1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 /* 26 * Copyright (c) 2010, Intel Corporation. 27 * All rights reserved. 28 */ 29 /* 30 * Copyright 2019 Joyent, Inc. 31 * Copyright 2013 Nexenta Systems, Inc. All rights reserved. 32 * Copyright 2018 OmniOS Community Edition (OmniOSce) Association. 33 */ 34 35 #include <sys/types.h> 36 #include <sys/thread.h> 37 #include <sys/cpuvar.h> 38 #include <sys/cpu.h> 39 #include <sys/t_lock.h> 40 #include <sys/param.h> 41 #include <sys/proc.h> 42 #include <sys/disp.h> 43 #include <sys/class.h> 44 #include <sys/cmn_err.h> 45 #include <sys/debug.h> 46 #include <sys/note.h> 47 #include <sys/asm_linkage.h> 48 #include <sys/x_call.h> 49 #include <sys/systm.h> 50 #include <sys/var.h> 51 #include <sys/vtrace.h> 52 #include <vm/hat.h> 53 #include <vm/as.h> 54 #include <vm/seg_kmem.h> 55 #include <vm/seg_kp.h> 56 #include <sys/segments.h> 57 #include <sys/kmem.h> 58 #include <sys/stack.h> 59 #include <sys/smp_impldefs.h> 60 #include <sys/x86_archext.h> 61 #include <sys/machsystm.h> 62 #include <sys/traptrace.h> 63 #include <sys/clock.h> 64 #include <sys/cpc_impl.h> 65 #include <sys/pg.h> 66 #include <sys/cmt.h> 67 #include <sys/dtrace.h> 68 #include <sys/archsystm.h> 69 #include <sys/fp.h> 70 #include <sys/reboot.h> 71 #include <sys/kdi_machimpl.h> 72 #include <vm/hat_i86.h> 73 #include <vm/vm_dep.h> 74 #include <sys/memnode.h> 75 #include <sys/pci_cfgspace.h> 76 #include <sys/mach_mmu.h> 77 #include <sys/sysmacros.h> 78 #if defined(__xpv) 79 #include <sys/hypervisor.h> 80 #endif 81 #include <sys/cpu_module.h> 82 #include <sys/ontrap.h> 83 84 struct cpu cpus[1] __aligned(MMU_PAGESIZE); 85 struct cpu *cpu[NCPU] = {&cpus[0]}; 86 struct cpu *cpu_free_list; 87 cpu_core_t cpu_core[NCPU]; 88 89 #define cpu_next_free cpu_prev 90 91 /* 92 * Useful for disabling MP bring-up on a MP capable system. 93 */ 94 int use_mp = 1; 95 96 /* 97 * to be set by a PSM to indicate what cpus 98 * are sitting around on the system. 99 */ 100 cpuset_t mp_cpus; 101 102 /* 103 * This variable is used by the hat layer to decide whether or not 104 * critical sections are needed to prevent race conditions. For sun4m, 105 * this variable is set once enough MP initialization has been done in 106 * order to allow cross calls. 107 */ 108 int flushes_require_xcalls; 109 110 cpuset_t cpu_ready_set; /* initialized in startup() */ 111 112 static void mp_startup_boot(void); 113 static void mp_startup_hotplug(void); 114 115 static void cpu_sep_enable(void); 116 static void cpu_sep_disable(void); 117 static void cpu_asysc_enable(void); 118 static void cpu_asysc_disable(void); 119 120 /* 121 * Init CPU info - get CPU type info for processor_info system call. 122 */ 123 void 124 init_cpu_info(struct cpu *cp) 125 { 126 processor_info_t *pi = &cp->cpu_type_info; 127 128 /* 129 * Get clock-frequency property for the CPU. 130 */ 131 pi->pi_clock = cpu_freq; 132 133 /* 134 * Current frequency in Hz. 135 */ 136 cp->cpu_curr_clock = cpu_freq_hz; 137 138 /* 139 * Supported frequencies. 140 */ 141 if (cp->cpu_supp_freqs == NULL) { 142 cpu_set_supp_freqs(cp, NULL); 143 } 144 145 (void) strcpy(pi->pi_processor_type, "i386"); 146 if (fpu_exists) 147 (void) strcpy(pi->pi_fputypes, "i387 compatible"); 148 149 cp->cpu_idstr = kmem_zalloc(CPU_IDSTRLEN, KM_SLEEP); 150 cp->cpu_brandstr = kmem_zalloc(CPU_IDSTRLEN, KM_SLEEP); 151 152 /* 153 * If called for the BSP, cp is equal to current CPU. 154 * For non-BSPs, cpuid info of cp is not ready yet, so use cpuid info 155 * of current CPU as default values for cpu_idstr and cpu_brandstr. 156 * They will be corrected in mp_startup_common() after cpuid_pass1() 157 * has been invoked on target CPU. 158 */ 159 (void) cpuid_getidstr(CPU, cp->cpu_idstr, CPU_IDSTRLEN); 160 (void) cpuid_getbrandstr(CPU, cp->cpu_brandstr, CPU_IDSTRLEN); 161 } 162 163 /* 164 * Configure syscall support on this CPU. 165 */ 166 /*ARGSUSED*/ 167 void 168 init_cpu_syscall(struct cpu *cp) 169 { 170 kpreempt_disable(); 171 172 if (is_x86_feature(x86_featureset, X86FSET_MSR) && 173 is_x86_feature(x86_featureset, X86FSET_ASYSC)) { 174 uint64_t flags; 175 176 #if !defined(__xpv) 177 /* 178 * The syscall instruction imposes a certain ordering on 179 * segment selectors, so we double-check that ordering 180 * here. 181 */ 182 CTASSERT(KDS_SEL == KCS_SEL + 8); 183 CTASSERT(UDS_SEL == U32CS_SEL + 8); 184 CTASSERT(UCS_SEL == U32CS_SEL + 16); 185 #endif 186 187 /* 188 * Turn syscall/sysret extensions on. 189 */ 190 cpu_asysc_enable(); 191 192 /* 193 * Program the magic registers .. 194 */ 195 wrmsr(MSR_AMD_STAR, 196 ((uint64_t)(U32CS_SEL << 16 | KCS_SEL)) << 32); 197 if (kpti_enable == 1) { 198 wrmsr(MSR_AMD_LSTAR, 199 (uint64_t)(uintptr_t)tr_sys_syscall); 200 wrmsr(MSR_AMD_CSTAR, 201 (uint64_t)(uintptr_t)tr_sys_syscall32); 202 } else { 203 wrmsr(MSR_AMD_LSTAR, 204 (uint64_t)(uintptr_t)sys_syscall); 205 wrmsr(MSR_AMD_CSTAR, 206 (uint64_t)(uintptr_t)sys_syscall32); 207 } 208 209 /* 210 * This list of flags is masked off the incoming 211 * %rfl when we enter the kernel. 212 */ 213 flags = PS_IE | PS_T; 214 if (is_x86_feature(x86_featureset, X86FSET_SMAP) == B_TRUE) 215 flags |= PS_ACHK; 216 wrmsr(MSR_AMD_SFMASK, flags); 217 } 218 219 /* 220 * On 64-bit kernels on Nocona machines, the 32-bit syscall 221 * variant isn't available to 32-bit applications, but sysenter is. 222 */ 223 if (is_x86_feature(x86_featureset, X86FSET_MSR) && 224 is_x86_feature(x86_featureset, X86FSET_SEP)) { 225 226 #if !defined(__xpv) 227 /* 228 * The sysenter instruction imposes a certain ordering on 229 * segment selectors, so we double-check that ordering 230 * here. See "sysenter" in Intel document 245471-012, "IA-32 231 * Intel Architecture Software Developer's Manual Volume 2: 232 * Instruction Set Reference" 233 */ 234 CTASSERT(KDS_SEL == KCS_SEL + 8); 235 236 CTASSERT(U32CS_SEL == ((KCS_SEL + 16) | 3)); 237 CTASSERT(UDS_SEL == U32CS_SEL + 8); 238 #endif 239 240 cpu_sep_enable(); 241 242 /* 243 * resume() sets this value to the base of the threads stack 244 * via a context handler. 245 */ 246 wrmsr(MSR_INTC_SEP_ESP, 0); 247 248 if (kpti_enable == 1) { 249 wrmsr(MSR_INTC_SEP_EIP, 250 (uint64_t)(uintptr_t)tr_sys_sysenter); 251 } else { 252 wrmsr(MSR_INTC_SEP_EIP, 253 (uint64_t)(uintptr_t)sys_sysenter); 254 } 255 } 256 257 kpreempt_enable(); 258 } 259 260 #if !defined(__xpv) 261 /* 262 * Configure per-cpu ID GDT 263 */ 264 static void 265 init_cpu_id_gdt(struct cpu *cp) 266 { 267 /* Write cpu_id into limit field of GDT for usermode retrieval */ 268 #if defined(__amd64) 269 set_usegd(&cp->cpu_gdt[GDT_CPUID], SDP_SHORT, NULL, cp->cpu_id, 270 SDT_MEMRODA, SEL_UPL, SDP_BYTES, SDP_OP32); 271 #elif defined(__i386) 272 set_usegd(&cp->cpu_gdt[GDT_CPUID], NULL, cp->cpu_id, SDT_MEMRODA, 273 SEL_UPL, SDP_BYTES, SDP_OP32); 274 #endif 275 } 276 #endif /* !defined(__xpv) */ 277 278 /* 279 * Multiprocessor initialization. 280 * 281 * Allocate and initialize the cpu structure, TRAPTRACE buffer, and the 282 * startup and idle threads for the specified CPU. 283 * Parameter boot is true for boot time operations and is false for CPU 284 * DR operations. 285 */ 286 static struct cpu * 287 mp_cpu_configure_common(int cpun, boolean_t boot) 288 { 289 struct cpu *cp; 290 kthread_id_t tp; 291 caddr_t sp; 292 proc_t *procp; 293 #if !defined(__xpv) 294 extern int idle_cpu_prefer_mwait; 295 extern void cpu_idle_mwait(); 296 #endif 297 extern void idle(); 298 extern void cpu_idle(); 299 300 #ifdef TRAPTRACE 301 trap_trace_ctl_t *ttc = &trap_trace_ctl[cpun]; 302 #endif 303 304 ASSERT(MUTEX_HELD(&cpu_lock)); 305 ASSERT(cpun < NCPU && cpu[cpun] == NULL); 306 307 if (cpu_free_list == NULL) { 308 cp = kmem_zalloc(sizeof (*cp), KM_SLEEP); 309 } else { 310 cp = cpu_free_list; 311 cpu_free_list = cp->cpu_next_free; 312 } 313 314 cp->cpu_m.mcpu_istamp = cpun << 16; 315 316 /* Create per CPU specific threads in the process p0. */ 317 procp = &p0; 318 319 /* 320 * Initialize the dispatcher first. 321 */ 322 disp_cpu_init(cp); 323 324 cpu_vm_data_init(cp); 325 326 /* 327 * Allocate and initialize the startup thread for this CPU. 328 * Interrupt and process switch stacks get allocated later 329 * when the CPU starts running. 330 */ 331 tp = thread_create(NULL, 0, NULL, NULL, 0, procp, 332 TS_STOPPED, maxclsyspri); 333 334 /* 335 * Set state to TS_ONPROC since this thread will start running 336 * as soon as the CPU comes online. 337 * 338 * All the other fields of the thread structure are setup by 339 * thread_create(). 340 */ 341 THREAD_ONPROC(tp, cp); 342 tp->t_preempt = 1; 343 tp->t_bound_cpu = cp; 344 tp->t_affinitycnt = 1; 345 tp->t_cpu = cp; 346 tp->t_disp_queue = cp->cpu_disp; 347 348 /* 349 * Setup thread to start in mp_startup_common. 350 */ 351 sp = tp->t_stk; 352 tp->t_sp = (uintptr_t)(sp - MINFRAME); 353 #if defined(__amd64) 354 tp->t_sp -= STACK_ENTRY_ALIGN; /* fake a call */ 355 #endif 356 /* 357 * Setup thread start entry point for boot or hotplug. 358 */ 359 if (boot) { 360 tp->t_pc = (uintptr_t)mp_startup_boot; 361 } else { 362 tp->t_pc = (uintptr_t)mp_startup_hotplug; 363 } 364 365 cp->cpu_id = cpun; 366 cp->cpu_self = cp; 367 cp->cpu_thread = tp; 368 cp->cpu_lwp = NULL; 369 cp->cpu_dispthread = tp; 370 cp->cpu_dispatch_pri = DISP_PRIO(tp); 371 372 /* 373 * cpu_base_spl must be set explicitly here to prevent any blocking 374 * operations in mp_startup_common from causing the spl of the cpu 375 * to drop to 0 (allowing device interrupts before we're ready) in 376 * resume(). 377 * cpu_base_spl MUST remain at LOCK_LEVEL until the cpu is CPU_READY. 378 * As an extra bit of security on DEBUG kernels, this is enforced with 379 * an assertion in mp_startup_common() -- before cpu_base_spl is set 380 * to its proper value. 381 */ 382 cp->cpu_base_spl = ipltospl(LOCK_LEVEL); 383 384 /* 385 * Now, initialize per-CPU idle thread for this CPU. 386 */ 387 tp = thread_create(NULL, PAGESIZE, idle, NULL, 0, procp, TS_ONPROC, -1); 388 389 cp->cpu_idle_thread = tp; 390 391 tp->t_preempt = 1; 392 tp->t_bound_cpu = cp; 393 tp->t_affinitycnt = 1; 394 tp->t_cpu = cp; 395 tp->t_disp_queue = cp->cpu_disp; 396 397 /* 398 * Bootstrap the CPU's PG data 399 */ 400 pg_cpu_bootstrap(cp); 401 402 /* 403 * Perform CPC initialization on the new CPU. 404 */ 405 kcpc_hw_init(cp); 406 407 /* 408 * Allocate virtual addresses for cpu_caddr1 and cpu_caddr2 409 * for each CPU. 410 */ 411 setup_vaddr_for_ppcopy(cp); 412 413 /* 414 * Allocate page for new GDT and initialize from current GDT. 415 */ 416 #if !defined(__lint) 417 ASSERT((sizeof (*cp->cpu_gdt) * NGDT) <= PAGESIZE); 418 #endif 419 cp->cpu_gdt = kmem_zalloc(PAGESIZE, KM_SLEEP); 420 bcopy(CPU->cpu_gdt, cp->cpu_gdt, (sizeof (*cp->cpu_gdt) * NGDT)); 421 422 #if defined(__i386) 423 /* 424 * setup kernel %gs. 425 */ 426 set_usegd(&cp->cpu_gdt[GDT_GS], cp, sizeof (struct cpu) -1, SDT_MEMRWA, 427 SEL_KPL, 0, 1); 428 #endif 429 430 /* 431 * Allocate pages for the CPU LDT. 432 */ 433 cp->cpu_m.mcpu_ldt = kmem_zalloc(LDT_CPU_SIZE, KM_SLEEP); 434 cp->cpu_m.mcpu_ldt_len = 0; 435 436 /* 437 * Allocate a per-CPU IDT and initialize the new IDT to the currently 438 * runing CPU. 439 */ 440 #if !defined(__lint) 441 ASSERT((sizeof (*CPU->cpu_idt) * NIDT) <= PAGESIZE); 442 #endif 443 cp->cpu_idt = kmem_alloc(PAGESIZE, KM_SLEEP); 444 bcopy(CPU->cpu_idt, cp->cpu_idt, PAGESIZE); 445 446 /* 447 * alloc space for cpuid info 448 */ 449 cpuid_alloc_space(cp); 450 #if !defined(__xpv) 451 if (is_x86_feature(x86_featureset, X86FSET_MWAIT) && 452 idle_cpu_prefer_mwait) { 453 cp->cpu_m.mcpu_mwait = cpuid_mwait_alloc(cp); 454 cp->cpu_m.mcpu_idle_cpu = cpu_idle_mwait; 455 } else 456 #endif 457 cp->cpu_m.mcpu_idle_cpu = cpu_idle; 458 459 init_cpu_info(cp); 460 461 #if !defined(__xpv) 462 init_cpu_id_gdt(cp); 463 #endif 464 465 /* 466 * alloc space for ucode_info 467 */ 468 ucode_alloc_space(cp); 469 xc_init_cpu(cp); 470 hat_cpu_online(cp); 471 472 #ifdef TRAPTRACE 473 /* 474 * If this is a TRAPTRACE kernel, allocate TRAPTRACE buffers 475 */ 476 ttc->ttc_first = (uintptr_t)kmem_zalloc(trap_trace_bufsize, KM_SLEEP); 477 ttc->ttc_next = ttc->ttc_first; 478 ttc->ttc_limit = ttc->ttc_first + trap_trace_bufsize; 479 #endif 480 481 /* 482 * Record that we have another CPU. 483 */ 484 /* 485 * Initialize the interrupt threads for this CPU 486 */ 487 cpu_intr_alloc(cp, NINTR_THREADS); 488 489 cp->cpu_flags = CPU_OFFLINE | CPU_QUIESCED | CPU_POWEROFF; 490 cpu_set_state(cp); 491 492 /* 493 * Add CPU to list of available CPUs. It'll be on the active list 494 * after mp_startup_common(). 495 */ 496 cpu_add_unit(cp); 497 498 return (cp); 499 } 500 501 /* 502 * Undo what was done in mp_cpu_configure_common 503 */ 504 static void 505 mp_cpu_unconfigure_common(struct cpu *cp, int error) 506 { 507 ASSERT(MUTEX_HELD(&cpu_lock)); 508 509 /* 510 * Remove the CPU from the list of available CPUs. 511 */ 512 cpu_del_unit(cp->cpu_id); 513 514 if (error == ETIMEDOUT) { 515 /* 516 * The cpu was started, but never *seemed* to run any 517 * code in the kernel; it's probably off spinning in its 518 * own private world, though with potential references to 519 * our kmem-allocated IDTs and GDTs (for example). 520 * 521 * Worse still, it may actually wake up some time later, 522 * so rather than guess what it might or might not do, we 523 * leave the fundamental data structures intact. 524 */ 525 cp->cpu_flags = 0; 526 return; 527 } 528 529 /* 530 * At this point, the only threads bound to this CPU should 531 * special per-cpu threads: it's idle thread, it's pause threads, 532 * and it's interrupt threads. Clean these up. 533 */ 534 cpu_destroy_bound_threads(cp); 535 cp->cpu_idle_thread = NULL; 536 537 /* 538 * Free the interrupt stack. 539 */ 540 segkp_release(segkp, 541 cp->cpu_intr_stack - (INTR_STACK_SIZE - SA(MINFRAME))); 542 cp->cpu_intr_stack = NULL; 543 544 #ifdef TRAPTRACE 545 /* 546 * Discard the trap trace buffer 547 */ 548 { 549 trap_trace_ctl_t *ttc = &trap_trace_ctl[cp->cpu_id]; 550 551 kmem_free((void *)ttc->ttc_first, trap_trace_bufsize); 552 ttc->ttc_first = (uintptr_t)NULL; 553 } 554 #endif 555 556 hat_cpu_offline(cp); 557 558 ucode_free_space(cp); 559 560 /* Free CPU ID string and brand string. */ 561 if (cp->cpu_idstr) { 562 kmem_free(cp->cpu_idstr, CPU_IDSTRLEN); 563 cp->cpu_idstr = NULL; 564 } 565 if (cp->cpu_brandstr) { 566 kmem_free(cp->cpu_brandstr, CPU_IDSTRLEN); 567 cp->cpu_brandstr = NULL; 568 } 569 570 #if !defined(__xpv) 571 if (cp->cpu_m.mcpu_mwait != NULL) { 572 cpuid_mwait_free(cp); 573 cp->cpu_m.mcpu_mwait = NULL; 574 } 575 #endif 576 cpuid_free_space(cp); 577 578 if (cp->cpu_idt != CPU->cpu_idt) 579 kmem_free(cp->cpu_idt, PAGESIZE); 580 cp->cpu_idt = NULL; 581 582 kmem_free(cp->cpu_m.mcpu_ldt, LDT_CPU_SIZE); 583 cp->cpu_m.mcpu_ldt = NULL; 584 cp->cpu_m.mcpu_ldt_len = 0; 585 586 kmem_free(cp->cpu_gdt, PAGESIZE); 587 cp->cpu_gdt = NULL; 588 589 if (cp->cpu_supp_freqs != NULL) { 590 size_t len = strlen(cp->cpu_supp_freqs) + 1; 591 kmem_free(cp->cpu_supp_freqs, len); 592 cp->cpu_supp_freqs = NULL; 593 } 594 595 teardown_vaddr_for_ppcopy(cp); 596 597 kcpc_hw_fini(cp); 598 599 cp->cpu_dispthread = NULL; 600 cp->cpu_thread = NULL; /* discarded by cpu_destroy_bound_threads() */ 601 602 cpu_vm_data_destroy(cp); 603 604 xc_fini_cpu(cp); 605 disp_cpu_fini(cp); 606 607 ASSERT(cp != CPU0); 608 bzero(cp, sizeof (*cp)); 609 cp->cpu_next_free = cpu_free_list; 610 cpu_free_list = cp; 611 } 612 613 /* 614 * Apply workarounds for known errata, and warn about those that are absent. 615 * 616 * System vendors occasionally create configurations which contain different 617 * revisions of the CPUs that are almost but not exactly the same. At the 618 * time of writing, this meant that their clock rates were the same, their 619 * feature sets were the same, but the required workaround were -not- 620 * necessarily the same. So, this routine is invoked on -every- CPU soon 621 * after starting to make sure that the resulting system contains the most 622 * pessimal set of workarounds needed to cope with *any* of the CPUs in the 623 * system. 624 * 625 * workaround_errata is invoked early in mlsetup() for CPU 0, and in 626 * mp_startup_common() for all slave CPUs. Slaves process workaround_errata 627 * prior to acknowledging their readiness to the master, so this routine will 628 * never be executed by multiple CPUs in parallel, thus making updates to 629 * global data safe. 630 * 631 * These workarounds are based on Rev 3.57 of the Revision Guide for 632 * AMD Athlon(tm) 64 and AMD Opteron(tm) Processors, August 2005. 633 */ 634 635 #if defined(OPTERON_ERRATUM_88) 636 int opteron_erratum_88; /* if non-zero -> at least one cpu has it */ 637 #endif 638 639 #if defined(OPTERON_ERRATUM_91) 640 int opteron_erratum_91; /* if non-zero -> at least one cpu has it */ 641 #endif 642 643 #if defined(OPTERON_ERRATUM_93) 644 int opteron_erratum_93; /* if non-zero -> at least one cpu has it */ 645 #endif 646 647 #if defined(OPTERON_ERRATUM_95) 648 int opteron_erratum_95; /* if non-zero -> at least one cpu has it */ 649 #endif 650 651 #if defined(OPTERON_ERRATUM_100) 652 int opteron_erratum_100; /* if non-zero -> at least one cpu has it */ 653 #endif 654 655 #if defined(OPTERON_ERRATUM_108) 656 int opteron_erratum_108; /* if non-zero -> at least one cpu has it */ 657 #endif 658 659 #if defined(OPTERON_ERRATUM_109) 660 int opteron_erratum_109; /* if non-zero -> at least one cpu has it */ 661 #endif 662 663 #if defined(OPTERON_ERRATUM_121) 664 int opteron_erratum_121; /* if non-zero -> at least one cpu has it */ 665 #endif 666 667 #if defined(OPTERON_ERRATUM_122) 668 int opteron_erratum_122; /* if non-zero -> at least one cpu has it */ 669 #endif 670 671 #if defined(OPTERON_ERRATUM_123) 672 int opteron_erratum_123; /* if non-zero -> at least one cpu has it */ 673 #endif 674 675 #if defined(OPTERON_ERRATUM_131) 676 int opteron_erratum_131; /* if non-zero -> at least one cpu has it */ 677 #endif 678 679 #if defined(OPTERON_WORKAROUND_6336786) 680 int opteron_workaround_6336786; /* non-zero -> WA relevant and applied */ 681 int opteron_workaround_6336786_UP = 0; /* Not needed for UP */ 682 #endif 683 684 #if defined(OPTERON_WORKAROUND_6323525) 685 int opteron_workaround_6323525; /* if non-zero -> at least one cpu has it */ 686 #endif 687 688 #if defined(OPTERON_ERRATUM_298) 689 int opteron_erratum_298; 690 #endif 691 692 #if defined(OPTERON_ERRATUM_721) 693 int opteron_erratum_721; 694 #endif 695 696 static void 697 workaround_warning(cpu_t *cp, uint_t erratum) 698 { 699 cmn_err(CE_WARN, "cpu%d: no workaround for erratum %u", 700 cp->cpu_id, erratum); 701 } 702 703 static void 704 workaround_applied(uint_t erratum) 705 { 706 if (erratum > 1000000) 707 cmn_err(CE_CONT, "?workaround applied for cpu issue #%d\n", 708 erratum); 709 else 710 cmn_err(CE_CONT, "?workaround applied for cpu erratum #%d\n", 711 erratum); 712 } 713 714 static void 715 msr_warning(cpu_t *cp, const char *rw, uint_t msr, int error) 716 { 717 cmn_err(CE_WARN, "cpu%d: couldn't %smsr 0x%x, error %d", 718 cp->cpu_id, rw, msr, error); 719 } 720 721 /* 722 * Determine the number of nodes in a Hammer / Greyhound / Griffin family 723 * system. 724 */ 725 static uint_t 726 opteron_get_nnodes(void) 727 { 728 static uint_t nnodes = 0; 729 730 if (nnodes == 0) { 731 #ifdef DEBUG 732 uint_t family; 733 734 /* 735 * This routine uses a PCI config space based mechanism 736 * for retrieving the number of nodes in the system. 737 * Device 24, function 0, offset 0x60 as used here is not 738 * AMD processor architectural, and may not work on processor 739 * families other than those listed below. 740 * 741 * Callers of this routine must ensure that we're running on 742 * a processor which supports this mechanism. 743 * The assertion below is meant to catch calls on unsupported 744 * processors. 745 */ 746 family = cpuid_getfamily(CPU); 747 ASSERT(family == 0xf || family == 0x10 || family == 0x11); 748 #endif /* DEBUG */ 749 750 /* 751 * Obtain the number of nodes in the system from 752 * bits [6:4] of the Node ID register on node 0. 753 * 754 * The actual node count is NodeID[6:4] + 1 755 * 756 * The Node ID register is accessed via function 0, 757 * offset 0x60. Node 0 is device 24. 758 */ 759 nnodes = ((pci_getl_func(0, 24, 0, 0x60) & 0x70) >> 4) + 1; 760 } 761 return (nnodes); 762 } 763 764 uint_t 765 do_erratum_298(struct cpu *cpu) 766 { 767 static int osvwrc = -3; 768 extern int osvw_opteron_erratum(cpu_t *, uint_t); 769 770 /* 771 * L2 Eviction May Occur During Processor Operation To Set 772 * Accessed or Dirty Bit. 773 */ 774 if (osvwrc == -3) { 775 osvwrc = osvw_opteron_erratum(cpu, 298); 776 } else { 777 /* osvw return codes should be consistent for all cpus */ 778 ASSERT(osvwrc == osvw_opteron_erratum(cpu, 298)); 779 } 780 781 switch (osvwrc) { 782 case 0: /* erratum is not present: do nothing */ 783 break; 784 case 1: /* erratum is present: BIOS workaround applied */ 785 /* 786 * check if workaround is actually in place and issue warning 787 * if not. 788 */ 789 if (((rdmsr(MSR_AMD_HWCR) & AMD_HWCR_TLBCACHEDIS) == 0) || 790 ((rdmsr(MSR_AMD_BU_CFG) & AMD_BU_CFG_E298) == 0)) { 791 #if defined(OPTERON_ERRATUM_298) 792 opteron_erratum_298++; 793 #else 794 workaround_warning(cpu, 298); 795 return (1); 796 #endif 797 } 798 break; 799 case -1: /* cannot determine via osvw: check cpuid */ 800 if ((cpuid_opteron_erratum(cpu, 298) > 0) && 801 (((rdmsr(MSR_AMD_HWCR) & AMD_HWCR_TLBCACHEDIS) == 0) || 802 ((rdmsr(MSR_AMD_BU_CFG) & AMD_BU_CFG_E298) == 0))) { 803 #if defined(OPTERON_ERRATUM_298) 804 opteron_erratum_298++; 805 #else 806 workaround_warning(cpu, 298); 807 return (1); 808 #endif 809 } 810 break; 811 } 812 return (0); 813 } 814 815 uint_t 816 workaround_errata(struct cpu *cpu) 817 { 818 uint_t missing = 0; 819 820 ASSERT(cpu == CPU); 821 822 /*LINTED*/ 823 if (cpuid_opteron_erratum(cpu, 88) > 0) { 824 /* 825 * SWAPGS May Fail To Read Correct GS Base 826 */ 827 #if defined(OPTERON_ERRATUM_88) 828 /* 829 * The workaround is an mfence in the relevant assembler code 830 */ 831 opteron_erratum_88++; 832 #else 833 workaround_warning(cpu, 88); 834 missing++; 835 #endif 836 } 837 838 if (cpuid_opteron_erratum(cpu, 91) > 0) { 839 /* 840 * Software Prefetches May Report A Page Fault 841 */ 842 #if defined(OPTERON_ERRATUM_91) 843 /* 844 * fix is in trap.c 845 */ 846 opteron_erratum_91++; 847 #else 848 workaround_warning(cpu, 91); 849 missing++; 850 #endif 851 } 852 853 if (cpuid_opteron_erratum(cpu, 93) > 0) { 854 /* 855 * RSM Auto-Halt Restart Returns to Incorrect RIP 856 */ 857 #if defined(OPTERON_ERRATUM_93) 858 /* 859 * fix is in trap.c 860 */ 861 opteron_erratum_93++; 862 #else 863 workaround_warning(cpu, 93); 864 missing++; 865 #endif 866 } 867 868 /*LINTED*/ 869 if (cpuid_opteron_erratum(cpu, 95) > 0) { 870 /* 871 * RET Instruction May Return to Incorrect EIP 872 */ 873 #if defined(OPTERON_ERRATUM_95) 874 #if defined(_LP64) 875 /* 876 * Workaround this by ensuring that 32-bit user code and 877 * 64-bit kernel code never occupy the same address 878 * range mod 4G. 879 */ 880 if (_userlimit32 > 0xc0000000ul) 881 *(uintptr_t *)&_userlimit32 = 0xc0000000ul; 882 883 /*LINTED*/ 884 ASSERT((uint32_t)COREHEAP_BASE == 0xc0000000u); 885 opteron_erratum_95++; 886 #endif /* _LP64 */ 887 #else 888 workaround_warning(cpu, 95); 889 missing++; 890 #endif 891 } 892 893 if (cpuid_opteron_erratum(cpu, 100) > 0) { 894 /* 895 * Compatibility Mode Branches Transfer to Illegal Address 896 */ 897 #if defined(OPTERON_ERRATUM_100) 898 /* 899 * fix is in trap.c 900 */ 901 opteron_erratum_100++; 902 #else 903 workaround_warning(cpu, 100); 904 missing++; 905 #endif 906 } 907 908 /*LINTED*/ 909 if (cpuid_opteron_erratum(cpu, 108) > 0) { 910 /* 911 * CPUID Instruction May Return Incorrect Model Number In 912 * Some Processors 913 */ 914 #if defined(OPTERON_ERRATUM_108) 915 /* 916 * (Our cpuid-handling code corrects the model number on 917 * those processors) 918 */ 919 #else 920 workaround_warning(cpu, 108); 921 missing++; 922 #endif 923 } 924 925 /*LINTED*/ 926 if (cpuid_opteron_erratum(cpu, 109) > 0) do { 927 /* 928 * Certain Reverse REP MOVS May Produce Unpredictable Behavior 929 */ 930 #if defined(OPTERON_ERRATUM_109) 931 /* 932 * The "workaround" is to print a warning to upgrade the BIOS 933 */ 934 uint64_t value; 935 const uint_t msr = MSR_AMD_PATCHLEVEL; 936 int err; 937 938 if ((err = checked_rdmsr(msr, &value)) != 0) { 939 msr_warning(cpu, "rd", msr, err); 940 workaround_warning(cpu, 109); 941 missing++; 942 } 943 if (value == 0) 944 opteron_erratum_109++; 945 #else 946 workaround_warning(cpu, 109); 947 missing++; 948 #endif 949 /*CONSTANTCONDITION*/ 950 } while (0); 951 952 /*LINTED*/ 953 if (cpuid_opteron_erratum(cpu, 121) > 0) { 954 /* 955 * Sequential Execution Across Non_Canonical Boundary Caused 956 * Processor Hang 957 */ 958 #if defined(OPTERON_ERRATUM_121) 959 #if defined(_LP64) 960 /* 961 * Erratum 121 is only present in long (64 bit) mode. 962 * Workaround is to include the page immediately before the 963 * va hole to eliminate the possibility of system hangs due to 964 * sequential execution across the va hole boundary. 965 */ 966 if (opteron_erratum_121) 967 opteron_erratum_121++; 968 else { 969 if (hole_start) { 970 hole_start -= PAGESIZE; 971 } else { 972 /* 973 * hole_start not yet initialized by 974 * mmu_init. Initialize hole_start 975 * with value to be subtracted. 976 */ 977 hole_start = PAGESIZE; 978 } 979 opteron_erratum_121++; 980 } 981 #endif /* _LP64 */ 982 #else 983 workaround_warning(cpu, 121); 984 missing++; 985 #endif 986 } 987 988 /*LINTED*/ 989 if (cpuid_opteron_erratum(cpu, 122) > 0) do { 990 /* 991 * TLB Flush Filter May Cause Coherency Problem in 992 * Multiprocessor Systems 993 */ 994 #if defined(OPTERON_ERRATUM_122) 995 uint64_t value; 996 const uint_t msr = MSR_AMD_HWCR; 997 int error; 998 999 /* 1000 * Erratum 122 is only present in MP configurations (multi-core 1001 * or multi-processor). 1002 */ 1003 #if defined(__xpv) 1004 if (!DOMAIN_IS_INITDOMAIN(xen_info)) 1005 break; 1006 if (!opteron_erratum_122 && xpv_nr_phys_cpus() == 1) 1007 break; 1008 #else 1009 if (!opteron_erratum_122 && opteron_get_nnodes() == 1 && 1010 cpuid_get_ncpu_per_chip(cpu) == 1) 1011 break; 1012 #endif 1013 /* disable TLB Flush Filter */ 1014 1015 if ((error = checked_rdmsr(msr, &value)) != 0) { 1016 msr_warning(cpu, "rd", msr, error); 1017 workaround_warning(cpu, 122); 1018 missing++; 1019 } else { 1020 value |= (uint64_t)AMD_HWCR_FFDIS; 1021 if ((error = checked_wrmsr(msr, value)) != 0) { 1022 msr_warning(cpu, "wr", msr, error); 1023 workaround_warning(cpu, 122); 1024 missing++; 1025 } 1026 } 1027 opteron_erratum_122++; 1028 #else 1029 workaround_warning(cpu, 122); 1030 missing++; 1031 #endif 1032 /*CONSTANTCONDITION*/ 1033 } while (0); 1034 1035 /*LINTED*/ 1036 if (cpuid_opteron_erratum(cpu, 123) > 0) do { 1037 /* 1038 * Bypassed Reads May Cause Data Corruption of System Hang in 1039 * Dual Core Processors 1040 */ 1041 #if defined(OPTERON_ERRATUM_123) 1042 uint64_t value; 1043 const uint_t msr = MSR_AMD_PATCHLEVEL; 1044 int err; 1045 1046 /* 1047 * Erratum 123 applies only to multi-core cpus. 1048 */ 1049 if (cpuid_get_ncpu_per_chip(cpu) < 2) 1050 break; 1051 #if defined(__xpv) 1052 if (!DOMAIN_IS_INITDOMAIN(xen_info)) 1053 break; 1054 #endif 1055 /* 1056 * The "workaround" is to print a warning to upgrade the BIOS 1057 */ 1058 if ((err = checked_rdmsr(msr, &value)) != 0) { 1059 msr_warning(cpu, "rd", msr, err); 1060 workaround_warning(cpu, 123); 1061 missing++; 1062 } 1063 if (value == 0) 1064 opteron_erratum_123++; 1065 #else 1066 workaround_warning(cpu, 123); 1067 missing++; 1068 1069 #endif 1070 /*CONSTANTCONDITION*/ 1071 } while (0); 1072 1073 /*LINTED*/ 1074 if (cpuid_opteron_erratum(cpu, 131) > 0) do { 1075 /* 1076 * Multiprocessor Systems with Four or More Cores May Deadlock 1077 * Waiting for a Probe Response 1078 */ 1079 #if defined(OPTERON_ERRATUM_131) 1080 uint64_t nbcfg; 1081 const uint_t msr = MSR_AMD_NB_CFG; 1082 const uint64_t wabits = 1083 AMD_NB_CFG_SRQ_HEARTBEAT | AMD_NB_CFG_SRQ_SPR; 1084 int error; 1085 1086 /* 1087 * Erratum 131 applies to any system with four or more cores. 1088 */ 1089 if (opteron_erratum_131) 1090 break; 1091 #if defined(__xpv) 1092 if (!DOMAIN_IS_INITDOMAIN(xen_info)) 1093 break; 1094 if (xpv_nr_phys_cpus() < 4) 1095 break; 1096 #else 1097 if (opteron_get_nnodes() * cpuid_get_ncpu_per_chip(cpu) < 4) 1098 break; 1099 #endif 1100 /* 1101 * Print a warning if neither of the workarounds for 1102 * erratum 131 is present. 1103 */ 1104 if ((error = checked_rdmsr(msr, &nbcfg)) != 0) { 1105 msr_warning(cpu, "rd", msr, error); 1106 workaround_warning(cpu, 131); 1107 missing++; 1108 } else if ((nbcfg & wabits) == 0) { 1109 opteron_erratum_131++; 1110 } else { 1111 /* cannot have both workarounds set */ 1112 ASSERT((nbcfg & wabits) != wabits); 1113 } 1114 #else 1115 workaround_warning(cpu, 131); 1116 missing++; 1117 #endif 1118 /*CONSTANTCONDITION*/ 1119 } while (0); 1120 1121 /* 1122 * This isn't really an erratum, but for convenience the 1123 * detection/workaround code lives here and in cpuid_opteron_erratum. 1124 * Note, the technique only is valid on families before 12h and 1125 * certainly doesn't work when we're virtualized. This is checked for in 1126 * the erratum workaround. 1127 */ 1128 if (cpuid_opteron_erratum(cpu, 6336786) > 0) { 1129 #if defined(OPTERON_WORKAROUND_6336786) 1130 /* 1131 * Disable C1-Clock ramping on multi-core/multi-processor 1132 * K8 platforms to guard against TSC drift. 1133 */ 1134 if (opteron_workaround_6336786) { 1135 opteron_workaround_6336786++; 1136 #if defined(__xpv) 1137 } else if ((DOMAIN_IS_INITDOMAIN(xen_info) && 1138 xpv_nr_phys_cpus() > 1) || 1139 opteron_workaround_6336786_UP) { 1140 /* 1141 * XXPV Hmm. We can't walk the Northbridges on 1142 * the hypervisor; so just complain and drive 1143 * on. This probably needs to be fixed in 1144 * the hypervisor itself. 1145 */ 1146 opteron_workaround_6336786++; 1147 workaround_warning(cpu, 6336786); 1148 #else /* __xpv */ 1149 } else if ((opteron_get_nnodes() * 1150 cpuid_get_ncpu_per_chip(cpu) > 1) || 1151 opteron_workaround_6336786_UP) { 1152 1153 uint_t node, nnodes; 1154 uint8_t data; 1155 1156 nnodes = opteron_get_nnodes(); 1157 for (node = 0; node < nnodes; node++) { 1158 /* 1159 * Clear PMM7[1:0] (function 3, offset 0x87) 1160 * Northbridge device is the node id + 24. 1161 */ 1162 data = pci_getb_func(0, node + 24, 3, 0x87); 1163 data &= 0xFC; 1164 pci_putb_func(0, node + 24, 3, 0x87, data); 1165 } 1166 opteron_workaround_6336786++; 1167 #endif /* __xpv */ 1168 } 1169 #else 1170 workaround_warning(cpu, 6336786); 1171 missing++; 1172 #endif 1173 } 1174 1175 /*LINTED*/ 1176 /* 1177 * Mutex primitives don't work as expected. This is erratum #147 from 1178 * 'Revision Guide for AMD Athlon 64 and AMD Opteron Processors' 1179 * document 25759. 1180 */ 1181 if (cpuid_opteron_erratum(cpu, 6323525) > 0) { 1182 #if defined(OPTERON_WORKAROUND_6323525) 1183 /* 1184 * This problem only occurs with 2 or more cores. If bit in 1185 * MSR_AMD_BU_CFG set, then not applicable. The workaround 1186 * is to patch the semaphone routines with the lfence 1187 * instruction to provide necessary load memory barrier with 1188 * possible subsequent read-modify-write ops. 1189 * 1190 * It is too early in boot to call the patch routine so 1191 * set erratum variable to be done in startup_end(). 1192 */ 1193 if (opteron_workaround_6323525) { 1194 opteron_workaround_6323525++; 1195 #if defined(__xpv) 1196 } else if (is_x86_feature(x86_featureset, X86FSET_SSE2)) { 1197 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 1198 /* 1199 * XXPV Use dom0_msr here when extended 1200 * operations are supported? 1201 */ 1202 if (xpv_nr_phys_cpus() > 1) 1203 opteron_workaround_6323525++; 1204 } else { 1205 /* 1206 * We have no way to tell how many physical 1207 * cpus there are, or even if this processor 1208 * has the problem, so enable the workaround 1209 * unconditionally (at some performance cost). 1210 */ 1211 opteron_workaround_6323525++; 1212 } 1213 #else /* __xpv */ 1214 } else if (is_x86_feature(x86_featureset, X86FSET_SSE2) && 1215 ((opteron_get_nnodes() * 1216 cpuid_get_ncpu_per_chip(cpu)) > 1)) { 1217 if ((xrdmsr(MSR_AMD_BU_CFG) & (UINT64_C(1) << 33)) == 0) 1218 opteron_workaround_6323525++; 1219 #endif /* __xpv */ 1220 } 1221 #else 1222 workaround_warning(cpu, 6323525); 1223 missing++; 1224 #endif 1225 } 1226 1227 missing += do_erratum_298(cpu); 1228 1229 if (cpuid_opteron_erratum(cpu, 721) > 0) { 1230 #if defined(OPTERON_ERRATUM_721) 1231 on_trap_data_t otd; 1232 1233 if (!on_trap(&otd, OT_DATA_ACCESS)) 1234 wrmsr(MSR_AMD_DE_CFG, 1235 rdmsr(MSR_AMD_DE_CFG) | AMD_DE_CFG_E721); 1236 no_trap(); 1237 1238 opteron_erratum_721++; 1239 #else 1240 workaround_warning(cpu, 721); 1241 missing++; 1242 #endif 1243 } 1244 1245 #ifdef __xpv 1246 return (0); 1247 #else 1248 return (missing); 1249 #endif 1250 } 1251 1252 void 1253 workaround_errata_end() 1254 { 1255 #if defined(OPTERON_ERRATUM_88) 1256 if (opteron_erratum_88) 1257 workaround_applied(88); 1258 #endif 1259 #if defined(OPTERON_ERRATUM_91) 1260 if (opteron_erratum_91) 1261 workaround_applied(91); 1262 #endif 1263 #if defined(OPTERON_ERRATUM_93) 1264 if (opteron_erratum_93) 1265 workaround_applied(93); 1266 #endif 1267 #if defined(OPTERON_ERRATUM_95) 1268 if (opteron_erratum_95) 1269 workaround_applied(95); 1270 #endif 1271 #if defined(OPTERON_ERRATUM_100) 1272 if (opteron_erratum_100) 1273 workaround_applied(100); 1274 #endif 1275 #if defined(OPTERON_ERRATUM_108) 1276 if (opteron_erratum_108) 1277 workaround_applied(108); 1278 #endif 1279 #if defined(OPTERON_ERRATUM_109) 1280 if (opteron_erratum_109) { 1281 cmn_err(CE_WARN, 1282 "BIOS microcode patch for AMD Athlon(tm) 64/Opteron(tm)" 1283 " processor\nerratum 109 was not detected; updating your" 1284 " system's BIOS to a version\ncontaining this" 1285 " microcode patch is HIGHLY recommended or erroneous" 1286 " system\noperation may occur.\n"); 1287 } 1288 #endif 1289 #if defined(OPTERON_ERRATUM_121) 1290 if (opteron_erratum_121) 1291 workaround_applied(121); 1292 #endif 1293 #if defined(OPTERON_ERRATUM_122) 1294 if (opteron_erratum_122) 1295 workaround_applied(122); 1296 #endif 1297 #if defined(OPTERON_ERRATUM_123) 1298 if (opteron_erratum_123) { 1299 cmn_err(CE_WARN, 1300 "BIOS microcode patch for AMD Athlon(tm) 64/Opteron(tm)" 1301 " processor\nerratum 123 was not detected; updating your" 1302 " system's BIOS to a version\ncontaining this" 1303 " microcode patch is HIGHLY recommended or erroneous" 1304 " system\noperation may occur.\n"); 1305 } 1306 #endif 1307 #if defined(OPTERON_ERRATUM_131) 1308 if (opteron_erratum_131) { 1309 cmn_err(CE_WARN, 1310 "BIOS microcode patch for AMD Athlon(tm) 64/Opteron(tm)" 1311 " processor\nerratum 131 was not detected; updating your" 1312 " system's BIOS to a version\ncontaining this" 1313 " microcode patch is HIGHLY recommended or erroneous" 1314 " system\noperation may occur.\n"); 1315 } 1316 #endif 1317 #if defined(OPTERON_WORKAROUND_6336786) 1318 if (opteron_workaround_6336786) 1319 workaround_applied(6336786); 1320 #endif 1321 #if defined(OPTERON_WORKAROUND_6323525) 1322 if (opteron_workaround_6323525) 1323 workaround_applied(6323525); 1324 #endif 1325 #if defined(OPTERON_ERRATUM_298) 1326 if (opteron_erratum_298) { 1327 cmn_err(CE_WARN, 1328 "BIOS microcode patch for AMD 64/Opteron(tm)" 1329 " processor\nerratum 298 was not detected; updating your" 1330 " system's BIOS to a version\ncontaining this" 1331 " microcode patch is HIGHLY recommended or erroneous" 1332 " system\noperation may occur.\n"); 1333 } 1334 #endif 1335 #if defined(OPTERON_ERRATUM_721) 1336 if (opteron_erratum_721) 1337 workaround_applied(721); 1338 #endif 1339 } 1340 1341 /* 1342 * The procset_slave and procset_master are used to synchronize 1343 * between the control CPU and the target CPU when starting CPUs. 1344 */ 1345 static cpuset_t procset_slave, procset_master; 1346 1347 static void 1348 mp_startup_wait(cpuset_t *sp, processorid_t cpuid) 1349 { 1350 cpuset_t tempset; 1351 1352 for (tempset = *sp; !CPU_IN_SET(tempset, cpuid); 1353 tempset = *(volatile cpuset_t *)sp) { 1354 SMT_PAUSE(); 1355 } 1356 CPUSET_ATOMIC_DEL(*(cpuset_t *)sp, cpuid); 1357 } 1358 1359 static void 1360 mp_startup_signal(cpuset_t *sp, processorid_t cpuid) 1361 { 1362 cpuset_t tempset; 1363 1364 CPUSET_ATOMIC_ADD(*(cpuset_t *)sp, cpuid); 1365 for (tempset = *sp; CPU_IN_SET(tempset, cpuid); 1366 tempset = *(volatile cpuset_t *)sp) { 1367 SMT_PAUSE(); 1368 } 1369 } 1370 1371 int 1372 mp_start_cpu_common(cpu_t *cp, boolean_t boot) 1373 { 1374 _NOTE(ARGUNUSED(boot)); 1375 1376 void *ctx; 1377 int delays; 1378 int error = 0; 1379 cpuset_t tempset; 1380 processorid_t cpuid; 1381 #ifndef __xpv 1382 extern void cpupm_init(cpu_t *); 1383 #endif 1384 1385 ASSERT(cp != NULL); 1386 cpuid = cp->cpu_id; 1387 ctx = mach_cpucontext_alloc(cp); 1388 if (ctx == NULL) { 1389 cmn_err(CE_WARN, 1390 "cpu%d: failed to allocate context", cp->cpu_id); 1391 return (EAGAIN); 1392 } 1393 error = mach_cpu_start(cp, ctx); 1394 if (error != 0) { 1395 cmn_err(CE_WARN, 1396 "cpu%d: failed to start, error %d", cp->cpu_id, error); 1397 mach_cpucontext_free(cp, ctx, error); 1398 return (error); 1399 } 1400 1401 for (delays = 0, tempset = procset_slave; !CPU_IN_SET(tempset, cpuid); 1402 delays++) { 1403 if (delays == 500) { 1404 /* 1405 * After five seconds, things are probably looking 1406 * a bit bleak - explain the hang. 1407 */ 1408 cmn_err(CE_NOTE, "cpu%d: started, " 1409 "but not running in the kernel yet", cpuid); 1410 } else if (delays > 2000) { 1411 /* 1412 * We waited at least 20 seconds, bail .. 1413 */ 1414 error = ETIMEDOUT; 1415 cmn_err(CE_WARN, "cpu%d: timed out", cpuid); 1416 mach_cpucontext_free(cp, ctx, error); 1417 return (error); 1418 } 1419 1420 /* 1421 * wait at least 10ms, then check again.. 1422 */ 1423 delay(USEC_TO_TICK_ROUNDUP(10000)); 1424 tempset = *((volatile cpuset_t *)&procset_slave); 1425 } 1426 CPUSET_ATOMIC_DEL(procset_slave, cpuid); 1427 1428 mach_cpucontext_free(cp, ctx, 0); 1429 1430 #ifndef __xpv 1431 if (tsc_gethrtime_enable) 1432 tsc_sync_master(cpuid); 1433 #endif 1434 1435 if (dtrace_cpu_init != NULL) { 1436 (*dtrace_cpu_init)(cpuid); 1437 } 1438 1439 /* 1440 * During CPU DR operations, the cpu_lock is held by current 1441 * (the control) thread. We can't release the cpu_lock here 1442 * because that will break the CPU DR logic. 1443 * On the other hand, CPUPM and processor group initialization 1444 * routines need to access the cpu_lock. So we invoke those 1445 * routines here on behalf of mp_startup_common(). 1446 * 1447 * CPUPM and processor group initialization routines depend 1448 * on the cpuid probing results. Wait for mp_startup_common() 1449 * to signal that cpuid probing is done. 1450 */ 1451 mp_startup_wait(&procset_slave, cpuid); 1452 #ifndef __xpv 1453 cpupm_init(cp); 1454 #endif 1455 (void) pg_cpu_init(cp, B_FALSE); 1456 cpu_set_state(cp); 1457 mp_startup_signal(&procset_master, cpuid); 1458 1459 return (0); 1460 } 1461 1462 /* 1463 * Start a single cpu, assuming that the kernel context is available 1464 * to successfully start another cpu. 1465 * 1466 * (For example, real mode code is mapped into the right place 1467 * in memory and is ready to be run.) 1468 */ 1469 int 1470 start_cpu(processorid_t who) 1471 { 1472 cpu_t *cp; 1473 int error = 0; 1474 cpuset_t tempset; 1475 1476 ASSERT(who != 0); 1477 1478 /* 1479 * Check if there's at least a Mbyte of kmem available 1480 * before attempting to start the cpu. 1481 */ 1482 if (kmem_avail() < 1024 * 1024) { 1483 /* 1484 * Kick off a reap in case that helps us with 1485 * later attempts .. 1486 */ 1487 kmem_reap(); 1488 return (ENOMEM); 1489 } 1490 1491 /* 1492 * First configure cpu. 1493 */ 1494 cp = mp_cpu_configure_common(who, B_TRUE); 1495 ASSERT(cp != NULL); 1496 1497 /* 1498 * Then start cpu. 1499 */ 1500 error = mp_start_cpu_common(cp, B_TRUE); 1501 if (error != 0) { 1502 mp_cpu_unconfigure_common(cp, error); 1503 return (error); 1504 } 1505 1506 mutex_exit(&cpu_lock); 1507 tempset = cpu_ready_set; 1508 while (!CPU_IN_SET(tempset, who)) { 1509 drv_usecwait(1); 1510 tempset = *((volatile cpuset_t *)&cpu_ready_set); 1511 } 1512 mutex_enter(&cpu_lock); 1513 1514 return (0); 1515 } 1516 1517 void 1518 start_other_cpus(int cprboot) 1519 { 1520 _NOTE(ARGUNUSED(cprboot)); 1521 1522 uint_t who; 1523 uint_t bootcpuid = 0; 1524 1525 /* 1526 * Initialize our own cpu_info. 1527 */ 1528 init_cpu_info(CPU); 1529 1530 #if !defined(__xpv) 1531 init_cpu_id_gdt(CPU); 1532 #endif 1533 1534 cmn_err(CE_CONT, "?cpu%d: %s\n", CPU->cpu_id, CPU->cpu_idstr); 1535 cmn_err(CE_CONT, "?cpu%d: %s\n", CPU->cpu_id, CPU->cpu_brandstr); 1536 1537 /* 1538 * KPTI initialisation happens very early in boot, before logging is 1539 * set up. Output a status message now as the boot CPU comes online. 1540 */ 1541 cmn_err(CE_CONT, "?KPTI %s (PCID %s, INVPCID %s)\n", 1542 kpti_enable ? "enabled" : "disabled", 1543 x86_use_pcid == 1 ? "in use" : 1544 (is_x86_feature(x86_featureset, X86FSET_PCID) ? "disabled" : 1545 "not supported"), 1546 x86_use_pcid == 1 && x86_use_invpcid == 1 ? "in use" : 1547 (is_x86_feature(x86_featureset, X86FSET_INVPCID) ? "disabled" : 1548 "not supported")); 1549 1550 /* 1551 * Initialize our syscall handlers 1552 */ 1553 init_cpu_syscall(CPU); 1554 1555 /* 1556 * Take the boot cpu out of the mp_cpus set because we know 1557 * it's already running. Add it to the cpu_ready_set for 1558 * precisely the same reason. 1559 */ 1560 CPUSET_DEL(mp_cpus, bootcpuid); 1561 CPUSET_ADD(cpu_ready_set, bootcpuid); 1562 1563 /* 1564 * skip the rest of this if 1565 * . only 1 cpu dectected and system isn't hotplug-capable 1566 * . not using MP 1567 */ 1568 if ((CPUSET_ISNULL(mp_cpus) && plat_dr_support_cpu() == 0) || 1569 use_mp == 0) { 1570 if (use_mp == 0) 1571 cmn_err(CE_CONT, "?***** Not in MP mode\n"); 1572 goto done; 1573 } 1574 1575 /* 1576 * perform such initialization as is needed 1577 * to be able to take CPUs on- and off-line. 1578 */ 1579 cpu_pause_init(); 1580 1581 xc_init_cpu(CPU); /* initialize processor crosscalls */ 1582 1583 if (mach_cpucontext_init() != 0) 1584 goto done; 1585 1586 flushes_require_xcalls = 1; 1587 1588 /* 1589 * We lock our affinity to the master CPU to ensure that all slave CPUs 1590 * do their TSC syncs with the same CPU. 1591 */ 1592 affinity_set(CPU_CURRENT); 1593 1594 for (who = 0; who < NCPU; who++) { 1595 if (!CPU_IN_SET(mp_cpus, who)) 1596 continue; 1597 ASSERT(who != bootcpuid); 1598 1599 mutex_enter(&cpu_lock); 1600 if (start_cpu(who) != 0) 1601 CPUSET_DEL(mp_cpus, who); 1602 cpu_state_change_notify(who, CPU_SETUP); 1603 mutex_exit(&cpu_lock); 1604 } 1605 1606 /* Free the space allocated to hold the microcode file */ 1607 ucode_cleanup(); 1608 1609 affinity_clear(); 1610 1611 mach_cpucontext_fini(); 1612 1613 done: 1614 if (get_hwenv() == HW_NATIVE) 1615 workaround_errata_end(); 1616 cmi_post_mpstartup(); 1617 1618 if (use_mp && ncpus != boot_max_ncpus) { 1619 cmn_err(CE_NOTE, 1620 "System detected %d cpus, but " 1621 "only %d cpu(s) were enabled during boot.", 1622 boot_max_ncpus, ncpus); 1623 cmn_err(CE_NOTE, 1624 "Use \"boot-ncpus\" parameter to enable more CPU(s). " 1625 "See eeprom(1M)."); 1626 } 1627 } 1628 1629 int 1630 mp_cpu_configure(int cpuid) 1631 { 1632 cpu_t *cp; 1633 1634 if (use_mp == 0 || plat_dr_support_cpu() == 0) { 1635 return (ENOTSUP); 1636 } 1637 1638 cp = cpu_get(cpuid); 1639 if (cp != NULL) { 1640 return (EALREADY); 1641 } 1642 1643 /* 1644 * Check if there's at least a Mbyte of kmem available 1645 * before attempting to start the cpu. 1646 */ 1647 if (kmem_avail() < 1024 * 1024) { 1648 /* 1649 * Kick off a reap in case that helps us with 1650 * later attempts .. 1651 */ 1652 kmem_reap(); 1653 return (ENOMEM); 1654 } 1655 1656 cp = mp_cpu_configure_common(cpuid, B_FALSE); 1657 ASSERT(cp != NULL && cpu_get(cpuid) == cp); 1658 1659 return (cp != NULL ? 0 : EAGAIN); 1660 } 1661 1662 int 1663 mp_cpu_unconfigure(int cpuid) 1664 { 1665 cpu_t *cp; 1666 1667 if (use_mp == 0 || plat_dr_support_cpu() == 0) { 1668 return (ENOTSUP); 1669 } else if (cpuid < 0 || cpuid >= max_ncpus) { 1670 return (EINVAL); 1671 } 1672 1673 cp = cpu_get(cpuid); 1674 if (cp == NULL) { 1675 return (ENODEV); 1676 } 1677 mp_cpu_unconfigure_common(cp, 0); 1678 1679 return (0); 1680 } 1681 1682 /* 1683 * Startup function for 'other' CPUs (besides boot cpu). 1684 * Called from real_mode_start. 1685 * 1686 * WARNING: until CPU_READY is set, mp_startup_common and routines called by 1687 * mp_startup_common should not call routines (e.g. kmem_free) that could call 1688 * hat_unload which requires CPU_READY to be set. 1689 */ 1690 static void 1691 mp_startup_common(boolean_t boot) 1692 { 1693 cpu_t *cp = CPU; 1694 uchar_t new_x86_featureset[BT_SIZEOFMAP(NUM_X86_FEATURES)]; 1695 extern void cpu_event_init_cpu(cpu_t *); 1696 1697 /* 1698 * We need to get TSC on this proc synced (i.e., any delta 1699 * from cpu0 accounted for) as soon as we can, because many 1700 * many things use gethrtime/pc_gethrestime, including 1701 * interrupts, cmn_err, etc. Before we can do that, we want to 1702 * clear TSC if we're on a buggy Sandy/Ivy Bridge CPU, so do that 1703 * right away. 1704 */ 1705 bzero(new_x86_featureset, BT_SIZEOFMAP(NUM_X86_FEATURES)); 1706 cpuid_pass1(cp, new_x86_featureset); 1707 1708 if (boot && get_hwenv() == HW_NATIVE && 1709 cpuid_getvendor(CPU) == X86_VENDOR_Intel && 1710 cpuid_getfamily(CPU) == 6 && 1711 (cpuid_getmodel(CPU) == 0x2d || cpuid_getmodel(CPU) == 0x3e) && 1712 is_x86_feature(new_x86_featureset, X86FSET_TSC)) { 1713 (void) wrmsr(REG_TSC, 0UL); 1714 } 1715 1716 /* Let the control CPU continue into tsc_sync_master() */ 1717 mp_startup_signal(&procset_slave, cp->cpu_id); 1718 1719 #ifndef __xpv 1720 if (tsc_gethrtime_enable) 1721 tsc_sync_slave(); 1722 #endif 1723 1724 /* 1725 * Once this was done from assembly, but it's safer here; if 1726 * it blocks, we need to be able to swtch() to and from, and 1727 * since we get here by calling t_pc, we need to do that call 1728 * before swtch() overwrites it. 1729 */ 1730 (void) (*ap_mlsetup)(); 1731 1732 #ifndef __xpv 1733 /* 1734 * Program this cpu's PAT 1735 */ 1736 pat_sync(); 1737 #endif 1738 1739 /* 1740 * Set up TSC_AUX to contain the cpuid for this processor 1741 * for the rdtscp instruction. 1742 */ 1743 if (is_x86_feature(x86_featureset, X86FSET_TSCP)) 1744 (void) wrmsr(MSR_AMD_TSCAUX, cp->cpu_id); 1745 1746 /* 1747 * Initialize this CPU's syscall handlers 1748 */ 1749 init_cpu_syscall(cp); 1750 1751 /* 1752 * Enable interrupts with spl set to LOCK_LEVEL. LOCK_LEVEL is the 1753 * highest level at which a routine is permitted to block on 1754 * an adaptive mutex (allows for cpu poke interrupt in case 1755 * the cpu is blocked on a mutex and halts). Setting LOCK_LEVEL blocks 1756 * device interrupts that may end up in the hat layer issuing cross 1757 * calls before CPU_READY is set. 1758 */ 1759 splx(ipltospl(LOCK_LEVEL)); 1760 sti(); 1761 1762 /* 1763 * There exists a small subset of systems which expose differing 1764 * MWAIT/MONITOR support between CPUs. If MWAIT support is absent from 1765 * the boot CPU, but is found on a later CPU, the system continues to 1766 * operate as if no MWAIT support is available. 1767 * 1768 * The reverse case, where MWAIT is available on the boot CPU but not 1769 * on a subsequently initialized CPU, is not presently allowed and will 1770 * result in a panic. 1771 */ 1772 if (is_x86_feature(x86_featureset, X86FSET_MWAIT) != 1773 is_x86_feature(new_x86_featureset, X86FSET_MWAIT)) { 1774 if (!is_x86_feature(x86_featureset, X86FSET_MWAIT)) { 1775 remove_x86_feature(new_x86_featureset, X86FSET_MWAIT); 1776 } else { 1777 panic("unsupported mixed cpu mwait support detected"); 1778 } 1779 } 1780 1781 /* 1782 * We could be more sophisticated here, and just mark the CPU 1783 * as "faulted" but at this point we'll opt for the easier 1784 * answer of dying horribly. Provided the boot cpu is ok, 1785 * the system can be recovered by booting with use_mp set to zero. 1786 */ 1787 if (workaround_errata(cp) != 0) 1788 panic("critical workaround(s) missing for cpu%d", cp->cpu_id); 1789 1790 /* 1791 * We can touch cpu_flags here without acquiring the cpu_lock here 1792 * because the cpu_lock is held by the control CPU which is running 1793 * mp_start_cpu_common(). 1794 * Need to clear CPU_QUIESCED flag before calling any function which 1795 * may cause thread context switching, such as kmem_alloc() etc. 1796 * The idle thread checks for CPU_QUIESCED flag and loops for ever if 1797 * it's set. So the startup thread may have no chance to switch back 1798 * again if it's switched away with CPU_QUIESCED set. 1799 */ 1800 cp->cpu_flags &= ~(CPU_POWEROFF | CPU_QUIESCED); 1801 1802 enable_pcid(); 1803 1804 /* 1805 * Setup this processor for XSAVE. 1806 */ 1807 if (fp_save_mech == FP_XSAVE) { 1808 xsave_setup_msr(cp); 1809 } 1810 1811 cpuid_pass2(cp); 1812 cpuid_pass3(cp); 1813 cpuid_pass4(cp, NULL); 1814 1815 /* 1816 * Correct cpu_idstr and cpu_brandstr on target CPU after 1817 * cpuid_pass1() is done. 1818 */ 1819 (void) cpuid_getidstr(cp, cp->cpu_idstr, CPU_IDSTRLEN); 1820 (void) cpuid_getbrandstr(cp, cp->cpu_brandstr, CPU_IDSTRLEN); 1821 1822 cp->cpu_flags |= CPU_RUNNING | CPU_READY | CPU_EXISTS; 1823 1824 post_startup_cpu_fixups(); 1825 1826 cpu_event_init_cpu(cp); 1827 1828 /* 1829 * Enable preemption here so that contention for any locks acquired 1830 * later in mp_startup_common may be preempted if the thread owning 1831 * those locks is continuously executing on other CPUs (for example, 1832 * this CPU must be preemptible to allow other CPUs to pause it during 1833 * their startup phases). It's safe to enable preemption here because 1834 * the CPU state is pretty-much fully constructed. 1835 */ 1836 curthread->t_preempt = 0; 1837 1838 /* The base spl should still be at LOCK LEVEL here */ 1839 ASSERT(cp->cpu_base_spl == ipltospl(LOCK_LEVEL)); 1840 set_base_spl(); /* Restore the spl to its proper value */ 1841 1842 pghw_physid_create(cp); 1843 /* 1844 * Delegate initialization tasks, which need to access the cpu_lock, 1845 * to mp_start_cpu_common() because we can't acquire the cpu_lock here 1846 * during CPU DR operations. 1847 */ 1848 mp_startup_signal(&procset_slave, cp->cpu_id); 1849 mp_startup_wait(&procset_master, cp->cpu_id); 1850 pg_cmt_cpu_startup(cp); 1851 1852 if (boot) { 1853 mutex_enter(&cpu_lock); 1854 cp->cpu_flags &= ~CPU_OFFLINE; 1855 cpu_enable_intr(cp); 1856 cpu_add_active(cp); 1857 mutex_exit(&cpu_lock); 1858 } 1859 1860 /* Enable interrupts */ 1861 (void) spl0(); 1862 1863 /* 1864 * Fill out cpu_ucode_info. Update microcode if necessary. 1865 */ 1866 ucode_check(cp); 1867 cpuid_pass_ucode(cp, new_x86_featureset); 1868 1869 /* 1870 * Do a sanity check to make sure this new CPU is a sane thing 1871 * to add to the collection of processors running this system. 1872 * 1873 * XXX Clearly this needs to get more sophisticated, if x86 1874 * systems start to get built out of heterogenous CPUs; as is 1875 * likely to happen once the number of processors in a configuration 1876 * gets large enough. 1877 */ 1878 if (compare_x86_featureset(x86_featureset, new_x86_featureset) == 1879 B_FALSE) { 1880 cmn_err(CE_CONT, "cpu%d: featureset\n", cp->cpu_id); 1881 print_x86_featureset(new_x86_featureset); 1882 cmn_err(CE_WARN, "cpu%d feature mismatch", cp->cpu_id); 1883 } 1884 1885 #ifndef __xpv 1886 { 1887 /* 1888 * Set up the CPU module for this CPU. This can't be done 1889 * before this CPU is made CPU_READY, because we may (in 1890 * heterogeneous systems) need to go load another CPU module. 1891 * The act of attempting to load a module may trigger a 1892 * cross-call, which will ASSERT unless this cpu is CPU_READY. 1893 */ 1894 cmi_hdl_t hdl; 1895 1896 if ((hdl = cmi_init(CMI_HDL_NATIVE, cmi_ntv_hwchipid(CPU), 1897 cmi_ntv_hwcoreid(CPU), cmi_ntv_hwstrandid(CPU))) != NULL) { 1898 if (is_x86_feature(x86_featureset, X86FSET_MCA)) 1899 cmi_mca_init(hdl); 1900 cp->cpu_m.mcpu_cmi_hdl = hdl; 1901 } 1902 } 1903 #endif /* __xpv */ 1904 1905 if (boothowto & RB_DEBUG) 1906 kdi_cpu_init(); 1907 1908 (void) mach_cpu_create_device_node(cp, NULL); 1909 1910 /* 1911 * Setting the bit in cpu_ready_set must be the last operation in 1912 * processor initialization; the boot CPU will continue to boot once 1913 * it sees this bit set for all active CPUs. 1914 */ 1915 CPUSET_ATOMIC_ADD(cpu_ready_set, cp->cpu_id); 1916 1917 cmn_err(CE_CONT, "?cpu%d: %s\n", cp->cpu_id, cp->cpu_idstr); 1918 cmn_err(CE_CONT, "?cpu%d: %s\n", cp->cpu_id, cp->cpu_brandstr); 1919 cmn_err(CE_CONT, "?cpu%d initialization complete - online\n", 1920 cp->cpu_id); 1921 1922 /* 1923 * Now we are done with the startup thread, so free it up. 1924 */ 1925 thread_exit(); 1926 panic("mp_startup: cannot return"); 1927 /*NOTREACHED*/ 1928 } 1929 1930 /* 1931 * Startup function for 'other' CPUs at boot time (besides boot cpu). 1932 */ 1933 static void 1934 mp_startup_boot(void) 1935 { 1936 mp_startup_common(B_TRUE); 1937 } 1938 1939 /* 1940 * Startup function for hotplug CPUs at runtime. 1941 */ 1942 void 1943 mp_startup_hotplug(void) 1944 { 1945 mp_startup_common(B_FALSE); 1946 } 1947 1948 /* 1949 * Start CPU on user request. 1950 */ 1951 /* ARGSUSED */ 1952 int 1953 mp_cpu_start(struct cpu *cp) 1954 { 1955 ASSERT(MUTEX_HELD(&cpu_lock)); 1956 return (0); 1957 } 1958 1959 /* 1960 * Stop CPU on user request. 1961 */ 1962 int 1963 mp_cpu_stop(struct cpu *cp) 1964 { 1965 extern int cbe_psm_timer_mode; 1966 ASSERT(MUTEX_HELD(&cpu_lock)); 1967 1968 #ifdef __xpv 1969 /* 1970 * We can't offline vcpu0. 1971 */ 1972 if (cp->cpu_id == 0) 1973 return (EBUSY); 1974 #endif 1975 1976 /* 1977 * If TIMER_PERIODIC mode is used, CPU0 is the one running it; 1978 * can't stop it. (This is true only for machines with no TSC.) 1979 */ 1980 1981 if ((cbe_psm_timer_mode == TIMER_PERIODIC) && (cp->cpu_id == 0)) 1982 return (EBUSY); 1983 1984 return (0); 1985 } 1986 1987 /* 1988 * Take the specified CPU out of participation in interrupts. 1989 * 1990 * Usually, we hold cpu_lock. But we cannot assert as such due to the 1991 * exception - i_cpr_save_context() - where we have mutual exclusion via a 1992 * separate mechanism. 1993 */ 1994 int 1995 cpu_disable_intr(struct cpu *cp) 1996 { 1997 if (psm_disable_intr(cp->cpu_id) != DDI_SUCCESS) 1998 return (EBUSY); 1999 2000 cp->cpu_flags &= ~CPU_ENABLE; 2001 ncpus_intr_enabled--; 2002 return (0); 2003 } 2004 2005 /* 2006 * Allow the specified CPU to participate in interrupts. 2007 */ 2008 void 2009 cpu_enable_intr(struct cpu *cp) 2010 { 2011 ASSERT(MUTEX_HELD(&cpu_lock)); 2012 cp->cpu_flags |= CPU_ENABLE; 2013 ncpus_intr_enabled++; 2014 psm_enable_intr(cp->cpu_id); 2015 } 2016 2017 void 2018 mp_cpu_faulted_enter(struct cpu *cp) 2019 { 2020 #ifdef __xpv 2021 _NOTE(ARGUNUSED(cp)); 2022 #else 2023 cmi_hdl_t hdl = cp->cpu_m.mcpu_cmi_hdl; 2024 2025 if (hdl != NULL) { 2026 cmi_hdl_hold(hdl); 2027 } else { 2028 hdl = cmi_hdl_lookup(CMI_HDL_NATIVE, cmi_ntv_hwchipid(cp), 2029 cmi_ntv_hwcoreid(cp), cmi_ntv_hwstrandid(cp)); 2030 } 2031 if (hdl != NULL) { 2032 cmi_faulted_enter(hdl); 2033 cmi_hdl_rele(hdl); 2034 } 2035 #endif 2036 } 2037 2038 void 2039 mp_cpu_faulted_exit(struct cpu *cp) 2040 { 2041 #ifdef __xpv 2042 _NOTE(ARGUNUSED(cp)); 2043 #else 2044 cmi_hdl_t hdl = cp->cpu_m.mcpu_cmi_hdl; 2045 2046 if (hdl != NULL) { 2047 cmi_hdl_hold(hdl); 2048 } else { 2049 hdl = cmi_hdl_lookup(CMI_HDL_NATIVE, cmi_ntv_hwchipid(cp), 2050 cmi_ntv_hwcoreid(cp), cmi_ntv_hwstrandid(cp)); 2051 } 2052 if (hdl != NULL) { 2053 cmi_faulted_exit(hdl); 2054 cmi_hdl_rele(hdl); 2055 } 2056 #endif 2057 } 2058 2059 /* 2060 * The following two routines are used as context operators on threads belonging 2061 * to processes with a private LDT (see sysi86). Due to the rarity of such 2062 * processes, these routines are currently written for best code readability and 2063 * organization rather than speed. We could avoid checking x86_featureset at 2064 * every context switch by installing different context ops, depending on 2065 * x86_featureset, at LDT creation time -- one for each combination of fast 2066 * syscall features. 2067 */ 2068 2069 void 2070 cpu_fast_syscall_disable(void) 2071 { 2072 if (is_x86_feature(x86_featureset, X86FSET_MSR) && 2073 is_x86_feature(x86_featureset, X86FSET_SEP)) 2074 cpu_sep_disable(); 2075 if (is_x86_feature(x86_featureset, X86FSET_MSR) && 2076 is_x86_feature(x86_featureset, X86FSET_ASYSC)) 2077 cpu_asysc_disable(); 2078 } 2079 2080 void 2081 cpu_fast_syscall_enable(void) 2082 { 2083 if (is_x86_feature(x86_featureset, X86FSET_MSR) && 2084 is_x86_feature(x86_featureset, X86FSET_SEP)) 2085 cpu_sep_enable(); 2086 if (is_x86_feature(x86_featureset, X86FSET_MSR) && 2087 is_x86_feature(x86_featureset, X86FSET_ASYSC)) 2088 cpu_asysc_enable(); 2089 } 2090 2091 static void 2092 cpu_sep_enable(void) 2093 { 2094 ASSERT(is_x86_feature(x86_featureset, X86FSET_SEP)); 2095 ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL); 2096 2097 wrmsr(MSR_INTC_SEP_CS, (uint64_t)(uintptr_t)KCS_SEL); 2098 } 2099 2100 static void 2101 cpu_sep_disable(void) 2102 { 2103 ASSERT(is_x86_feature(x86_featureset, X86FSET_SEP)); 2104 ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL); 2105 2106 /* 2107 * Setting the SYSENTER_CS_MSR register to 0 causes software executing 2108 * the sysenter or sysexit instruction to trigger a #gp fault. 2109 */ 2110 wrmsr(MSR_INTC_SEP_CS, 0); 2111 } 2112 2113 static void 2114 cpu_asysc_enable(void) 2115 { 2116 ASSERT(is_x86_feature(x86_featureset, X86FSET_ASYSC)); 2117 ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL); 2118 2119 wrmsr(MSR_AMD_EFER, rdmsr(MSR_AMD_EFER) | 2120 (uint64_t)(uintptr_t)AMD_EFER_SCE); 2121 } 2122 2123 static void 2124 cpu_asysc_disable(void) 2125 { 2126 ASSERT(is_x86_feature(x86_featureset, X86FSET_ASYSC)); 2127 ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL); 2128 2129 /* 2130 * Turn off the SCE (syscall enable) bit in the EFER register. Software 2131 * executing syscall or sysret with this bit off will incur a #ud trap. 2132 */ 2133 wrmsr(MSR_AMD_EFER, rdmsr(MSR_AMD_EFER) & 2134 ~((uint64_t)(uintptr_t)AMD_EFER_SCE)); 2135 } 2136