1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 /* 26 * Copyright (c) 2010, Intel Corporation. 27 * All rights reserved. 28 */ 29 /* 30 * Copyright (c) 2012, Joyent, Inc. All rights reserved. 31 * Copyright 2013 Nexenta Systems, Inc. All rights reserved. 32 */ 33 34 #include <sys/types.h> 35 #include <sys/thread.h> 36 #include <sys/cpuvar.h> 37 #include <sys/cpu.h> 38 #include <sys/t_lock.h> 39 #include <sys/param.h> 40 #include <sys/proc.h> 41 #include <sys/disp.h> 42 #include <sys/class.h> 43 #include <sys/cmn_err.h> 44 #include <sys/debug.h> 45 #include <sys/note.h> 46 #include <sys/asm_linkage.h> 47 #include <sys/x_call.h> 48 #include <sys/systm.h> 49 #include <sys/var.h> 50 #include <sys/vtrace.h> 51 #include <vm/hat.h> 52 #include <vm/as.h> 53 #include <vm/seg_kmem.h> 54 #include <vm/seg_kp.h> 55 #include <sys/segments.h> 56 #include <sys/kmem.h> 57 #include <sys/stack.h> 58 #include <sys/smp_impldefs.h> 59 #include <sys/x86_archext.h> 60 #include <sys/machsystm.h> 61 #include <sys/traptrace.h> 62 #include <sys/clock.h> 63 #include <sys/cpc_impl.h> 64 #include <sys/pg.h> 65 #include <sys/cmt.h> 66 #include <sys/dtrace.h> 67 #include <sys/archsystm.h> 68 #include <sys/fp.h> 69 #include <sys/reboot.h> 70 #include <sys/kdi_machimpl.h> 71 #include <vm/hat_i86.h> 72 #include <vm/vm_dep.h> 73 #include <sys/memnode.h> 74 #include <sys/pci_cfgspace.h> 75 #include <sys/mach_mmu.h> 76 #include <sys/sysmacros.h> 77 #if defined(__xpv) 78 #include <sys/hypervisor.h> 79 #endif 80 #include <sys/cpu_module.h> 81 #include <sys/ontrap.h> 82 83 struct cpu cpus[1]; /* CPU data */ 84 struct cpu *cpu[NCPU] = {&cpus[0]}; /* pointers to all CPUs */ 85 struct cpu *cpu_free_list; /* list for released CPUs */ 86 cpu_core_t cpu_core[NCPU]; /* cpu_core structures */ 87 88 #define cpu_next_free cpu_prev 89 90 /* 91 * Useful for disabling MP bring-up on a MP capable system. 92 */ 93 int use_mp = 1; 94 95 /* 96 * to be set by a PSM to indicate what cpus 97 * are sitting around on the system. 98 */ 99 cpuset_t mp_cpus; 100 101 /* 102 * This variable is used by the hat layer to decide whether or not 103 * critical sections are needed to prevent race conditions. For sun4m, 104 * this variable is set once enough MP initialization has been done in 105 * order to allow cross calls. 106 */ 107 int flushes_require_xcalls; 108 109 cpuset_t cpu_ready_set; /* initialized in startup() */ 110 111 static void mp_startup_boot(void); 112 static void mp_startup_hotplug(void); 113 114 static void cpu_sep_enable(void); 115 static void cpu_sep_disable(void); 116 static void cpu_asysc_enable(void); 117 static void cpu_asysc_disable(void); 118 119 /* 120 * Init CPU info - get CPU type info for processor_info system call. 121 */ 122 void 123 init_cpu_info(struct cpu *cp) 124 { 125 processor_info_t *pi = &cp->cpu_type_info; 126 127 /* 128 * Get clock-frequency property for the CPU. 129 */ 130 pi->pi_clock = cpu_freq; 131 132 /* 133 * Current frequency in Hz. 134 */ 135 cp->cpu_curr_clock = cpu_freq_hz; 136 137 /* 138 * Supported frequencies. 139 */ 140 if (cp->cpu_supp_freqs == NULL) { 141 cpu_set_supp_freqs(cp, NULL); 142 } 143 144 (void) strcpy(pi->pi_processor_type, "i386"); 145 if (fpu_exists) 146 (void) strcpy(pi->pi_fputypes, "i387 compatible"); 147 148 cp->cpu_idstr = kmem_zalloc(CPU_IDSTRLEN, KM_SLEEP); 149 cp->cpu_brandstr = kmem_zalloc(CPU_IDSTRLEN, KM_SLEEP); 150 151 /* 152 * If called for the BSP, cp is equal to current CPU. 153 * For non-BSPs, cpuid info of cp is not ready yet, so use cpuid info 154 * of current CPU as default values for cpu_idstr and cpu_brandstr. 155 * They will be corrected in mp_startup_common() after cpuid_pass1() 156 * has been invoked on target CPU. 157 */ 158 (void) cpuid_getidstr(CPU, cp->cpu_idstr, CPU_IDSTRLEN); 159 (void) cpuid_getbrandstr(CPU, cp->cpu_brandstr, CPU_IDSTRLEN); 160 } 161 162 /* 163 * Configure syscall support on this CPU. 164 */ 165 /*ARGSUSED*/ 166 void 167 init_cpu_syscall(struct cpu *cp) 168 { 169 kpreempt_disable(); 170 171 #if defined(__amd64) 172 if (is_x86_feature(x86_featureset, X86FSET_MSR) && 173 is_x86_feature(x86_featureset, X86FSET_ASYSC)) { 174 175 #if !defined(__lint) 176 /* 177 * The syscall instruction imposes a certain ordering on 178 * segment selectors, so we double-check that ordering 179 * here. 180 */ 181 ASSERT(KDS_SEL == KCS_SEL + 8); 182 ASSERT(UDS_SEL == U32CS_SEL + 8); 183 ASSERT(UCS_SEL == U32CS_SEL + 16); 184 #endif 185 /* 186 * Turn syscall/sysret extensions on. 187 */ 188 cpu_asysc_enable(); 189 190 /* 191 * Program the magic registers .. 192 */ 193 wrmsr(MSR_AMD_STAR, 194 ((uint64_t)(U32CS_SEL << 16 | KCS_SEL)) << 32); 195 wrmsr(MSR_AMD_LSTAR, (uint64_t)(uintptr_t)sys_syscall); 196 wrmsr(MSR_AMD_CSTAR, (uint64_t)(uintptr_t)sys_syscall32); 197 198 /* 199 * This list of flags is masked off the incoming 200 * %rfl when we enter the kernel. 201 */ 202 wrmsr(MSR_AMD_SFMASK, (uint64_t)(uintptr_t)(PS_IE | PS_T)); 203 } 204 #endif 205 206 /* 207 * On 32-bit kernels, we use sysenter/sysexit because it's too 208 * hard to use syscall/sysret, and it is more portable anyway. 209 * 210 * On 64-bit kernels on Nocona machines, the 32-bit syscall 211 * variant isn't available to 32-bit applications, but sysenter is. 212 */ 213 if (is_x86_feature(x86_featureset, X86FSET_MSR) && 214 is_x86_feature(x86_featureset, X86FSET_SEP)) { 215 216 #if !defined(__lint) 217 /* 218 * The sysenter instruction imposes a certain ordering on 219 * segment selectors, so we double-check that ordering 220 * here. See "sysenter" in Intel document 245471-012, "IA-32 221 * Intel Architecture Software Developer's Manual Volume 2: 222 * Instruction Set Reference" 223 */ 224 ASSERT(KDS_SEL == KCS_SEL + 8); 225 226 ASSERT32(UCS_SEL == ((KCS_SEL + 16) | 3)); 227 ASSERT32(UDS_SEL == UCS_SEL + 8); 228 229 ASSERT64(U32CS_SEL == ((KCS_SEL + 16) | 3)); 230 ASSERT64(UDS_SEL == U32CS_SEL + 8); 231 #endif 232 233 cpu_sep_enable(); 234 235 /* 236 * resume() sets this value to the base of the threads stack 237 * via a context handler. 238 */ 239 wrmsr(MSR_INTC_SEP_ESP, 0); 240 wrmsr(MSR_INTC_SEP_EIP, (uint64_t)(uintptr_t)sys_sysenter); 241 } 242 243 kpreempt_enable(); 244 } 245 246 /* 247 * Multiprocessor initialization. 248 * 249 * Allocate and initialize the cpu structure, TRAPTRACE buffer, and the 250 * startup and idle threads for the specified CPU. 251 * Parameter boot is true for boot time operations and is false for CPU 252 * DR operations. 253 */ 254 static struct cpu * 255 mp_cpu_configure_common(int cpun, boolean_t boot) 256 { 257 struct cpu *cp; 258 kthread_id_t tp; 259 caddr_t sp; 260 proc_t *procp; 261 #if !defined(__xpv) 262 extern int idle_cpu_prefer_mwait; 263 extern void cpu_idle_mwait(); 264 #endif 265 extern void idle(); 266 extern void cpu_idle(); 267 268 #ifdef TRAPTRACE 269 trap_trace_ctl_t *ttc = &trap_trace_ctl[cpun]; 270 #endif 271 272 ASSERT(MUTEX_HELD(&cpu_lock)); 273 ASSERT(cpun < NCPU && cpu[cpun] == NULL); 274 275 if (cpu_free_list == NULL) { 276 cp = kmem_zalloc(sizeof (*cp), KM_SLEEP); 277 } else { 278 cp = cpu_free_list; 279 cpu_free_list = cp->cpu_next_free; 280 } 281 282 cp->cpu_m.mcpu_istamp = cpun << 16; 283 284 /* Create per CPU specific threads in the process p0. */ 285 procp = &p0; 286 287 /* 288 * Initialize the dispatcher first. 289 */ 290 disp_cpu_init(cp); 291 292 cpu_vm_data_init(cp); 293 294 /* 295 * Allocate and initialize the startup thread for this CPU. 296 * Interrupt and process switch stacks get allocated later 297 * when the CPU starts running. 298 */ 299 tp = thread_create(NULL, 0, NULL, NULL, 0, procp, 300 TS_STOPPED, maxclsyspri); 301 302 /* 303 * Set state to TS_ONPROC since this thread will start running 304 * as soon as the CPU comes online. 305 * 306 * All the other fields of the thread structure are setup by 307 * thread_create(). 308 */ 309 THREAD_ONPROC(tp, cp); 310 tp->t_preempt = 1; 311 tp->t_bound_cpu = cp; 312 tp->t_affinitycnt = 1; 313 tp->t_cpu = cp; 314 tp->t_disp_queue = cp->cpu_disp; 315 316 /* 317 * Setup thread to start in mp_startup_common. 318 */ 319 sp = tp->t_stk; 320 tp->t_sp = (uintptr_t)(sp - MINFRAME); 321 #if defined(__amd64) 322 tp->t_sp -= STACK_ENTRY_ALIGN; /* fake a call */ 323 #endif 324 /* 325 * Setup thread start entry point for boot or hotplug. 326 */ 327 if (boot) { 328 tp->t_pc = (uintptr_t)mp_startup_boot; 329 } else { 330 tp->t_pc = (uintptr_t)mp_startup_hotplug; 331 } 332 333 cp->cpu_id = cpun; 334 cp->cpu_self = cp; 335 cp->cpu_thread = tp; 336 cp->cpu_lwp = NULL; 337 cp->cpu_dispthread = tp; 338 cp->cpu_dispatch_pri = DISP_PRIO(tp); 339 340 /* 341 * cpu_base_spl must be set explicitly here to prevent any blocking 342 * operations in mp_startup_common from causing the spl of the cpu 343 * to drop to 0 (allowing device interrupts before we're ready) in 344 * resume(). 345 * cpu_base_spl MUST remain at LOCK_LEVEL until the cpu is CPU_READY. 346 * As an extra bit of security on DEBUG kernels, this is enforced with 347 * an assertion in mp_startup_common() -- before cpu_base_spl is set 348 * to its proper value. 349 */ 350 cp->cpu_base_spl = ipltospl(LOCK_LEVEL); 351 352 /* 353 * Now, initialize per-CPU idle thread for this CPU. 354 */ 355 tp = thread_create(NULL, PAGESIZE, idle, NULL, 0, procp, TS_ONPROC, -1); 356 357 cp->cpu_idle_thread = tp; 358 359 tp->t_preempt = 1; 360 tp->t_bound_cpu = cp; 361 tp->t_affinitycnt = 1; 362 tp->t_cpu = cp; 363 tp->t_disp_queue = cp->cpu_disp; 364 365 /* 366 * Bootstrap the CPU's PG data 367 */ 368 pg_cpu_bootstrap(cp); 369 370 /* 371 * Perform CPC initialization on the new CPU. 372 */ 373 kcpc_hw_init(cp); 374 375 /* 376 * Allocate virtual addresses for cpu_caddr1 and cpu_caddr2 377 * for each CPU. 378 */ 379 setup_vaddr_for_ppcopy(cp); 380 381 /* 382 * Allocate page for new GDT and initialize from current GDT. 383 */ 384 #if !defined(__lint) 385 ASSERT((sizeof (*cp->cpu_gdt) * NGDT) <= PAGESIZE); 386 #endif 387 cp->cpu_gdt = kmem_zalloc(PAGESIZE, KM_SLEEP); 388 bcopy(CPU->cpu_gdt, cp->cpu_gdt, (sizeof (*cp->cpu_gdt) * NGDT)); 389 390 #if defined(__i386) 391 /* 392 * setup kernel %gs. 393 */ 394 set_usegd(&cp->cpu_gdt[GDT_GS], cp, sizeof (struct cpu) -1, SDT_MEMRWA, 395 SEL_KPL, 0, 1); 396 #endif 397 398 /* 399 * If we have more than one node, each cpu gets a copy of IDT 400 * local to its node. If this is a Pentium box, we use cpu 0's 401 * IDT. cpu 0's IDT has been made read-only to workaround the 402 * cmpxchgl register bug 403 */ 404 if (system_hardware.hd_nodes && x86_type != X86_TYPE_P5) { 405 #if !defined(__lint) 406 ASSERT((sizeof (*CPU->cpu_idt) * NIDT) <= PAGESIZE); 407 #endif 408 cp->cpu_idt = kmem_zalloc(PAGESIZE, KM_SLEEP); 409 bcopy(CPU->cpu_idt, cp->cpu_idt, PAGESIZE); 410 } else { 411 cp->cpu_idt = CPU->cpu_idt; 412 } 413 414 /* 415 * Get interrupt priority data from cpu 0. 416 */ 417 cp->cpu_pri_data = CPU->cpu_pri_data; 418 419 /* 420 * alloc space for cpuid info 421 */ 422 cpuid_alloc_space(cp); 423 #if !defined(__xpv) 424 if (is_x86_feature(x86_featureset, X86FSET_MWAIT) && 425 idle_cpu_prefer_mwait) { 426 cp->cpu_m.mcpu_mwait = cpuid_mwait_alloc(cp); 427 cp->cpu_m.mcpu_idle_cpu = cpu_idle_mwait; 428 } else 429 #endif 430 cp->cpu_m.mcpu_idle_cpu = cpu_idle; 431 432 init_cpu_info(cp); 433 434 /* 435 * alloc space for ucode_info 436 */ 437 ucode_alloc_space(cp); 438 xc_init_cpu(cp); 439 hat_cpu_online(cp); 440 441 #ifdef TRAPTRACE 442 /* 443 * If this is a TRAPTRACE kernel, allocate TRAPTRACE buffers 444 */ 445 ttc->ttc_first = (uintptr_t)kmem_zalloc(trap_trace_bufsize, KM_SLEEP); 446 ttc->ttc_next = ttc->ttc_first; 447 ttc->ttc_limit = ttc->ttc_first + trap_trace_bufsize; 448 #endif 449 450 /* 451 * Record that we have another CPU. 452 */ 453 /* 454 * Initialize the interrupt threads for this CPU 455 */ 456 cpu_intr_alloc(cp, NINTR_THREADS); 457 458 cp->cpu_flags = CPU_OFFLINE | CPU_QUIESCED | CPU_POWEROFF; 459 cpu_set_state(cp); 460 461 /* 462 * Add CPU to list of available CPUs. It'll be on the active list 463 * after mp_startup_common(). 464 */ 465 cpu_add_unit(cp); 466 467 return (cp); 468 } 469 470 /* 471 * Undo what was done in mp_cpu_configure_common 472 */ 473 static void 474 mp_cpu_unconfigure_common(struct cpu *cp, int error) 475 { 476 ASSERT(MUTEX_HELD(&cpu_lock)); 477 478 /* 479 * Remove the CPU from the list of available CPUs. 480 */ 481 cpu_del_unit(cp->cpu_id); 482 483 if (error == ETIMEDOUT) { 484 /* 485 * The cpu was started, but never *seemed* to run any 486 * code in the kernel; it's probably off spinning in its 487 * own private world, though with potential references to 488 * our kmem-allocated IDTs and GDTs (for example). 489 * 490 * Worse still, it may actually wake up some time later, 491 * so rather than guess what it might or might not do, we 492 * leave the fundamental data structures intact. 493 */ 494 cp->cpu_flags = 0; 495 return; 496 } 497 498 /* 499 * At this point, the only threads bound to this CPU should 500 * special per-cpu threads: it's idle thread, it's pause threads, 501 * and it's interrupt threads. Clean these up. 502 */ 503 cpu_destroy_bound_threads(cp); 504 cp->cpu_idle_thread = NULL; 505 506 /* 507 * Free the interrupt stack. 508 */ 509 segkp_release(segkp, 510 cp->cpu_intr_stack - (INTR_STACK_SIZE - SA(MINFRAME))); 511 cp->cpu_intr_stack = NULL; 512 513 #ifdef TRAPTRACE 514 /* 515 * Discard the trap trace buffer 516 */ 517 { 518 trap_trace_ctl_t *ttc = &trap_trace_ctl[cp->cpu_id]; 519 520 kmem_free((void *)ttc->ttc_first, trap_trace_bufsize); 521 ttc->ttc_first = NULL; 522 } 523 #endif 524 525 hat_cpu_offline(cp); 526 527 ucode_free_space(cp); 528 529 /* Free CPU ID string and brand string. */ 530 if (cp->cpu_idstr) { 531 kmem_free(cp->cpu_idstr, CPU_IDSTRLEN); 532 cp->cpu_idstr = NULL; 533 } 534 if (cp->cpu_brandstr) { 535 kmem_free(cp->cpu_brandstr, CPU_IDSTRLEN); 536 cp->cpu_brandstr = NULL; 537 } 538 539 #if !defined(__xpv) 540 if (cp->cpu_m.mcpu_mwait != NULL) { 541 cpuid_mwait_free(cp); 542 cp->cpu_m.mcpu_mwait = NULL; 543 } 544 #endif 545 cpuid_free_space(cp); 546 547 if (cp->cpu_idt != CPU->cpu_idt) 548 kmem_free(cp->cpu_idt, PAGESIZE); 549 cp->cpu_idt = NULL; 550 551 kmem_free(cp->cpu_gdt, PAGESIZE); 552 cp->cpu_gdt = NULL; 553 554 if (cp->cpu_supp_freqs != NULL) { 555 size_t len = strlen(cp->cpu_supp_freqs) + 1; 556 kmem_free(cp->cpu_supp_freqs, len); 557 cp->cpu_supp_freqs = NULL; 558 } 559 560 teardown_vaddr_for_ppcopy(cp); 561 562 kcpc_hw_fini(cp); 563 564 cp->cpu_dispthread = NULL; 565 cp->cpu_thread = NULL; /* discarded by cpu_destroy_bound_threads() */ 566 567 cpu_vm_data_destroy(cp); 568 569 xc_fini_cpu(cp); 570 disp_cpu_fini(cp); 571 572 ASSERT(cp != CPU0); 573 bzero(cp, sizeof (*cp)); 574 cp->cpu_next_free = cpu_free_list; 575 cpu_free_list = cp; 576 } 577 578 /* 579 * Apply workarounds for known errata, and warn about those that are absent. 580 * 581 * System vendors occasionally create configurations which contain different 582 * revisions of the CPUs that are almost but not exactly the same. At the 583 * time of writing, this meant that their clock rates were the same, their 584 * feature sets were the same, but the required workaround were -not- 585 * necessarily the same. So, this routine is invoked on -every- CPU soon 586 * after starting to make sure that the resulting system contains the most 587 * pessimal set of workarounds needed to cope with *any* of the CPUs in the 588 * system. 589 * 590 * workaround_errata is invoked early in mlsetup() for CPU 0, and in 591 * mp_startup_common() for all slave CPUs. Slaves process workaround_errata 592 * prior to acknowledging their readiness to the master, so this routine will 593 * never be executed by multiple CPUs in parallel, thus making updates to 594 * global data safe. 595 * 596 * These workarounds are based on Rev 3.57 of the Revision Guide for 597 * AMD Athlon(tm) 64 and AMD Opteron(tm) Processors, August 2005. 598 */ 599 600 #if defined(OPTERON_ERRATUM_88) 601 int opteron_erratum_88; /* if non-zero -> at least one cpu has it */ 602 #endif 603 604 #if defined(OPTERON_ERRATUM_91) 605 int opteron_erratum_91; /* if non-zero -> at least one cpu has it */ 606 #endif 607 608 #if defined(OPTERON_ERRATUM_93) 609 int opteron_erratum_93; /* if non-zero -> at least one cpu has it */ 610 #endif 611 612 #if defined(OPTERON_ERRATUM_95) 613 int opteron_erratum_95; /* if non-zero -> at least one cpu has it */ 614 #endif 615 616 #if defined(OPTERON_ERRATUM_100) 617 int opteron_erratum_100; /* if non-zero -> at least one cpu has it */ 618 #endif 619 620 #if defined(OPTERON_ERRATUM_108) 621 int opteron_erratum_108; /* if non-zero -> at least one cpu has it */ 622 #endif 623 624 #if defined(OPTERON_ERRATUM_109) 625 int opteron_erratum_109; /* if non-zero -> at least one cpu has it */ 626 #endif 627 628 #if defined(OPTERON_ERRATUM_121) 629 int opteron_erratum_121; /* if non-zero -> at least one cpu has it */ 630 #endif 631 632 #if defined(OPTERON_ERRATUM_122) 633 int opteron_erratum_122; /* if non-zero -> at least one cpu has it */ 634 #endif 635 636 #if defined(OPTERON_ERRATUM_123) 637 int opteron_erratum_123; /* if non-zero -> at least one cpu has it */ 638 #endif 639 640 #if defined(OPTERON_ERRATUM_131) 641 int opteron_erratum_131; /* if non-zero -> at least one cpu has it */ 642 #endif 643 644 #if defined(OPTERON_WORKAROUND_6336786) 645 int opteron_workaround_6336786; /* non-zero -> WA relevant and applied */ 646 int opteron_workaround_6336786_UP = 0; /* Not needed for UP */ 647 #endif 648 649 #if defined(OPTERON_WORKAROUND_6323525) 650 int opteron_workaround_6323525; /* if non-zero -> at least one cpu has it */ 651 #endif 652 653 #if defined(OPTERON_ERRATUM_298) 654 int opteron_erratum_298; 655 #endif 656 657 #if defined(OPTERON_ERRATUM_721) 658 int opteron_erratum_721; 659 #endif 660 661 static void 662 workaround_warning(cpu_t *cp, uint_t erratum) 663 { 664 cmn_err(CE_WARN, "cpu%d: no workaround for erratum %u", 665 cp->cpu_id, erratum); 666 } 667 668 static void 669 workaround_applied(uint_t erratum) 670 { 671 if (erratum > 1000000) 672 cmn_err(CE_CONT, "?workaround applied for cpu issue #%d\n", 673 erratum); 674 else 675 cmn_err(CE_CONT, "?workaround applied for cpu erratum #%d\n", 676 erratum); 677 } 678 679 static void 680 msr_warning(cpu_t *cp, const char *rw, uint_t msr, int error) 681 { 682 cmn_err(CE_WARN, "cpu%d: couldn't %smsr 0x%x, error %d", 683 cp->cpu_id, rw, msr, error); 684 } 685 686 /* 687 * Determine the number of nodes in a Hammer / Greyhound / Griffin family 688 * system. 689 */ 690 static uint_t 691 opteron_get_nnodes(void) 692 { 693 static uint_t nnodes = 0; 694 695 if (nnodes == 0) { 696 #ifdef DEBUG 697 uint_t family; 698 699 /* 700 * This routine uses a PCI config space based mechanism 701 * for retrieving the number of nodes in the system. 702 * Device 24, function 0, offset 0x60 as used here is not 703 * AMD processor architectural, and may not work on processor 704 * families other than those listed below. 705 * 706 * Callers of this routine must ensure that we're running on 707 * a processor which supports this mechanism. 708 * The assertion below is meant to catch calls on unsupported 709 * processors. 710 */ 711 family = cpuid_getfamily(CPU); 712 ASSERT(family == 0xf || family == 0x10 || family == 0x11); 713 #endif /* DEBUG */ 714 715 /* 716 * Obtain the number of nodes in the system from 717 * bits [6:4] of the Node ID register on node 0. 718 * 719 * The actual node count is NodeID[6:4] + 1 720 * 721 * The Node ID register is accessed via function 0, 722 * offset 0x60. Node 0 is device 24. 723 */ 724 nnodes = ((pci_getl_func(0, 24, 0, 0x60) & 0x70) >> 4) + 1; 725 } 726 return (nnodes); 727 } 728 729 uint_t 730 do_erratum_298(struct cpu *cpu) 731 { 732 static int osvwrc = -3; 733 extern int osvw_opteron_erratum(cpu_t *, uint_t); 734 735 /* 736 * L2 Eviction May Occur During Processor Operation To Set 737 * Accessed or Dirty Bit. 738 */ 739 if (osvwrc == -3) { 740 osvwrc = osvw_opteron_erratum(cpu, 298); 741 } else { 742 /* osvw return codes should be consistent for all cpus */ 743 ASSERT(osvwrc == osvw_opteron_erratum(cpu, 298)); 744 } 745 746 switch (osvwrc) { 747 case 0: /* erratum is not present: do nothing */ 748 break; 749 case 1: /* erratum is present: BIOS workaround applied */ 750 /* 751 * check if workaround is actually in place and issue warning 752 * if not. 753 */ 754 if (((rdmsr(MSR_AMD_HWCR) & AMD_HWCR_TLBCACHEDIS) == 0) || 755 ((rdmsr(MSR_AMD_BU_CFG) & AMD_BU_CFG_E298) == 0)) { 756 #if defined(OPTERON_ERRATUM_298) 757 opteron_erratum_298++; 758 #else 759 workaround_warning(cpu, 298); 760 return (1); 761 #endif 762 } 763 break; 764 case -1: /* cannot determine via osvw: check cpuid */ 765 if ((cpuid_opteron_erratum(cpu, 298) > 0) && 766 (((rdmsr(MSR_AMD_HWCR) & AMD_HWCR_TLBCACHEDIS) == 0) || 767 ((rdmsr(MSR_AMD_BU_CFG) & AMD_BU_CFG_E298) == 0))) { 768 #if defined(OPTERON_ERRATUM_298) 769 opteron_erratum_298++; 770 #else 771 workaround_warning(cpu, 298); 772 return (1); 773 #endif 774 } 775 break; 776 } 777 return (0); 778 } 779 780 uint_t 781 workaround_errata(struct cpu *cpu) 782 { 783 uint_t missing = 0; 784 785 ASSERT(cpu == CPU); 786 787 /*LINTED*/ 788 if (cpuid_opteron_erratum(cpu, 88) > 0) { 789 /* 790 * SWAPGS May Fail To Read Correct GS Base 791 */ 792 #if defined(OPTERON_ERRATUM_88) 793 /* 794 * The workaround is an mfence in the relevant assembler code 795 */ 796 opteron_erratum_88++; 797 #else 798 workaround_warning(cpu, 88); 799 missing++; 800 #endif 801 } 802 803 if (cpuid_opteron_erratum(cpu, 91) > 0) { 804 /* 805 * Software Prefetches May Report A Page Fault 806 */ 807 #if defined(OPTERON_ERRATUM_91) 808 /* 809 * fix is in trap.c 810 */ 811 opteron_erratum_91++; 812 #else 813 workaround_warning(cpu, 91); 814 missing++; 815 #endif 816 } 817 818 if (cpuid_opteron_erratum(cpu, 93) > 0) { 819 /* 820 * RSM Auto-Halt Restart Returns to Incorrect RIP 821 */ 822 #if defined(OPTERON_ERRATUM_93) 823 /* 824 * fix is in trap.c 825 */ 826 opteron_erratum_93++; 827 #else 828 workaround_warning(cpu, 93); 829 missing++; 830 #endif 831 } 832 833 /*LINTED*/ 834 if (cpuid_opteron_erratum(cpu, 95) > 0) { 835 /* 836 * RET Instruction May Return to Incorrect EIP 837 */ 838 #if defined(OPTERON_ERRATUM_95) 839 #if defined(_LP64) 840 /* 841 * Workaround this by ensuring that 32-bit user code and 842 * 64-bit kernel code never occupy the same address 843 * range mod 4G. 844 */ 845 if (_userlimit32 > 0xc0000000ul) 846 *(uintptr_t *)&_userlimit32 = 0xc0000000ul; 847 848 /*LINTED*/ 849 ASSERT((uint32_t)COREHEAP_BASE == 0xc0000000u); 850 opteron_erratum_95++; 851 #endif /* _LP64 */ 852 #else 853 workaround_warning(cpu, 95); 854 missing++; 855 #endif 856 } 857 858 if (cpuid_opteron_erratum(cpu, 100) > 0) { 859 /* 860 * Compatibility Mode Branches Transfer to Illegal Address 861 */ 862 #if defined(OPTERON_ERRATUM_100) 863 /* 864 * fix is in trap.c 865 */ 866 opteron_erratum_100++; 867 #else 868 workaround_warning(cpu, 100); 869 missing++; 870 #endif 871 } 872 873 /*LINTED*/ 874 if (cpuid_opteron_erratum(cpu, 108) > 0) { 875 /* 876 * CPUID Instruction May Return Incorrect Model Number In 877 * Some Processors 878 */ 879 #if defined(OPTERON_ERRATUM_108) 880 /* 881 * (Our cpuid-handling code corrects the model number on 882 * those processors) 883 */ 884 #else 885 workaround_warning(cpu, 108); 886 missing++; 887 #endif 888 } 889 890 /*LINTED*/ 891 if (cpuid_opteron_erratum(cpu, 109) > 0) do { 892 /* 893 * Certain Reverse REP MOVS May Produce Unpredictable Behavior 894 */ 895 #if defined(OPTERON_ERRATUM_109) 896 /* 897 * The "workaround" is to print a warning to upgrade the BIOS 898 */ 899 uint64_t value; 900 const uint_t msr = MSR_AMD_PATCHLEVEL; 901 int err; 902 903 if ((err = checked_rdmsr(msr, &value)) != 0) { 904 msr_warning(cpu, "rd", msr, err); 905 workaround_warning(cpu, 109); 906 missing++; 907 } 908 if (value == 0) 909 opteron_erratum_109++; 910 #else 911 workaround_warning(cpu, 109); 912 missing++; 913 #endif 914 /*CONSTANTCONDITION*/ 915 } while (0); 916 917 /*LINTED*/ 918 if (cpuid_opteron_erratum(cpu, 121) > 0) { 919 /* 920 * Sequential Execution Across Non_Canonical Boundary Caused 921 * Processor Hang 922 */ 923 #if defined(OPTERON_ERRATUM_121) 924 #if defined(_LP64) 925 /* 926 * Erratum 121 is only present in long (64 bit) mode. 927 * Workaround is to include the page immediately before the 928 * va hole to eliminate the possibility of system hangs due to 929 * sequential execution across the va hole boundary. 930 */ 931 if (opteron_erratum_121) 932 opteron_erratum_121++; 933 else { 934 if (hole_start) { 935 hole_start -= PAGESIZE; 936 } else { 937 /* 938 * hole_start not yet initialized by 939 * mmu_init. Initialize hole_start 940 * with value to be subtracted. 941 */ 942 hole_start = PAGESIZE; 943 } 944 opteron_erratum_121++; 945 } 946 #endif /* _LP64 */ 947 #else 948 workaround_warning(cpu, 121); 949 missing++; 950 #endif 951 } 952 953 /*LINTED*/ 954 if (cpuid_opteron_erratum(cpu, 122) > 0) do { 955 /* 956 * TLB Flush Filter May Cause Coherency Problem in 957 * Multiprocessor Systems 958 */ 959 #if defined(OPTERON_ERRATUM_122) 960 uint64_t value; 961 const uint_t msr = MSR_AMD_HWCR; 962 int error; 963 964 /* 965 * Erratum 122 is only present in MP configurations (multi-core 966 * or multi-processor). 967 */ 968 #if defined(__xpv) 969 if (!DOMAIN_IS_INITDOMAIN(xen_info)) 970 break; 971 if (!opteron_erratum_122 && xpv_nr_phys_cpus() == 1) 972 break; 973 #else 974 if (!opteron_erratum_122 && opteron_get_nnodes() == 1 && 975 cpuid_get_ncpu_per_chip(cpu) == 1) 976 break; 977 #endif 978 /* disable TLB Flush Filter */ 979 980 if ((error = checked_rdmsr(msr, &value)) != 0) { 981 msr_warning(cpu, "rd", msr, error); 982 workaround_warning(cpu, 122); 983 missing++; 984 } else { 985 value |= (uint64_t)AMD_HWCR_FFDIS; 986 if ((error = checked_wrmsr(msr, value)) != 0) { 987 msr_warning(cpu, "wr", msr, error); 988 workaround_warning(cpu, 122); 989 missing++; 990 } 991 } 992 opteron_erratum_122++; 993 #else 994 workaround_warning(cpu, 122); 995 missing++; 996 #endif 997 /*CONSTANTCONDITION*/ 998 } while (0); 999 1000 /*LINTED*/ 1001 if (cpuid_opteron_erratum(cpu, 123) > 0) do { 1002 /* 1003 * Bypassed Reads May Cause Data Corruption of System Hang in 1004 * Dual Core Processors 1005 */ 1006 #if defined(OPTERON_ERRATUM_123) 1007 uint64_t value; 1008 const uint_t msr = MSR_AMD_PATCHLEVEL; 1009 int err; 1010 1011 /* 1012 * Erratum 123 applies only to multi-core cpus. 1013 */ 1014 if (cpuid_get_ncpu_per_chip(cpu) < 2) 1015 break; 1016 #if defined(__xpv) 1017 if (!DOMAIN_IS_INITDOMAIN(xen_info)) 1018 break; 1019 #endif 1020 /* 1021 * The "workaround" is to print a warning to upgrade the BIOS 1022 */ 1023 if ((err = checked_rdmsr(msr, &value)) != 0) { 1024 msr_warning(cpu, "rd", msr, err); 1025 workaround_warning(cpu, 123); 1026 missing++; 1027 } 1028 if (value == 0) 1029 opteron_erratum_123++; 1030 #else 1031 workaround_warning(cpu, 123); 1032 missing++; 1033 1034 #endif 1035 /*CONSTANTCONDITION*/ 1036 } while (0); 1037 1038 /*LINTED*/ 1039 if (cpuid_opteron_erratum(cpu, 131) > 0) do { 1040 /* 1041 * Multiprocessor Systems with Four or More Cores May Deadlock 1042 * Waiting for a Probe Response 1043 */ 1044 #if defined(OPTERON_ERRATUM_131) 1045 uint64_t nbcfg; 1046 const uint_t msr = MSR_AMD_NB_CFG; 1047 const uint64_t wabits = 1048 AMD_NB_CFG_SRQ_HEARTBEAT | AMD_NB_CFG_SRQ_SPR; 1049 int error; 1050 1051 /* 1052 * Erratum 131 applies to any system with four or more cores. 1053 */ 1054 if (opteron_erratum_131) 1055 break; 1056 #if defined(__xpv) 1057 if (!DOMAIN_IS_INITDOMAIN(xen_info)) 1058 break; 1059 if (xpv_nr_phys_cpus() < 4) 1060 break; 1061 #else 1062 if (opteron_get_nnodes() * cpuid_get_ncpu_per_chip(cpu) < 4) 1063 break; 1064 #endif 1065 /* 1066 * Print a warning if neither of the workarounds for 1067 * erratum 131 is present. 1068 */ 1069 if ((error = checked_rdmsr(msr, &nbcfg)) != 0) { 1070 msr_warning(cpu, "rd", msr, error); 1071 workaround_warning(cpu, 131); 1072 missing++; 1073 } else if ((nbcfg & wabits) == 0) { 1074 opteron_erratum_131++; 1075 } else { 1076 /* cannot have both workarounds set */ 1077 ASSERT((nbcfg & wabits) != wabits); 1078 } 1079 #else 1080 workaround_warning(cpu, 131); 1081 missing++; 1082 #endif 1083 /*CONSTANTCONDITION*/ 1084 } while (0); 1085 1086 /* 1087 * This isn't really an erratum, but for convenience the 1088 * detection/workaround code lives here and in cpuid_opteron_erratum. 1089 */ 1090 if (cpuid_opteron_erratum(cpu, 6336786) > 0) { 1091 #if defined(OPTERON_WORKAROUND_6336786) 1092 /* 1093 * Disable C1-Clock ramping on multi-core/multi-processor 1094 * K8 platforms to guard against TSC drift. 1095 */ 1096 if (opteron_workaround_6336786) { 1097 opteron_workaround_6336786++; 1098 #if defined(__xpv) 1099 } else if ((DOMAIN_IS_INITDOMAIN(xen_info) && 1100 xpv_nr_phys_cpus() > 1) || 1101 opteron_workaround_6336786_UP) { 1102 /* 1103 * XXPV Hmm. We can't walk the Northbridges on 1104 * the hypervisor; so just complain and drive 1105 * on. This probably needs to be fixed in 1106 * the hypervisor itself. 1107 */ 1108 opteron_workaround_6336786++; 1109 workaround_warning(cpu, 6336786); 1110 #else /* __xpv */ 1111 } else if ((opteron_get_nnodes() * 1112 cpuid_get_ncpu_per_chip(cpu) > 1) || 1113 opteron_workaround_6336786_UP) { 1114 1115 uint_t node, nnodes; 1116 uint8_t data; 1117 1118 nnodes = opteron_get_nnodes(); 1119 for (node = 0; node < nnodes; node++) { 1120 /* 1121 * Clear PMM7[1:0] (function 3, offset 0x87) 1122 * Northbridge device is the node id + 24. 1123 */ 1124 data = pci_getb_func(0, node + 24, 3, 0x87); 1125 data &= 0xFC; 1126 pci_putb_func(0, node + 24, 3, 0x87, data); 1127 } 1128 opteron_workaround_6336786++; 1129 #endif /* __xpv */ 1130 } 1131 #else 1132 workaround_warning(cpu, 6336786); 1133 missing++; 1134 #endif 1135 } 1136 1137 /*LINTED*/ 1138 /* 1139 * Mutex primitives don't work as expected. 1140 */ 1141 if (cpuid_opteron_erratum(cpu, 6323525) > 0) { 1142 #if defined(OPTERON_WORKAROUND_6323525) 1143 /* 1144 * This problem only occurs with 2 or more cores. If bit in 1145 * MSR_AMD_BU_CFG set, then not applicable. The workaround 1146 * is to patch the semaphone routines with the lfence 1147 * instruction to provide necessary load memory barrier with 1148 * possible subsequent read-modify-write ops. 1149 * 1150 * It is too early in boot to call the patch routine so 1151 * set erratum variable to be done in startup_end(). 1152 */ 1153 if (opteron_workaround_6323525) { 1154 opteron_workaround_6323525++; 1155 #if defined(__xpv) 1156 } else if (is_x86_feature(x86_featureset, X86FSET_SSE2)) { 1157 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 1158 /* 1159 * XXPV Use dom0_msr here when extended 1160 * operations are supported? 1161 */ 1162 if (xpv_nr_phys_cpus() > 1) 1163 opteron_workaround_6323525++; 1164 } else { 1165 /* 1166 * We have no way to tell how many physical 1167 * cpus there are, or even if this processor 1168 * has the problem, so enable the workaround 1169 * unconditionally (at some performance cost). 1170 */ 1171 opteron_workaround_6323525++; 1172 } 1173 #else /* __xpv */ 1174 } else if (is_x86_feature(x86_featureset, X86FSET_SSE2) && 1175 ((opteron_get_nnodes() * 1176 cpuid_get_ncpu_per_chip(cpu)) > 1)) { 1177 if ((xrdmsr(MSR_AMD_BU_CFG) & (UINT64_C(1) << 33)) == 0) 1178 opteron_workaround_6323525++; 1179 #endif /* __xpv */ 1180 } 1181 #else 1182 workaround_warning(cpu, 6323525); 1183 missing++; 1184 #endif 1185 } 1186 1187 missing += do_erratum_298(cpu); 1188 1189 if (cpuid_opteron_erratum(cpu, 721) > 0) { 1190 #if defined(OPTERON_ERRATUM_721) 1191 on_trap_data_t otd; 1192 1193 if (!on_trap(&otd, OT_DATA_ACCESS)) 1194 wrmsr(MSR_AMD_DE_CFG, 1195 rdmsr(MSR_AMD_DE_CFG) | AMD_DE_CFG_E721); 1196 no_trap(); 1197 1198 opteron_erratum_721++; 1199 #else 1200 workaround_warning(cpu, 721); 1201 missing++; 1202 #endif 1203 } 1204 1205 #ifdef __xpv 1206 return (0); 1207 #else 1208 return (missing); 1209 #endif 1210 } 1211 1212 void 1213 workaround_errata_end() 1214 { 1215 #if defined(OPTERON_ERRATUM_88) 1216 if (opteron_erratum_88) 1217 workaround_applied(88); 1218 #endif 1219 #if defined(OPTERON_ERRATUM_91) 1220 if (opteron_erratum_91) 1221 workaround_applied(91); 1222 #endif 1223 #if defined(OPTERON_ERRATUM_93) 1224 if (opteron_erratum_93) 1225 workaround_applied(93); 1226 #endif 1227 #if defined(OPTERON_ERRATUM_95) 1228 if (opteron_erratum_95) 1229 workaround_applied(95); 1230 #endif 1231 #if defined(OPTERON_ERRATUM_100) 1232 if (opteron_erratum_100) 1233 workaround_applied(100); 1234 #endif 1235 #if defined(OPTERON_ERRATUM_108) 1236 if (opteron_erratum_108) 1237 workaround_applied(108); 1238 #endif 1239 #if defined(OPTERON_ERRATUM_109) 1240 if (opteron_erratum_109) { 1241 cmn_err(CE_WARN, 1242 "BIOS microcode patch for AMD Athlon(tm) 64/Opteron(tm)" 1243 " processor\nerratum 109 was not detected; updating your" 1244 " system's BIOS to a version\ncontaining this" 1245 " microcode patch is HIGHLY recommended or erroneous" 1246 " system\noperation may occur.\n"); 1247 } 1248 #endif 1249 #if defined(OPTERON_ERRATUM_121) 1250 if (opteron_erratum_121) 1251 workaround_applied(121); 1252 #endif 1253 #if defined(OPTERON_ERRATUM_122) 1254 if (opteron_erratum_122) 1255 workaround_applied(122); 1256 #endif 1257 #if defined(OPTERON_ERRATUM_123) 1258 if (opteron_erratum_123) { 1259 cmn_err(CE_WARN, 1260 "BIOS microcode patch for AMD Athlon(tm) 64/Opteron(tm)" 1261 " processor\nerratum 123 was not detected; updating your" 1262 " system's BIOS to a version\ncontaining this" 1263 " microcode patch is HIGHLY recommended or erroneous" 1264 " system\noperation may occur.\n"); 1265 } 1266 #endif 1267 #if defined(OPTERON_ERRATUM_131) 1268 if (opteron_erratum_131) { 1269 cmn_err(CE_WARN, 1270 "BIOS microcode patch for AMD Athlon(tm) 64/Opteron(tm)" 1271 " processor\nerratum 131 was not detected; updating your" 1272 " system's BIOS to a version\ncontaining this" 1273 " microcode patch is HIGHLY recommended or erroneous" 1274 " system\noperation may occur.\n"); 1275 } 1276 #endif 1277 #if defined(OPTERON_WORKAROUND_6336786) 1278 if (opteron_workaround_6336786) 1279 workaround_applied(6336786); 1280 #endif 1281 #if defined(OPTERON_WORKAROUND_6323525) 1282 if (opteron_workaround_6323525) 1283 workaround_applied(6323525); 1284 #endif 1285 #if defined(OPTERON_ERRATUM_298) 1286 if (opteron_erratum_298) { 1287 cmn_err(CE_WARN, 1288 "BIOS microcode patch for AMD 64/Opteron(tm)" 1289 " processor\nerratum 298 was not detected; updating your" 1290 " system's BIOS to a version\ncontaining this" 1291 " microcode patch is HIGHLY recommended or erroneous" 1292 " system\noperation may occur.\n"); 1293 } 1294 #endif 1295 #if defined(OPTERON_ERRATUM_721) 1296 if (opteron_erratum_721) 1297 workaround_applied(721); 1298 #endif 1299 } 1300 1301 /* 1302 * The procset_slave and procset_master are used to synchronize 1303 * between the control CPU and the target CPU when starting CPUs. 1304 */ 1305 static cpuset_t procset_slave, procset_master; 1306 1307 static void 1308 mp_startup_wait(cpuset_t *sp, processorid_t cpuid) 1309 { 1310 cpuset_t tempset; 1311 1312 for (tempset = *sp; !CPU_IN_SET(tempset, cpuid); 1313 tempset = *(volatile cpuset_t *)sp) { 1314 SMT_PAUSE(); 1315 } 1316 CPUSET_ATOMIC_DEL(*(cpuset_t *)sp, cpuid); 1317 } 1318 1319 static void 1320 mp_startup_signal(cpuset_t *sp, processorid_t cpuid) 1321 { 1322 cpuset_t tempset; 1323 1324 CPUSET_ATOMIC_ADD(*(cpuset_t *)sp, cpuid); 1325 for (tempset = *sp; CPU_IN_SET(tempset, cpuid); 1326 tempset = *(volatile cpuset_t *)sp) { 1327 SMT_PAUSE(); 1328 } 1329 } 1330 1331 int 1332 mp_start_cpu_common(cpu_t *cp, boolean_t boot) 1333 { 1334 _NOTE(ARGUNUSED(boot)); 1335 1336 void *ctx; 1337 int delays; 1338 int error = 0; 1339 cpuset_t tempset; 1340 processorid_t cpuid; 1341 #ifndef __xpv 1342 extern void cpupm_init(cpu_t *); 1343 #endif 1344 1345 ASSERT(cp != NULL); 1346 cpuid = cp->cpu_id; 1347 ctx = mach_cpucontext_alloc(cp); 1348 if (ctx == NULL) { 1349 cmn_err(CE_WARN, 1350 "cpu%d: failed to allocate context", cp->cpu_id); 1351 return (EAGAIN); 1352 } 1353 error = mach_cpu_start(cp, ctx); 1354 if (error != 0) { 1355 cmn_err(CE_WARN, 1356 "cpu%d: failed to start, error %d", cp->cpu_id, error); 1357 mach_cpucontext_free(cp, ctx, error); 1358 return (error); 1359 } 1360 1361 for (delays = 0, tempset = procset_slave; !CPU_IN_SET(tempset, cpuid); 1362 delays++) { 1363 if (delays == 500) { 1364 /* 1365 * After five seconds, things are probably looking 1366 * a bit bleak - explain the hang. 1367 */ 1368 cmn_err(CE_NOTE, "cpu%d: started, " 1369 "but not running in the kernel yet", cpuid); 1370 } else if (delays > 2000) { 1371 /* 1372 * We waited at least 20 seconds, bail .. 1373 */ 1374 error = ETIMEDOUT; 1375 cmn_err(CE_WARN, "cpu%d: timed out", cpuid); 1376 mach_cpucontext_free(cp, ctx, error); 1377 return (error); 1378 } 1379 1380 /* 1381 * wait at least 10ms, then check again.. 1382 */ 1383 delay(USEC_TO_TICK_ROUNDUP(10000)); 1384 tempset = *((volatile cpuset_t *)&procset_slave); 1385 } 1386 CPUSET_ATOMIC_DEL(procset_slave, cpuid); 1387 1388 mach_cpucontext_free(cp, ctx, 0); 1389 1390 #ifndef __xpv 1391 if (tsc_gethrtime_enable) 1392 tsc_sync_master(cpuid); 1393 #endif 1394 1395 if (dtrace_cpu_init != NULL) { 1396 (*dtrace_cpu_init)(cpuid); 1397 } 1398 1399 /* 1400 * During CPU DR operations, the cpu_lock is held by current 1401 * (the control) thread. We can't release the cpu_lock here 1402 * because that will break the CPU DR logic. 1403 * On the other hand, CPUPM and processor group initialization 1404 * routines need to access the cpu_lock. So we invoke those 1405 * routines here on behalf of mp_startup_common(). 1406 * 1407 * CPUPM and processor group initialization routines depend 1408 * on the cpuid probing results. Wait for mp_startup_common() 1409 * to signal that cpuid probing is done. 1410 */ 1411 mp_startup_wait(&procset_slave, cpuid); 1412 #ifndef __xpv 1413 cpupm_init(cp); 1414 #endif 1415 (void) pg_cpu_init(cp, B_FALSE); 1416 cpu_set_state(cp); 1417 mp_startup_signal(&procset_master, cpuid); 1418 1419 return (0); 1420 } 1421 1422 /* 1423 * Start a single cpu, assuming that the kernel context is available 1424 * to successfully start another cpu. 1425 * 1426 * (For example, real mode code is mapped into the right place 1427 * in memory and is ready to be run.) 1428 */ 1429 int 1430 start_cpu(processorid_t who) 1431 { 1432 cpu_t *cp; 1433 int error = 0; 1434 cpuset_t tempset; 1435 1436 ASSERT(who != 0); 1437 1438 /* 1439 * Check if there's at least a Mbyte of kmem available 1440 * before attempting to start the cpu. 1441 */ 1442 if (kmem_avail() < 1024 * 1024) { 1443 /* 1444 * Kick off a reap in case that helps us with 1445 * later attempts .. 1446 */ 1447 kmem_reap(); 1448 return (ENOMEM); 1449 } 1450 1451 /* 1452 * First configure cpu. 1453 */ 1454 cp = mp_cpu_configure_common(who, B_TRUE); 1455 ASSERT(cp != NULL); 1456 1457 /* 1458 * Then start cpu. 1459 */ 1460 error = mp_start_cpu_common(cp, B_TRUE); 1461 if (error != 0) { 1462 mp_cpu_unconfigure_common(cp, error); 1463 return (error); 1464 } 1465 1466 mutex_exit(&cpu_lock); 1467 tempset = cpu_ready_set; 1468 while (!CPU_IN_SET(tempset, who)) { 1469 drv_usecwait(1); 1470 tempset = *((volatile cpuset_t *)&cpu_ready_set); 1471 } 1472 mutex_enter(&cpu_lock); 1473 1474 return (0); 1475 } 1476 1477 void 1478 start_other_cpus(int cprboot) 1479 { 1480 _NOTE(ARGUNUSED(cprboot)); 1481 1482 uint_t who; 1483 uint_t bootcpuid = 0; 1484 1485 /* 1486 * Initialize our own cpu_info. 1487 */ 1488 init_cpu_info(CPU); 1489 1490 cmn_err(CE_CONT, "?cpu%d: %s\n", CPU->cpu_id, CPU->cpu_idstr); 1491 cmn_err(CE_CONT, "?cpu%d: %s\n", CPU->cpu_id, CPU->cpu_brandstr); 1492 1493 /* 1494 * Initialize our syscall handlers 1495 */ 1496 init_cpu_syscall(CPU); 1497 1498 /* 1499 * Take the boot cpu out of the mp_cpus set because we know 1500 * it's already running. Add it to the cpu_ready_set for 1501 * precisely the same reason. 1502 */ 1503 CPUSET_DEL(mp_cpus, bootcpuid); 1504 CPUSET_ADD(cpu_ready_set, bootcpuid); 1505 1506 /* 1507 * skip the rest of this if 1508 * . only 1 cpu dectected and system isn't hotplug-capable 1509 * . not using MP 1510 */ 1511 if ((CPUSET_ISNULL(mp_cpus) && plat_dr_support_cpu() == 0) || 1512 use_mp == 0) { 1513 if (use_mp == 0) 1514 cmn_err(CE_CONT, "?***** Not in MP mode\n"); 1515 goto done; 1516 } 1517 1518 /* 1519 * perform such initialization as is needed 1520 * to be able to take CPUs on- and off-line. 1521 */ 1522 cpu_pause_init(); 1523 1524 xc_init_cpu(CPU); /* initialize processor crosscalls */ 1525 1526 if (mach_cpucontext_init() != 0) 1527 goto done; 1528 1529 flushes_require_xcalls = 1; 1530 1531 /* 1532 * We lock our affinity to the master CPU to ensure that all slave CPUs 1533 * do their TSC syncs with the same CPU. 1534 */ 1535 affinity_set(CPU_CURRENT); 1536 1537 for (who = 0; who < NCPU; who++) { 1538 if (!CPU_IN_SET(mp_cpus, who)) 1539 continue; 1540 ASSERT(who != bootcpuid); 1541 1542 mutex_enter(&cpu_lock); 1543 if (start_cpu(who) != 0) 1544 CPUSET_DEL(mp_cpus, who); 1545 cpu_state_change_notify(who, CPU_SETUP); 1546 mutex_exit(&cpu_lock); 1547 } 1548 1549 /* Free the space allocated to hold the microcode file */ 1550 ucode_cleanup(); 1551 1552 affinity_clear(); 1553 1554 mach_cpucontext_fini(); 1555 1556 done: 1557 if (get_hwenv() == HW_NATIVE) 1558 workaround_errata_end(); 1559 cmi_post_mpstartup(); 1560 1561 if (use_mp && ncpus != boot_max_ncpus) { 1562 cmn_err(CE_NOTE, 1563 "System detected %d cpus, but " 1564 "only %d cpu(s) were enabled during boot.", 1565 boot_max_ncpus, ncpus); 1566 cmn_err(CE_NOTE, 1567 "Use \"boot-ncpus\" parameter to enable more CPU(s). " 1568 "See eeprom(1M)."); 1569 } 1570 } 1571 1572 int 1573 mp_cpu_configure(int cpuid) 1574 { 1575 cpu_t *cp; 1576 1577 if (use_mp == 0 || plat_dr_support_cpu() == 0) { 1578 return (ENOTSUP); 1579 } 1580 1581 cp = cpu_get(cpuid); 1582 if (cp != NULL) { 1583 return (EALREADY); 1584 } 1585 1586 /* 1587 * Check if there's at least a Mbyte of kmem available 1588 * before attempting to start the cpu. 1589 */ 1590 if (kmem_avail() < 1024 * 1024) { 1591 /* 1592 * Kick off a reap in case that helps us with 1593 * later attempts .. 1594 */ 1595 kmem_reap(); 1596 return (ENOMEM); 1597 } 1598 1599 cp = mp_cpu_configure_common(cpuid, B_FALSE); 1600 ASSERT(cp != NULL && cpu_get(cpuid) == cp); 1601 1602 return (cp != NULL ? 0 : EAGAIN); 1603 } 1604 1605 int 1606 mp_cpu_unconfigure(int cpuid) 1607 { 1608 cpu_t *cp; 1609 1610 if (use_mp == 0 || plat_dr_support_cpu() == 0) { 1611 return (ENOTSUP); 1612 } else if (cpuid < 0 || cpuid >= max_ncpus) { 1613 return (EINVAL); 1614 } 1615 1616 cp = cpu_get(cpuid); 1617 if (cp == NULL) { 1618 return (ENODEV); 1619 } 1620 mp_cpu_unconfigure_common(cp, 0); 1621 1622 return (0); 1623 } 1624 1625 /* 1626 * Startup function for 'other' CPUs (besides boot cpu). 1627 * Called from real_mode_start. 1628 * 1629 * WARNING: until CPU_READY is set, mp_startup_common and routines called by 1630 * mp_startup_common should not call routines (e.g. kmem_free) that could call 1631 * hat_unload which requires CPU_READY to be set. 1632 */ 1633 static void 1634 mp_startup_common(boolean_t boot) 1635 { 1636 cpu_t *cp = CPU; 1637 uchar_t new_x86_featureset[BT_SIZEOFMAP(NUM_X86_FEATURES)]; 1638 extern void cpu_event_init_cpu(cpu_t *); 1639 1640 /* 1641 * We need to get TSC on this proc synced (i.e., any delta 1642 * from cpu0 accounted for) as soon as we can, because many 1643 * many things use gethrtime/pc_gethrestime, including 1644 * interrupts, cmn_err, etc. Before we can do that, we want to 1645 * clear TSC if we're on a buggy Sandy/Ivy Bridge CPU, so do that 1646 * right away. 1647 */ 1648 bzero(new_x86_featureset, BT_SIZEOFMAP(NUM_X86_FEATURES)); 1649 cpuid_pass1(cp, new_x86_featureset); 1650 1651 if (boot && get_hwenv() == HW_NATIVE && 1652 cpuid_getvendor(CPU) == X86_VENDOR_Intel && 1653 cpuid_getfamily(CPU) == 6 && 1654 (cpuid_getmodel(CPU) == 0x2d || cpuid_getmodel(CPU) == 0x3e) && 1655 is_x86_feature(new_x86_featureset, X86FSET_TSC)) { 1656 (void) wrmsr(REG_TSC, 0UL); 1657 } 1658 1659 /* Let the control CPU continue into tsc_sync_master() */ 1660 mp_startup_signal(&procset_slave, cp->cpu_id); 1661 1662 #ifndef __xpv 1663 if (tsc_gethrtime_enable) 1664 tsc_sync_slave(); 1665 #endif 1666 1667 /* 1668 * Once this was done from assembly, but it's safer here; if 1669 * it blocks, we need to be able to swtch() to and from, and 1670 * since we get here by calling t_pc, we need to do that call 1671 * before swtch() overwrites it. 1672 */ 1673 (void) (*ap_mlsetup)(); 1674 1675 #ifndef __xpv 1676 /* 1677 * Program this cpu's PAT 1678 */ 1679 if (is_x86_feature(x86_featureset, X86FSET_PAT)) 1680 pat_sync(); 1681 #endif 1682 1683 /* 1684 * Set up TSC_AUX to contain the cpuid for this processor 1685 * for the rdtscp instruction. 1686 */ 1687 if (is_x86_feature(x86_featureset, X86FSET_TSCP)) 1688 (void) wrmsr(MSR_AMD_TSCAUX, cp->cpu_id); 1689 1690 /* 1691 * Initialize this CPU's syscall handlers 1692 */ 1693 init_cpu_syscall(cp); 1694 1695 /* 1696 * Enable interrupts with spl set to LOCK_LEVEL. LOCK_LEVEL is the 1697 * highest level at which a routine is permitted to block on 1698 * an adaptive mutex (allows for cpu poke interrupt in case 1699 * the cpu is blocked on a mutex and halts). Setting LOCK_LEVEL blocks 1700 * device interrupts that may end up in the hat layer issuing cross 1701 * calls before CPU_READY is set. 1702 */ 1703 splx(ipltospl(LOCK_LEVEL)); 1704 sti(); 1705 1706 /* 1707 * Do a sanity check to make sure this new CPU is a sane thing 1708 * to add to the collection of processors running this system. 1709 * 1710 * XXX Clearly this needs to get more sophisticated, if x86 1711 * systems start to get built out of heterogenous CPUs; as is 1712 * likely to happen once the number of processors in a configuration 1713 * gets large enough. 1714 */ 1715 if (compare_x86_featureset(x86_featureset, new_x86_featureset) == 1716 B_FALSE) { 1717 cmn_err(CE_CONT, "cpu%d: featureset\n", cp->cpu_id); 1718 print_x86_featureset(new_x86_featureset); 1719 cmn_err(CE_WARN, "cpu%d feature mismatch", cp->cpu_id); 1720 } 1721 1722 /* 1723 * We do not support cpus with mixed monitor/mwait support if the 1724 * boot cpu supports monitor/mwait. 1725 */ 1726 if (is_x86_feature(x86_featureset, X86FSET_MWAIT) != 1727 is_x86_feature(new_x86_featureset, X86FSET_MWAIT)) 1728 panic("unsupported mixed cpu monitor/mwait support detected"); 1729 1730 /* 1731 * We could be more sophisticated here, and just mark the CPU 1732 * as "faulted" but at this point we'll opt for the easier 1733 * answer of dying horribly. Provided the boot cpu is ok, 1734 * the system can be recovered by booting with use_mp set to zero. 1735 */ 1736 if (workaround_errata(cp) != 0) 1737 panic("critical workaround(s) missing for cpu%d", cp->cpu_id); 1738 1739 /* 1740 * We can touch cpu_flags here without acquiring the cpu_lock here 1741 * because the cpu_lock is held by the control CPU which is running 1742 * mp_start_cpu_common(). 1743 * Need to clear CPU_QUIESCED flag before calling any function which 1744 * may cause thread context switching, such as kmem_alloc() etc. 1745 * The idle thread checks for CPU_QUIESCED flag and loops for ever if 1746 * it's set. So the startup thread may have no chance to switch back 1747 * again if it's switched away with CPU_QUIESCED set. 1748 */ 1749 cp->cpu_flags &= ~(CPU_POWEROFF | CPU_QUIESCED); 1750 1751 /* 1752 * Setup this processor for XSAVE. 1753 */ 1754 if (fp_save_mech == FP_XSAVE) { 1755 xsave_setup_msr(cp); 1756 } 1757 1758 cpuid_pass2(cp); 1759 cpuid_pass3(cp); 1760 cpuid_pass4(cp, NULL); 1761 1762 /* 1763 * Correct cpu_idstr and cpu_brandstr on target CPU after 1764 * cpuid_pass1() is done. 1765 */ 1766 (void) cpuid_getidstr(cp, cp->cpu_idstr, CPU_IDSTRLEN); 1767 (void) cpuid_getbrandstr(cp, cp->cpu_brandstr, CPU_IDSTRLEN); 1768 1769 cp->cpu_flags |= CPU_RUNNING | CPU_READY | CPU_EXISTS; 1770 1771 post_startup_cpu_fixups(); 1772 1773 cpu_event_init_cpu(cp); 1774 1775 /* 1776 * Enable preemption here so that contention for any locks acquired 1777 * later in mp_startup_common may be preempted if the thread owning 1778 * those locks is continuously executing on other CPUs (for example, 1779 * this CPU must be preemptible to allow other CPUs to pause it during 1780 * their startup phases). It's safe to enable preemption here because 1781 * the CPU state is pretty-much fully constructed. 1782 */ 1783 curthread->t_preempt = 0; 1784 1785 /* The base spl should still be at LOCK LEVEL here */ 1786 ASSERT(cp->cpu_base_spl == ipltospl(LOCK_LEVEL)); 1787 set_base_spl(); /* Restore the spl to its proper value */ 1788 1789 pghw_physid_create(cp); 1790 /* 1791 * Delegate initialization tasks, which need to access the cpu_lock, 1792 * to mp_start_cpu_common() because we can't acquire the cpu_lock here 1793 * during CPU DR operations. 1794 */ 1795 mp_startup_signal(&procset_slave, cp->cpu_id); 1796 mp_startup_wait(&procset_master, cp->cpu_id); 1797 pg_cmt_cpu_startup(cp); 1798 1799 if (boot) { 1800 mutex_enter(&cpu_lock); 1801 cp->cpu_flags &= ~CPU_OFFLINE; 1802 cpu_enable_intr(cp); 1803 cpu_add_active(cp); 1804 mutex_exit(&cpu_lock); 1805 } 1806 1807 /* Enable interrupts */ 1808 (void) spl0(); 1809 1810 /* 1811 * Fill out cpu_ucode_info. Update microcode if necessary. 1812 */ 1813 ucode_check(cp); 1814 1815 #ifndef __xpv 1816 { 1817 /* 1818 * Set up the CPU module for this CPU. This can't be done 1819 * before this CPU is made CPU_READY, because we may (in 1820 * heterogeneous systems) need to go load another CPU module. 1821 * The act of attempting to load a module may trigger a 1822 * cross-call, which will ASSERT unless this cpu is CPU_READY. 1823 */ 1824 cmi_hdl_t hdl; 1825 1826 if ((hdl = cmi_init(CMI_HDL_NATIVE, cmi_ntv_hwchipid(CPU), 1827 cmi_ntv_hwcoreid(CPU), cmi_ntv_hwstrandid(CPU))) != NULL) { 1828 if (is_x86_feature(x86_featureset, X86FSET_MCA)) 1829 cmi_mca_init(hdl); 1830 cp->cpu_m.mcpu_cmi_hdl = hdl; 1831 } 1832 } 1833 #endif /* __xpv */ 1834 1835 if (boothowto & RB_DEBUG) 1836 kdi_cpu_init(); 1837 1838 /* 1839 * Setting the bit in cpu_ready_set must be the last operation in 1840 * processor initialization; the boot CPU will continue to boot once 1841 * it sees this bit set for all active CPUs. 1842 */ 1843 CPUSET_ATOMIC_ADD(cpu_ready_set, cp->cpu_id); 1844 1845 (void) mach_cpu_create_device_node(cp, NULL); 1846 1847 cmn_err(CE_CONT, "?cpu%d: %s\n", cp->cpu_id, cp->cpu_idstr); 1848 cmn_err(CE_CONT, "?cpu%d: %s\n", cp->cpu_id, cp->cpu_brandstr); 1849 cmn_err(CE_CONT, "?cpu%d initialization complete - online\n", 1850 cp->cpu_id); 1851 1852 /* 1853 * Now we are done with the startup thread, so free it up. 1854 */ 1855 thread_exit(); 1856 panic("mp_startup: cannot return"); 1857 /*NOTREACHED*/ 1858 } 1859 1860 /* 1861 * Startup function for 'other' CPUs at boot time (besides boot cpu). 1862 */ 1863 static void 1864 mp_startup_boot(void) 1865 { 1866 mp_startup_common(B_TRUE); 1867 } 1868 1869 /* 1870 * Startup function for hotplug CPUs at runtime. 1871 */ 1872 void 1873 mp_startup_hotplug(void) 1874 { 1875 mp_startup_common(B_FALSE); 1876 } 1877 1878 /* 1879 * Start CPU on user request. 1880 */ 1881 /* ARGSUSED */ 1882 int 1883 mp_cpu_start(struct cpu *cp) 1884 { 1885 ASSERT(MUTEX_HELD(&cpu_lock)); 1886 return (0); 1887 } 1888 1889 /* 1890 * Stop CPU on user request. 1891 */ 1892 int 1893 mp_cpu_stop(struct cpu *cp) 1894 { 1895 extern int cbe_psm_timer_mode; 1896 ASSERT(MUTEX_HELD(&cpu_lock)); 1897 1898 #ifdef __xpv 1899 /* 1900 * We can't offline vcpu0. 1901 */ 1902 if (cp->cpu_id == 0) 1903 return (EBUSY); 1904 #endif 1905 1906 /* 1907 * If TIMER_PERIODIC mode is used, CPU0 is the one running it; 1908 * can't stop it. (This is true only for machines with no TSC.) 1909 */ 1910 1911 if ((cbe_psm_timer_mode == TIMER_PERIODIC) && (cp->cpu_id == 0)) 1912 return (EBUSY); 1913 1914 return (0); 1915 } 1916 1917 /* 1918 * Take the specified CPU out of participation in interrupts. 1919 */ 1920 int 1921 cpu_disable_intr(struct cpu *cp) 1922 { 1923 if (psm_disable_intr(cp->cpu_id) != DDI_SUCCESS) 1924 return (EBUSY); 1925 1926 cp->cpu_flags &= ~CPU_ENABLE; 1927 return (0); 1928 } 1929 1930 /* 1931 * Allow the specified CPU to participate in interrupts. 1932 */ 1933 void 1934 cpu_enable_intr(struct cpu *cp) 1935 { 1936 ASSERT(MUTEX_HELD(&cpu_lock)); 1937 cp->cpu_flags |= CPU_ENABLE; 1938 psm_enable_intr(cp->cpu_id); 1939 } 1940 1941 void 1942 mp_cpu_faulted_enter(struct cpu *cp) 1943 { 1944 #ifdef __xpv 1945 _NOTE(ARGUNUSED(cp)); 1946 #else 1947 cmi_hdl_t hdl = cp->cpu_m.mcpu_cmi_hdl; 1948 1949 if (hdl != NULL) { 1950 cmi_hdl_hold(hdl); 1951 } else { 1952 hdl = cmi_hdl_lookup(CMI_HDL_NATIVE, cmi_ntv_hwchipid(cp), 1953 cmi_ntv_hwcoreid(cp), cmi_ntv_hwstrandid(cp)); 1954 } 1955 if (hdl != NULL) { 1956 cmi_faulted_enter(hdl); 1957 cmi_hdl_rele(hdl); 1958 } 1959 #endif 1960 } 1961 1962 void 1963 mp_cpu_faulted_exit(struct cpu *cp) 1964 { 1965 #ifdef __xpv 1966 _NOTE(ARGUNUSED(cp)); 1967 #else 1968 cmi_hdl_t hdl = cp->cpu_m.mcpu_cmi_hdl; 1969 1970 if (hdl != NULL) { 1971 cmi_hdl_hold(hdl); 1972 } else { 1973 hdl = cmi_hdl_lookup(CMI_HDL_NATIVE, cmi_ntv_hwchipid(cp), 1974 cmi_ntv_hwcoreid(cp), cmi_ntv_hwstrandid(cp)); 1975 } 1976 if (hdl != NULL) { 1977 cmi_faulted_exit(hdl); 1978 cmi_hdl_rele(hdl); 1979 } 1980 #endif 1981 } 1982 1983 /* 1984 * The following two routines are used as context operators on threads belonging 1985 * to processes with a private LDT (see sysi86). Due to the rarity of such 1986 * processes, these routines are currently written for best code readability and 1987 * organization rather than speed. We could avoid checking x86_featureset at 1988 * every context switch by installing different context ops, depending on 1989 * x86_featureset, at LDT creation time -- one for each combination of fast 1990 * syscall features. 1991 */ 1992 1993 /*ARGSUSED*/ 1994 void 1995 cpu_fast_syscall_disable(void *arg) 1996 { 1997 if (is_x86_feature(x86_featureset, X86FSET_MSR) && 1998 is_x86_feature(x86_featureset, X86FSET_SEP)) 1999 cpu_sep_disable(); 2000 if (is_x86_feature(x86_featureset, X86FSET_MSR) && 2001 is_x86_feature(x86_featureset, X86FSET_ASYSC)) 2002 cpu_asysc_disable(); 2003 } 2004 2005 /*ARGSUSED*/ 2006 void 2007 cpu_fast_syscall_enable(void *arg) 2008 { 2009 if (is_x86_feature(x86_featureset, X86FSET_MSR) && 2010 is_x86_feature(x86_featureset, X86FSET_SEP)) 2011 cpu_sep_enable(); 2012 if (is_x86_feature(x86_featureset, X86FSET_MSR) && 2013 is_x86_feature(x86_featureset, X86FSET_ASYSC)) 2014 cpu_asysc_enable(); 2015 } 2016 2017 static void 2018 cpu_sep_enable(void) 2019 { 2020 ASSERT(is_x86_feature(x86_featureset, X86FSET_SEP)); 2021 ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL); 2022 2023 wrmsr(MSR_INTC_SEP_CS, (uint64_t)(uintptr_t)KCS_SEL); 2024 } 2025 2026 static void 2027 cpu_sep_disable(void) 2028 { 2029 ASSERT(is_x86_feature(x86_featureset, X86FSET_SEP)); 2030 ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL); 2031 2032 /* 2033 * Setting the SYSENTER_CS_MSR register to 0 causes software executing 2034 * the sysenter or sysexit instruction to trigger a #gp fault. 2035 */ 2036 wrmsr(MSR_INTC_SEP_CS, 0); 2037 } 2038 2039 static void 2040 cpu_asysc_enable(void) 2041 { 2042 ASSERT(is_x86_feature(x86_featureset, X86FSET_ASYSC)); 2043 ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL); 2044 2045 wrmsr(MSR_AMD_EFER, rdmsr(MSR_AMD_EFER) | 2046 (uint64_t)(uintptr_t)AMD_EFER_SCE); 2047 } 2048 2049 static void 2050 cpu_asysc_disable(void) 2051 { 2052 ASSERT(is_x86_feature(x86_featureset, X86FSET_ASYSC)); 2053 ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL); 2054 2055 /* 2056 * Turn off the SCE (syscall enable) bit in the EFER register. Software 2057 * executing syscall or sysret with this bit off will incur a #ud trap. 2058 */ 2059 wrmsr(MSR_AMD_EFER, rdmsr(MSR_AMD_EFER) & 2060 ~((uint64_t)(uintptr_t)AMD_EFER_SCE)); 2061 } 2062