1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/types.h> 29 #include <sys/thread.h> 30 #include <sys/cpuvar.h> 31 #include <sys/t_lock.h> 32 #include <sys/param.h> 33 #include <sys/proc.h> 34 #include <sys/disp.h> 35 #include <sys/mmu.h> 36 #include <sys/class.h> 37 #include <sys/cmn_err.h> 38 #include <sys/debug.h> 39 #include <sys/asm_linkage.h> 40 #include <sys/x_call.h> 41 #include <sys/systm.h> 42 #include <sys/var.h> 43 #include <sys/vtrace.h> 44 #include <vm/hat.h> 45 #include <sys/mmu.h> 46 #include <vm/as.h> 47 #include <vm/seg_kmem.h> 48 #include <sys/segments.h> 49 #include <sys/kmem.h> 50 #include <sys/stack.h> 51 #include <sys/smp_impldefs.h> 52 #include <sys/x86_archext.h> 53 #include <sys/machsystm.h> 54 #include <sys/traptrace.h> 55 #include <sys/clock.h> 56 #include <sys/cpc_impl.h> 57 #include <sys/pg.h> 58 #include <sys/cmt.h> 59 #include <sys/dtrace.h> 60 #include <sys/archsystm.h> 61 #include <sys/fp.h> 62 #include <sys/reboot.h> 63 #include <sys/kdi.h> 64 #include <vm/hat_i86.h> 65 #include <sys/memnode.h> 66 #include <sys/pci_cfgspace.h> 67 #include <sys/cpu_module.h> 68 69 struct cpu cpus[1]; /* CPU data */ 70 struct cpu *cpu[NCPU] = {&cpus[0]}; /* pointers to all CPUs */ 71 cpu_core_t cpu_core[NCPU]; /* cpu_core structures */ 72 73 /* 74 * Useful for disabling MP bring-up for an MP capable kernel 75 * (a kernel that was built with MP defined) 76 */ 77 int use_mp = 1; 78 79 /* 80 * To be set by a PSM to indicate what CPUs are available on the system. 81 */ 82 cpuset_t mp_cpus = 1; 83 84 /* 85 * This variable is used by the hat layer to decide whether or not 86 * critical sections are needed to prevent race conditions. For sun4m, 87 * this variable is set once enough MP initialization has been done in 88 * order to allow cross calls. 89 */ 90 int flushes_require_xcalls = 0; 91 cpuset_t cpu_ready_set = 1; 92 93 extern void real_mode_start(void); 94 extern void real_mode_end(void); 95 static void mp_startup(void); 96 97 static void cpu_sep_enable(void); 98 static void cpu_sep_disable(void); 99 static void cpu_asysc_enable(void); 100 static void cpu_asysc_disable(void); 101 102 extern int tsc_gethrtime_enable; 103 104 /* 105 * Init CPU info - get CPU type info for processor_info system call. 106 */ 107 void 108 init_cpu_info(struct cpu *cp) 109 { 110 processor_info_t *pi = &cp->cpu_type_info; 111 char buf[CPU_IDSTRLEN]; 112 113 /* 114 * Get clock-frequency property for the CPU. 115 */ 116 pi->pi_clock = cpu_freq; 117 118 (void) strcpy(pi->pi_processor_type, "i386"); 119 if (fpu_exists) 120 (void) strcpy(pi->pi_fputypes, "i387 compatible"); 121 122 (void) cpuid_getidstr(cp, buf, sizeof (buf)); 123 124 cp->cpu_idstr = kmem_alloc(strlen(buf) + 1, KM_SLEEP); 125 (void) strcpy(cp->cpu_idstr, buf); 126 127 cmn_err(CE_CONT, "?cpu%d: %s\n", cp->cpu_id, cp->cpu_idstr); 128 129 (void) cpuid_getbrandstr(cp, buf, sizeof (buf)); 130 cp->cpu_brandstr = kmem_alloc(strlen(buf) + 1, KM_SLEEP); 131 (void) strcpy(cp->cpu_brandstr, buf); 132 133 cmn_err(CE_CONT, "?cpu%d: %s\n", cp->cpu_id, cp->cpu_brandstr); 134 } 135 136 /* 137 * Configure syscall support on this CPU. 138 */ 139 /*ARGSUSED*/ 140 static void 141 init_cpu_syscall(struct cpu *cp) 142 { 143 kpreempt_disable(); 144 145 #if defined(__amd64) 146 if (x86_feature & X86_ASYSC) { 147 148 #if !defined(__lint) 149 /* 150 * The syscall instruction imposes a certain ordering on 151 * segment selectors, so we double-check that ordering 152 * here. 153 */ 154 ASSERT(KDS_SEL == KCS_SEL + 8); 155 ASSERT(UDS_SEL == U32CS_SEL + 8); 156 ASSERT(UCS_SEL == U32CS_SEL + 16); 157 #endif 158 /* 159 * Turn syscall/sysret extensions on. 160 */ 161 cpu_asysc_enable(); 162 163 /* 164 * Program the magic registers .. 165 */ 166 wrmsr(MSR_AMD_STAR, ((uint64_t)(U32CS_SEL << 16 | KCS_SEL)) << 167 32); 168 wrmsr(MSR_AMD_LSTAR, (uint64_t)(uintptr_t)sys_syscall); 169 wrmsr(MSR_AMD_CSTAR, (uint64_t)(uintptr_t)sys_syscall32); 170 171 /* 172 * This list of flags is masked off the incoming 173 * %rfl when we enter the kernel. 174 */ 175 wrmsr(MSR_AMD_SFMASK, (uint64_t)(uintptr_t)(PS_IE | PS_T)); 176 } 177 #endif 178 179 /* 180 * On 32-bit kernels, we use sysenter/sysexit because it's too 181 * hard to use syscall/sysret, and it is more portable anyway. 182 * 183 * On 64-bit kernels on Nocona machines, the 32-bit syscall 184 * variant isn't available to 32-bit applications, but sysenter is. 185 */ 186 if (x86_feature & X86_SEP) { 187 188 #if !defined(__lint) 189 /* 190 * The sysenter instruction imposes a certain ordering on 191 * segment selectors, so we double-check that ordering 192 * here. See "sysenter" in Intel document 245471-012, "IA-32 193 * Intel Architecture Software Developer's Manual Volume 2: 194 * Instruction Set Reference" 195 */ 196 ASSERT(KDS_SEL == KCS_SEL + 8); 197 198 ASSERT32(UCS_SEL == ((KCS_SEL + 16) | 3)); 199 ASSERT32(UDS_SEL == UCS_SEL + 8); 200 201 ASSERT64(U32CS_SEL == ((KCS_SEL + 16) | 3)); 202 ASSERT64(UDS_SEL == U32CS_SEL + 8); 203 #endif 204 205 cpu_sep_enable(); 206 207 /* 208 * resume() sets this value to the base of the threads stack 209 * via a context handler. 210 */ 211 wrmsr(MSR_INTC_SEP_ESP, 0ULL); 212 wrmsr(MSR_INTC_SEP_EIP, (uint64_t)(uintptr_t)sys_sysenter); 213 } 214 215 kpreempt_enable(); 216 } 217 218 /* 219 * Multiprocessor initialization. 220 * 221 * Allocate and initialize the cpu structure, TRAPTRACE buffer, and the 222 * startup and idle threads for the specified CPU. 223 */ 224 static void 225 mp_startup_init(int cpun) 226 { 227 #if defined(__amd64) 228 extern void *long_mode_64(void); 229 #endif /* __amd64 */ 230 231 struct cpu *cp; 232 struct tss *ntss; 233 kthread_id_t tp; 234 caddr_t sp; 235 int size; 236 proc_t *procp; 237 extern void idle(); 238 239 struct cpu_tables *tablesp; 240 rm_platter_t *real_mode_platter = (rm_platter_t *)rm_platter_va; 241 242 #ifdef TRAPTRACE 243 trap_trace_ctl_t *ttc = &trap_trace_ctl[cpun]; 244 #endif 245 246 ASSERT(cpun < NCPU && cpu[cpun] == NULL); 247 248 if ((cp = kmem_zalloc(sizeof (*cp), KM_NOSLEEP)) == NULL) { 249 panic("mp_startup_init: cpu%d: " 250 "no memory for cpu structure", cpun); 251 /*NOTREACHED*/ 252 } 253 procp = curthread->t_procp; 254 255 mutex_enter(&cpu_lock); 256 /* 257 * Initialize the dispatcher first. 258 */ 259 disp_cpu_init(cp); 260 mutex_exit(&cpu_lock); 261 262 cpu_vm_data_init(cp); 263 264 /* 265 * Allocate and initialize the startup thread for this CPU. 266 * Interrupt and process switch stacks get allocated later 267 * when the CPU starts running. 268 */ 269 tp = thread_create(NULL, 0, NULL, NULL, 0, procp, 270 TS_STOPPED, maxclsyspri); 271 272 /* 273 * Set state to TS_ONPROC since this thread will start running 274 * as soon as the CPU comes online. 275 * 276 * All the other fields of the thread structure are setup by 277 * thread_create(). 278 */ 279 THREAD_ONPROC(tp, cp); 280 tp->t_preempt = 1; 281 tp->t_bound_cpu = cp; 282 tp->t_affinitycnt = 1; 283 tp->t_cpu = cp; 284 tp->t_disp_queue = cp->cpu_disp; 285 286 /* 287 * Setup thread to start in mp_startup. 288 */ 289 sp = tp->t_stk; 290 tp->t_pc = (uintptr_t)mp_startup; 291 tp->t_sp = (uintptr_t)(sp - MINFRAME); 292 293 cp->cpu_id = cpun; 294 cp->cpu_self = cp; 295 cp->cpu_thread = tp; 296 cp->cpu_lwp = NULL; 297 cp->cpu_dispthread = tp; 298 cp->cpu_dispatch_pri = DISP_PRIO(tp); 299 300 /* 301 * cpu_base_spl must be set explicitly here to prevent any blocking 302 * operations in mp_startup from causing the spl of the cpu to drop 303 * to 0 (allowing device interrupts before we're ready) in resume(). 304 * cpu_base_spl MUST remain at LOCK_LEVEL until the cpu is CPU_READY. 305 * As an extra bit of security on DEBUG kernels, this is enforced with 306 * an assertion in mp_startup() -- before cpu_base_spl is set to its 307 * proper value. 308 */ 309 cp->cpu_base_spl = ipltospl(LOCK_LEVEL); 310 311 /* 312 * Now, initialize per-CPU idle thread for this CPU. 313 */ 314 tp = thread_create(NULL, PAGESIZE, idle, NULL, 0, procp, TS_ONPROC, -1); 315 316 cp->cpu_idle_thread = tp; 317 318 tp->t_preempt = 1; 319 tp->t_bound_cpu = cp; 320 tp->t_affinitycnt = 1; 321 tp->t_cpu = cp; 322 tp->t_disp_queue = cp->cpu_disp; 323 324 /* 325 * Bootstrap the CPU's PG data 326 */ 327 pg_cpu_bootstrap(cp); 328 329 /* 330 * Perform CPC intialization on the new CPU. 331 */ 332 kcpc_hw_init(cp); 333 334 /* 335 * Allocate virtual addresses for cpu_caddr1 and cpu_caddr2 336 * for each CPU. 337 */ 338 339 setup_vaddr_for_ppcopy(cp); 340 341 /* 342 * Allocate space for page directory, stack, tss, gdt and idt. 343 * This assumes that kmem_alloc will return memory which is aligned 344 * to the next higher power of 2 or a page(if size > MAXABIG) 345 * If this assumption goes wrong at any time due to change in 346 * kmem alloc, things may not work as the page directory has to be 347 * page aligned 348 */ 349 if ((tablesp = kmem_zalloc(sizeof (*tablesp), KM_NOSLEEP)) == NULL) 350 panic("mp_startup_init: cpu%d cannot allocate tables", cpun); 351 352 if ((uintptr_t)tablesp & ~MMU_STD_PAGEMASK) { 353 kmem_free(tablesp, sizeof (struct cpu_tables)); 354 size = sizeof (struct cpu_tables) + MMU_STD_PAGESIZE; 355 tablesp = kmem_zalloc(size, KM_NOSLEEP); 356 tablesp = (struct cpu_tables *) 357 (((uintptr_t)tablesp + MMU_STD_PAGESIZE) & 358 MMU_STD_PAGEMASK); 359 } 360 361 ntss = cp->cpu_tss = &tablesp->ct_tss; 362 363 if ((tablesp->ct_gdt = kmem_zalloc(PAGESIZE, KM_NOSLEEP)) == NULL) 364 panic("mp_startup_init: cpu%d cannot allocate GDT", cpun); 365 cp->cpu_gdt = tablesp->ct_gdt; 366 bcopy(CPU->cpu_gdt, cp->cpu_gdt, NGDT * (sizeof (user_desc_t))); 367 368 #if defined(__amd64) 369 370 /* 371 * #DF (double fault). 372 */ 373 ntss->tss_ist1 = 374 (uint64_t)&tablesp->ct_stack[sizeof (tablesp->ct_stack)]; 375 376 #elif defined(__i386) 377 378 ntss->tss_esp0 = ntss->tss_esp1 = ntss->tss_esp2 = ntss->tss_esp = 379 (uint32_t)&tablesp->ct_stack[sizeof (tablesp->ct_stack)]; 380 381 ntss->tss_ss0 = ntss->tss_ss1 = ntss->tss_ss2 = ntss->tss_ss = KDS_SEL; 382 383 ntss->tss_eip = (uint32_t)mp_startup; 384 385 ntss->tss_cs = KCS_SEL; 386 ntss->tss_fs = KFS_SEL; 387 ntss->tss_gs = KGS_SEL; 388 389 /* 390 * setup kernel %gs. 391 */ 392 set_usegd(&cp->cpu_gdt[GDT_GS], cp, sizeof (struct cpu) -1, SDT_MEMRWA, 393 SEL_KPL, 0, 1); 394 395 #endif /* __i386 */ 396 397 /* 398 * Set I/O bit map offset equal to size of TSS segment limit 399 * for no I/O permission map. This will cause all user I/O 400 * instructions to generate #gp fault. 401 */ 402 ntss->tss_bitmapbase = sizeof (*ntss); 403 404 /* 405 * setup kernel tss. 406 */ 407 set_syssegd((system_desc_t *)&cp->cpu_gdt[GDT_KTSS], cp->cpu_tss, 408 sizeof (*cp->cpu_tss) -1, SDT_SYSTSS, SEL_KPL); 409 410 /* 411 * If we have more than one node, each cpu gets a copy of IDT 412 * local to its node. If this is a Pentium box, we use cpu 0's 413 * IDT. cpu 0's IDT has been made read-only to workaround the 414 * cmpxchgl register bug 415 */ 416 cp->cpu_idt = CPU->cpu_idt; 417 if (system_hardware.hd_nodes && x86_type != X86_TYPE_P5) { 418 cp->cpu_idt = kmem_alloc(sizeof (idt0), KM_SLEEP); 419 bcopy(idt0, cp->cpu_idt, sizeof (idt0)); 420 } 421 422 /* 423 * Get interrupt priority data from cpu 0 424 */ 425 cp->cpu_pri_data = CPU->cpu_pri_data; 426 427 hat_cpu_online(cp); 428 429 /* Should remove all entries for the current process/thread here */ 430 431 /* 432 * Fill up the real mode platter to make it easy for real mode code to 433 * kick it off. This area should really be one passed by boot to kernel 434 * and guaranteed to be below 1MB and aligned to 16 bytes. Should also 435 * have identical physical and virtual address in paged mode. 436 */ 437 real_mode_platter->rm_idt_base = cp->cpu_idt; 438 real_mode_platter->rm_idt_lim = sizeof (idt0) - 1; 439 real_mode_platter->rm_gdt_base = cp->cpu_gdt; 440 real_mode_platter->rm_gdt_lim = sizeof (gdt0) -1; 441 real_mode_platter->rm_pdbr = getcr3(); 442 real_mode_platter->rm_cpu = cpun; 443 real_mode_platter->rm_x86feature = x86_feature; 444 real_mode_platter->rm_cr4 = cr4_value; 445 446 #if defined(__amd64) 447 if (getcr3() > 0xffffffffUL) 448 panic("Cannot initialize CPUs; kernel's 64-bit page tables\n" 449 "located above 4G in physical memory (@ 0x%llx).", 450 (unsigned long long)getcr3()); 451 452 /* 453 * Setup pseudo-descriptors for temporary GDT and IDT for use ONLY 454 * by code in real_mode_start(): 455 * 456 * GDT[0]: NULL selector 457 * GDT[1]: 64-bit CS: Long = 1, Present = 1, bits 12, 11 = 1 458 * 459 * Clear the IDT as interrupts will be off and a limit of 0 will cause 460 * the CPU to triple fault and reset on an NMI, seemingly as reasonable 461 * a course of action as any other, though it may cause the entire 462 * platform to reset in some cases... 463 */ 464 real_mode_platter->rm_temp_gdt[0] = 0ULL; 465 real_mode_platter->rm_temp_gdt[TEMPGDT_KCODE64] = 0x20980000000000ULL; 466 467 real_mode_platter->rm_temp_gdt_lim = (ushort_t) 468 (sizeof (real_mode_platter->rm_temp_gdt) - 1); 469 real_mode_platter->rm_temp_gdt_base = rm_platter_pa + 470 (uint32_t)(&((rm_platter_t *)0)->rm_temp_gdt); 471 472 real_mode_platter->rm_temp_idt_lim = 0; 473 real_mode_platter->rm_temp_idt_base = 0; 474 475 /* 476 * Since the CPU needs to jump to protected mode using an identity 477 * mapped address, we need to calculate it here. 478 */ 479 real_mode_platter->rm_longmode64_addr = rm_platter_pa + 480 ((uint32_t)long_mode_64 - (uint32_t)real_mode_start); 481 #endif /* __amd64 */ 482 483 #ifdef TRAPTRACE 484 /* 485 * If this is a TRAPTRACE kernel, allocate TRAPTRACE buffers for this 486 * CPU. 487 */ 488 ttc->ttc_first = (uintptr_t)kmem_zalloc(trap_trace_bufsize, KM_SLEEP); 489 ttc->ttc_next = ttc->ttc_first; 490 ttc->ttc_limit = ttc->ttc_first + trap_trace_bufsize; 491 #endif 492 493 /* 494 * Record that we have another CPU. 495 */ 496 mutex_enter(&cpu_lock); 497 /* 498 * Initialize the interrupt threads for this CPU 499 */ 500 cpu_intr_alloc(cp, NINTR_THREADS); 501 /* 502 * Add CPU to list of available CPUs. It'll be on the active list 503 * after mp_startup(). 504 */ 505 cpu_add_unit(cp); 506 mutex_exit(&cpu_lock); 507 } 508 509 /* 510 * Apply workarounds for known errata, and warn about those that are absent. 511 * 512 * System vendors occasionally create configurations which contain different 513 * revisions of the CPUs that are almost but not exactly the same. At the 514 * time of writing, this meant that their clock rates were the same, their 515 * feature sets were the same, but the required workaround were -not- 516 * necessarily the same. So, this routine is invoked on -every- CPU soon 517 * after starting to make sure that the resulting system contains the most 518 * pessimal set of workarounds needed to cope with *any* of the CPUs in the 519 * system. 520 * 521 * workaround_errata is invoked early in mlsetup() for CPU 0, and in 522 * mp_startup() for all slave CPUs. Slaves process workaround_errata prior 523 * to acknowledging their readiness to the master, so this routine will 524 * never be executed by multiple CPUs in parallel, thus making updates to 525 * global data safe. 526 * 527 * These workarounds are based on Rev 3.57 of the Revision Guide for 528 * AMD Athlon(tm) 64 and AMD Opteron(tm) Processors, August 2005. 529 */ 530 531 #if defined(OPTERON_ERRATUM_91) 532 int opteron_erratum_91; /* if non-zero -> at least one cpu has it */ 533 #endif 534 535 #if defined(OPTERON_ERRATUM_93) 536 int opteron_erratum_93; /* if non-zero -> at least one cpu has it */ 537 #endif 538 539 #if defined(OPTERON_ERRATUM_100) 540 int opteron_erratum_100; /* if non-zero -> at least one cpu has it */ 541 #endif 542 543 #if defined(OPTERON_ERRATUM_109) 544 int opteron_erratum_109; /* if non-zero -> at least one cpu has it */ 545 #endif 546 547 #if defined(OPTERON_ERRATUM_121) 548 int opteron_erratum_121; /* if non-zero -> at least one cpu has it */ 549 #endif 550 551 #if defined(OPTERON_ERRATUM_122) 552 int opteron_erratum_122; /* if non-zero -> at least one cpu has it */ 553 #endif 554 555 #if defined(OPTERON_ERRATUM_123) 556 int opteron_erratum_123; /* if non-zero -> at least one cpu has it */ 557 #endif 558 559 #if defined(OPTERON_ERRATUM_131) 560 int opteron_erratum_131; /* if non-zero -> at least one cpu has it */ 561 #endif 562 563 #if defined(OPTERON_WORKAROUND_6336786) 564 int opteron_workaround_6336786; /* non-zero -> WA relevant and applied */ 565 int opteron_workaround_6336786_UP = 0; /* Not needed for UP */ 566 #endif 567 568 #if defined(OPTERON_WORKAROUND_6323525) 569 int opteron_workaround_6323525; /* if non-zero -> at least one cpu has it */ 570 #endif 571 572 #define WARNING(cpu, n) \ 573 cmn_err(CE_WARN, "cpu%d: no workaround for erratum %d", \ 574 (cpu)->cpu_id, (n)) 575 576 uint_t 577 workaround_errata(struct cpu *cpu) 578 { 579 uint_t missing = 0; 580 581 ASSERT(cpu == CPU); 582 583 /*LINTED*/ 584 if (cpuid_opteron_erratum(cpu, 88) > 0) { 585 /* 586 * SWAPGS May Fail To Read Correct GS Base 587 */ 588 #if defined(OPTERON_ERRATUM_88) 589 /* 590 * The workaround is an mfence in the relevant assembler code 591 */ 592 #else 593 WARNING(cpu, 88); 594 missing++; 595 #endif 596 } 597 598 if (cpuid_opteron_erratum(cpu, 91) > 0) { 599 /* 600 * Software Prefetches May Report A Page Fault 601 */ 602 #if defined(OPTERON_ERRATUM_91) 603 /* 604 * fix is in trap.c 605 */ 606 opteron_erratum_91++; 607 #else 608 WARNING(cpu, 91); 609 missing++; 610 #endif 611 } 612 613 if (cpuid_opteron_erratum(cpu, 93) > 0) { 614 /* 615 * RSM Auto-Halt Restart Returns to Incorrect RIP 616 */ 617 #if defined(OPTERON_ERRATUM_93) 618 /* 619 * fix is in trap.c 620 */ 621 opteron_erratum_93++; 622 #else 623 WARNING(cpu, 93); 624 missing++; 625 #endif 626 } 627 628 /*LINTED*/ 629 if (cpuid_opteron_erratum(cpu, 95) > 0) { 630 /* 631 * RET Instruction May Return to Incorrect EIP 632 */ 633 #if defined(OPTERON_ERRATUM_95) 634 #if defined(_LP64) 635 /* 636 * Workaround this by ensuring that 32-bit user code and 637 * 64-bit kernel code never occupy the same address 638 * range mod 4G. 639 */ 640 if (_userlimit32 > 0xc0000000ul) 641 *(uintptr_t *)&_userlimit32 = 0xc0000000ul; 642 643 /*LINTED*/ 644 ASSERT((uint32_t)COREHEAP_BASE == 0xc0000000u); 645 #endif /* _LP64 */ 646 #else 647 WARNING(cpu, 95); 648 missing++; 649 #endif /* OPTERON_ERRATUM_95 */ 650 } 651 652 if (cpuid_opteron_erratum(cpu, 100) > 0) { 653 /* 654 * Compatibility Mode Branches Transfer to Illegal Address 655 */ 656 #if defined(OPTERON_ERRATUM_100) 657 /* 658 * fix is in trap.c 659 */ 660 opteron_erratum_100++; 661 #else 662 WARNING(cpu, 100); 663 missing++; 664 #endif 665 } 666 667 /*LINTED*/ 668 if (cpuid_opteron_erratum(cpu, 108) > 0) { 669 /* 670 * CPUID Instruction May Return Incorrect Model Number In 671 * Some Processors 672 */ 673 #if defined(OPTERON_ERRATUM_108) 674 /* 675 * (Our cpuid-handling code corrects the model number on 676 * those processors) 677 */ 678 #else 679 WARNING(cpu, 108); 680 missing++; 681 #endif 682 } 683 684 /*LINTED*/ 685 if (cpuid_opteron_erratum(cpu, 109) > 0) { 686 /* 687 * Certain Reverse REP MOVS May Produce Unpredictable Behaviour 688 */ 689 #if defined(OPTERON_ERRATUM_109) 690 691 /* workaround is to print a warning to upgrade BIOS */ 692 if (rdmsr(MSR_AMD_PATCHLEVEL) == 0) 693 opteron_erratum_109++; 694 #else 695 WARNING(cpu, 109); 696 missing++; 697 #endif 698 } 699 /*LINTED*/ 700 if (cpuid_opteron_erratum(cpu, 121) > 0) { 701 /* 702 * Sequential Execution Across Non_Canonical Boundary Caused 703 * Processor Hang 704 */ 705 #if defined(OPTERON_ERRATUM_121) 706 static int lma; 707 708 if (opteron_erratum_121) 709 opteron_erratum_121++; 710 711 /* 712 * Erratum 121 is only present in long (64 bit) mode. 713 * Workaround is to include the page immediately before the 714 * va hole to eliminate the possibility of system hangs due to 715 * sequential execution across the va hole boundary. 716 */ 717 if (lma == 0) { 718 /* 719 * check LMA once: assume all cpus are in long mode 720 * or not. 721 */ 722 lma = 1; 723 724 if (rdmsr(MSR_AMD_EFER) & AMD_EFER_LMA) { 725 if (hole_start) { 726 hole_start -= PAGESIZE; 727 } else { 728 /* 729 * hole_start not yet initialized by 730 * mmu_init. Initialize hole_start 731 * with value to be subtracted. 732 */ 733 hole_start = PAGESIZE; 734 } 735 opteron_erratum_121++; 736 } 737 } 738 #else 739 WARNING(cpu, 121); 740 missing++; 741 #endif 742 } 743 744 /*LINTED*/ 745 if (cpuid_opteron_erratum(cpu, 122) > 0) { 746 /* 747 * TLB Flush Filter May Cause Cohenrency Problem in 748 * Multiprocessor Systems 749 */ 750 #if defined(OPTERON_ERRATUM_122) 751 /* 752 * Erratum 122 is only present in MP configurations (multi-core 753 * or multi-processor). 754 */ 755 756 if (opteron_erratum_122 || lgrp_plat_node_cnt > 1 || 757 cpuid_get_ncpu_per_chip(cpu) > 1) { 758 /* disable TLB Flush Filter */ 759 wrmsr(MSR_AMD_HWCR, rdmsr(MSR_AMD_HWCR) | 760 (uint64_t)(uintptr_t)AMD_HWCR_FFDIS); 761 opteron_erratum_122++; 762 } 763 764 #else 765 WARNING(cpu, 122); 766 missing++; 767 #endif 768 } 769 770 #if defined(OPTERON_ERRATUM_123) 771 /*LINTED*/ 772 if (cpuid_opteron_erratum(cpu, 123) > 0) { 773 /* 774 * Bypassed Reads May Cause Data Corruption of System Hang in 775 * Dual Core Processors 776 */ 777 /* 778 * Erratum 123 applies only to multi-core cpus. 779 */ 780 781 if (cpuid_get_ncpu_per_chip(cpu) > 1) { 782 /* workaround is to print a warning to upgrade BIOS */ 783 if (rdmsr(MSR_AMD_PATCHLEVEL) == 0) 784 opteron_erratum_123++; 785 } 786 } 787 #endif 788 789 #if defined(OPTERON_ERRATUM_131) 790 /*LINTED*/ 791 if (cpuid_opteron_erratum(cpu, 131) > 0) { 792 /* 793 * Multiprocessor Systems with Four or More Cores May Deadlock 794 * Waiting for a Probe Response 795 */ 796 /* 797 * Erratum 131 applies to any system with four or more cores. 798 */ 799 if ((opteron_erratum_131 == 0) && ((lgrp_plat_node_cnt * 800 cpuid_get_ncpu_per_chip(cpu)) >= 4)) { 801 uint64_t nbcfg; 802 uint64_t wabits; 803 804 /* 805 * Print a warning if neither of the workarounds 806 * for Erratum 131 is present. 807 */ 808 809 wabits = AMD_NB_CFG_SRQ_HEARTBEAT | 810 AMD_NB_CFG_SRQ_SPR; 811 812 nbcfg = rdmsr(MSR_AMD_NB_CFG); 813 if ((nbcfg & wabits) == 0) { 814 opteron_erratum_131++; 815 } else { 816 /* cannot have both workarounds set */ 817 ASSERT((nbcfg & wabits) != wabits); 818 } 819 } 820 } 821 #endif 822 823 #if defined(OPTERON_WORKAROUND_6336786) 824 /* 825 * This isn't really erratum, but for convenience the 826 * detection/workaround code lives here and in cpuid_opteron_erratum. 827 */ 828 if (cpuid_opteron_erratum(cpu, 6336786) > 0) { 829 int node; 830 uint8_t data; 831 832 /* 833 * Disable C1-Clock ramping on multi-core/multi-processor 834 * K8 platforms to guard against TSC drift. 835 */ 836 if (opteron_workaround_6336786) { 837 opteron_workaround_6336786++; 838 } else if ((lgrp_plat_node_cnt * 839 cpuid_get_ncpu_per_chip(cpu) >= 2) || 840 opteron_workaround_6336786_UP) { 841 for (node = 0; node < lgrp_plat_node_cnt; node++) { 842 /* 843 * Clear PMM7[1:0] (function 3, offset 0x87) 844 * Northbridge device is the node id + 24. 845 */ 846 data = pci_getb_func(0, node + 24, 3, 0x87); 847 data &= 0xFC; 848 pci_putb_func(0, node + 24, 3, 0x87, data); 849 } 850 opteron_workaround_6336786++; 851 } 852 } 853 #endif 854 855 #if defined(OPTERON_WORKAROUND_6323525) 856 /*LINTED*/ 857 /* 858 * Mutex primitives don't work as expected. 859 */ 860 if (cpuid_opteron_erratum(cpu, 6323525) > 0) { 861 862 /* 863 * problem only occurs with 2 or more cores. If bit in 864 * MSR_BU_CFG set, then not applicable. The workaround 865 * is to patch the semaphone routines with the lfence 866 * instruction to provide necessary load memory barrier with 867 * possible subsequent read-modify-write ops. 868 * 869 * It is too early in boot to call the patch routine so 870 * set erratum variable to be done in startup_end(). 871 */ 872 if (opteron_workaround_6323525) { 873 opteron_workaround_6323525++; 874 } else if ((x86_feature & X86_SSE2) && ((lgrp_plat_node_cnt * 875 cpuid_get_ncpu_per_chip(cpu)) >= 2)) { 876 if ((xrdmsr(MSR_BU_CFG) & 0x02) == 0) 877 opteron_workaround_6323525++; 878 } 879 } 880 #endif 881 return (missing); 882 } 883 884 void 885 workaround_errata_end() 886 { 887 #if defined(OPTERON_ERRATUM_109) 888 if (opteron_erratum_109) { 889 cmn_err(CE_WARN, 890 "BIOS microcode patch for AMD Athlon(tm) 64/Opteron(tm)" 891 " processor\nerratum 109 was not detected; updating your" 892 " system's BIOS to a version\ncontaining this" 893 " microcode patch is HIGHLY recommended or erroneous" 894 " system\noperation may occur.\n"); 895 } 896 #endif /* OPTERON_ERRATUM_109 */ 897 #if defined(OPTERON_ERRATUM_123) 898 if (opteron_erratum_123) { 899 cmn_err(CE_WARN, 900 "BIOS microcode patch for AMD Athlon(tm) 64/Opteron(tm)" 901 " processor\nerratum 123 was not detected; updating your" 902 " system's BIOS to a version\ncontaining this" 903 " microcode patch is HIGHLY recommended or erroneous" 904 " system\noperation may occur.\n"); 905 } 906 #endif /* OPTERON_ERRATUM_123 */ 907 #if defined(OPTERON_ERRATUM_131) 908 if (opteron_erratum_131) { 909 cmn_err(CE_WARN, 910 "BIOS microcode patch for AMD Athlon(tm) 64/Opteron(tm)" 911 " processor\nerratum 131 was not detected; updating your" 912 " system's BIOS to a version\ncontaining this" 913 " microcode patch is HIGHLY recommended or erroneous" 914 " system\noperation may occur.\n"); 915 } 916 #endif /* OPTERON_ERRATUM_131 */ 917 } 918 919 static ushort_t *mp_map_warm_reset_vector(); 920 static void mp_unmap_warm_reset_vector(ushort_t *warm_reset_vector); 921 922 static cpuset_t procset = 1; 923 924 /*ARGSUSED*/ 925 void 926 start_other_cpus(int cprboot) 927 { 928 unsigned int who; 929 int skipped = 0; 930 int cpuid = 0; 931 int delays = 0; 932 int started_cpu; 933 ushort_t *warm_reset_vector = NULL; 934 935 /* 936 * Initialize our own cpu_info. 937 */ 938 init_cpu_info(CPU); 939 940 /* 941 * Initialize our syscall handlers 942 */ 943 init_cpu_syscall(CPU); 944 945 /* 946 * if only 1 cpu or not using MP, skip the rest of this 947 */ 948 if (CPUSET_ISEQUAL(mp_cpus, cpu_ready_set) || use_mp == 0) { 949 if (use_mp == 0) 950 cmn_err(CE_CONT, "?***** Not in MP mode\n"); 951 goto done; 952 } 953 954 /* 955 * perform such initialization as is needed 956 * to be able to take CPUs on- and off-line. 957 */ 958 cpu_pause_init(); 959 960 xc_init(); /* initialize processor crosscalls */ 961 962 /* 963 * Copy the real mode code at "real_mode_start" to the 964 * page at rm_platter_va. 965 */ 966 warm_reset_vector = mp_map_warm_reset_vector(); 967 if (warm_reset_vector == NULL) 968 goto done; 969 970 bcopy((caddr_t)real_mode_start, 971 (caddr_t)((rm_platter_t *)rm_platter_va)->rm_code, 972 (size_t)real_mode_end - (size_t)real_mode_start); 973 974 flushes_require_xcalls = 1; 975 976 ASSERT(CPU_IN_SET(procset, cpuid)); 977 ASSERT(CPU_IN_SET(cpu_ready_set, cpuid)); 978 979 /* 980 * We lock our affinity to the master CPU to ensure that all slave CPUs 981 * do their TSC syncs with the same CPU. 982 */ 983 affinity_set(CPU_CURRENT); 984 985 for (who = 0; who < NCPU; who++) { 986 if (who == cpuid) 987 continue; 988 989 delays = 0; 990 991 if (!CPU_IN_SET(mp_cpus, who)) 992 continue; 993 994 if (ncpus >= max_ncpus) { 995 skipped = who; 996 continue; 997 } 998 999 mp_startup_init(who); 1000 started_cpu = 1; 1001 (*cpu_startf)(who, rm_platter_pa); 1002 1003 while (!CPU_IN_SET(procset, who)) { 1004 delay(1); 1005 if (++delays > (20 * hz)) { 1006 1007 cmn_err(CE_WARN, 1008 "cpu%d failed to start", who); 1009 1010 mutex_enter(&cpu_lock); 1011 cpu[who]->cpu_flags = 0; 1012 cpu_vm_data_destroy(cpu[who]); 1013 cpu_del_unit(who); 1014 mutex_exit(&cpu_lock); 1015 1016 started_cpu = 0; 1017 break; 1018 } 1019 } 1020 if (!started_cpu) 1021 continue; 1022 if (tsc_gethrtime_enable) 1023 tsc_sync_master(who); 1024 1025 } 1026 1027 affinity_clear(); 1028 1029 /* 1030 * Wait for all CPUs that booted (have presence in procset) 1031 * to come online (have presence in cpu_ready_set). Note 1032 * that the start CPU already satisfies both of these, so no 1033 * special case is needed. 1034 */ 1035 for (who = 0; who < NCPU; who++) { 1036 if (!CPU_IN_SET(procset, who)) 1037 continue; 1038 1039 while (!CPU_IN_SET(cpu_ready_set, who)) 1040 delay(1); 1041 } 1042 1043 if (skipped) { 1044 cmn_err(CE_NOTE, 1045 "System detected %d CPU(s), but " 1046 "only %d CPU(s) were enabled during boot.", 1047 skipped + 1, ncpus); 1048 cmn_err(CE_NOTE, 1049 "Use \"boot-ncpus\" parameter to enable more CPU(s). " 1050 "See eeprom(1M)."); 1051 } 1052 1053 done: 1054 workaround_errata_end(); 1055 1056 if (warm_reset_vector != NULL) 1057 mp_unmap_warm_reset_vector(warm_reset_vector); 1058 hat_unload(kas.a_hat, (caddr_t)(uintptr_t)rm_platter_pa, MMU_PAGESIZE, 1059 HAT_UNLOAD); 1060 1061 cmi_post_mpstartup(); 1062 } 1063 1064 /* 1065 * Dummy functions - no i86pc platforms support dynamic cpu allocation. 1066 */ 1067 /*ARGSUSED*/ 1068 int 1069 mp_cpu_configure(int cpuid) 1070 { 1071 return (ENOTSUP); /* not supported */ 1072 } 1073 1074 /*ARGSUSED*/ 1075 int 1076 mp_cpu_unconfigure(int cpuid) 1077 { 1078 return (ENOTSUP); /* not supported */ 1079 } 1080 1081 /* 1082 * Startup function for 'other' CPUs (besides boot cpu). 1083 * Called from real_mode_start. 1084 * 1085 * WARNING: until CPU_READY is set, mp_startup and routines called by 1086 * mp_startup should not call routines (e.g. kmem_free) that could call 1087 * hat_unload which requires CPU_READY to be set. 1088 */ 1089 void 1090 mp_startup(void) 1091 { 1092 struct cpu *cp = CPU; 1093 uint_t new_x86_feature; 1094 1095 /* 1096 * We need to get TSC on this proc synced (i.e., any delta 1097 * from cpu0 accounted for) as soon as we can, because many 1098 * many things use gethrtime/pc_gethrestime, including 1099 * interrupts, cmn_err, etc. 1100 */ 1101 1102 /* Let cpu0 continue into tsc_sync_master() */ 1103 CPUSET_ATOMIC_ADD(procset, cp->cpu_id); 1104 1105 if (tsc_gethrtime_enable) 1106 tsc_sync_slave(); 1107 1108 /* 1109 * Once this was done from assembly, but it's safer here; if 1110 * it blocks, we need to be able to swtch() to and from, and 1111 * since we get here by calling t_pc, we need to do that call 1112 * before swtch() overwrites it. 1113 */ 1114 1115 (void) (*ap_mlsetup)(); 1116 1117 new_x86_feature = cpuid_pass1(cp); 1118 1119 /* 1120 * We need to Sync MTRR with cpu0's MTRR. We have to do 1121 * this with interrupts disabled. 1122 */ 1123 if (x86_feature & X86_MTRR) 1124 mtrr_sync(); 1125 1126 /* 1127 * Initialize this CPU's syscall handlers 1128 */ 1129 init_cpu_syscall(cp); 1130 1131 /* 1132 * Enable interrupts with spl set to LOCK_LEVEL. LOCK_LEVEL is the 1133 * highest level at which a routine is permitted to block on 1134 * an adaptive mutex (allows for cpu poke interrupt in case 1135 * the cpu is blocked on a mutex and halts). Setting LOCK_LEVEL blocks 1136 * device interrupts that may end up in the hat layer issuing cross 1137 * calls before CPU_READY is set. 1138 */ 1139 (void) splx(ipltospl(LOCK_LEVEL)); 1140 1141 /* 1142 * Do a sanity check to make sure this new CPU is a sane thing 1143 * to add to the collection of processors running this system. 1144 * 1145 * XXX Clearly this needs to get more sophisticated, if x86 1146 * systems start to get built out of heterogenous CPUs; as is 1147 * likely to happen once the number of processors in a configuration 1148 * gets large enough. 1149 */ 1150 if ((x86_feature & new_x86_feature) != x86_feature) { 1151 cmn_err(CE_CONT, "?cpu%d: %b\n", 1152 cp->cpu_id, new_x86_feature, FMT_X86_FEATURE); 1153 cmn_err(CE_WARN, "cpu%d feature mismatch", cp->cpu_id); 1154 } 1155 1156 /* 1157 * We could be more sophisticated here, and just mark the CPU 1158 * as "faulted" but at this point we'll opt for the easier 1159 * answer of dieing horribly. Provided the boot cpu is ok, 1160 * the system can be recovered by booting with use_mp set to zero. 1161 */ 1162 if (workaround_errata(cp) != 0) 1163 panic("critical workaround(s) missing for cpu%d", cp->cpu_id); 1164 1165 cpuid_pass2(cp); 1166 cpuid_pass3(cp); 1167 (void) cpuid_pass4(cp); 1168 1169 init_cpu_info(cp); 1170 1171 mutex_enter(&cpu_lock); 1172 /* 1173 * Processor group initialization for this CPU is dependent on the 1174 * cpuid probing, which must be done in the context of the current 1175 * CPU. 1176 */ 1177 pghw_physid_create(cp); 1178 pg_cpu_init(cp); 1179 pg_cmt_cpu_startup(cp); 1180 1181 cp->cpu_flags |= CPU_RUNNING | CPU_READY | CPU_ENABLE | CPU_EXISTS; 1182 cpu_add_active(cp); 1183 1184 if (dtrace_cpu_init != NULL) { 1185 (*dtrace_cpu_init)(cp->cpu_id); 1186 } 1187 1188 mutex_exit(&cpu_lock); 1189 1190 /* 1191 * Enable preemption here so that contention for any locks acquired 1192 * later in mp_startup may be preempted if the thread owning those 1193 * locks is continously executing on other CPUs (for example, this 1194 * CPU must be preemptible to allow other CPUs to pause it during their 1195 * startup phases). It's safe to enable preemption here because the 1196 * CPU state is pretty-much fully constructed. 1197 */ 1198 curthread->t_preempt = 0; 1199 1200 add_cpunode2devtree(cp->cpu_id, cp->cpu_m.mcpu_cpi); 1201 1202 /* The base spl should still be at LOCK LEVEL here */ 1203 ASSERT(cp->cpu_base_spl == ipltospl(LOCK_LEVEL)); 1204 set_base_spl(); /* Restore the spl to its proper value */ 1205 1206 (void) spl0(); /* enable interrupts */ 1207 1208 /* 1209 * Set up the CPU module for this CPU. This can't be done before 1210 * this CPU is made CPU_READY, because we may (in heterogeneous systems) 1211 * need to go load another CPU module. The act of attempting to load 1212 * a module may trigger a cross-call, which will ASSERT unless this 1213 * cpu is CPU_READY. 1214 */ 1215 cmi_init(); 1216 1217 if (x86_feature & X86_MCA) 1218 cmi_mca_init(); 1219 1220 if (boothowto & RB_DEBUG) 1221 kdi_dvec_cpu_init(cp); 1222 1223 /* 1224 * Setting the bit in cpu_ready_set must be the last operation in 1225 * processor initialization; the boot CPU will continue to boot once 1226 * it sees this bit set for all active CPUs. 1227 */ 1228 CPUSET_ATOMIC_ADD(cpu_ready_set, cp->cpu_id); 1229 1230 /* 1231 * Because mp_startup() gets fired off after init() starts, we 1232 * can't use the '?' trick to do 'boot -v' printing - so we 1233 * always direct the 'cpu .. online' messages to the log. 1234 */ 1235 cmn_err(CE_CONT, "!cpu%d initialization complete - online\n", 1236 cp->cpu_id); 1237 1238 /* 1239 * Now we are done with the startup thread, so free it up. 1240 */ 1241 thread_exit(); 1242 panic("mp_startup: cannot return"); 1243 /*NOTREACHED*/ 1244 } 1245 1246 1247 /* 1248 * Start CPU on user request. 1249 */ 1250 /* ARGSUSED */ 1251 int 1252 mp_cpu_start(struct cpu *cp) 1253 { 1254 ASSERT(MUTEX_HELD(&cpu_lock)); 1255 return (0); 1256 } 1257 1258 /* 1259 * Stop CPU on user request. 1260 */ 1261 /* ARGSUSED */ 1262 int 1263 mp_cpu_stop(struct cpu *cp) 1264 { 1265 extern int cbe_psm_timer_mode; 1266 ASSERT(MUTEX_HELD(&cpu_lock)); 1267 1268 /* 1269 * If TIMER_PERIODIC mode is used, CPU0 is the one running it; 1270 * can't stop it. (This is true only for machines with no TSC.) 1271 */ 1272 1273 if ((cbe_psm_timer_mode == TIMER_PERIODIC) && (cp->cpu_id == 0)) 1274 return (1); 1275 1276 return (0); 1277 } 1278 1279 /* 1280 * Power on CPU. 1281 */ 1282 /* ARGSUSED */ 1283 int 1284 mp_cpu_poweron(struct cpu *cp) 1285 { 1286 ASSERT(MUTEX_HELD(&cpu_lock)); 1287 return (ENOTSUP); /* not supported */ 1288 } 1289 1290 /* 1291 * Power off CPU. 1292 */ 1293 /* ARGSUSED */ 1294 int 1295 mp_cpu_poweroff(struct cpu *cp) 1296 { 1297 ASSERT(MUTEX_HELD(&cpu_lock)); 1298 return (ENOTSUP); /* not supported */ 1299 } 1300 1301 1302 /* 1303 * Take the specified CPU out of participation in interrupts. 1304 */ 1305 int 1306 cpu_disable_intr(struct cpu *cp) 1307 { 1308 if (psm_disable_intr(cp->cpu_id) != DDI_SUCCESS) 1309 return (EBUSY); 1310 1311 cp->cpu_flags &= ~CPU_ENABLE; 1312 return (0); 1313 } 1314 1315 /* 1316 * Allow the specified CPU to participate in interrupts. 1317 */ 1318 void 1319 cpu_enable_intr(struct cpu *cp) 1320 { 1321 ASSERT(MUTEX_HELD(&cpu_lock)); 1322 cp->cpu_flags |= CPU_ENABLE; 1323 psm_enable_intr(cp->cpu_id); 1324 } 1325 1326 1327 1328 static ushort_t * 1329 mp_map_warm_reset_vector() 1330 { 1331 ushort_t *warm_reset_vector; 1332 1333 if (!(warm_reset_vector = (ushort_t *)psm_map_phys(WARM_RESET_VECTOR, 1334 sizeof (ushort_t *), PROT_READ|PROT_WRITE))) 1335 return (NULL); 1336 1337 /* 1338 * setup secondary cpu bios boot up vector 1339 */ 1340 *warm_reset_vector = (ushort_t)((caddr_t) 1341 ((struct rm_platter *)rm_platter_va)->rm_code - rm_platter_va 1342 + ((ulong_t)rm_platter_va & 0xf)); 1343 warm_reset_vector++; 1344 *warm_reset_vector = (ushort_t)(rm_platter_pa >> 4); 1345 1346 --warm_reset_vector; 1347 return (warm_reset_vector); 1348 } 1349 1350 static void 1351 mp_unmap_warm_reset_vector(ushort_t *warm_reset_vector) 1352 { 1353 psm_unmap_phys((caddr_t)warm_reset_vector, sizeof (ushort_t *)); 1354 } 1355 1356 void 1357 mp_cpu_faulted_enter(struct cpu *cp) 1358 { 1359 cmi_faulted_enter(cp); 1360 } 1361 1362 void 1363 mp_cpu_faulted_exit(struct cpu *cp) 1364 { 1365 cmi_faulted_exit(cp); 1366 } 1367 1368 /* 1369 * The following two routines are used as context operators on threads belonging 1370 * to processes with a private LDT (see sysi86). Due to the rarity of such 1371 * processes, these routines are currently written for best code readability and 1372 * organization rather than speed. We could avoid checking x86_feature at every 1373 * context switch by installing different context ops, depending on the 1374 * x86_feature flags, at LDT creation time -- one for each combination of fast 1375 * syscall feature flags. 1376 */ 1377 1378 /*ARGSUSED*/ 1379 void 1380 cpu_fast_syscall_disable(void *arg) 1381 { 1382 if (x86_feature & X86_SEP) 1383 cpu_sep_disable(); 1384 if (x86_feature & X86_ASYSC) 1385 cpu_asysc_disable(); 1386 } 1387 1388 /*ARGSUSED*/ 1389 void 1390 cpu_fast_syscall_enable(void *arg) 1391 { 1392 if (x86_feature & X86_SEP) 1393 cpu_sep_enable(); 1394 if (x86_feature & X86_ASYSC) 1395 cpu_asysc_enable(); 1396 } 1397 1398 static void 1399 cpu_sep_enable(void) 1400 { 1401 ASSERT(x86_feature & X86_SEP); 1402 ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL); 1403 1404 wrmsr(MSR_INTC_SEP_CS, (uint64_t)(uintptr_t)KCS_SEL); 1405 } 1406 1407 static void 1408 cpu_sep_disable(void) 1409 { 1410 ASSERT(x86_feature & X86_SEP); 1411 ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL); 1412 1413 /* 1414 * Setting the SYSENTER_CS_MSR register to 0 causes software executing 1415 * the sysenter or sysexit instruction to trigger a #gp fault. 1416 */ 1417 wrmsr(MSR_INTC_SEP_CS, 0ULL); 1418 } 1419 1420 static void 1421 cpu_asysc_enable(void) 1422 { 1423 ASSERT(x86_feature & X86_ASYSC); 1424 ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL); 1425 1426 wrmsr(MSR_AMD_EFER, rdmsr(MSR_AMD_EFER) | 1427 (uint64_t)(uintptr_t)AMD_EFER_SCE); 1428 } 1429 1430 static void 1431 cpu_asysc_disable(void) 1432 { 1433 ASSERT(x86_feature & X86_ASYSC); 1434 ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL); 1435 1436 /* 1437 * Turn off the SCE (syscall enable) bit in the EFER register. Software 1438 * executing syscall or sysret with this bit off will incur a #ud trap. 1439 */ 1440 wrmsr(MSR_AMD_EFER, rdmsr(MSR_AMD_EFER) & 1441 ~((uint64_t)(uintptr_t)AMD_EFER_SCE)); 1442 } 1443