1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 /* 26 * Copyright (c) 2010, Intel Corporation. 27 * All rights reserved. 28 */ 29 /* 30 * Copyright 2020 Joyent, Inc. 31 * Copyright 2013 Nexenta Systems, Inc. All rights reserved. 32 * Copyright 2018 OmniOS Community Edition (OmniOSce) Association. 33 * Copyright 2024 Oxide Computer Company 34 */ 35 36 #include <sys/types.h> 37 #include <sys/thread.h> 38 #include <sys/cpuvar.h> 39 #include <sys/cpu.h> 40 #include <sys/t_lock.h> 41 #include <sys/param.h> 42 #include <sys/proc.h> 43 #include <sys/disp.h> 44 #include <sys/class.h> 45 #include <sys/cmn_err.h> 46 #include <sys/debug.h> 47 #include <sys/note.h> 48 #include <sys/asm_linkage.h> 49 #include <sys/x_call.h> 50 #include <sys/systm.h> 51 #include <sys/var.h> 52 #include <sys/vtrace.h> 53 #include <vm/hat.h> 54 #include <vm/as.h> 55 #include <vm/seg_kmem.h> 56 #include <vm/seg_kp.h> 57 #include <sys/segments.h> 58 #include <sys/kmem.h> 59 #include <sys/stack.h> 60 #include <sys/smp_impldefs.h> 61 #include <sys/x86_archext.h> 62 #include <sys/machsystm.h> 63 #include <sys/traptrace.h> 64 #include <sys/clock.h> 65 #include <sys/cpc_impl.h> 66 #include <sys/pg.h> 67 #include <sys/cmt.h> 68 #include <sys/dtrace.h> 69 #include <sys/archsystm.h> 70 #include <sys/fp.h> 71 #include <sys/reboot.h> 72 #include <sys/kdi_machimpl.h> 73 #include <vm/hat_i86.h> 74 #include <vm/vm_dep.h> 75 #include <sys/memnode.h> 76 #include <sys/pci_cfgspace.h> 77 #include <sys/mach_mmu.h> 78 #include <sys/sysmacros.h> 79 #if defined(__xpv) 80 #include <sys/hypervisor.h> 81 #else 82 #include <sys/hma.h> 83 #endif 84 #include <sys/cpu_module.h> 85 #include <sys/ontrap.h> 86 87 struct cpu cpus[1] __aligned(MMU_PAGESIZE); 88 struct cpu *cpu[NCPU] = {&cpus[0]}; 89 struct cpu *cpu_free_list; 90 cpu_core_t cpu_core[NCPU]; 91 92 #define cpu_next_free cpu_prev 93 94 /* 95 * Useful for disabling MP bring-up on a MP capable system. 96 */ 97 int use_mp = 1; 98 99 /* 100 * to be set by a PSM to indicate what cpus 101 * are sitting around on the system. 102 */ 103 cpuset_t mp_cpus; 104 105 /* 106 * This variable is used by the hat layer to decide whether or not 107 * critical sections are needed to prevent race conditions. For sun4m, 108 * this variable is set once enough MP initialization has been done in 109 * order to allow cross calls. 110 */ 111 int flushes_require_xcalls; 112 113 cpuset_t cpu_ready_set; /* initialized in startup() */ 114 115 static void mp_startup_boot(void); 116 static void mp_startup_hotplug(void); 117 118 static void cpu_sep_enable(void); 119 static void cpu_sep_disable(void); 120 static void cpu_asysc_enable(void); 121 static void cpu_asysc_disable(void); 122 123 /* 124 * Init CPU info - get CPU type info for processor_info system call. 125 */ 126 void 127 init_cpu_info(struct cpu *cp) 128 { 129 processor_info_t *pi = &cp->cpu_type_info; 130 131 /* 132 * Get clock-frequency property for the CPU. 133 */ 134 pi->pi_clock = cpu_freq; 135 136 /* 137 * Current frequency in Hz. 138 */ 139 cp->cpu_curr_clock = cpu_freq_hz; 140 141 /* 142 * Supported frequencies. 143 */ 144 if (cp->cpu_supp_freqs == NULL) { 145 cpu_set_supp_freqs(cp, NULL); 146 } 147 148 (void) strcpy(pi->pi_processor_type, "i386"); 149 if (fpu_exists) 150 (void) strcpy(pi->pi_fputypes, "i387 compatible"); 151 152 cp->cpu_idstr = kmem_zalloc(CPU_IDSTRLEN, KM_SLEEP); 153 cp->cpu_brandstr = kmem_zalloc(CPU_IDSTRLEN, KM_SLEEP); 154 155 /* 156 * If called for the BSP, cp is equal to current CPU. 157 * For non-BSPs, cpuid info of cp is not ready yet, so use cpuid info 158 * of current CPU as default values for cpu_idstr and cpu_brandstr. 159 * They will be corrected in mp_startup_common() after 160 * CPUID_PASS_DYNAMIC has been invoked on target CPU. 161 */ 162 (void) cpuid_getidstr(CPU, cp->cpu_idstr, CPU_IDSTRLEN); 163 (void) cpuid_getbrandstr(CPU, cp->cpu_brandstr, CPU_IDSTRLEN); 164 } 165 166 /* 167 * Configure syscall support on this CPU. 168 */ 169 /*ARGSUSED*/ 170 void 171 init_cpu_syscall(struct cpu *cp) 172 { 173 kpreempt_disable(); 174 175 if (is_x86_feature(x86_featureset, X86FSET_MSR) && 176 is_x86_feature(x86_featureset, X86FSET_ASYSC)) { 177 uint64_t flags; 178 179 #if !defined(__xpv) 180 /* 181 * The syscall instruction imposes a certain ordering on 182 * segment selectors, so we double-check that ordering 183 * here. 184 */ 185 CTASSERT(KDS_SEL == KCS_SEL + 8); 186 CTASSERT(UDS_SEL == U32CS_SEL + 8); 187 CTASSERT(UCS_SEL == U32CS_SEL + 16); 188 #endif 189 190 /* 191 * Turn syscall/sysret extensions on. 192 */ 193 cpu_asysc_enable(); 194 195 /* 196 * Program the magic registers .. 197 */ 198 wrmsr(MSR_AMD_STAR, 199 ((uint64_t)(U32CS_SEL << 16 | KCS_SEL)) << 32); 200 if (kpti_enable == 1) { 201 wrmsr(MSR_AMD_LSTAR, 202 (uint64_t)(uintptr_t)tr_sys_syscall); 203 wrmsr(MSR_AMD_CSTAR, 204 (uint64_t)(uintptr_t)tr_sys_syscall32); 205 } else { 206 wrmsr(MSR_AMD_LSTAR, 207 (uint64_t)(uintptr_t)sys_syscall); 208 wrmsr(MSR_AMD_CSTAR, 209 (uint64_t)(uintptr_t)sys_syscall32); 210 } 211 212 /* 213 * This list of flags is masked off the incoming 214 * %rfl when we enter the kernel. 215 */ 216 flags = PS_IE | PS_T; 217 if (is_x86_feature(x86_featureset, X86FSET_SMAP) == B_TRUE) 218 flags |= PS_ACHK; 219 wrmsr(MSR_AMD_SFMASK, flags); 220 } 221 222 /* 223 * On 64-bit kernels on Nocona machines, the 32-bit syscall 224 * variant isn't available to 32-bit applications, but sysenter is. 225 */ 226 if (is_x86_feature(x86_featureset, X86FSET_MSR) && 227 is_x86_feature(x86_featureset, X86FSET_SEP)) { 228 229 #if !defined(__xpv) 230 /* 231 * The sysenter instruction imposes a certain ordering on 232 * segment selectors, so we double-check that ordering 233 * here. See "sysenter" in Intel document 245471-012, "IA-32 234 * Intel Architecture Software Developer's Manual Volume 2: 235 * Instruction Set Reference" 236 */ 237 CTASSERT(KDS_SEL == KCS_SEL + 8); 238 239 CTASSERT(U32CS_SEL == ((KCS_SEL + 16) | 3)); 240 CTASSERT(UDS_SEL == U32CS_SEL + 8); 241 #endif 242 243 cpu_sep_enable(); 244 245 /* 246 * resume() sets this value to the base of the threads stack 247 * via a context handler. 248 */ 249 wrmsr(MSR_INTC_SEP_ESP, 0); 250 251 if (kpti_enable == 1) { 252 wrmsr(MSR_INTC_SEP_EIP, 253 (uint64_t)(uintptr_t)tr_sys_sysenter); 254 } else { 255 wrmsr(MSR_INTC_SEP_EIP, 256 (uint64_t)(uintptr_t)sys_sysenter); 257 } 258 } 259 260 kpreempt_enable(); 261 } 262 263 #if !defined(__xpv) 264 /* 265 * Configure per-cpu ID GDT 266 */ 267 static void 268 init_cpu_id_gdt(struct cpu *cp) 269 { 270 /* Write cpu_id into limit field of GDT for usermode retrieval */ 271 set_usegd(&cp->cpu_gdt[GDT_CPUID], SDP_SHORT, NULL, cp->cpu_id, 272 SDT_MEMRODA, SEL_UPL, SDP_BYTES, SDP_OP32); 273 } 274 #endif /* !defined(__xpv) */ 275 276 /* 277 * Multiprocessor initialization. 278 * 279 * Allocate and initialize the cpu structure, TRAPTRACE buffer, and the 280 * startup and idle threads for the specified CPU. 281 * Parameter boot is true for boot time operations and is false for CPU 282 * DR operations. 283 */ 284 static struct cpu * 285 mp_cpu_configure_common(int cpun, boolean_t boot) 286 { 287 struct cpu *cp; 288 kthread_id_t tp; 289 caddr_t sp; 290 proc_t *procp; 291 #if !defined(__xpv) 292 extern int idle_cpu_prefer_mwait; 293 extern void cpu_idle_mwait(); 294 #endif 295 extern void idle(); 296 extern void cpu_idle(); 297 298 #ifdef TRAPTRACE 299 trap_trace_ctl_t *ttc = &trap_trace_ctl[cpun]; 300 #endif 301 302 ASSERT(MUTEX_HELD(&cpu_lock)); 303 ASSERT(cpun < NCPU && cpu[cpun] == NULL); 304 305 if (cpu_free_list == NULL) { 306 cp = kmem_zalloc(sizeof (*cp), KM_SLEEP); 307 } else { 308 cp = cpu_free_list; 309 cpu_free_list = cp->cpu_next_free; 310 } 311 312 cp->cpu_m.mcpu_istamp = cpun << 16; 313 314 /* Create per CPU specific threads in the process p0. */ 315 procp = &p0; 316 317 /* 318 * Initialize the dispatcher first. 319 */ 320 disp_cpu_init(cp); 321 322 cpu_vm_data_init(cp); 323 324 /* 325 * Allocate and initialize the startup thread for this CPU. 326 * Interrupt and process switch stacks get allocated later 327 * when the CPU starts running. 328 */ 329 tp = thread_create(NULL, 0, NULL, NULL, 0, procp, 330 TS_STOPPED, maxclsyspri); 331 332 /* 333 * Set state to TS_ONPROC since this thread will start running 334 * as soon as the CPU comes online. 335 * 336 * All the other fields of the thread structure are setup by 337 * thread_create(). 338 */ 339 THREAD_ONPROC(tp, cp); 340 tp->t_preempt = 1; 341 tp->t_bound_cpu = cp; 342 tp->t_affinitycnt = 1; 343 tp->t_cpu = cp; 344 tp->t_disp_queue = cp->cpu_disp; 345 346 /* 347 * Setup thread to start in mp_startup_common. 348 */ 349 sp = tp->t_stk; 350 tp->t_sp = (uintptr_t)(sp - MINFRAME); 351 tp->t_sp -= STACK_ENTRY_ALIGN; /* fake a call */ 352 /* 353 * Setup thread start entry point for boot or hotplug. 354 */ 355 if (boot) { 356 tp->t_pc = (uintptr_t)mp_startup_boot; 357 } else { 358 tp->t_pc = (uintptr_t)mp_startup_hotplug; 359 } 360 361 cp->cpu_id = cpun; 362 cp->cpu_self = cp; 363 cp->cpu_thread = tp; 364 cp->cpu_lwp = NULL; 365 cp->cpu_dispthread = tp; 366 cp->cpu_dispatch_pri = DISP_PRIO(tp); 367 368 /* 369 * cpu_base_spl must be set explicitly here to prevent any blocking 370 * operations in mp_startup_common from causing the spl of the cpu 371 * to drop to 0 (allowing device interrupts before we're ready) in 372 * resume(). 373 * cpu_base_spl MUST remain at LOCK_LEVEL until the cpu is CPU_READY. 374 * As an extra bit of security on DEBUG kernels, this is enforced with 375 * an assertion in mp_startup_common() -- before cpu_base_spl is set 376 * to its proper value. 377 */ 378 cp->cpu_base_spl = ipltospl(LOCK_LEVEL); 379 380 /* 381 * Now, initialize per-CPU idle thread for this CPU. 382 */ 383 tp = thread_create(NULL, PAGESIZE, idle, NULL, 0, procp, TS_ONPROC, -1); 384 385 cp->cpu_idle_thread = tp; 386 387 tp->t_preempt = 1; 388 tp->t_bound_cpu = cp; 389 tp->t_affinitycnt = 1; 390 tp->t_cpu = cp; 391 tp->t_disp_queue = cp->cpu_disp; 392 393 /* 394 * Bootstrap the CPU's PG data 395 */ 396 pg_cpu_bootstrap(cp); 397 398 /* 399 * Perform CPC initialization on the new CPU. 400 */ 401 kcpc_hw_init(cp); 402 403 /* 404 * Allocate virtual addresses for cpu_caddr1 and cpu_caddr2 405 * for each CPU. 406 */ 407 setup_vaddr_for_ppcopy(cp); 408 409 /* 410 * Allocate page for new GDT and initialize from current GDT. 411 */ 412 #if !defined(__lint) 413 ASSERT((sizeof (*cp->cpu_gdt) * NGDT) <= PAGESIZE); 414 #endif 415 cp->cpu_gdt = kmem_zalloc(PAGESIZE, KM_SLEEP); 416 bcopy(CPU->cpu_gdt, cp->cpu_gdt, (sizeof (*cp->cpu_gdt) * NGDT)); 417 418 419 /* 420 * Allocate pages for the CPU LDT. 421 */ 422 cp->cpu_m.mcpu_ldt = kmem_zalloc(LDT_CPU_SIZE, KM_SLEEP); 423 cp->cpu_m.mcpu_ldt_len = 0; 424 425 /* 426 * Allocate a per-CPU IDT and initialize the new IDT to the currently 427 * runing CPU. 428 */ 429 #if !defined(__lint) 430 ASSERT((sizeof (*CPU->cpu_idt) * NIDT) <= PAGESIZE); 431 #endif 432 cp->cpu_idt = kmem_alloc(PAGESIZE, KM_SLEEP); 433 bcopy(CPU->cpu_idt, cp->cpu_idt, PAGESIZE); 434 435 /* 436 * alloc space for cpuid info 437 */ 438 cpuid_alloc_space(cp); 439 #if !defined(__xpv) 440 if (is_x86_feature(x86_featureset, X86FSET_MWAIT) && 441 idle_cpu_prefer_mwait) { 442 cp->cpu_m.mcpu_mwait = cpuid_mwait_alloc(cp); 443 cp->cpu_m.mcpu_idle_cpu = cpu_idle_mwait; 444 } else 445 #endif 446 cp->cpu_m.mcpu_idle_cpu = cpu_idle; 447 448 init_cpu_info(cp); 449 450 #if !defined(__xpv) 451 init_cpu_id_gdt(cp); 452 #endif 453 454 /* 455 * alloc space for ucode_info 456 */ 457 ucode_alloc_space(cp); 458 xc_init_cpu(cp); 459 hat_cpu_online(cp); 460 461 #ifdef TRAPTRACE 462 /* 463 * If this is a TRAPTRACE kernel, allocate TRAPTRACE buffers 464 */ 465 ttc->ttc_first = (uintptr_t)kmem_zalloc(trap_trace_bufsize, KM_SLEEP); 466 ttc->ttc_next = ttc->ttc_first; 467 ttc->ttc_limit = ttc->ttc_first + trap_trace_bufsize; 468 #endif 469 470 /* 471 * Record that we have another CPU. 472 */ 473 /* 474 * Initialize the interrupt threads for this CPU 475 */ 476 cpu_intr_alloc(cp, NINTR_THREADS); 477 478 cp->cpu_flags = CPU_OFFLINE | CPU_QUIESCED | CPU_POWEROFF; 479 cpu_set_state(cp); 480 481 /* 482 * Add CPU to list of available CPUs. It'll be on the active list 483 * after mp_startup_common(). 484 */ 485 cpu_add_unit(cp); 486 487 return (cp); 488 } 489 490 /* 491 * Undo what was done in mp_cpu_configure_common 492 */ 493 static void 494 mp_cpu_unconfigure_common(struct cpu *cp, int error) 495 { 496 ASSERT(MUTEX_HELD(&cpu_lock)); 497 498 /* 499 * Remove the CPU from the list of available CPUs. 500 */ 501 cpu_del_unit(cp->cpu_id); 502 503 if (error == ETIMEDOUT) { 504 /* 505 * The cpu was started, but never *seemed* to run any 506 * code in the kernel; it's probably off spinning in its 507 * own private world, though with potential references to 508 * our kmem-allocated IDTs and GDTs (for example). 509 * 510 * Worse still, it may actually wake up some time later, 511 * so rather than guess what it might or might not do, we 512 * leave the fundamental data structures intact. 513 */ 514 cp->cpu_flags = 0; 515 return; 516 } 517 518 /* 519 * At this point, the only threads bound to this CPU should 520 * special per-cpu threads: it's idle thread, it's pause threads, 521 * and it's interrupt threads. Clean these up. 522 */ 523 cpu_destroy_bound_threads(cp); 524 cp->cpu_idle_thread = NULL; 525 526 /* 527 * Free the interrupt stack. 528 */ 529 segkp_release(segkp, 530 cp->cpu_intr_stack - (INTR_STACK_SIZE - SA(MINFRAME))); 531 cp->cpu_intr_stack = NULL; 532 533 #ifdef TRAPTRACE 534 /* 535 * Discard the trap trace buffer 536 */ 537 { 538 trap_trace_ctl_t *ttc = &trap_trace_ctl[cp->cpu_id]; 539 540 kmem_free((void *)ttc->ttc_first, trap_trace_bufsize); 541 ttc->ttc_first = (uintptr_t)NULL; 542 } 543 #endif 544 545 hat_cpu_offline(cp); 546 547 ucode_free_space(cp); 548 549 /* Free CPU ID string and brand string. */ 550 if (cp->cpu_idstr) { 551 kmem_free(cp->cpu_idstr, CPU_IDSTRLEN); 552 cp->cpu_idstr = NULL; 553 } 554 if (cp->cpu_brandstr) { 555 kmem_free(cp->cpu_brandstr, CPU_IDSTRLEN); 556 cp->cpu_brandstr = NULL; 557 } 558 559 #if !defined(__xpv) 560 if (cp->cpu_m.mcpu_mwait != NULL) { 561 cpuid_mwait_free(cp); 562 cp->cpu_m.mcpu_mwait = NULL; 563 } 564 #endif 565 cpuid_free_space(cp); 566 567 if (cp->cpu_idt != CPU->cpu_idt) 568 kmem_free(cp->cpu_idt, PAGESIZE); 569 cp->cpu_idt = NULL; 570 571 kmem_free(cp->cpu_m.mcpu_ldt, LDT_CPU_SIZE); 572 cp->cpu_m.mcpu_ldt = NULL; 573 cp->cpu_m.mcpu_ldt_len = 0; 574 575 kmem_free(cp->cpu_gdt, PAGESIZE); 576 cp->cpu_gdt = NULL; 577 578 if (cp->cpu_supp_freqs != NULL) { 579 size_t len = strlen(cp->cpu_supp_freqs) + 1; 580 kmem_free(cp->cpu_supp_freqs, len); 581 cp->cpu_supp_freqs = NULL; 582 } 583 584 teardown_vaddr_for_ppcopy(cp); 585 586 kcpc_hw_fini(cp); 587 588 cp->cpu_dispthread = NULL; 589 cp->cpu_thread = NULL; /* discarded by cpu_destroy_bound_threads() */ 590 591 cpu_vm_data_destroy(cp); 592 593 xc_fini_cpu(cp); 594 disp_cpu_fini(cp); 595 596 ASSERT(cp != CPU0); 597 bzero(cp, sizeof (*cp)); 598 cp->cpu_next_free = cpu_free_list; 599 cpu_free_list = cp; 600 } 601 602 /* 603 * Apply workarounds for known errata, and warn about those that are absent. 604 * 605 * System vendors occasionally create configurations which contain different 606 * revisions of the CPUs that are almost but not exactly the same. At the 607 * time of writing, this meant that their clock rates were the same, their 608 * feature sets were the same, but the required workaround were -not- 609 * necessarily the same. So, this routine is invoked on -every- CPU soon 610 * after starting to make sure that the resulting system contains the most 611 * pessimal set of workarounds needed to cope with *any* of the CPUs in the 612 * system. 613 * 614 * workaround_errata is invoked early in mlsetup() for CPU 0, and in 615 * mp_startup_common() for all slave CPUs. Slaves process workaround_errata 616 * prior to acknowledging their readiness to the master, so this routine will 617 * never be executed by multiple CPUs in parallel, thus making updates to 618 * global data safe. 619 * 620 * These workarounds are based on Rev 3.57 of the Revision Guide for 621 * AMD Athlon(tm) 64 and AMD Opteron(tm) Processors, August 2005. 622 */ 623 624 #if defined(OPTERON_ERRATUM_88) 625 int opteron_erratum_88; /* if non-zero -> at least one cpu has it */ 626 #endif 627 628 #if defined(OPTERON_ERRATUM_91) 629 int opteron_erratum_91; /* if non-zero -> at least one cpu has it */ 630 #endif 631 632 #if defined(OPTERON_ERRATUM_93) 633 int opteron_erratum_93; /* if non-zero -> at least one cpu has it */ 634 #endif 635 636 #if defined(OPTERON_ERRATUM_95) 637 int opteron_erratum_95; /* if non-zero -> at least one cpu has it */ 638 #endif 639 640 #if defined(OPTERON_ERRATUM_100) 641 int opteron_erratum_100; /* if non-zero -> at least one cpu has it */ 642 #endif 643 644 #if defined(OPTERON_ERRATUM_108) 645 int opteron_erratum_108; /* if non-zero -> at least one cpu has it */ 646 #endif 647 648 #if defined(OPTERON_ERRATUM_109) 649 int opteron_erratum_109; /* if non-zero -> at least one cpu has it */ 650 #endif 651 652 #if defined(OPTERON_ERRATUM_121) 653 int opteron_erratum_121; /* if non-zero -> at least one cpu has it */ 654 #endif 655 656 #if defined(OPTERON_ERRATUM_122) 657 int opteron_erratum_122; /* if non-zero -> at least one cpu has it */ 658 #endif 659 660 #if defined(OPTERON_ERRATUM_123) 661 int opteron_erratum_123; /* if non-zero -> at least one cpu has it */ 662 #endif 663 664 #if defined(OPTERON_ERRATUM_131) 665 int opteron_erratum_131; /* if non-zero -> at least one cpu has it */ 666 #endif 667 668 #if defined(OPTERON_WORKAROUND_6336786) 669 int opteron_workaround_6336786; /* non-zero -> WA relevant and applied */ 670 int opteron_workaround_6336786_UP = 0; /* Not needed for UP */ 671 #endif 672 673 #if defined(OPTERON_ERRATUM_147) 674 int opteron_erratum_147; /* if non-zero -> at least one cpu has it */ 675 #endif 676 677 #if defined(OPTERON_ERRATUM_298) 678 int opteron_erratum_298; 679 #endif 680 681 #if defined(OPTERON_ERRATUM_721) 682 int opteron_erratum_721; 683 #endif 684 685 static void 686 workaround_warning(cpu_t *cp, uint_t erratum) 687 { 688 cmn_err(CE_WARN, "cpu%d: no workaround for erratum %u", 689 cp->cpu_id, erratum); 690 } 691 692 static void 693 workaround_applied(uint_t erratum) 694 { 695 if (erratum > 1000000) 696 cmn_err(CE_CONT, "?workaround applied for cpu issue #%d\n", 697 erratum); 698 else 699 cmn_err(CE_CONT, "?workaround applied for cpu erratum #%d\n", 700 erratum); 701 } 702 703 static void 704 msr_warning(cpu_t *cp, const char *rw, uint_t msr, int error) 705 { 706 cmn_err(CE_WARN, "cpu%d: couldn't %smsr 0x%x, error %d", 707 cp->cpu_id, rw, msr, error); 708 } 709 710 /* 711 * Determine the number of nodes in a Hammer / Greyhound / Griffin family 712 * system. 713 */ 714 static uint_t 715 opteron_get_nnodes(void) 716 { 717 static uint_t nnodes = 0; 718 719 if (nnodes == 0) { 720 #ifdef DEBUG 721 uint_t family; 722 723 /* 724 * This routine uses a PCI config space based mechanism 725 * for retrieving the number of nodes in the system. 726 * Device 24, function 0, offset 0x60 as used here is not 727 * AMD processor architectural, and may not work on processor 728 * families other than those listed below. 729 * 730 * Callers of this routine must ensure that we're running on 731 * a processor which supports this mechanism. 732 * The assertion below is meant to catch calls on unsupported 733 * processors. 734 */ 735 family = cpuid_getfamily(CPU); 736 ASSERT(family == 0xf || family == 0x10 || family == 0x11); 737 #endif /* DEBUG */ 738 739 /* 740 * Obtain the number of nodes in the system from 741 * bits [6:4] of the Node ID register on node 0. 742 * 743 * The actual node count is NodeID[6:4] + 1 744 * 745 * The Node ID register is accessed via function 0, 746 * offset 0x60. Node 0 is device 24. 747 */ 748 nnodes = ((pci_getl_func(0, 24, 0, 0x60) & 0x70) >> 4) + 1; 749 } 750 return (nnodes); 751 } 752 753 uint_t 754 do_erratum_298(struct cpu *cpu) 755 { 756 static int osvwrc = -3; 757 extern int osvw_opteron_erratum(cpu_t *, uint_t); 758 759 /* 760 * L2 Eviction May Occur During Processor Operation To Set 761 * Accessed or Dirty Bit. 762 */ 763 if (osvwrc == -3) { 764 osvwrc = osvw_opteron_erratum(cpu, 298); 765 } else { 766 /* osvw return codes should be consistent for all cpus */ 767 ASSERT(osvwrc == osvw_opteron_erratum(cpu, 298)); 768 } 769 770 switch (osvwrc) { 771 case 0: /* erratum is not present: do nothing */ 772 break; 773 case 1: /* erratum is present: BIOS workaround applied */ 774 /* 775 * check if workaround is actually in place and issue warning 776 * if not. 777 */ 778 if (((rdmsr(MSR_AMD_HWCR) & AMD_HWCR_TLBCACHEDIS) == 0) || 779 ((rdmsr(MSR_AMD_BU_CFG) & AMD_BU_CFG_E298) == 0)) { 780 #if defined(OPTERON_ERRATUM_298) 781 opteron_erratum_298++; 782 #else 783 workaround_warning(cpu, 298); 784 return (1); 785 #endif 786 } 787 break; 788 case -1: /* cannot determine via osvw: check cpuid */ 789 if ((cpuid_opteron_erratum(cpu, 298) > 0) && 790 (((rdmsr(MSR_AMD_HWCR) & AMD_HWCR_TLBCACHEDIS) == 0) || 791 ((rdmsr(MSR_AMD_BU_CFG) & AMD_BU_CFG_E298) == 0))) { 792 #if defined(OPTERON_ERRATUM_298) 793 opteron_erratum_298++; 794 #else 795 workaround_warning(cpu, 298); 796 return (1); 797 #endif 798 } 799 break; 800 } 801 return (0); 802 } 803 804 uint_t 805 workaround_errata(struct cpu *cpu) 806 { 807 volatile uint_t missing = 0; 808 809 ASSERT(cpu == CPU); 810 811 /*LINTED*/ 812 if (cpuid_opteron_erratum(cpu, 88) > 0) { 813 /* 814 * SWAPGS May Fail To Read Correct GS Base 815 */ 816 #if defined(OPTERON_ERRATUM_88) 817 /* 818 * The workaround is an mfence in the relevant assembler code 819 */ 820 opteron_erratum_88++; 821 #else 822 workaround_warning(cpu, 88); 823 missing++; 824 #endif 825 } 826 827 if (cpuid_opteron_erratum(cpu, 91) > 0) { 828 /* 829 * Software Prefetches May Report A Page Fault 830 */ 831 #if defined(OPTERON_ERRATUM_91) 832 /* 833 * fix is in trap.c 834 */ 835 opteron_erratum_91++; 836 #else 837 workaround_warning(cpu, 91); 838 missing++; 839 #endif 840 } 841 842 if (cpuid_opteron_erratum(cpu, 93) > 0) { 843 /* 844 * RSM Auto-Halt Restart Returns to Incorrect RIP 845 */ 846 #if defined(OPTERON_ERRATUM_93) 847 /* 848 * fix is in trap.c 849 */ 850 opteron_erratum_93++; 851 #else 852 workaround_warning(cpu, 93); 853 missing++; 854 #endif 855 } 856 857 /*LINTED*/ 858 if (cpuid_opteron_erratum(cpu, 95) > 0) { 859 /* 860 * RET Instruction May Return to Incorrect EIP 861 */ 862 #if defined(OPTERON_ERRATUM_95) 863 #if defined(_LP64) 864 /* 865 * Workaround this by ensuring that 32-bit user code and 866 * 64-bit kernel code never occupy the same address 867 * range mod 4G. 868 */ 869 if (_userlimit32 > 0xc0000000ul) 870 *(uintptr_t *)&_userlimit32 = 0xc0000000ul; 871 872 /*LINTED*/ 873 ASSERT((uint32_t)COREHEAP_BASE == 0xc0000000u); 874 opteron_erratum_95++; 875 #endif /* _LP64 */ 876 #else 877 workaround_warning(cpu, 95); 878 missing++; 879 #endif 880 } 881 882 if (cpuid_opteron_erratum(cpu, 100) > 0) { 883 /* 884 * Compatibility Mode Branches Transfer to Illegal Address 885 */ 886 #if defined(OPTERON_ERRATUM_100) 887 /* 888 * fix is in trap.c 889 */ 890 opteron_erratum_100++; 891 #else 892 workaround_warning(cpu, 100); 893 missing++; 894 #endif 895 } 896 897 /*LINTED*/ 898 if (cpuid_opteron_erratum(cpu, 108) > 0) { 899 /* 900 * CPUID Instruction May Return Incorrect Model Number In 901 * Some Processors 902 */ 903 #if defined(OPTERON_ERRATUM_108) 904 /* 905 * (Our cpuid-handling code corrects the model number on 906 * those processors) 907 */ 908 #else 909 workaround_warning(cpu, 108); 910 missing++; 911 #endif 912 } 913 914 /*LINTED*/ 915 if (cpuid_opteron_erratum(cpu, 109) > 0) do { 916 /* 917 * Certain Reverse REP MOVS May Produce Unpredictable Behavior 918 */ 919 #if defined(OPTERON_ERRATUM_109) 920 /* 921 * The "workaround" is to print a warning to upgrade the BIOS 922 */ 923 uint64_t value; 924 const uint_t msr = MSR_AMD_PATCHLEVEL; 925 int err; 926 927 if ((err = checked_rdmsr(msr, &value)) != 0) { 928 msr_warning(cpu, "rd", msr, err); 929 workaround_warning(cpu, 109); 930 missing++; 931 } 932 if (value == 0) 933 opteron_erratum_109++; 934 #else 935 workaround_warning(cpu, 109); 936 missing++; 937 #endif 938 /*CONSTANTCONDITION*/ 939 } while (0); 940 941 /*LINTED*/ 942 if (cpuid_opteron_erratum(cpu, 121) > 0) { 943 /* 944 * Sequential Execution Across Non_Canonical Boundary Caused 945 * Processor Hang 946 */ 947 #if defined(OPTERON_ERRATUM_121) 948 #if defined(_LP64) 949 /* 950 * Erratum 121 is only present in long (64 bit) mode. 951 * Workaround is to include the page immediately before the 952 * va hole to eliminate the possibility of system hangs due to 953 * sequential execution across the va hole boundary. 954 */ 955 if (opteron_erratum_121) 956 opteron_erratum_121++; 957 else { 958 if (hole_start) { 959 hole_start -= PAGESIZE; 960 } else { 961 /* 962 * hole_start not yet initialized by 963 * mmu_init. Initialize hole_start 964 * with value to be subtracted. 965 */ 966 hole_start = PAGESIZE; 967 } 968 opteron_erratum_121++; 969 } 970 #endif /* _LP64 */ 971 #else 972 workaround_warning(cpu, 121); 973 missing++; 974 #endif 975 } 976 977 /*LINTED*/ 978 if (cpuid_opteron_erratum(cpu, 122) > 0) do { 979 /* 980 * TLB Flush Filter May Cause Coherency Problem in 981 * Multiprocessor Systems 982 */ 983 #if defined(OPTERON_ERRATUM_122) 984 uint64_t value; 985 const uint_t msr = MSR_AMD_HWCR; 986 int error; 987 988 /* 989 * Erratum 122 is only present in MP configurations (multi-core 990 * or multi-processor). 991 */ 992 #if defined(__xpv) 993 if (!DOMAIN_IS_INITDOMAIN(xen_info)) 994 break; 995 if (!opteron_erratum_122 && xpv_nr_phys_cpus() == 1) 996 break; 997 #else 998 if (!opteron_erratum_122 && opteron_get_nnodes() == 1 && 999 cpuid_get_ncpu_per_chip(cpu) == 1) 1000 break; 1001 #endif 1002 /* disable TLB Flush Filter */ 1003 1004 if ((error = checked_rdmsr(msr, &value)) != 0) { 1005 msr_warning(cpu, "rd", msr, error); 1006 workaround_warning(cpu, 122); 1007 missing++; 1008 } else { 1009 value |= (uint64_t)AMD_HWCR_FFDIS; 1010 if ((error = checked_wrmsr(msr, value)) != 0) { 1011 msr_warning(cpu, "wr", msr, error); 1012 workaround_warning(cpu, 122); 1013 missing++; 1014 } 1015 } 1016 opteron_erratum_122++; 1017 #else 1018 workaround_warning(cpu, 122); 1019 missing++; 1020 #endif 1021 /*CONSTANTCONDITION*/ 1022 } while (0); 1023 1024 /*LINTED*/ 1025 if (cpuid_opteron_erratum(cpu, 123) > 0) do { 1026 /* 1027 * Bypassed Reads May Cause Data Corruption of System Hang in 1028 * Dual Core Processors 1029 */ 1030 #if defined(OPTERON_ERRATUM_123) 1031 uint64_t value; 1032 const uint_t msr = MSR_AMD_PATCHLEVEL; 1033 int err; 1034 1035 /* 1036 * Erratum 123 applies only to multi-core cpus. 1037 */ 1038 if (cpuid_get_ncpu_per_chip(cpu) < 2) 1039 break; 1040 #if defined(__xpv) 1041 if (!DOMAIN_IS_INITDOMAIN(xen_info)) 1042 break; 1043 #endif 1044 /* 1045 * The "workaround" is to print a warning to upgrade the BIOS 1046 */ 1047 if ((err = checked_rdmsr(msr, &value)) != 0) { 1048 msr_warning(cpu, "rd", msr, err); 1049 workaround_warning(cpu, 123); 1050 missing++; 1051 } 1052 if (value == 0) 1053 opteron_erratum_123++; 1054 #else 1055 workaround_warning(cpu, 123); 1056 missing++; 1057 1058 #endif 1059 /*CONSTANTCONDITION*/ 1060 } while (0); 1061 1062 /*LINTED*/ 1063 if (cpuid_opteron_erratum(cpu, 131) > 0) do { 1064 /* 1065 * Multiprocessor Systems with Four or More Cores May Deadlock 1066 * Waiting for a Probe Response 1067 */ 1068 #if defined(OPTERON_ERRATUM_131) 1069 uint64_t nbcfg; 1070 const uint_t msr = MSR_AMD_NB_CFG; 1071 const uint64_t wabits = 1072 AMD_NB_CFG_SRQ_HEARTBEAT | AMD_NB_CFG_SRQ_SPR; 1073 int error; 1074 1075 /* 1076 * Erratum 131 applies to any system with four or more cores. 1077 */ 1078 if (opteron_erratum_131) 1079 break; 1080 #if defined(__xpv) 1081 if (!DOMAIN_IS_INITDOMAIN(xen_info)) 1082 break; 1083 if (xpv_nr_phys_cpus() < 4) 1084 break; 1085 #else 1086 if (opteron_get_nnodes() * cpuid_get_ncpu_per_chip(cpu) < 4) 1087 break; 1088 #endif 1089 /* 1090 * Print a warning if neither of the workarounds for 1091 * erratum 131 is present. 1092 */ 1093 if ((error = checked_rdmsr(msr, &nbcfg)) != 0) { 1094 msr_warning(cpu, "rd", msr, error); 1095 workaround_warning(cpu, 131); 1096 missing++; 1097 } else if ((nbcfg & wabits) == 0) { 1098 opteron_erratum_131++; 1099 } else { 1100 /* cannot have both workarounds set */ 1101 ASSERT((nbcfg & wabits) != wabits); 1102 } 1103 #else 1104 workaround_warning(cpu, 131); 1105 missing++; 1106 #endif 1107 /*CONSTANTCONDITION*/ 1108 } while (0); 1109 1110 /* 1111 * This isn't really an erratum, but for convenience the 1112 * detection/workaround code lives here and in cpuid_opteron_erratum. 1113 * Note, the technique only is valid on families before 12h and 1114 * certainly doesn't work when we're virtualized. This is checked for in 1115 * the erratum workaround. 1116 */ 1117 if (cpuid_opteron_erratum(cpu, 6336786) > 0) { 1118 #if defined(OPTERON_WORKAROUND_6336786) 1119 /* 1120 * Disable C1-Clock ramping on multi-core/multi-processor 1121 * K8 platforms to guard against TSC drift. 1122 */ 1123 if (opteron_workaround_6336786) { 1124 opteron_workaround_6336786++; 1125 #if defined(__xpv) 1126 } else if ((DOMAIN_IS_INITDOMAIN(xen_info) && 1127 xpv_nr_phys_cpus() > 1) || 1128 opteron_workaround_6336786_UP) { 1129 /* 1130 * XXPV Hmm. We can't walk the Northbridges on 1131 * the hypervisor; so just complain and drive 1132 * on. This probably needs to be fixed in 1133 * the hypervisor itself. 1134 */ 1135 opteron_workaround_6336786++; 1136 workaround_warning(cpu, 6336786); 1137 #else /* __xpv */ 1138 } else if ((opteron_get_nnodes() * 1139 cpuid_get_ncpu_per_chip(cpu) > 1) || 1140 opteron_workaround_6336786_UP) { 1141 1142 uint_t node, nnodes; 1143 uint8_t data; 1144 1145 nnodes = opteron_get_nnodes(); 1146 for (node = 0; node < nnodes; node++) { 1147 /* 1148 * Clear PMM7[1:0] (function 3, offset 0x87) 1149 * Northbridge device is the node id + 24. 1150 */ 1151 data = pci_getb_func(0, node + 24, 3, 0x87); 1152 data &= 0xFC; 1153 pci_putb_func(0, node + 24, 3, 0x87, data); 1154 } 1155 opteron_workaround_6336786++; 1156 #endif /* __xpv */ 1157 } 1158 #else 1159 workaround_warning(cpu, 6336786); 1160 missing++; 1161 #endif 1162 } 1163 1164 /*LINTED*/ 1165 /* 1166 * Mutex primitives don't work as expected. This is erratum #147 from 1167 * 'Revision Guide for AMD Athlon 64 and AMD Opteron Processors' 1168 * document 25759. 1169 */ 1170 if (cpuid_opteron_erratum(cpu, 147) > 0) { 1171 #if defined(OPTERON_ERRATUM_147) 1172 /* 1173 * This problem only occurs with 2 or more cores. If bit in 1174 * MSR_AMD_BU_CFG set, then not applicable. The workaround 1175 * is to patch the semaphone routines with the lfence 1176 * instruction to provide necessary load memory barrier with 1177 * possible subsequent read-modify-write ops. 1178 * 1179 * It is too early in boot to call the patch routine so 1180 * set erratum variable to be done in startup_end(). 1181 */ 1182 if (opteron_erratum_147) { 1183 opteron_erratum_147++; 1184 #if defined(__xpv) 1185 } else if (is_x86_feature(x86_featureset, X86FSET_SSE2)) { 1186 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 1187 /* 1188 * XXPV Use dom0_msr here when extended 1189 * operations are supported? 1190 */ 1191 if (xpv_nr_phys_cpus() > 1) 1192 opteron_erratum_147++; 1193 } else { 1194 /* 1195 * We have no way to tell how many physical 1196 * cpus there are, or even if this processor 1197 * has the problem, so enable the workaround 1198 * unconditionally (at some performance cost). 1199 */ 1200 opteron_erratum_147++; 1201 } 1202 #else /* __xpv */ 1203 } else if (is_x86_feature(x86_featureset, X86FSET_SSE2) && 1204 ((opteron_get_nnodes() * 1205 cpuid_get_ncpu_per_chip(cpu)) > 1)) { 1206 if ((xrdmsr(MSR_AMD_BU_CFG) & (UINT64_C(1) << 33)) == 0) 1207 opteron_erratum_147++; 1208 #endif /* __xpv */ 1209 } 1210 #else 1211 workaround_warning(cpu, 147); 1212 missing++; 1213 #endif 1214 } 1215 1216 missing += do_erratum_298(cpu); 1217 1218 if (cpuid_opteron_erratum(cpu, 721) > 0) { 1219 #if defined(OPTERON_ERRATUM_721) 1220 on_trap_data_t otd; 1221 1222 if (!on_trap(&otd, OT_DATA_ACCESS)) 1223 wrmsr(MSR_AMD_DE_CFG, 1224 rdmsr(MSR_AMD_DE_CFG) | AMD_DE_CFG_E721); 1225 no_trap(); 1226 1227 opteron_erratum_721++; 1228 #else 1229 workaround_warning(cpu, 721); 1230 missing++; 1231 #endif 1232 } 1233 1234 #ifdef __xpv 1235 return (0); 1236 #else 1237 return (missing); 1238 #endif 1239 } 1240 1241 void 1242 workaround_errata_end() 1243 { 1244 #if defined(OPTERON_ERRATUM_88) 1245 if (opteron_erratum_88) 1246 workaround_applied(88); 1247 #endif 1248 #if defined(OPTERON_ERRATUM_91) 1249 if (opteron_erratum_91) 1250 workaround_applied(91); 1251 #endif 1252 #if defined(OPTERON_ERRATUM_93) 1253 if (opteron_erratum_93) 1254 workaround_applied(93); 1255 #endif 1256 #if defined(OPTERON_ERRATUM_95) 1257 if (opteron_erratum_95) 1258 workaround_applied(95); 1259 #endif 1260 #if defined(OPTERON_ERRATUM_100) 1261 if (opteron_erratum_100) 1262 workaround_applied(100); 1263 #endif 1264 #if defined(OPTERON_ERRATUM_108) 1265 if (opteron_erratum_108) 1266 workaround_applied(108); 1267 #endif 1268 #if defined(OPTERON_ERRATUM_109) 1269 if (opteron_erratum_109) { 1270 cmn_err(CE_WARN, 1271 "BIOS microcode patch for AMD Athlon(tm) 64/Opteron(tm)" 1272 " processor\nerratum 109 was not detected; updating your" 1273 " system's BIOS to a version\ncontaining this" 1274 " microcode patch is HIGHLY recommended or erroneous" 1275 " system\noperation may occur.\n"); 1276 } 1277 #endif 1278 #if defined(OPTERON_ERRATUM_121) 1279 if (opteron_erratum_121) 1280 workaround_applied(121); 1281 #endif 1282 #if defined(OPTERON_ERRATUM_122) 1283 if (opteron_erratum_122) 1284 workaround_applied(122); 1285 #endif 1286 #if defined(OPTERON_ERRATUM_123) 1287 if (opteron_erratum_123) { 1288 cmn_err(CE_WARN, 1289 "BIOS microcode patch for AMD Athlon(tm) 64/Opteron(tm)" 1290 " processor\nerratum 123 was not detected; updating your" 1291 " system's BIOS to a version\ncontaining this" 1292 " microcode patch is HIGHLY recommended or erroneous" 1293 " system\noperation may occur.\n"); 1294 } 1295 #endif 1296 #if defined(OPTERON_ERRATUM_131) 1297 if (opteron_erratum_131) { 1298 cmn_err(CE_WARN, 1299 "BIOS microcode patch for AMD Athlon(tm) 64/Opteron(tm)" 1300 " processor\nerratum 131 was not detected; updating your" 1301 " system's BIOS to a version\ncontaining this" 1302 " microcode patch is HIGHLY recommended or erroneous" 1303 " system\noperation may occur.\n"); 1304 } 1305 #endif 1306 #if defined(OPTERON_WORKAROUND_6336786) 1307 if (opteron_workaround_6336786) 1308 workaround_applied(6336786); 1309 #endif 1310 #if defined(OPTERON_ERRATUM_147) 1311 if (opteron_erratum_147) 1312 workaround_applied(147); 1313 #endif 1314 #if defined(OPTERON_ERRATUM_298) 1315 if (opteron_erratum_298) { 1316 cmn_err(CE_WARN, 1317 "BIOS microcode patch for AMD 64/Opteron(tm)" 1318 " processor\nerratum 298 was not detected; updating your" 1319 " system's BIOS to a version\ncontaining this" 1320 " microcode patch is HIGHLY recommended or erroneous" 1321 " system\noperation may occur.\n"); 1322 } 1323 #endif 1324 #if defined(OPTERON_ERRATUM_721) 1325 if (opteron_erratum_721) 1326 workaround_applied(721); 1327 #endif 1328 } 1329 1330 /* 1331 * The procset_slave and procset_master are used to synchronize 1332 * between the control CPU and the target CPU when starting CPUs. 1333 */ 1334 static cpuset_t procset_slave, procset_master; 1335 1336 static void 1337 mp_startup_wait(cpuset_t *sp, processorid_t cpuid) 1338 { 1339 cpuset_t tempset; 1340 1341 for (tempset = *sp; !CPU_IN_SET(tempset, cpuid); 1342 tempset = *(volatile cpuset_t *)sp) { 1343 SMT_PAUSE(); 1344 } 1345 CPUSET_ATOMIC_DEL(*(cpuset_t *)sp, cpuid); 1346 } 1347 1348 static void 1349 mp_startup_signal(cpuset_t *sp, processorid_t cpuid) 1350 { 1351 cpuset_t tempset; 1352 1353 CPUSET_ATOMIC_ADD(*(cpuset_t *)sp, cpuid); 1354 for (tempset = *sp; CPU_IN_SET(tempset, cpuid); 1355 tempset = *(volatile cpuset_t *)sp) { 1356 SMT_PAUSE(); 1357 } 1358 } 1359 1360 int 1361 mp_start_cpu_common(cpu_t *cp, boolean_t boot) 1362 { 1363 _NOTE(ARGUNUSED(boot)); 1364 1365 void *ctx; 1366 int delays; 1367 int error = 0; 1368 cpuset_t tempset; 1369 processorid_t cpuid; 1370 #ifndef __xpv 1371 extern void cpupm_init(cpu_t *); 1372 #endif 1373 1374 ASSERT(cp != NULL); 1375 cpuid = cp->cpu_id; 1376 ctx = mach_cpucontext_alloc(cp); 1377 if (ctx == NULL) { 1378 cmn_err(CE_WARN, 1379 "cpu%d: failed to allocate context", cp->cpu_id); 1380 return (EAGAIN); 1381 } 1382 error = mach_cpu_start(cp, ctx); 1383 if (error != 0) { 1384 cmn_err(CE_WARN, 1385 "cpu%d: failed to start, error %d", cp->cpu_id, error); 1386 mach_cpucontext_free(cp, ctx, error); 1387 return (error); 1388 } 1389 1390 for (delays = 0, tempset = procset_slave; !CPU_IN_SET(tempset, cpuid); 1391 delays++) { 1392 if (delays == 500) { 1393 /* 1394 * After five seconds, things are probably looking 1395 * a bit bleak - explain the hang. 1396 */ 1397 cmn_err(CE_NOTE, "cpu%d: started, " 1398 "but not running in the kernel yet", cpuid); 1399 } else if (delays > 2000) { 1400 /* 1401 * We waited at least 20 seconds, bail .. 1402 */ 1403 error = ETIMEDOUT; 1404 cmn_err(CE_WARN, "cpu%d: timed out", cpuid); 1405 mach_cpucontext_free(cp, ctx, error); 1406 return (error); 1407 } 1408 1409 /* 1410 * wait at least 10ms, then check again.. 1411 */ 1412 delay(USEC_TO_TICK_ROUNDUP(10000)); 1413 tempset = *((volatile cpuset_t *)&procset_slave); 1414 } 1415 CPUSET_ATOMIC_DEL(procset_slave, cpuid); 1416 1417 mach_cpucontext_free(cp, ctx, 0); 1418 1419 #ifndef __xpv 1420 if (tsc_gethrtime_enable) 1421 tsc_sync_master(cpuid); 1422 #endif 1423 1424 /* 1425 * At this point, the CPU in question is past the IDENT cpuid phase and 1426 * grabbed the current microcode revision so we can now look for any 1427 * relevant microcode updates it should load. We'll fill out 1428 * cpu_ucode_info for it along with the microcode to load, if any, 1429 * before signaling back to the CPU to continue startup. 1430 */ 1431 mp_startup_wait(&procset_slave, cpuid); 1432 ucode_locate(cp); 1433 mp_startup_signal(&procset_master, cpuid); 1434 1435 if (dtrace_cpu_init != NULL) { 1436 (*dtrace_cpu_init)(cpuid); 1437 } 1438 1439 /* 1440 * During CPU DR operations, the cpu_lock is held by current 1441 * (the control) thread. We can't release the cpu_lock here 1442 * because that will break the CPU DR logic. 1443 * On the other hand, CPUPM and processor group initialization 1444 * routines need to access the cpu_lock. So we invoke those 1445 * routines here on behalf of mp_startup_common(). 1446 * 1447 * CPUPM and processor group initialization routines depend 1448 * on the cpuid probing results. Wait for mp_startup_common() 1449 * to signal that cpuid probing is done. 1450 */ 1451 mp_startup_wait(&procset_slave, cpuid); 1452 #ifndef __xpv 1453 cpupm_init(cp); 1454 #endif 1455 (void) pg_cpu_init(cp, B_FALSE); 1456 cpu_set_state(cp); 1457 mp_startup_signal(&procset_master, cpuid); 1458 1459 return (0); 1460 } 1461 1462 /* 1463 * Start a single cpu, assuming that the kernel context is available 1464 * to successfully start another cpu. 1465 * 1466 * (For example, real mode code is mapped into the right place 1467 * in memory and is ready to be run.) 1468 */ 1469 int 1470 start_cpu(processorid_t who) 1471 { 1472 cpu_t *cp; 1473 int error = 0; 1474 cpuset_t tempset; 1475 1476 ASSERT(who != 0); 1477 1478 /* 1479 * Check if there's at least a Mbyte of kmem available 1480 * before attempting to start the cpu. 1481 */ 1482 if (kmem_avail() < 1024 * 1024) { 1483 /* 1484 * Kick off a reap in case that helps us with 1485 * later attempts .. 1486 */ 1487 kmem_reap(); 1488 return (ENOMEM); 1489 } 1490 1491 /* 1492 * First configure cpu. 1493 */ 1494 cp = mp_cpu_configure_common(who, B_TRUE); 1495 ASSERT(cp != NULL); 1496 1497 /* 1498 * Then start cpu. 1499 */ 1500 error = mp_start_cpu_common(cp, B_TRUE); 1501 if (error != 0) { 1502 mp_cpu_unconfigure_common(cp, error); 1503 return (error); 1504 } 1505 1506 mutex_exit(&cpu_lock); 1507 tempset = cpu_ready_set; 1508 while (!CPU_IN_SET(tempset, who)) { 1509 drv_usecwait(1); 1510 tempset = *((volatile cpuset_t *)&cpu_ready_set); 1511 } 1512 mutex_enter(&cpu_lock); 1513 1514 return (0); 1515 } 1516 1517 void 1518 start_other_cpus(int cprboot) 1519 { 1520 _NOTE(ARGUNUSED(cprboot)); 1521 1522 uint_t who; 1523 uint_t bootcpuid = 0; 1524 1525 /* 1526 * Initialize our own cpu_info. 1527 */ 1528 init_cpu_info(CPU); 1529 1530 #if !defined(__xpv) 1531 init_cpu_id_gdt(CPU); 1532 #endif 1533 1534 cmn_err(CE_CONT, "?cpu%d: %s\n", CPU->cpu_id, CPU->cpu_idstr); 1535 cmn_err(CE_CONT, "?cpu%d: %s\n", CPU->cpu_id, CPU->cpu_brandstr); 1536 1537 /* 1538 * KPTI initialisation happens very early in boot, before logging is 1539 * set up. Output a status message now as the boot CPU comes online. 1540 */ 1541 cmn_err(CE_CONT, "?KPTI %s (PCID %s, INVPCID %s)\n", 1542 kpti_enable ? "enabled" : "disabled", 1543 x86_use_pcid == 1 ? "in use" : 1544 (is_x86_feature(x86_featureset, X86FSET_PCID) ? "disabled" : 1545 "not supported"), 1546 x86_use_pcid == 1 && x86_use_invpcid == 1 ? "in use" : 1547 (is_x86_feature(x86_featureset, X86FSET_INVPCID) ? "disabled" : 1548 "not supported")); 1549 1550 /* 1551 * Initialize our syscall handlers 1552 */ 1553 init_cpu_syscall(CPU); 1554 1555 /* 1556 * Take the boot cpu out of the mp_cpus set because we know 1557 * it's already running. Add it to the cpu_ready_set for 1558 * precisely the same reason. 1559 */ 1560 CPUSET_DEL(mp_cpus, bootcpuid); 1561 CPUSET_ADD(cpu_ready_set, bootcpuid); 1562 1563 /* 1564 * skip the rest of this if 1565 * . only 1 cpu dectected and system isn't hotplug-capable 1566 * . not using MP 1567 */ 1568 if ((CPUSET_ISNULL(mp_cpus) && plat_dr_support_cpu() == 0) || 1569 use_mp == 0) { 1570 if (use_mp == 0) 1571 cmn_err(CE_CONT, "?***** Not in MP mode\n"); 1572 goto done; 1573 } 1574 1575 /* 1576 * perform such initialization as is needed 1577 * to be able to take CPUs on- and off-line. 1578 */ 1579 cpu_pause_init(); 1580 1581 xc_init_cpu(CPU); /* initialize processor crosscalls */ 1582 1583 if (mach_cpucontext_init() != 0) 1584 goto done; 1585 1586 flushes_require_xcalls = 1; 1587 1588 /* 1589 * We lock our affinity to the master CPU to ensure that all slave CPUs 1590 * do their TSC syncs with the same CPU. 1591 */ 1592 affinity_set(CPU_CURRENT); 1593 1594 for (who = 0; who < NCPU; who++) { 1595 if (!CPU_IN_SET(mp_cpus, who)) 1596 continue; 1597 ASSERT(who != bootcpuid); 1598 1599 mutex_enter(&cpu_lock); 1600 if (start_cpu(who) != 0) 1601 CPUSET_DEL(mp_cpus, who); 1602 cpu_state_change_notify(who, CPU_SETUP); 1603 mutex_exit(&cpu_lock); 1604 } 1605 1606 /* Free the space allocated to hold the microcode file */ 1607 ucode_cleanup(); 1608 1609 affinity_clear(); 1610 1611 mach_cpucontext_fini(); 1612 1613 done: 1614 if (get_hwenv() == HW_NATIVE) 1615 workaround_errata_end(); 1616 cmi_post_mpstartup(); 1617 1618 #if !defined(__xpv) 1619 /* 1620 * Once other CPUs have completed startup procedures, perform 1621 * initialization of hypervisor resources for HMA. 1622 */ 1623 hma_init(); 1624 #endif 1625 1626 if (use_mp && ncpus != boot_max_ncpus) { 1627 cmn_err(CE_NOTE, 1628 "System detected %d cpus, but " 1629 "only %d cpu(s) were enabled during boot.", 1630 boot_max_ncpus, ncpus); 1631 cmn_err(CE_NOTE, 1632 "Use \"boot-ncpus\" parameter to enable more CPU(s). " 1633 "See eeprom(8)."); 1634 } 1635 } 1636 1637 int 1638 mp_cpu_configure(int cpuid) 1639 { 1640 cpu_t *cp; 1641 1642 if (use_mp == 0 || plat_dr_support_cpu() == 0) { 1643 return (ENOTSUP); 1644 } 1645 1646 cp = cpu_get(cpuid); 1647 if (cp != NULL) { 1648 return (EALREADY); 1649 } 1650 1651 /* 1652 * Check if there's at least a Mbyte of kmem available 1653 * before attempting to start the cpu. 1654 */ 1655 if (kmem_avail() < 1024 * 1024) { 1656 /* 1657 * Kick off a reap in case that helps us with 1658 * later attempts .. 1659 */ 1660 kmem_reap(); 1661 return (ENOMEM); 1662 } 1663 1664 cp = mp_cpu_configure_common(cpuid, B_FALSE); 1665 ASSERT(cp != NULL && cpu_get(cpuid) == cp); 1666 1667 return (cp != NULL ? 0 : EAGAIN); 1668 } 1669 1670 int 1671 mp_cpu_unconfigure(int cpuid) 1672 { 1673 cpu_t *cp; 1674 1675 if (use_mp == 0 || plat_dr_support_cpu() == 0) { 1676 return (ENOTSUP); 1677 } else if (cpuid < 0 || cpuid >= max_ncpus) { 1678 return (EINVAL); 1679 } 1680 1681 cp = cpu_get(cpuid); 1682 if (cp == NULL) { 1683 return (ENODEV); 1684 } 1685 mp_cpu_unconfigure_common(cp, 0); 1686 1687 return (0); 1688 } 1689 1690 /* 1691 * Startup function for 'other' CPUs (besides boot cpu). 1692 * Called from real_mode_start. 1693 * 1694 * WARNING: until CPU_READY is set, mp_startup_common and routines called by 1695 * mp_startup_common should not call routines (e.g. kmem_free) that could call 1696 * hat_unload which requires CPU_READY to be set. 1697 */ 1698 static void 1699 mp_startup_common(boolean_t boot) 1700 { 1701 cpu_t *cp = CPU; 1702 uchar_t new_x86_featureset[BT_SIZEOFMAP(NUM_X86_FEATURES)]; 1703 extern void cpu_event_init_cpu(cpu_t *); 1704 1705 /* 1706 * We need to get TSC on this proc synced (i.e., any delta 1707 * from cpu0 accounted for) as soon as we can, because many 1708 * many things use gethrtime/pc_gethrestime, including 1709 * interrupts, cmn_err, etc. Before we can do that, we want to 1710 * clear TSC if we're on a buggy Sandy/Ivy Bridge CPU, so do that 1711 * right away. Note that the TSC sync procedure run by 1712 * tsc_sync_{master,slave} will not yield reliable results if caching is 1713 * disabled on either CPU. We rely on code in mpcore.S to guarantee 1714 * that it is enabled before this function is called. Caching has 1715 * already been enabled on the BSP long before APs are started. 1716 */ 1717 bzero(new_x86_featureset, BT_SIZEOFMAP(NUM_X86_FEATURES)); 1718 cpuid_execpass(cp, CPUID_PASS_PRELUDE, new_x86_featureset); 1719 cpuid_execpass(cp, CPUID_PASS_IDENT, NULL); 1720 1721 /* 1722 * We want to apply any microcode updates before the BASIC cpuid pass, 1723 * but as per the above comment, we want to make sure TSC is synced 1724 * ASAP. Thus we check for TSC support in the boot CPU's feature set 1725 * instead -- this should be fine as we'd expect TSC support to be 1726 * consistent across all CPUs (and certainly for the buggy CPUs we're 1727 * concerned about here). 1728 */ 1729 if (boot && get_hwenv() == HW_NATIVE && 1730 cpuid_getvendor(CPU) == X86_VENDOR_Intel && 1731 cpuid_getfamily(CPU) == 6 && 1732 (cpuid_getmodel(CPU) == 0x2d || cpuid_getmodel(CPU) == 0x3e) && 1733 is_x86_feature(x86_featureset, X86FSET_TSC)) { 1734 (void) wrmsr(REG_TSC, 0UL); 1735 } 1736 1737 /* Let the control CPU continue into tsc_sync_master() */ 1738 mp_startup_signal(&procset_slave, cp->cpu_id); 1739 1740 #ifndef __xpv 1741 if (tsc_gethrtime_enable) 1742 tsc_sync_slave(); 1743 #endif 1744 1745 /* 1746 * As with the boot CPU, we may have a more recent update compared to 1747 * whatever the BIOS may have already applied. If so, we want to apply 1748 * it here before the BASIC cpuid pass so that any architecturally 1749 * visible changes (e.g., changed MSR or CPUID bits) happen before we 1750 * start querying the CPU for its capabilities. 1751 * 1752 * Since we're still in the early stages of bringing up this CPU, we're 1753 * limited in what we can do (e.g., no kmem_alloc/free), so after 1754 * reading the current microcode revision we have the control CPU do the 1755 * work of locating the microcode file and setting up the cpu_ucode_info 1756 * structure via ucode_locate(). With that done, we can apply the 1757 * microcode to this CPU (if any) and proceed with the BASIC cpuid pass. 1758 */ 1759 ucode_read_rev(cp); 1760 mp_startup_signal(&procset_slave, cp->cpu_id); 1761 mp_startup_wait(&procset_master, cp->cpu_id); 1762 ucode_apply(cp); 1763 cpuid_execpass(cp, CPUID_PASS_BASIC, new_x86_featureset); 1764 1765 /* 1766 * Once this was done from assembly, but it's safer here; if 1767 * it blocks, we need to be able to swtch() to and from, and 1768 * since we get here by calling t_pc, we need to do that call 1769 * before swtch() overwrites it. 1770 */ 1771 (void) (*ap_mlsetup)(); 1772 1773 #ifndef __xpv 1774 /* 1775 * Program this cpu's PAT 1776 */ 1777 pat_sync(); 1778 #endif 1779 1780 /* 1781 * Set up TSC_AUX to contain the cpuid for this processor 1782 * for the rdtscp instruction. 1783 */ 1784 if (is_x86_feature(new_x86_featureset, X86FSET_TSCP)) 1785 (void) wrmsr(MSR_AMD_TSCAUX, cp->cpu_id); 1786 1787 /* 1788 * Initialize this CPU's syscall handlers 1789 */ 1790 init_cpu_syscall(cp); 1791 1792 /* 1793 * Enable interrupts with spl set to LOCK_LEVEL. LOCK_LEVEL is the 1794 * highest level at which a routine is permitted to block on 1795 * an adaptive mutex (allows for cpu poke interrupt in case 1796 * the cpu is blocked on a mutex and halts). Setting LOCK_LEVEL blocks 1797 * device interrupts that may end up in the hat layer issuing cross 1798 * calls before CPU_READY is set. 1799 */ 1800 splx(ipltospl(LOCK_LEVEL)); 1801 sti(); 1802 1803 /* 1804 * There exists a small subset of systems which expose differing 1805 * MWAIT/MONITOR support between CPUs. If MWAIT support is absent from 1806 * the boot CPU, but is found on a later CPU, the system continues to 1807 * operate as if no MWAIT support is available. 1808 * 1809 * The reverse case, where MWAIT is available on the boot CPU but not 1810 * on a subsequently initialized CPU, is not presently allowed and will 1811 * result in a panic. 1812 */ 1813 if (is_x86_feature(x86_featureset, X86FSET_MWAIT) != 1814 is_x86_feature(new_x86_featureset, X86FSET_MWAIT)) { 1815 if (!is_x86_feature(x86_featureset, X86FSET_MWAIT)) { 1816 remove_x86_feature(new_x86_featureset, X86FSET_MWAIT); 1817 } else { 1818 panic("unsupported mixed cpu mwait support detected"); 1819 } 1820 } 1821 1822 /* 1823 * We could be more sophisticated here, and just mark the CPU 1824 * as "faulted" but at this point we'll opt for the easier 1825 * answer of dying horribly. Provided the boot cpu is ok, 1826 * the system can be recovered by booting with use_mp set to zero. 1827 */ 1828 if (workaround_errata(cp) != 0) 1829 panic("critical workaround(s) missing for cpu%d", cp->cpu_id); 1830 1831 /* 1832 * We can touch cpu_flags here without acquiring the cpu_lock here 1833 * because the cpu_lock is held by the control CPU which is running 1834 * mp_start_cpu_common(). 1835 * Need to clear CPU_QUIESCED flag before calling any function which 1836 * may cause thread context switching, such as kmem_alloc() etc. 1837 * The idle thread checks for CPU_QUIESCED flag and loops for ever if 1838 * it's set. So the startup thread may have no chance to switch back 1839 * again if it's switched away with CPU_QUIESCED set. 1840 */ 1841 cp->cpu_flags &= ~(CPU_POWEROFF | CPU_QUIESCED); 1842 1843 enable_pcid(); 1844 1845 /* 1846 * Setup this processor for XSAVE. 1847 */ 1848 if (fp_save_mech == FP_XSAVE) { 1849 xsave_setup_msr(cp); 1850 } 1851 1852 cpuid_execpass(cp, CPUID_PASS_EXTENDED, NULL); 1853 cpuid_execpass(cp, CPUID_PASS_DYNAMIC, NULL); 1854 cpuid_execpass(cp, CPUID_PASS_RESOLVE, NULL); 1855 1856 /* 1857 * Correct cpu_idstr and cpu_brandstr on target CPU after 1858 * CPUID_PASS_DYNAMIC is done. 1859 */ 1860 (void) cpuid_getidstr(cp, cp->cpu_idstr, CPU_IDSTRLEN); 1861 (void) cpuid_getbrandstr(cp, cp->cpu_brandstr, CPU_IDSTRLEN); 1862 1863 cp->cpu_flags |= CPU_RUNNING | CPU_READY | CPU_EXISTS; 1864 1865 post_startup_cpu_fixups(); 1866 1867 cpu_event_init_cpu(cp); 1868 1869 /* 1870 * Enable preemption here so that contention for any locks acquired 1871 * later in mp_startup_common may be preempted if the thread owning 1872 * those locks is continuously executing on other CPUs (for example, 1873 * this CPU must be preemptible to allow other CPUs to pause it during 1874 * their startup phases). It's safe to enable preemption here because 1875 * the CPU state is pretty-much fully constructed. 1876 */ 1877 curthread->t_preempt = 0; 1878 1879 /* The base spl should still be at LOCK LEVEL here */ 1880 ASSERT(cp->cpu_base_spl == ipltospl(LOCK_LEVEL)); 1881 set_base_spl(); /* Restore the spl to its proper value */ 1882 1883 pghw_physid_create(cp); 1884 /* 1885 * Delegate initialization tasks, which need to access the cpu_lock, 1886 * to mp_start_cpu_common() because we can't acquire the cpu_lock here 1887 * during CPU DR operations. 1888 */ 1889 mp_startup_signal(&procset_slave, cp->cpu_id); 1890 mp_startup_wait(&procset_master, cp->cpu_id); 1891 pg_cmt_cpu_startup(cp); 1892 1893 if (boot) { 1894 mutex_enter(&cpu_lock); 1895 cp->cpu_flags &= ~CPU_OFFLINE; 1896 cpu_enable_intr(cp); 1897 cpu_add_active(cp); 1898 mutex_exit(&cpu_lock); 1899 } 1900 1901 /* Enable interrupts */ 1902 (void) spl0(); 1903 1904 /* 1905 * Clear the microcode update buffer allocated via ucode_locate(), if 1906 * any, for this CPU. 1907 */ 1908 ucode_finish(cp); 1909 1910 /* 1911 * Do a sanity check to make sure this new CPU is a sane thing 1912 * to add to the collection of processors running this system. 1913 * 1914 * XXX Clearly this needs to get more sophisticated, if x86 1915 * systems start to get built out of heterogenous CPUs; as is 1916 * likely to happen once the number of processors in a configuration 1917 * gets large enough. 1918 */ 1919 if (compare_x86_featureset(x86_featureset, new_x86_featureset) == 1920 B_FALSE) { 1921 cmn_err(CE_CONT, "cpu%d: featureset\n", cp->cpu_id); 1922 print_x86_featureset(new_x86_featureset); 1923 cmn_err(CE_WARN, "cpu%d feature mismatch", cp->cpu_id); 1924 } 1925 1926 #ifndef __xpv 1927 { 1928 /* 1929 * Set up the CPU module for this CPU. This can't be done 1930 * before this CPU is made CPU_READY, because we may (in 1931 * heterogeneous systems) need to go load another CPU module. 1932 * The act of attempting to load a module may trigger a 1933 * cross-call, which will ASSERT unless this cpu is CPU_READY. 1934 */ 1935 cmi_hdl_t hdl; 1936 1937 if ((hdl = cmi_init(CMI_HDL_NATIVE, cmi_ntv_hwchipid(CPU), 1938 cmi_ntv_hwcoreid(CPU), cmi_ntv_hwstrandid(CPU))) != NULL) { 1939 if (is_x86_feature(x86_featureset, X86FSET_MCA)) 1940 cmi_mca_init(hdl); 1941 cp->cpu_m.mcpu_cmi_hdl = hdl; 1942 } 1943 } 1944 #endif /* __xpv */ 1945 1946 if (boothowto & RB_DEBUG) 1947 kdi_cpu_init(); 1948 1949 (void) mach_cpu_create_device_node(cp, NULL); 1950 1951 /* 1952 * Setting the bit in cpu_ready_set must be the last operation in 1953 * processor initialization; the boot CPU will continue to boot once 1954 * it sees this bit set for all active CPUs. 1955 */ 1956 CPUSET_ATOMIC_ADD(cpu_ready_set, cp->cpu_id); 1957 1958 cmn_err(CE_CONT, "?cpu%d: %s\n", cp->cpu_id, cp->cpu_idstr); 1959 cmn_err(CE_CONT, "?cpu%d: %s\n", cp->cpu_id, cp->cpu_brandstr); 1960 cmn_err(CE_CONT, "?cpu%d initialization complete - online\n", 1961 cp->cpu_id); 1962 1963 /* 1964 * Now we are done with the startup thread, so free it up. 1965 */ 1966 thread_exit(); 1967 /*NOTREACHED*/ 1968 } 1969 1970 /* 1971 * Startup function for 'other' CPUs at boot time (besides boot cpu). 1972 */ 1973 static void 1974 mp_startup_boot(void) 1975 { 1976 mp_startup_common(B_TRUE); 1977 } 1978 1979 /* 1980 * Startup function for hotplug CPUs at runtime. 1981 */ 1982 void 1983 mp_startup_hotplug(void) 1984 { 1985 mp_startup_common(B_FALSE); 1986 } 1987 1988 /* 1989 * Start CPU on user request. 1990 */ 1991 /* ARGSUSED */ 1992 int 1993 mp_cpu_start(struct cpu *cp) 1994 { 1995 ASSERT(MUTEX_HELD(&cpu_lock)); 1996 return (0); 1997 } 1998 1999 /* 2000 * Stop CPU on user request. 2001 */ 2002 int 2003 mp_cpu_stop(struct cpu *cp) 2004 { 2005 extern int cbe_psm_timer_mode; 2006 ASSERT(MUTEX_HELD(&cpu_lock)); 2007 2008 #ifdef __xpv 2009 /* 2010 * We can't offline vcpu0. 2011 */ 2012 if (cp->cpu_id == 0) 2013 return (EBUSY); 2014 #endif 2015 2016 /* 2017 * If TIMER_PERIODIC mode is used, CPU0 is the one running it; 2018 * can't stop it. (This is true only for machines with no TSC.) 2019 */ 2020 2021 if ((cbe_psm_timer_mode == TIMER_PERIODIC) && (cp->cpu_id == 0)) 2022 return (EBUSY); 2023 2024 return (0); 2025 } 2026 2027 /* 2028 * Take the specified CPU out of participation in interrupts. 2029 * 2030 * Usually, we hold cpu_lock. But we cannot assert as such due to the 2031 * exception - i_cpr_save_context() - where we have mutual exclusion via a 2032 * separate mechanism. 2033 */ 2034 int 2035 cpu_disable_intr(struct cpu *cp) 2036 { 2037 if (psm_disable_intr(cp->cpu_id) != DDI_SUCCESS) 2038 return (EBUSY); 2039 2040 cp->cpu_flags &= ~CPU_ENABLE; 2041 ncpus_intr_enabled--; 2042 return (0); 2043 } 2044 2045 /* 2046 * Allow the specified CPU to participate in interrupts. 2047 */ 2048 void 2049 cpu_enable_intr(struct cpu *cp) 2050 { 2051 ASSERT(MUTEX_HELD(&cpu_lock)); 2052 cp->cpu_flags |= CPU_ENABLE; 2053 ncpus_intr_enabled++; 2054 psm_enable_intr(cp->cpu_id); 2055 } 2056 2057 void 2058 mp_cpu_faulted_enter(struct cpu *cp) 2059 { 2060 #ifdef __xpv 2061 _NOTE(ARGUNUSED(cp)); 2062 #else 2063 cmi_hdl_t hdl = cp->cpu_m.mcpu_cmi_hdl; 2064 2065 if (hdl != NULL) { 2066 cmi_hdl_hold(hdl); 2067 } else { 2068 hdl = cmi_hdl_lookup(CMI_HDL_NATIVE, cmi_ntv_hwchipid(cp), 2069 cmi_ntv_hwcoreid(cp), cmi_ntv_hwstrandid(cp)); 2070 } 2071 if (hdl != NULL) { 2072 cmi_faulted_enter(hdl); 2073 cmi_hdl_rele(hdl); 2074 } 2075 #endif 2076 } 2077 2078 void 2079 mp_cpu_faulted_exit(struct cpu *cp) 2080 { 2081 #ifdef __xpv 2082 _NOTE(ARGUNUSED(cp)); 2083 #else 2084 cmi_hdl_t hdl = cp->cpu_m.mcpu_cmi_hdl; 2085 2086 if (hdl != NULL) { 2087 cmi_hdl_hold(hdl); 2088 } else { 2089 hdl = cmi_hdl_lookup(CMI_HDL_NATIVE, cmi_ntv_hwchipid(cp), 2090 cmi_ntv_hwcoreid(cp), cmi_ntv_hwstrandid(cp)); 2091 } 2092 if (hdl != NULL) { 2093 cmi_faulted_exit(hdl); 2094 cmi_hdl_rele(hdl); 2095 } 2096 #endif 2097 } 2098 2099 /* 2100 * The following two routines are used as context operators on threads belonging 2101 * to processes with a private LDT (see sysi86). Due to the rarity of such 2102 * processes, these routines are currently written for best code readability and 2103 * organization rather than speed. We could avoid checking x86_featureset at 2104 * every context switch by installing different context ops, depending on 2105 * x86_featureset, at LDT creation time -- one for each combination of fast 2106 * syscall features. 2107 */ 2108 2109 void 2110 cpu_fast_syscall_disable(void) 2111 { 2112 if (is_x86_feature(x86_featureset, X86FSET_MSR) && 2113 is_x86_feature(x86_featureset, X86FSET_SEP)) 2114 cpu_sep_disable(); 2115 if (is_x86_feature(x86_featureset, X86FSET_MSR) && 2116 is_x86_feature(x86_featureset, X86FSET_ASYSC)) 2117 cpu_asysc_disable(); 2118 } 2119 2120 void 2121 cpu_fast_syscall_enable(void) 2122 { 2123 if (is_x86_feature(x86_featureset, X86FSET_MSR) && 2124 is_x86_feature(x86_featureset, X86FSET_SEP)) 2125 cpu_sep_enable(); 2126 if (is_x86_feature(x86_featureset, X86FSET_MSR) && 2127 is_x86_feature(x86_featureset, X86FSET_ASYSC)) 2128 cpu_asysc_enable(); 2129 } 2130 2131 static void 2132 cpu_sep_enable(void) 2133 { 2134 ASSERT(is_x86_feature(x86_featureset, X86FSET_SEP)); 2135 ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL); 2136 2137 wrmsr(MSR_INTC_SEP_CS, (uint64_t)(uintptr_t)KCS_SEL); 2138 2139 CPU->cpu_m.mcpu_fast_syscall_state |= FSS_SEP_ENABLED; 2140 } 2141 2142 static void 2143 cpu_sep_disable(void) 2144 { 2145 ASSERT(is_x86_feature(x86_featureset, X86FSET_SEP)); 2146 ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL); 2147 2148 /* 2149 * Setting the SYSENTER_CS_MSR register to 0 causes software executing 2150 * the sysenter or sysexit instruction to trigger a #gp fault. 2151 */ 2152 wrmsr(MSR_INTC_SEP_CS, 0); 2153 2154 CPU->cpu_m.mcpu_fast_syscall_state &= ~FSS_SEP_ENABLED; 2155 } 2156 2157 static void 2158 cpu_asysc_enable(void) 2159 { 2160 ASSERT(is_x86_feature(x86_featureset, X86FSET_ASYSC)); 2161 ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL); 2162 2163 wrmsr(MSR_AMD_EFER, rdmsr(MSR_AMD_EFER) | 2164 (uint64_t)(uintptr_t)AMD_EFER_SCE); 2165 2166 CPU->cpu_m.mcpu_fast_syscall_state |= FSS_ASYSC_ENABLED; 2167 } 2168 2169 static void 2170 cpu_asysc_disable(void) 2171 { 2172 ASSERT(is_x86_feature(x86_featureset, X86FSET_ASYSC)); 2173 ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL); 2174 2175 /* 2176 * Turn off the SCE (syscall enable) bit in the EFER register. Software 2177 * executing syscall or sysret with this bit off will incur a #ud trap. 2178 */ 2179 wrmsr(MSR_AMD_EFER, rdmsr(MSR_AMD_EFER) & 2180 ~((uint64_t)(uintptr_t)AMD_EFER_SCE)); 2181 2182 CPU->cpu_m.mcpu_fast_syscall_state &= ~FSS_ASYSC_ENABLED; 2183 } 2184