_gethrtime_delta(). 529 * 530 * Calculating skews is precise only when the master and slave TSCs are read 531 * simultaneously; however, there is no algorithm that can read both CPUs in 532 * perfect simultaneity. The proposed algorithm is an approximate method based 533 * on the behaviour of cache management. The slave CPU continuously polls the 534 * TSC while reading a global variable updated by the master CPU. The latest 535 * TSC reading is saved when the master's update (forced via mfence) reaches 536 * visibility on the slave. The master will also take a TSC reading 537 * immediately following the mfence. 538 * 539 * While the delay between cache line invalidation on the slave and mfence 540 * completion on the master is not repeatable, the error is heuristically 541 * assumed to be 1/4th of the write time recorded by the master. Multiple 542 * samples are taken to control for the variance caused by external factors 543 * such as bus contention. Each sample set is independent per-CPU to control 544 * for differing memory latency on NUMA systems. 545 * 546 * TSC sync is disabled in the context of virtualization because the CPUs 547 * assigned to the guest are virtual CPUs which means the real CPUs on which 548 * guest runs keep changing during life time of guest OS. So we would end up 549 * calculating TSC skews for a set of CPUs during boot whereas the guest 550 * might migrate to a different set of physical CPUs at a later point of 551 * time. 552 */ 553 void 554 tsc_sync_master(processorid_t slave) 555 { 556 ulong_t flags, source, min_write_time = ~0UL; 557 hrtime_t write_time, mtsc_after, last_delta = 0; 558 tsc_sync_t *tsc = tscp; 559 int cnt; 560 int hwtype; 561 562 hwtype = get_hwenv(); 563 if (!tsc_master_slave_sync_needed || (hwtype & HW_VIRTUAL) != 0) 564 return; 565 566 flags = clear_int_flag(); 567 source = CPU->cpu_id; 568 569 for (cnt = 0; cnt < SYNC_ITERATIONS; cnt++) { 570 while (tsc_sync_go != TSC_SYNC_GO) 571 SMT_PAUSE(); 572 573 tsc->master_tsc = tsc_read(); 574 membar_enter(); 575 mtsc_after = tsc_read(); 576 while (tsc_sync_go != TSC_SYNC_DONE) 577 SMT_PAUSE(); 578 write_time = mtsc_after - tsc->master_tsc; 579 if (write_time <= min_write_time) { 580 hrtime_t tdelta; 581 582 tdelta = tsc->slave_tsc - mtsc_after; 583 if (tdelta < 0) 584 tdelta = -tdelta; 585 /* 586 * If the margin exists, subtract 1/4th of the measured 587 * write time from the master's TSC value. This is an 588 * estimate of how late the mfence completion came 589 * after the slave noticed the cache line change. 590 */ 591 if (tdelta > (write_time/4)) { 592 tdelta = tsc->slave_tsc - 593 (mtsc_after - (write_time/4)); 594 } else { 595 tdelta = tsc->slave_tsc - mtsc_after; 596 } 597 last_delta = tsc_sync_tick_delta[source] - tdelta; 598 tsc_sync_tick_delta[slave] = last_delta; 599 min_write_time = write_time; 600 } 601 602 tsc->master_tsc = tsc->slave_tsc = write_time = 0; 603 membar_enter(); 604 tsc_sync_go = TSC_SYNC_STOP; 605 } 606 607 /* 608 * Only enable the delta variants of the TSC functions if the measured 609 * skew is greater than the fastest write time. 610 */ 611 last_delta = (last_delta < 0) ? -last_delta : last_delta; 612 if (last_delta > min_write_time) { 613 gethrtimef = tsc_gethrtime_delta; 614 gethrtimeunscaledf = tsc_gethrtimeunscaled_delta; 615 tsc_ncpu = NCPU; 616 } 617 restore_int_flag(flags); 618 } 619 620 /* 621 * TSC Sync Slave 622 * 623 * Called by a CPU which has just been onlined. It is expected that the CPU 624 * performing the online operation will call tsc_sync_master(). 625 * 626 * Like tsc_sync_master, this logic is skipped on virtualized platforms. 627 */ 628 void 629 tsc_sync_slave(void) 630 { 631 ulong_t flags; 632 hrtime_t s1; 633 tsc_sync_t *tsc = tscp; 634 int cnt; 635 int hwtype; 636 637 hwtype = get_hwenv(); 638 if (!tsc_master_slave_sync_needed || (hwtype & HW_VIRTUAL) != 0) 639 return; 640 641 flags = clear_int_flag(); 642 643 for (cnt = 0; cnt < SYNC_ITERATIONS; cnt++) { 644 /* Re-fill the cache line */ 645 s1 = tsc->master_tsc; 646 membar_enter(); 647 tsc_sync_go = TSC_SYNC_GO; 648 do { 649 /* 650 * Do not put an SMT_PAUSE here. If the master and 651 * slave are the same hyper-threaded CPU, we want the 652 * master to yield as quickly as possible to the slave. 653 */ 654 s1 = tsc_read(); 655 } while (tsc->master_tsc == 0); 656 tsc->slave_tsc = s1; 657 membar_enter(); 658 tsc_sync_go = TSC_SYNC_DONE; 659 660 while (tsc_sync_go != TSC_SYNC_STOP) 661 SMT_PAUSE(); 662 } 663 664 restore_int_flag(flags); 665 } 666 667 /* 668 * Called once per second on a CPU from the cyclic subsystem's 669 * CY_HIGH_LEVEL interrupt. (No longer just cpu0-only) 670 */ 671 void 672 tsc_tick(void) 673 { 674 hrtime_t now, delta; 675 ushort_t spl; 676 677 /* 678 * Before we set the new variables, we set the shadow values. This 679 * allows for lock free operation in dtrace_gethrtime(). 680 */ 681 lock_set_spl((lock_t *)&shadow_hres_lock + HRES_LOCK_OFFSET, 682 ipltospl(CBE_HIGH_PIL), &spl); 683 684 shadow_tsc_hrtime_base = tsc_hrtime_base; 685 shadow_tsc_last = tsc_last; 686 shadow_nsec_scale = nsec_scale; 687 688 shadow_hres_lock++; 689 splx(spl); 690 691 CLOCK_LOCK(&spl); 692 693 now = tsc_read(); 694 695 if (gethrtimef == tsc_gethrtime_delta) 696 now += tsc_sync_tick_delta[CPU->cpu_id]; 697 698 if (now < tsc_last) { 699 /* 700 * The TSC has just jumped into the past. We assume that 701 * this is due to a suspend/resume cycle, and we're going 702 * to use the _current_ value of TSC as the delta. This 703 * will keep tsc_hrtime_base correct. We're also going to 704 * assume that rate of tsc does not change after a suspend 705 * resume (i.e nsec_scale remains the same). 706 */ 707 delta = now; 708 delta = tsc_protect(delta); 709 tsc_last_jumped += tsc_last; 710 tsc_jumped = 1; 711 } else { 712 /* 713 * Determine the number of TSC ticks since the last clock 714 * tick, and add that to the hrtime base. 715 */ 716 delta = now - tsc_last; 717 } 718 719 TSC_CONVERT_AND_ADD(delta, tsc_hrtime_base, nsec_scale); 720 tsc_last = now; 721 722 CLOCK_UNLOCK(spl); 723 } 724 725 void 726 tsc_hrtimeinit(uint64_t cpu_freq_hz) 727 { 728 extern int gethrtime_hires; 729 longlong_t tsc; 730 ulong_t flags; 731 732 /* 733 * cpu_freq_hz is the measured cpu frequency in hertz 734 */ 735 736 /* 737 * We can't accommodate CPUs slower than 31.25 MHz. 738 */ 739 ASSERT(cpu_freq_hz > NANOSEC / (1 << NSEC_SHIFT)); 740 nsec_scale = 741 (uint_t)(((uint64_t)NANOSEC << (32 - NSEC_SHIFT)) / cpu_freq_hz); 742 nsec_unscale = 743 (uint_t)(((uint64_t)cpu_freq_hz << (32 - NSEC_SHIFT)) / NANOSEC); 744 745 flags = clear_int_flag(); 746 tsc = tsc_read(); 747 (void) tsc_gethrtime(); 748 tsc_max_delta = tsc_read() - tsc; 749 restore_int_flag(flags); 750 gethrtimef = tsc_gethrtime; 751 gethrtimeunscaledf = tsc_gethrtimeunscaled; 752 scalehrtimef = tsc_scalehrtime; 753 unscalehrtimef = tsc_unscalehrtime; 754 hrtime_tick = tsc_tick; 755 gethrtime_hires = 1; 756 /* 757 * Being part of the comm page, tsc_ncpu communicates the published 758 * length of the tsc_sync_tick_delta array. This is kept zeroed to 759 * ignore the absent delta data while the TSCs are synced. 760 */ 761 tsc_ncpu = 0; 762 /* 763 * Allocate memory for the structure used in the tsc sync logic. 764 * This structure should be aligned on a multiple of cache line size. 765 */ 766 tscp = kmem_zalloc(PAGESIZE, KM_SLEEP); 767 768 /* 769 * Convert the TSC resume cap ns value into its unscaled TSC value. 770 * See tsc_gethrtime(). 771 */ 772 if (tsc_resume_cap == 0) 773 TSC_CONVERT(tsc_resume_cap_ns, tsc_resume_cap, nsec_unscale); 774 } 775 776 int 777 get_tsc_ready() 778 { 779 return (tsc_ready); 780 } 781 782 /* 783 * Adjust all the deltas by adding the passed value to the array and activate 784 * the "delta" versions of the gethrtime functions. It is possible that the 785 * adjustment could be negative. Such may occur if the SunOS instance was 786 * moved by a virtual manager to a machine with a higher value of TSC. 787 */ 788 void 789 tsc_adjust_delta(hrtime_t tdelta) 790 { 791 int i; 792 793 for (i = 0; i < NCPU; i++) { 794 tsc_sync_tick_delta[i] += tdelta; 795 } 796 797 gethrtimef = tsc_gethrtime_delta; 798 gethrtimeunscaledf = tsc_gethrtimeunscaled_delta; 799 tsc_ncpu = NCPU; 800 } 801 802 /* 803 * Functions to manage TSC and high-res time on suspend and resume. 804 */ 805 806 /* tod_ops from "uts/i86pc/io/todpc_subr.c" */ 807 extern tod_ops_t *tod_ops; 808 809 static uint64_t tsc_saved_tsc = 0; /* 1 in 2^64 chance this'll screw up! */ 810 static timestruc_t tsc_saved_ts; 811 static int tsc_needs_resume = 0; /* We only want to do this once. */ 812 int tsc_delta_onsuspend = 0; 813 int tsc_adjust_seconds = 1; 814 int tsc_suspend_count = 0; 815 int tsc_resume_in_cyclic = 0; 816 817 /* 818 * Take snapshots of the current time and do any other pre-suspend work. 819 */ 820 void 821 tsc_suspend(void) 822 { 823 /* 824 * We need to collect the time at which we suspended here so we know 825 * now much should be added during the resume. This is called by each 826 * CPU, so reentry must be properly handled. 827 */ 828 if (tsc_gethrtime_enable) { 829 /* 830 * Perform the tsc_read after acquiring the lock to make it as 831 * accurate as possible in the face of contention. 832 */ 833 mutex_enter(&tod_lock); 834 tsc_saved_tsc = tsc_read(); 835 tsc_saved_ts = TODOP_GET(tod_ops); 836 mutex_exit(&tod_lock); 837 /* We only want to do this once. */ 838 if (tsc_needs_resume == 0) { 839 if (tsc_delta_onsuspend) { 840 tsc_adjust_delta(tsc_saved_tsc); 841 } else { 842 tsc_adjust_delta(nsec_scale); 843 } 844 tsc_suspend_count++; 845 } 846 } 847 848 invalidate_cache(); 849 tsc_needs_resume = 1; 850 } 851 852 /* 853 * Restore all timestamp state based on the snapshots taken at suspend time. 854 */ 855 void 856 tsc_resume(void) 857 { 858 /* 859 * We only need to (and want to) do this once. So let the first 860 * caller handle this (we are locked by the cpu lock), as it 861 * is preferential that we get the earliest sync. 862 */ 863 if (tsc_needs_resume) { 864 /* 865 * If using the TSC, adjust the delta based on how long 866 * we were sleeping (or away). We also adjust for 867 * migration and a grown TSC. 868 */ 869 if (tsc_saved_tsc != 0) { 870 timestruc_t ts; 871 hrtime_t now, sleep_tsc = 0; 872 int sleep_sec; 873 extern void tsc_tick(void); 874 extern uint64_t cpu_freq_hz; 875 876 /* tsc_read() MUST be before TODOP_GET() */ 877 mutex_enter(&tod_lock); 878 now = tsc_read(); 879 ts = TODOP_GET(tod_ops); 880 mutex_exit(&tod_lock); 881 882 /* Compute seconds of sleep time */ 883 sleep_sec = ts.tv_sec - tsc_saved_ts.tv_sec; 884 885 /* 886 * If the saved sec is less that or equal to 887 * the current ts, then there is likely a 888 * problem with the clock. Assume at least 889 * one second has passed, so that time goes forward. 890 */ 891 if (sleep_sec <= 0) { 892 sleep_sec = 1; 893 } 894 895 /* How many TSC's should have occured while sleeping */ 896 if (tsc_adjust_seconds) 897 sleep_tsc = sleep_sec * cpu_freq_hz; 898 899 /* 900 * We also want to subtract from the "sleep_tsc" 901 * the current value of tsc_read(), so that our 902 * adjustment accounts for the amount of time we 903 * have been resumed _or_ an adjustment based on 904 * the fact that we didn't actually power off the 905 * CPU (migration is another issue, but _should_ 906 * also comply with this calculation). If the CPU 907 * never powered off, then: 908 * 'now == sleep_tsc + saved_tsc' 909 * and the delta will effectively be "0". 910 */ 911 sleep_tsc -= now; 912 if (tsc_delta_onsuspend) { 913 tsc_adjust_delta(sleep_tsc); 914 } else { 915 tsc_adjust_delta(tsc_saved_tsc + sleep_tsc); 916 } 917 tsc_saved_tsc = 0; 918 919 tsc_tick(); 920 } 921 tsc_needs_resume = 0; 922 } 923 924 } 925 926 static int 927 tsc_calibrate_cmp(const void *a, const void *b) 928 { 929 const tsc_calibrate_t * const *a1 = a; 930 const tsc_calibrate_t * const *b1 = b; 931 const tsc_calibrate_t *l = *a1; 932 const tsc_calibrate_t *r = *b1; 933 934 /* Sort from highest preference to lowest preference */ 935 if (l->tscc_preference > r->tscc_preference) 936 return (-1); 937 if (l->tscc_preference < r->tscc_preference) 938 return (1); 939 940 /* For equal preference sources, sort alphabetically */ 941 int c = strcmp(l->tscc_source, r->tscc_source); 942 943 if (c < 0) 944 return (-1); 945 if (c > 0) 946 return (1); 947 return (0); 948 } 949 950 SET_DECLARE(tsc_calibration_set, tsc_calibrate_t); 951 952 static tsc_calibrate_t * 953 tsc_calibrate_get_force(const char *source) 954 { 955 tsc_calibrate_t **tsccpp; 956 957 VERIFY3P(source, !=, NULL); 958 959 SET_FOREACH(tsccpp, tsc_calibration_set) { 960 tsc_calibrate_t *tsccp = *tsccpp; 961 962 if (strcasecmp(source, tsccp->tscc_source) == 0) 963 return (tsccp); 964 } 965 966 /* 967 * If an operator explicitly gave a TSC value and we didn't find it, 968 * we should let them know. 969 */ 970 cmn_err(CE_NOTE, 971 "Explicit TSC calibration source '%s' not found; using default", 972 source); 973 974 return (NULL); 975 } 976 977 /* 978 * As described in tscc_pit.c, as an intertim measure as we transition to 979 * alternate calibration sources besides the PIT, we still want to gather 980 * what the values would have been had we used the PIT. Therefore, if we're 981 * using a source other than the PIT, we explicitly run the PIT calibration 982 * which will store the TSC frequency as measured by the PIT for the 983 * benefit of the APIC code (as well as any potential diagnostics). 984 */ 985 static void 986 tsc_pit_also(void) 987 { 988 tsc_calibrate_t *pit = tsc_calibrate_get_force("PIT"); 989 uint64_t dummy; 990 991 /* We should always have the PIT as a possible calibration source */ 992 VERIFY3P(pit, !=, NULL); 993 994 /* If we used the PIT to calibrate, we don't need to run again */ 995 if (tsc_calibration_source == pit) 996 return; 997 998 /* 999 * Since we're not using the PIT as the actual TSC calibration source, 1000 * we don't care about the results or saving the result -- tscc_pit.c 1001 * saves the frequency in a global for the benefit of the APIC code. 1002 */ 1003 (void) pit->tscc_calibrate(&dummy); 1004 } 1005 1006 uint64_t 1007 tsc_calibrate(void) 1008 { 1009 tsc_calibrate_t **tsccpp, *force; 1010 size_t tsc_set_size; 1011 int tsc_name_len; 1012 1013 /* 1014 * Every x86 system since the Pentium has TSC support. Since we 1015 * only support 64-bit x86 systems, there should always be a TSC 1016 * present, and something's horribly wrong if it's missing. 1017 */ 1018 if (!is_x86_feature(x86_featureset, X86FSET_TSC)) 1019 panic("System does not have TSC support"); 1020 1021 /* 1022 * If we already successfully calibrated the TSC, no need to do 1023 * it again. 1024 */ 1025 if (tsc_freq > 0) 1026 return (tsc_freq); 1027 1028 PRM_POINT("Calibrating the TSC..."); 1029 1030 /* 1031 * Allow an operator to explicitly specify a calibration source via 1032 * `set tsc_calibration=foo` in the bootloader or 1033 * `set tsc_calibration="foo"` in /etc/system (preferring a bootloader 1034 * supplied value over /etc/system). 1035 * 1036 * If no source is given, or the specified source is not found, we 1037 * fallback to trying all of the known sources in order by preference 1038 * (high preference value to low preference value) until one succeeds. 1039 */ 1040 tsc_name_len = BOP_GETPROPLEN(bootops, "tsc_calibration"); 1041 if (tsc_name_len > 0) { 1042 /* Overwrite any /etc/system supplied value */ 1043 if (tsc_calibration != NULL) { 1044 size_t len = strlen(tsc_calibration) + 1; 1045 1046 kobj_free_string(tsc_calibration, len); 1047 } 1048 1049 tsc_calibration = kmem_zalloc(tsc_name_len + 1, KM_SLEEP); 1050 BOP_GETPROP(bootops, "tsc_calibration", tsc_calibration); 1051 } 1052 1053 if (tsc_calibration != NULL && 1054 (force = tsc_calibrate_get_force(tsc_calibration)) != NULL) { 1055 if (tsc_name_len > 0) { 1056 PRM_POINT("Forcing bootloader specified TSC calibration" 1057 " source"); 1058 } else { 1059 PRM_POINT("Forcing /etc/system specified TSC " 1060 "calibration source"); 1061 } 1062 PRM_DEBUGS(force->tscc_source); 1063 1064 if (!force->tscc_calibrate(&tsc_freq)) 1065 panic("Failed to calibrate the TSC"); 1066 1067 tsc_calibration_source = force; 1068 1069 /* 1070 * We've saved the tsc_calibration_t that matched the value 1071 * of tsc_calibration at this point, so we can release the 1072 * memory for the value now. 1073 */ 1074 if (tsc_name_len > 0) { 1075 kmem_free(tsc_calibration, tsc_name_len + 1); 1076 } else if (tsc_calibration != NULL) { 1077 size_t len = strlen(tsc_calibration) + 1; 1078 1079 kobj_free_string(tsc_calibration, len); 1080 } 1081 tsc_calibration = NULL; 1082 1083 tsc_pit_also(); 1084 return (tsc_freq); 1085 } 1086 1087 /* 1088 * While we could sort the set contents in place, we'll make a copy 1089 * of the set and avoid modifying the original set. 1090 */ 1091 tsc_set_size = SET_COUNT(tsc_calibration_set) * 1092 sizeof (tsc_calibrate_t **); 1093 tsccpp = kmem_zalloc(tsc_set_size, KM_SLEEP); 1094 bcopy(SET_BEGIN(tsc_calibration_set), tsccpp, tsc_set_size); 1095 1096 /* 1097 * Sort by preference, highest to lowest 1098 */ 1099 qsort(tsccpp, SET_COUNT(tsc_calibration_set), 1100 sizeof (tsc_calibrate_t **), tsc_calibrate_cmp); 1101 1102 for (uint_t i = 0; i < SET_COUNT(tsc_calibration_set); i++) { 1103 PRM_DEBUGS(tsccpp[i]->tscc_source); 1104 if (tsccpp[i]->tscc_calibrate(&tsc_freq)) { 1105 VERIFY3U(tsc_freq, >, 0); 1106 1107 cmn_err(CE_CONT, 1108 "?TSC calibrated using %s; freq is %lu MHz\n", 1109 tsccpp[i]->tscc_source, tsc_freq / 1000000); 1110 1111 /* 1112 * Note that tsccpp is just a (sorted) array of 1113 * pointers to the tsc_calibration_t's (from the 1114 * linker set). The actual tsc_calibration_t's aren't 1115 * kmem_alloc()ed (being part of the linker set), so 1116 * it's safe to keep a pointer to the one that was 1117 * used for calibration (intended for diagnostic 1118 * purposes). 1119 */ 1120 tsc_calibration_source = tsccpp[i]; 1121 1122 kmem_free(tsccpp, tsc_set_size); 1123 tsc_pit_also(); 1124 return (tsc_freq); 1125 } 1126 } 1127 1128 /* 1129 * In case it's useful, we don't free tsccpp -- we're about to panic 1130 * anyway. 1131 */ 1132 panic("Failed to calibrate TSC"); 1133 } 1134 1135 uint64_t 1136 tsc_get_freq(void) 1137 { 1138 VERIFY(tsc_freq > 0); 1139 return (tsc_freq); 1140 } 1141