1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 /* 26 * Copyright (c) 2010, Intel Corporation. 27 * All rights reserved. 28 */ 29 /* 30 * Copyright 2020 Joyent, Inc. 31 * Copyright 2013 Nexenta Systems, Inc. All rights reserved. 32 * Copyright 2018 OmniOS Community Edition (OmniOSce) Association. 33 */ 34 35 #include <sys/types.h> 36 #include <sys/thread.h> 37 #include <sys/cpuvar.h> 38 #include <sys/cpu.h> 39 #include <sys/t_lock.h> 40 #include <sys/param.h> 41 #include <sys/proc.h> 42 #include <sys/disp.h> 43 #include <sys/class.h> 44 #include <sys/cmn_err.h> 45 #include <sys/debug.h> 46 #include <sys/note.h> 47 #include <sys/asm_linkage.h> 48 #include <sys/x_call.h> 49 #include <sys/systm.h> 50 #include <sys/var.h> 51 #include <sys/vtrace.h> 52 #include <vm/hat.h> 53 #include <vm/as.h> 54 #include <vm/seg_kmem.h> 55 #include <vm/seg_kp.h> 56 #include <sys/segments.h> 57 #include <sys/kmem.h> 58 #include <sys/stack.h> 59 #include <sys/smp_impldefs.h> 60 #include <sys/x86_archext.h> 61 #include <sys/machsystm.h> 62 #include <sys/traptrace.h> 63 #include <sys/clock.h> 64 #include <sys/cpc_impl.h> 65 #include <sys/pg.h> 66 #include <sys/cmt.h> 67 #include <sys/dtrace.h> 68 #include <sys/archsystm.h> 69 #include <sys/fp.h> 70 #include <sys/reboot.h> 71 #include <sys/kdi_machimpl.h> 72 #include <vm/hat_i86.h> 73 #include <vm/vm_dep.h> 74 #include <sys/memnode.h> 75 #include <sys/pci_cfgspace.h> 76 #include <sys/mach_mmu.h> 77 #include <sys/sysmacros.h> 78 #if defined(__xpv) 79 #include <sys/hypervisor.h> 80 #else 81 #include <sys/hma.h> 82 #endif 83 #include <sys/cpu_module.h> 84 #include <sys/ontrap.h> 85 86 struct cpu cpus[1] __aligned(MMU_PAGESIZE); 87 struct cpu *cpu[NCPU] = {&cpus[0]}; 88 struct cpu *cpu_free_list; 89 cpu_core_t cpu_core[NCPU]; 90 91 #define cpu_next_free cpu_prev 92 93 /* 94 * Useful for disabling MP bring-up on a MP capable system. 95 */ 96 int use_mp = 1; 97 98 /* 99 * to be set by a PSM to indicate what cpus 100 * are sitting around on the system. 101 */ 102 cpuset_t mp_cpus; 103 104 /* 105 * This variable is used by the hat layer to decide whether or not 106 * critical sections are needed to prevent race conditions. For sun4m, 107 * this variable is set once enough MP initialization has been done in 108 * order to allow cross calls. 109 */ 110 int flushes_require_xcalls; 111 112 cpuset_t cpu_ready_set; /* initialized in startup() */ 113 114 static void mp_startup_boot(void); 115 static void mp_startup_hotplug(void); 116 117 static void cpu_sep_enable(void); 118 static void cpu_sep_disable(void); 119 static void cpu_asysc_enable(void); 120 static void cpu_asysc_disable(void); 121 122 /* 123 * Init CPU info - get CPU type info for processor_info system call. 124 */ 125 void 126 init_cpu_info(struct cpu *cp) 127 { 128 processor_info_t *pi = &cp->cpu_type_info; 129 130 /* 131 * Get clock-frequency property for the CPU. 132 */ 133 pi->pi_clock = cpu_freq; 134 135 /* 136 * Current frequency in Hz. 137 */ 138 cp->cpu_curr_clock = cpu_freq_hz; 139 140 /* 141 * Supported frequencies. 142 */ 143 if (cp->cpu_supp_freqs == NULL) { 144 cpu_set_supp_freqs(cp, NULL); 145 } 146 147 (void) strcpy(pi->pi_processor_type, "i386"); 148 if (fpu_exists) 149 (void) strcpy(pi->pi_fputypes, "i387 compatible"); 150 151 cp->cpu_idstr = kmem_zalloc(CPU_IDSTRLEN, KM_SLEEP); 152 cp->cpu_brandstr = kmem_zalloc(CPU_IDSTRLEN, KM_SLEEP); 153 154 /* 155 * If called for the BSP, cp is equal to current CPU. 156 * For non-BSPs, cpuid info of cp is not ready yet, so use cpuid info 157 * of current CPU as default values for cpu_idstr and cpu_brandstr. 158 * They will be corrected in mp_startup_common() after cpuid_pass1() 159 * has been invoked on target CPU. 160 */ 161 (void) cpuid_getidstr(CPU, cp->cpu_idstr, CPU_IDSTRLEN); 162 (void) cpuid_getbrandstr(CPU, cp->cpu_brandstr, CPU_IDSTRLEN); 163 } 164 165 /* 166 * Configure syscall support on this CPU. 167 */ 168 /*ARGSUSED*/ 169 void 170 init_cpu_syscall(struct cpu *cp) 171 { 172 kpreempt_disable(); 173 174 if (is_x86_feature(x86_featureset, X86FSET_MSR) && 175 is_x86_feature(x86_featureset, X86FSET_ASYSC)) { 176 uint64_t flags; 177 178 #if !defined(__xpv) 179 /* 180 * The syscall instruction imposes a certain ordering on 181 * segment selectors, so we double-check that ordering 182 * here. 183 */ 184 CTASSERT(KDS_SEL == KCS_SEL + 8); 185 CTASSERT(UDS_SEL == U32CS_SEL + 8); 186 CTASSERT(UCS_SEL == U32CS_SEL + 16); 187 #endif 188 189 /* 190 * Turn syscall/sysret extensions on. 191 */ 192 cpu_asysc_enable(); 193 194 /* 195 * Program the magic registers .. 196 */ 197 wrmsr(MSR_AMD_STAR, 198 ((uint64_t)(U32CS_SEL << 16 | KCS_SEL)) << 32); 199 if (kpti_enable == 1) { 200 wrmsr(MSR_AMD_LSTAR, 201 (uint64_t)(uintptr_t)tr_sys_syscall); 202 wrmsr(MSR_AMD_CSTAR, 203 (uint64_t)(uintptr_t)tr_sys_syscall32); 204 } else { 205 wrmsr(MSR_AMD_LSTAR, 206 (uint64_t)(uintptr_t)sys_syscall); 207 wrmsr(MSR_AMD_CSTAR, 208 (uint64_t)(uintptr_t)sys_syscall32); 209 } 210 211 /* 212 * This list of flags is masked off the incoming 213 * %rfl when we enter the kernel. 214 */ 215 flags = PS_IE | PS_T; 216 if (is_x86_feature(x86_featureset, X86FSET_SMAP) == B_TRUE) 217 flags |= PS_ACHK; 218 wrmsr(MSR_AMD_SFMASK, flags); 219 } 220 221 /* 222 * On 64-bit kernels on Nocona machines, the 32-bit syscall 223 * variant isn't available to 32-bit applications, but sysenter is. 224 */ 225 if (is_x86_feature(x86_featureset, X86FSET_MSR) && 226 is_x86_feature(x86_featureset, X86FSET_SEP)) { 227 228 #if !defined(__xpv) 229 /* 230 * The sysenter instruction imposes a certain ordering on 231 * segment selectors, so we double-check that ordering 232 * here. See "sysenter" in Intel document 245471-012, "IA-32 233 * Intel Architecture Software Developer's Manual Volume 2: 234 * Instruction Set Reference" 235 */ 236 CTASSERT(KDS_SEL == KCS_SEL + 8); 237 238 CTASSERT(U32CS_SEL == ((KCS_SEL + 16) | 3)); 239 CTASSERT(UDS_SEL == U32CS_SEL + 8); 240 #endif 241 242 cpu_sep_enable(); 243 244 /* 245 * resume() sets this value to the base of the threads stack 246 * via a context handler. 247 */ 248 wrmsr(MSR_INTC_SEP_ESP, 0); 249 250 if (kpti_enable == 1) { 251 wrmsr(MSR_INTC_SEP_EIP, 252 (uint64_t)(uintptr_t)tr_sys_sysenter); 253 } else { 254 wrmsr(MSR_INTC_SEP_EIP, 255 (uint64_t)(uintptr_t)sys_sysenter); 256 } 257 } 258 259 kpreempt_enable(); 260 } 261 262 #if !defined(__xpv) 263 /* 264 * Configure per-cpu ID GDT 265 */ 266 static void 267 init_cpu_id_gdt(struct cpu *cp) 268 { 269 /* Write cpu_id into limit field of GDT for usermode retrieval */ 270 set_usegd(&cp->cpu_gdt[GDT_CPUID], SDP_SHORT, NULL, cp->cpu_id, 271 SDT_MEMRODA, SEL_UPL, SDP_BYTES, SDP_OP32); 272 } 273 #endif /* !defined(__xpv) */ 274 275 /* 276 * Multiprocessor initialization. 277 * 278 * Allocate and initialize the cpu structure, TRAPTRACE buffer, and the 279 * startup and idle threads for the specified CPU. 280 * Parameter boot is true for boot time operations and is false for CPU 281 * DR operations. 282 */ 283 static struct cpu * 284 mp_cpu_configure_common(int cpun, boolean_t boot) 285 { 286 struct cpu *cp; 287 kthread_id_t tp; 288 caddr_t sp; 289 proc_t *procp; 290 #if !defined(__xpv) 291 extern int idle_cpu_prefer_mwait; 292 extern void cpu_idle_mwait(); 293 #endif 294 extern void idle(); 295 extern void cpu_idle(); 296 297 #ifdef TRAPTRACE 298 trap_trace_ctl_t *ttc = &trap_trace_ctl[cpun]; 299 #endif 300 301 ASSERT(MUTEX_HELD(&cpu_lock)); 302 ASSERT(cpun < NCPU && cpu[cpun] == NULL); 303 304 if (cpu_free_list == NULL) { 305 cp = kmem_zalloc(sizeof (*cp), KM_SLEEP); 306 } else { 307 cp = cpu_free_list; 308 cpu_free_list = cp->cpu_next_free; 309 } 310 311 cp->cpu_m.mcpu_istamp = cpun << 16; 312 313 /* Create per CPU specific threads in the process p0. */ 314 procp = &p0; 315 316 /* 317 * Initialize the dispatcher first. 318 */ 319 disp_cpu_init(cp); 320 321 cpu_vm_data_init(cp); 322 323 /* 324 * Allocate and initialize the startup thread for this CPU. 325 * Interrupt and process switch stacks get allocated later 326 * when the CPU starts running. 327 */ 328 tp = thread_create(NULL, 0, NULL, NULL, 0, procp, 329 TS_STOPPED, maxclsyspri); 330 331 /* 332 * Set state to TS_ONPROC since this thread will start running 333 * as soon as the CPU comes online. 334 * 335 * All the other fields of the thread structure are setup by 336 * thread_create(). 337 */ 338 THREAD_ONPROC(tp, cp); 339 tp->t_preempt = 1; 340 tp->t_bound_cpu = cp; 341 tp->t_affinitycnt = 1; 342 tp->t_cpu = cp; 343 tp->t_disp_queue = cp->cpu_disp; 344 345 /* 346 * Setup thread to start in mp_startup_common. 347 */ 348 sp = tp->t_stk; 349 tp->t_sp = (uintptr_t)(sp - MINFRAME); 350 tp->t_sp -= STACK_ENTRY_ALIGN; /* fake a call */ 351 /* 352 * Setup thread start entry point for boot or hotplug. 353 */ 354 if (boot) { 355 tp->t_pc = (uintptr_t)mp_startup_boot; 356 } else { 357 tp->t_pc = (uintptr_t)mp_startup_hotplug; 358 } 359 360 cp->cpu_id = cpun; 361 cp->cpu_self = cp; 362 cp->cpu_thread = tp; 363 cp->cpu_lwp = NULL; 364 cp->cpu_dispthread = tp; 365 cp->cpu_dispatch_pri = DISP_PRIO(tp); 366 367 /* 368 * cpu_base_spl must be set explicitly here to prevent any blocking 369 * operations in mp_startup_common from causing the spl of the cpu 370 * to drop to 0 (allowing device interrupts before we're ready) in 371 * resume(). 372 * cpu_base_spl MUST remain at LOCK_LEVEL until the cpu is CPU_READY. 373 * As an extra bit of security on DEBUG kernels, this is enforced with 374 * an assertion in mp_startup_common() -- before cpu_base_spl is set 375 * to its proper value. 376 */ 377 cp->cpu_base_spl = ipltospl(LOCK_LEVEL); 378 379 /* 380 * Now, initialize per-CPU idle thread for this CPU. 381 */ 382 tp = thread_create(NULL, PAGESIZE, idle, NULL, 0, procp, TS_ONPROC, -1); 383 384 cp->cpu_idle_thread = tp; 385 386 tp->t_preempt = 1; 387 tp->t_bound_cpu = cp; 388 tp->t_affinitycnt = 1; 389 tp->t_cpu = cp; 390 tp->t_disp_queue = cp->cpu_disp; 391 392 /* 393 * Bootstrap the CPU's PG data 394 */ 395 pg_cpu_bootstrap(cp); 396 397 /* 398 * Perform CPC initialization on the new CPU. 399 */ 400 kcpc_hw_init(cp); 401 402 /* 403 * Allocate virtual addresses for cpu_caddr1 and cpu_caddr2 404 * for each CPU. 405 */ 406 setup_vaddr_for_ppcopy(cp); 407 408 /* 409 * Allocate page for new GDT and initialize from current GDT. 410 */ 411 #if !defined(__lint) 412 ASSERT((sizeof (*cp->cpu_gdt) * NGDT) <= PAGESIZE); 413 #endif 414 cp->cpu_gdt = kmem_zalloc(PAGESIZE, KM_SLEEP); 415 bcopy(CPU->cpu_gdt, cp->cpu_gdt, (sizeof (*cp->cpu_gdt) * NGDT)); 416 417 418 /* 419 * Allocate pages for the CPU LDT. 420 */ 421 cp->cpu_m.mcpu_ldt = kmem_zalloc(LDT_CPU_SIZE, KM_SLEEP); 422 cp->cpu_m.mcpu_ldt_len = 0; 423 424 /* 425 * Allocate a per-CPU IDT and initialize the new IDT to the currently 426 * runing CPU. 427 */ 428 #if !defined(__lint) 429 ASSERT((sizeof (*CPU->cpu_idt) * NIDT) <= PAGESIZE); 430 #endif 431 cp->cpu_idt = kmem_alloc(PAGESIZE, KM_SLEEP); 432 bcopy(CPU->cpu_idt, cp->cpu_idt, PAGESIZE); 433 434 /* 435 * alloc space for cpuid info 436 */ 437 cpuid_alloc_space(cp); 438 #if !defined(__xpv) 439 if (is_x86_feature(x86_featureset, X86FSET_MWAIT) && 440 idle_cpu_prefer_mwait) { 441 cp->cpu_m.mcpu_mwait = cpuid_mwait_alloc(cp); 442 cp->cpu_m.mcpu_idle_cpu = cpu_idle_mwait; 443 } else 444 #endif 445 cp->cpu_m.mcpu_idle_cpu = cpu_idle; 446 447 init_cpu_info(cp); 448 449 #if !defined(__xpv) 450 init_cpu_id_gdt(cp); 451 #endif 452 453 /* 454 * alloc space for ucode_info 455 */ 456 ucode_alloc_space(cp); 457 xc_init_cpu(cp); 458 hat_cpu_online(cp); 459 460 #ifdef TRAPTRACE 461 /* 462 * If this is a TRAPTRACE kernel, allocate TRAPTRACE buffers 463 */ 464 ttc->ttc_first = (uintptr_t)kmem_zalloc(trap_trace_bufsize, KM_SLEEP); 465 ttc->ttc_next = ttc->ttc_first; 466 ttc->ttc_limit = ttc->ttc_first + trap_trace_bufsize; 467 #endif 468 469 /* 470 * Record that we have another CPU. 471 */ 472 /* 473 * Initialize the interrupt threads for this CPU 474 */ 475 cpu_intr_alloc(cp, NINTR_THREADS); 476 477 cp->cpu_flags = CPU_OFFLINE | CPU_QUIESCED | CPU_POWEROFF; 478 cpu_set_state(cp); 479 480 /* 481 * Add CPU to list of available CPUs. It'll be on the active list 482 * after mp_startup_common(). 483 */ 484 cpu_add_unit(cp); 485 486 return (cp); 487 } 488 489 /* 490 * Undo what was done in mp_cpu_configure_common 491 */ 492 static void 493 mp_cpu_unconfigure_common(struct cpu *cp, int error) 494 { 495 ASSERT(MUTEX_HELD(&cpu_lock)); 496 497 /* 498 * Remove the CPU from the list of available CPUs. 499 */ 500 cpu_del_unit(cp->cpu_id); 501 502 if (error == ETIMEDOUT) { 503 /* 504 * The cpu was started, but never *seemed* to run any 505 * code in the kernel; it's probably off spinning in its 506 * own private world, though with potential references to 507 * our kmem-allocated IDTs and GDTs (for example). 508 * 509 * Worse still, it may actually wake up some time later, 510 * so rather than guess what it might or might not do, we 511 * leave the fundamental data structures intact. 512 */ 513 cp->cpu_flags = 0; 514 return; 515 } 516 517 /* 518 * At this point, the only threads bound to this CPU should 519 * special per-cpu threads: it's idle thread, it's pause threads, 520 * and it's interrupt threads. Clean these up. 521 */ 522 cpu_destroy_bound_threads(cp); 523 cp->cpu_idle_thread = NULL; 524 525 /* 526 * Free the interrupt stack. 527 */ 528 segkp_release(segkp, 529 cp->cpu_intr_stack - (INTR_STACK_SIZE - SA(MINFRAME))); 530 cp->cpu_intr_stack = NULL; 531 532 #ifdef TRAPTRACE 533 /* 534 * Discard the trap trace buffer 535 */ 536 { 537 trap_trace_ctl_t *ttc = &trap_trace_ctl[cp->cpu_id]; 538 539 kmem_free((void *)ttc->ttc_first, trap_trace_bufsize); 540 ttc->ttc_first = (uintptr_t)NULL; 541 } 542 #endif 543 544 hat_cpu_offline(cp); 545 546 ucode_free_space(cp); 547 548 /* Free CPU ID string and brand string. */ 549 if (cp->cpu_idstr) { 550 kmem_free(cp->cpu_idstr, CPU_IDSTRLEN); 551 cp->cpu_idstr = NULL; 552 } 553 if (cp->cpu_brandstr) { 554 kmem_free(cp->cpu_brandstr, CPU_IDSTRLEN); 555 cp->cpu_brandstr = NULL; 556 } 557 558 #if !defined(__xpv) 559 if (cp->cpu_m.mcpu_mwait != NULL) { 560 cpuid_mwait_free(cp); 561 cp->cpu_m.mcpu_mwait = NULL; 562 } 563 #endif 564 cpuid_free_space(cp); 565 566 if (cp->cpu_idt != CPU->cpu_idt) 567 kmem_free(cp->cpu_idt, PAGESIZE); 568 cp->cpu_idt = NULL; 569 570 kmem_free(cp->cpu_m.mcpu_ldt, LDT_CPU_SIZE); 571 cp->cpu_m.mcpu_ldt = NULL; 572 cp->cpu_m.mcpu_ldt_len = 0; 573 574 kmem_free(cp->cpu_gdt, PAGESIZE); 575 cp->cpu_gdt = NULL; 576 577 if (cp->cpu_supp_freqs != NULL) { 578 size_t len = strlen(cp->cpu_supp_freqs) + 1; 579 kmem_free(cp->cpu_supp_freqs, len); 580 cp->cpu_supp_freqs = NULL; 581 } 582 583 teardown_vaddr_for_ppcopy(cp); 584 585 kcpc_hw_fini(cp); 586 587 cp->cpu_dispthread = NULL; 588 cp->cpu_thread = NULL; /* discarded by cpu_destroy_bound_threads() */ 589 590 cpu_vm_data_destroy(cp); 591 592 xc_fini_cpu(cp); 593 disp_cpu_fini(cp); 594 595 ASSERT(cp != CPU0); 596 bzero(cp, sizeof (*cp)); 597 cp->cpu_next_free = cpu_free_list; 598 cpu_free_list = cp; 599 } 600 601 /* 602 * Apply workarounds for known errata, and warn about those that are absent. 603 * 604 * System vendors occasionally create configurations which contain different 605 * revisions of the CPUs that are almost but not exactly the same. At the 606 * time of writing, this meant that their clock rates were the same, their 607 * feature sets were the same, but the required workaround were -not- 608 * necessarily the same. So, this routine is invoked on -every- CPU soon 609 * after starting to make sure that the resulting system contains the most 610 * pessimal set of workarounds needed to cope with *any* of the CPUs in the 611 * system. 612 * 613 * workaround_errata is invoked early in mlsetup() for CPU 0, and in 614 * mp_startup_common() for all slave CPUs. Slaves process workaround_errata 615 * prior to acknowledging their readiness to the master, so this routine will 616 * never be executed by multiple CPUs in parallel, thus making updates to 617 * global data safe. 618 * 619 * These workarounds are based on Rev 3.57 of the Revision Guide for 620 * AMD Athlon(tm) 64 and AMD Opteron(tm) Processors, August 2005. 621 */ 622 623 #if defined(OPTERON_ERRATUM_88) 624 int opteron_erratum_88; /* if non-zero -> at least one cpu has it */ 625 #endif 626 627 #if defined(OPTERON_ERRATUM_91) 628 int opteron_erratum_91; /* if non-zero -> at least one cpu has it */ 629 #endif 630 631 #if defined(OPTERON_ERRATUM_93) 632 int opteron_erratum_93; /* if non-zero -> at least one cpu has it */ 633 #endif 634 635 #if defined(OPTERON_ERRATUM_95) 636 int opteron_erratum_95; /* if non-zero -> at least one cpu has it */ 637 #endif 638 639 #if defined(OPTERON_ERRATUM_100) 640 int opteron_erratum_100; /* if non-zero -> at least one cpu has it */ 641 #endif 642 643 #if defined(OPTERON_ERRATUM_108) 644 int opteron_erratum_108; /* if non-zero -> at least one cpu has it */ 645 #endif 646 647 #if defined(OPTERON_ERRATUM_109) 648 int opteron_erratum_109; /* if non-zero -> at least one cpu has it */ 649 #endif 650 651 #if defined(OPTERON_ERRATUM_121) 652 int opteron_erratum_121; /* if non-zero -> at least one cpu has it */ 653 #endif 654 655 #if defined(OPTERON_ERRATUM_122) 656 int opteron_erratum_122; /* if non-zero -> at least one cpu has it */ 657 #endif 658 659 #if defined(OPTERON_ERRATUM_123) 660 int opteron_erratum_123; /* if non-zero -> at least one cpu has it */ 661 #endif 662 663 #if defined(OPTERON_ERRATUM_131) 664 int opteron_erratum_131; /* if non-zero -> at least one cpu has it */ 665 #endif 666 667 #if defined(OPTERON_WORKAROUND_6336786) 668 int opteron_workaround_6336786; /* non-zero -> WA relevant and applied */ 669 int opteron_workaround_6336786_UP = 0; /* Not needed for UP */ 670 #endif 671 672 #if defined(OPTERON_WORKAROUND_6323525) 673 int opteron_workaround_6323525; /* if non-zero -> at least one cpu has it */ 674 #endif 675 676 #if defined(OPTERON_ERRATUM_298) 677 int opteron_erratum_298; 678 #endif 679 680 #if defined(OPTERON_ERRATUM_721) 681 int opteron_erratum_721; 682 #endif 683 684 static void 685 workaround_warning(cpu_t *cp, uint_t erratum) 686 { 687 cmn_err(CE_WARN, "cpu%d: no workaround for erratum %u", 688 cp->cpu_id, erratum); 689 } 690 691 static void 692 workaround_applied(uint_t erratum) 693 { 694 if (erratum > 1000000) 695 cmn_err(CE_CONT, "?workaround applied for cpu issue #%d\n", 696 erratum); 697 else 698 cmn_err(CE_CONT, "?workaround applied for cpu erratum #%d\n", 699 erratum); 700 } 701 702 static void 703 msr_warning(cpu_t *cp, const char *rw, uint_t msr, int error) 704 { 705 cmn_err(CE_WARN, "cpu%d: couldn't %smsr 0x%x, error %d", 706 cp->cpu_id, rw, msr, error); 707 } 708 709 /* 710 * Determine the number of nodes in a Hammer / Greyhound / Griffin family 711 * system. 712 */ 713 static uint_t 714 opteron_get_nnodes(void) 715 { 716 static uint_t nnodes = 0; 717 718 if (nnodes == 0) { 719 #ifdef DEBUG 720 uint_t family; 721 722 /* 723 * This routine uses a PCI config space based mechanism 724 * for retrieving the number of nodes in the system. 725 * Device 24, function 0, offset 0x60 as used here is not 726 * AMD processor architectural, and may not work on processor 727 * families other than those listed below. 728 * 729 * Callers of this routine must ensure that we're running on 730 * a processor which supports this mechanism. 731 * The assertion below is meant to catch calls on unsupported 732 * processors. 733 */ 734 family = cpuid_getfamily(CPU); 735 ASSERT(family == 0xf || family == 0x10 || family == 0x11); 736 #endif /* DEBUG */ 737 738 /* 739 * Obtain the number of nodes in the system from 740 * bits [6:4] of the Node ID register on node 0. 741 * 742 * The actual node count is NodeID[6:4] + 1 743 * 744 * The Node ID register is accessed via function 0, 745 * offset 0x60. Node 0 is device 24. 746 */ 747 nnodes = ((pci_getl_func(0, 24, 0, 0x60) & 0x70) >> 4) + 1; 748 } 749 return (nnodes); 750 } 751 752 uint_t 753 do_erratum_298(struct cpu *cpu) 754 { 755 static int osvwrc = -3; 756 extern int osvw_opteron_erratum(cpu_t *, uint_t); 757 758 /* 759 * L2 Eviction May Occur During Processor Operation To Set 760 * Accessed or Dirty Bit. 761 */ 762 if (osvwrc == -3) { 763 osvwrc = osvw_opteron_erratum(cpu, 298); 764 } else { 765 /* osvw return codes should be consistent for all cpus */ 766 ASSERT(osvwrc == osvw_opteron_erratum(cpu, 298)); 767 } 768 769 switch (osvwrc) { 770 case 0: /* erratum is not present: do nothing */ 771 break; 772 case 1: /* erratum is present: BIOS workaround applied */ 773 /* 774 * check if workaround is actually in place and issue warning 775 * if not. 776 */ 777 if (((rdmsr(MSR_AMD_HWCR) & AMD_HWCR_TLBCACHEDIS) == 0) || 778 ((rdmsr(MSR_AMD_BU_CFG) & AMD_BU_CFG_E298) == 0)) { 779 #if defined(OPTERON_ERRATUM_298) 780 opteron_erratum_298++; 781 #else 782 workaround_warning(cpu, 298); 783 return (1); 784 #endif 785 } 786 break; 787 case -1: /* cannot determine via osvw: check cpuid */ 788 if ((cpuid_opteron_erratum(cpu, 298) > 0) && 789 (((rdmsr(MSR_AMD_HWCR) & AMD_HWCR_TLBCACHEDIS) == 0) || 790 ((rdmsr(MSR_AMD_BU_CFG) & AMD_BU_CFG_E298) == 0))) { 791 #if defined(OPTERON_ERRATUM_298) 792 opteron_erratum_298++; 793 #else 794 workaround_warning(cpu, 298); 795 return (1); 796 #endif 797 } 798 break; 799 } 800 return (0); 801 } 802 803 uint_t 804 workaround_errata(struct cpu *cpu) 805 { 806 volatile uint_t missing = 0; 807 808 ASSERT(cpu == CPU); 809 810 /*LINTED*/ 811 if (cpuid_opteron_erratum(cpu, 88) > 0) { 812 /* 813 * SWAPGS May Fail To Read Correct GS Base 814 */ 815 #if defined(OPTERON_ERRATUM_88) 816 /* 817 * The workaround is an mfence in the relevant assembler code 818 */ 819 opteron_erratum_88++; 820 #else 821 workaround_warning(cpu, 88); 822 missing++; 823 #endif 824 } 825 826 if (cpuid_opteron_erratum(cpu, 91) > 0) { 827 /* 828 * Software Prefetches May Report A Page Fault 829 */ 830 #if defined(OPTERON_ERRATUM_91) 831 /* 832 * fix is in trap.c 833 */ 834 opteron_erratum_91++; 835 #else 836 workaround_warning(cpu, 91); 837 missing++; 838 #endif 839 } 840 841 if (cpuid_opteron_erratum(cpu, 93) > 0) { 842 /* 843 * RSM Auto-Halt Restart Returns to Incorrect RIP 844 */ 845 #if defined(OPTERON_ERRATUM_93) 846 /* 847 * fix is in trap.c 848 */ 849 opteron_erratum_93++; 850 #else 851 workaround_warning(cpu, 93); 852 missing++; 853 #endif 854 } 855 856 /*LINTED*/ 857 if (cpuid_opteron_erratum(cpu, 95) > 0) { 858 /* 859 * RET Instruction May Return to Incorrect EIP 860 */ 861 #if defined(OPTERON_ERRATUM_95) 862 #if defined(_LP64) 863 /* 864 * Workaround this by ensuring that 32-bit user code and 865 * 64-bit kernel code never occupy the same address 866 * range mod 4G. 867 */ 868 if (_userlimit32 > 0xc0000000ul) 869 *(uintptr_t *)&_userlimit32 = 0xc0000000ul; 870 871 /*LINTED*/ 872 ASSERT((uint32_t)COREHEAP_BASE == 0xc0000000u); 873 opteron_erratum_95++; 874 #endif /* _LP64 */ 875 #else 876 workaround_warning(cpu, 95); 877 missing++; 878 #endif 879 } 880 881 if (cpuid_opteron_erratum(cpu, 100) > 0) { 882 /* 883 * Compatibility Mode Branches Transfer to Illegal Address 884 */ 885 #if defined(OPTERON_ERRATUM_100) 886 /* 887 * fix is in trap.c 888 */ 889 opteron_erratum_100++; 890 #else 891 workaround_warning(cpu, 100); 892 missing++; 893 #endif 894 } 895 896 /*LINTED*/ 897 if (cpuid_opteron_erratum(cpu, 108) > 0) { 898 /* 899 * CPUID Instruction May Return Incorrect Model Number In 900 * Some Processors 901 */ 902 #if defined(OPTERON_ERRATUM_108) 903 /* 904 * (Our cpuid-handling code corrects the model number on 905 * those processors) 906 */ 907 #else 908 workaround_warning(cpu, 108); 909 missing++; 910 #endif 911 } 912 913 /*LINTED*/ 914 if (cpuid_opteron_erratum(cpu, 109) > 0) do { 915 /* 916 * Certain Reverse REP MOVS May Produce Unpredictable Behavior 917 */ 918 #if defined(OPTERON_ERRATUM_109) 919 /* 920 * The "workaround" is to print a warning to upgrade the BIOS 921 */ 922 uint64_t value; 923 const uint_t msr = MSR_AMD_PATCHLEVEL; 924 int err; 925 926 if ((err = checked_rdmsr(msr, &value)) != 0) { 927 msr_warning(cpu, "rd", msr, err); 928 workaround_warning(cpu, 109); 929 missing++; 930 } 931 if (value == 0) 932 opteron_erratum_109++; 933 #else 934 workaround_warning(cpu, 109); 935 missing++; 936 #endif 937 /*CONSTANTCONDITION*/ 938 } while (0); 939 940 /*LINTED*/ 941 if (cpuid_opteron_erratum(cpu, 121) > 0) { 942 /* 943 * Sequential Execution Across Non_Canonical Boundary Caused 944 * Processor Hang 945 */ 946 #if defined(OPTERON_ERRATUM_121) 947 #if defined(_LP64) 948 /* 949 * Erratum 121 is only present in long (64 bit) mode. 950 * Workaround is to include the page immediately before the 951 * va hole to eliminate the possibility of system hangs due to 952 * sequential execution across the va hole boundary. 953 */ 954 if (opteron_erratum_121) 955 opteron_erratum_121++; 956 else { 957 if (hole_start) { 958 hole_start -= PAGESIZE; 959 } else { 960 /* 961 * hole_start not yet initialized by 962 * mmu_init. Initialize hole_start 963 * with value to be subtracted. 964 */ 965 hole_start = PAGESIZE; 966 } 967 opteron_erratum_121++; 968 } 969 #endif /* _LP64 */ 970 #else 971 workaround_warning(cpu, 121); 972 missing++; 973 #endif 974 } 975 976 /*LINTED*/ 977 if (cpuid_opteron_erratum(cpu, 122) > 0) do { 978 /* 979 * TLB Flush Filter May Cause Coherency Problem in 980 * Multiprocessor Systems 981 */ 982 #if defined(OPTERON_ERRATUM_122) 983 uint64_t value; 984 const uint_t msr = MSR_AMD_HWCR; 985 int error; 986 987 /* 988 * Erratum 122 is only present in MP configurations (multi-core 989 * or multi-processor). 990 */ 991 #if defined(__xpv) 992 if (!DOMAIN_IS_INITDOMAIN(xen_info)) 993 break; 994 if (!opteron_erratum_122 && xpv_nr_phys_cpus() == 1) 995 break; 996 #else 997 if (!opteron_erratum_122 && opteron_get_nnodes() == 1 && 998 cpuid_get_ncpu_per_chip(cpu) == 1) 999 break; 1000 #endif 1001 /* disable TLB Flush Filter */ 1002 1003 if ((error = checked_rdmsr(msr, &value)) != 0) { 1004 msr_warning(cpu, "rd", msr, error); 1005 workaround_warning(cpu, 122); 1006 missing++; 1007 } else { 1008 value |= (uint64_t)AMD_HWCR_FFDIS; 1009 if ((error = checked_wrmsr(msr, value)) != 0) { 1010 msr_warning(cpu, "wr", msr, error); 1011 workaround_warning(cpu, 122); 1012 missing++; 1013 } 1014 } 1015 opteron_erratum_122++; 1016 #else 1017 workaround_warning(cpu, 122); 1018 missing++; 1019 #endif 1020 /*CONSTANTCONDITION*/ 1021 } while (0); 1022 1023 /*LINTED*/ 1024 if (cpuid_opteron_erratum(cpu, 123) > 0) do { 1025 /* 1026 * Bypassed Reads May Cause Data Corruption of System Hang in 1027 * Dual Core Processors 1028 */ 1029 #if defined(OPTERON_ERRATUM_123) 1030 uint64_t value; 1031 const uint_t msr = MSR_AMD_PATCHLEVEL; 1032 int err; 1033 1034 /* 1035 * Erratum 123 applies only to multi-core cpus. 1036 */ 1037 if (cpuid_get_ncpu_per_chip(cpu) < 2) 1038 break; 1039 #if defined(__xpv) 1040 if (!DOMAIN_IS_INITDOMAIN(xen_info)) 1041 break; 1042 #endif 1043 /* 1044 * The "workaround" is to print a warning to upgrade the BIOS 1045 */ 1046 if ((err = checked_rdmsr(msr, &value)) != 0) { 1047 msr_warning(cpu, "rd", msr, err); 1048 workaround_warning(cpu, 123); 1049 missing++; 1050 } 1051 if (value == 0) 1052 opteron_erratum_123++; 1053 #else 1054 workaround_warning(cpu, 123); 1055 missing++; 1056 1057 #endif 1058 /*CONSTANTCONDITION*/ 1059 } while (0); 1060 1061 /*LINTED*/ 1062 if (cpuid_opteron_erratum(cpu, 131) > 0) do { 1063 /* 1064 * Multiprocessor Systems with Four or More Cores May Deadlock 1065 * Waiting for a Probe Response 1066 */ 1067 #if defined(OPTERON_ERRATUM_131) 1068 uint64_t nbcfg; 1069 const uint_t msr = MSR_AMD_NB_CFG; 1070 const uint64_t wabits = 1071 AMD_NB_CFG_SRQ_HEARTBEAT | AMD_NB_CFG_SRQ_SPR; 1072 int error; 1073 1074 /* 1075 * Erratum 131 applies to any system with four or more cores. 1076 */ 1077 if (opteron_erratum_131) 1078 break; 1079 #if defined(__xpv) 1080 if (!DOMAIN_IS_INITDOMAIN(xen_info)) 1081 break; 1082 if (xpv_nr_phys_cpus() < 4) 1083 break; 1084 #else 1085 if (opteron_get_nnodes() * cpuid_get_ncpu_per_chip(cpu) < 4) 1086 break; 1087 #endif 1088 /* 1089 * Print a warning if neither of the workarounds for 1090 * erratum 131 is present. 1091 */ 1092 if ((error = checked_rdmsr(msr, &nbcfg)) != 0) { 1093 msr_warning(cpu, "rd", msr, error); 1094 workaround_warning(cpu, 131); 1095 missing++; 1096 } else if ((nbcfg & wabits) == 0) { 1097 opteron_erratum_131++; 1098 } else { 1099 /* cannot have both workarounds set */ 1100 ASSERT((nbcfg & wabits) != wabits); 1101 } 1102 #else 1103 workaround_warning(cpu, 131); 1104 missing++; 1105 #endif 1106 /*CONSTANTCONDITION*/ 1107 } while (0); 1108 1109 /* 1110 * This isn't really an erratum, but for convenience the 1111 * detection/workaround code lives here and in cpuid_opteron_erratum. 1112 * Note, the technique only is valid on families before 12h and 1113 * certainly doesn't work when we're virtualized. This is checked for in 1114 * the erratum workaround. 1115 */ 1116 if (cpuid_opteron_erratum(cpu, 6336786) > 0) { 1117 #if defined(OPTERON_WORKAROUND_6336786) 1118 /* 1119 * Disable C1-Clock ramping on multi-core/multi-processor 1120 * K8 platforms to guard against TSC drift. 1121 */ 1122 if (opteron_workaround_6336786) { 1123 opteron_workaround_6336786++; 1124 #if defined(__xpv) 1125 } else if ((DOMAIN_IS_INITDOMAIN(xen_info) && 1126 xpv_nr_phys_cpus() > 1) || 1127 opteron_workaround_6336786_UP) { 1128 /* 1129 * XXPV Hmm. We can't walk the Northbridges on 1130 * the hypervisor; so just complain and drive 1131 * on. This probably needs to be fixed in 1132 * the hypervisor itself. 1133 */ 1134 opteron_workaround_6336786++; 1135 workaround_warning(cpu, 6336786); 1136 #else /* __xpv */ 1137 } else if ((opteron_get_nnodes() * 1138 cpuid_get_ncpu_per_chip(cpu) > 1) || 1139 opteron_workaround_6336786_UP) { 1140 1141 uint_t node, nnodes; 1142 uint8_t data; 1143 1144 nnodes = opteron_get_nnodes(); 1145 for (node = 0; node < nnodes; node++) { 1146 /* 1147 * Clear PMM7[1:0] (function 3, offset 0x87) 1148 * Northbridge device is the node id + 24. 1149 */ 1150 data = pci_getb_func(0, node + 24, 3, 0x87); 1151 data &= 0xFC; 1152 pci_putb_func(0, node + 24, 3, 0x87, data); 1153 } 1154 opteron_workaround_6336786++; 1155 #endif /* __xpv */ 1156 } 1157 #else 1158 workaround_warning(cpu, 6336786); 1159 missing++; 1160 #endif 1161 } 1162 1163 /*LINTED*/ 1164 /* 1165 * Mutex primitives don't work as expected. This is erratum #147 from 1166 * 'Revision Guide for AMD Athlon 64 and AMD Opteron Processors' 1167 * document 25759. 1168 */ 1169 if (cpuid_opteron_erratum(cpu, 6323525) > 0) { 1170 #if defined(OPTERON_WORKAROUND_6323525) 1171 /* 1172 * This problem only occurs with 2 or more cores. If bit in 1173 * MSR_AMD_BU_CFG set, then not applicable. The workaround 1174 * is to patch the semaphone routines with the lfence 1175 * instruction to provide necessary load memory barrier with 1176 * possible subsequent read-modify-write ops. 1177 * 1178 * It is too early in boot to call the patch routine so 1179 * set erratum variable to be done in startup_end(). 1180 */ 1181 if (opteron_workaround_6323525) { 1182 opteron_workaround_6323525++; 1183 #if defined(__xpv) 1184 } else if (is_x86_feature(x86_featureset, X86FSET_SSE2)) { 1185 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 1186 /* 1187 * XXPV Use dom0_msr here when extended 1188 * operations are supported? 1189 */ 1190 if (xpv_nr_phys_cpus() > 1) 1191 opteron_workaround_6323525++; 1192 } else { 1193 /* 1194 * We have no way to tell how many physical 1195 * cpus there are, or even if this processor 1196 * has the problem, so enable the workaround 1197 * unconditionally (at some performance cost). 1198 */ 1199 opteron_workaround_6323525++; 1200 } 1201 #else /* __xpv */ 1202 } else if (is_x86_feature(x86_featureset, X86FSET_SSE2) && 1203 ((opteron_get_nnodes() * 1204 cpuid_get_ncpu_per_chip(cpu)) > 1)) { 1205 if ((xrdmsr(MSR_AMD_BU_CFG) & (UINT64_C(1) << 33)) == 0) 1206 opteron_workaround_6323525++; 1207 #endif /* __xpv */ 1208 } 1209 #else 1210 workaround_warning(cpu, 6323525); 1211 missing++; 1212 #endif 1213 } 1214 1215 missing += do_erratum_298(cpu); 1216 1217 if (cpuid_opteron_erratum(cpu, 721) > 0) { 1218 #if defined(OPTERON_ERRATUM_721) 1219 on_trap_data_t otd; 1220 1221 if (!on_trap(&otd, OT_DATA_ACCESS)) 1222 wrmsr(MSR_AMD_DE_CFG, 1223 rdmsr(MSR_AMD_DE_CFG) | AMD_DE_CFG_E721); 1224 no_trap(); 1225 1226 opteron_erratum_721++; 1227 #else 1228 workaround_warning(cpu, 721); 1229 missing++; 1230 #endif 1231 } 1232 1233 #ifdef __xpv 1234 return (0); 1235 #else 1236 return (missing); 1237 #endif 1238 } 1239 1240 void 1241 workaround_errata_end() 1242 { 1243 #if defined(OPTERON_ERRATUM_88) 1244 if (opteron_erratum_88) 1245 workaround_applied(88); 1246 #endif 1247 #if defined(OPTERON_ERRATUM_91) 1248 if (opteron_erratum_91) 1249 workaround_applied(91); 1250 #endif 1251 #if defined(OPTERON_ERRATUM_93) 1252 if (opteron_erratum_93) 1253 workaround_applied(93); 1254 #endif 1255 #if defined(OPTERON_ERRATUM_95) 1256 if (opteron_erratum_95) 1257 workaround_applied(95); 1258 #endif 1259 #if defined(OPTERON_ERRATUM_100) 1260 if (opteron_erratum_100) 1261 workaround_applied(100); 1262 #endif 1263 #if defined(OPTERON_ERRATUM_108) 1264 if (opteron_erratum_108) 1265 workaround_applied(108); 1266 #endif 1267 #if defined(OPTERON_ERRATUM_109) 1268 if (opteron_erratum_109) { 1269 cmn_err(CE_WARN, 1270 "BIOS microcode patch for AMD Athlon(tm) 64/Opteron(tm)" 1271 " processor\nerratum 109 was not detected; updating your" 1272 " system's BIOS to a version\ncontaining this" 1273 " microcode patch is HIGHLY recommended or erroneous" 1274 " system\noperation may occur.\n"); 1275 } 1276 #endif 1277 #if defined(OPTERON_ERRATUM_121) 1278 if (opteron_erratum_121) 1279 workaround_applied(121); 1280 #endif 1281 #if defined(OPTERON_ERRATUM_122) 1282 if (opteron_erratum_122) 1283 workaround_applied(122); 1284 #endif 1285 #if defined(OPTERON_ERRATUM_123) 1286 if (opteron_erratum_123) { 1287 cmn_err(CE_WARN, 1288 "BIOS microcode patch for AMD Athlon(tm) 64/Opteron(tm)" 1289 " processor\nerratum 123 was not detected; updating your" 1290 " system's BIOS to a version\ncontaining this" 1291 " microcode patch is HIGHLY recommended or erroneous" 1292 " system\noperation may occur.\n"); 1293 } 1294 #endif 1295 #if defined(OPTERON_ERRATUM_131) 1296 if (opteron_erratum_131) { 1297 cmn_err(CE_WARN, 1298 "BIOS microcode patch for AMD Athlon(tm) 64/Opteron(tm)" 1299 " processor\nerratum 131 was not detected; updating your" 1300 " system's BIOS to a version\ncontaining this" 1301 " microcode patch is HIGHLY recommended or erroneous" 1302 " system\noperation may occur.\n"); 1303 } 1304 #endif 1305 #if defined(OPTERON_WORKAROUND_6336786) 1306 if (opteron_workaround_6336786) 1307 workaround_applied(6336786); 1308 #endif 1309 #if defined(OPTERON_WORKAROUND_6323525) 1310 if (opteron_workaround_6323525) 1311 workaround_applied(6323525); 1312 #endif 1313 #if defined(OPTERON_ERRATUM_298) 1314 if (opteron_erratum_298) { 1315 cmn_err(CE_WARN, 1316 "BIOS microcode patch for AMD 64/Opteron(tm)" 1317 " processor\nerratum 298 was not detected; updating your" 1318 " system's BIOS to a version\ncontaining this" 1319 " microcode patch is HIGHLY recommended or erroneous" 1320 " system\noperation may occur.\n"); 1321 } 1322 #endif 1323 #if defined(OPTERON_ERRATUM_721) 1324 if (opteron_erratum_721) 1325 workaround_applied(721); 1326 #endif 1327 } 1328 1329 /* 1330 * The procset_slave and procset_master are used to synchronize 1331 * between the control CPU and the target CPU when starting CPUs. 1332 */ 1333 static cpuset_t procset_slave, procset_master; 1334 1335 static void 1336 mp_startup_wait(cpuset_t *sp, processorid_t cpuid) 1337 { 1338 cpuset_t tempset; 1339 1340 for (tempset = *sp; !CPU_IN_SET(tempset, cpuid); 1341 tempset = *(volatile cpuset_t *)sp) { 1342 SMT_PAUSE(); 1343 } 1344 CPUSET_ATOMIC_DEL(*(cpuset_t *)sp, cpuid); 1345 } 1346 1347 static void 1348 mp_startup_signal(cpuset_t *sp, processorid_t cpuid) 1349 { 1350 cpuset_t tempset; 1351 1352 CPUSET_ATOMIC_ADD(*(cpuset_t *)sp, cpuid); 1353 for (tempset = *sp; CPU_IN_SET(tempset, cpuid); 1354 tempset = *(volatile cpuset_t *)sp) { 1355 SMT_PAUSE(); 1356 } 1357 } 1358 1359 int 1360 mp_start_cpu_common(cpu_t *cp, boolean_t boot) 1361 { 1362 _NOTE(ARGUNUSED(boot)); 1363 1364 void *ctx; 1365 int delays; 1366 int error = 0; 1367 cpuset_t tempset; 1368 processorid_t cpuid; 1369 #ifndef __xpv 1370 extern void cpupm_init(cpu_t *); 1371 #endif 1372 1373 ASSERT(cp != NULL); 1374 cpuid = cp->cpu_id; 1375 ctx = mach_cpucontext_alloc(cp); 1376 if (ctx == NULL) { 1377 cmn_err(CE_WARN, 1378 "cpu%d: failed to allocate context", cp->cpu_id); 1379 return (EAGAIN); 1380 } 1381 error = mach_cpu_start(cp, ctx); 1382 if (error != 0) { 1383 cmn_err(CE_WARN, 1384 "cpu%d: failed to start, error %d", cp->cpu_id, error); 1385 mach_cpucontext_free(cp, ctx, error); 1386 return (error); 1387 } 1388 1389 for (delays = 0, tempset = procset_slave; !CPU_IN_SET(tempset, cpuid); 1390 delays++) { 1391 if (delays == 500) { 1392 /* 1393 * After five seconds, things are probably looking 1394 * a bit bleak - explain the hang. 1395 */ 1396 cmn_err(CE_NOTE, "cpu%d: started, " 1397 "but not running in the kernel yet", cpuid); 1398 } else if (delays > 2000) { 1399 /* 1400 * We waited at least 20 seconds, bail .. 1401 */ 1402 error = ETIMEDOUT; 1403 cmn_err(CE_WARN, "cpu%d: timed out", cpuid); 1404 mach_cpucontext_free(cp, ctx, error); 1405 return (error); 1406 } 1407 1408 /* 1409 * wait at least 10ms, then check again.. 1410 */ 1411 delay(USEC_TO_TICK_ROUNDUP(10000)); 1412 tempset = *((volatile cpuset_t *)&procset_slave); 1413 } 1414 CPUSET_ATOMIC_DEL(procset_slave, cpuid); 1415 1416 mach_cpucontext_free(cp, ctx, 0); 1417 1418 #ifndef __xpv 1419 if (tsc_gethrtime_enable) 1420 tsc_sync_master(cpuid); 1421 #endif 1422 1423 if (dtrace_cpu_init != NULL) { 1424 (*dtrace_cpu_init)(cpuid); 1425 } 1426 1427 /* 1428 * During CPU DR operations, the cpu_lock is held by current 1429 * (the control) thread. We can't release the cpu_lock here 1430 * because that will break the CPU DR logic. 1431 * On the other hand, CPUPM and processor group initialization 1432 * routines need to access the cpu_lock. So we invoke those 1433 * routines here on behalf of mp_startup_common(). 1434 * 1435 * CPUPM and processor group initialization routines depend 1436 * on the cpuid probing results. Wait for mp_startup_common() 1437 * to signal that cpuid probing is done. 1438 */ 1439 mp_startup_wait(&procset_slave, cpuid); 1440 #ifndef __xpv 1441 cpupm_init(cp); 1442 #endif 1443 (void) pg_cpu_init(cp, B_FALSE); 1444 cpu_set_state(cp); 1445 mp_startup_signal(&procset_master, cpuid); 1446 1447 return (0); 1448 } 1449 1450 /* 1451 * Start a single cpu, assuming that the kernel context is available 1452 * to successfully start another cpu. 1453 * 1454 * (For example, real mode code is mapped into the right place 1455 * in memory and is ready to be run.) 1456 */ 1457 int 1458 start_cpu(processorid_t who) 1459 { 1460 cpu_t *cp; 1461 int error = 0; 1462 cpuset_t tempset; 1463 1464 ASSERT(who != 0); 1465 1466 /* 1467 * Check if there's at least a Mbyte of kmem available 1468 * before attempting to start the cpu. 1469 */ 1470 if (kmem_avail() < 1024 * 1024) { 1471 /* 1472 * Kick off a reap in case that helps us with 1473 * later attempts .. 1474 */ 1475 kmem_reap(); 1476 return (ENOMEM); 1477 } 1478 1479 /* 1480 * First configure cpu. 1481 */ 1482 cp = mp_cpu_configure_common(who, B_TRUE); 1483 ASSERT(cp != NULL); 1484 1485 /* 1486 * Then start cpu. 1487 */ 1488 error = mp_start_cpu_common(cp, B_TRUE); 1489 if (error != 0) { 1490 mp_cpu_unconfigure_common(cp, error); 1491 return (error); 1492 } 1493 1494 mutex_exit(&cpu_lock); 1495 tempset = cpu_ready_set; 1496 while (!CPU_IN_SET(tempset, who)) { 1497 drv_usecwait(1); 1498 tempset = *((volatile cpuset_t *)&cpu_ready_set); 1499 } 1500 mutex_enter(&cpu_lock); 1501 1502 return (0); 1503 } 1504 1505 void 1506 start_other_cpus(int cprboot) 1507 { 1508 _NOTE(ARGUNUSED(cprboot)); 1509 1510 uint_t who; 1511 uint_t bootcpuid = 0; 1512 1513 /* 1514 * Initialize our own cpu_info. 1515 */ 1516 init_cpu_info(CPU); 1517 1518 #if !defined(__xpv) 1519 init_cpu_id_gdt(CPU); 1520 #endif 1521 1522 cmn_err(CE_CONT, "?cpu%d: %s\n", CPU->cpu_id, CPU->cpu_idstr); 1523 cmn_err(CE_CONT, "?cpu%d: %s\n", CPU->cpu_id, CPU->cpu_brandstr); 1524 1525 /* 1526 * KPTI initialisation happens very early in boot, before logging is 1527 * set up. Output a status message now as the boot CPU comes online. 1528 */ 1529 cmn_err(CE_CONT, "?KPTI %s (PCID %s, INVPCID %s)\n", 1530 kpti_enable ? "enabled" : "disabled", 1531 x86_use_pcid == 1 ? "in use" : 1532 (is_x86_feature(x86_featureset, X86FSET_PCID) ? "disabled" : 1533 "not supported"), 1534 x86_use_pcid == 1 && x86_use_invpcid == 1 ? "in use" : 1535 (is_x86_feature(x86_featureset, X86FSET_INVPCID) ? "disabled" : 1536 "not supported")); 1537 1538 /* 1539 * Initialize our syscall handlers 1540 */ 1541 init_cpu_syscall(CPU); 1542 1543 /* 1544 * Take the boot cpu out of the mp_cpus set because we know 1545 * it's already running. Add it to the cpu_ready_set for 1546 * precisely the same reason. 1547 */ 1548 CPUSET_DEL(mp_cpus, bootcpuid); 1549 CPUSET_ADD(cpu_ready_set, bootcpuid); 1550 1551 /* 1552 * skip the rest of this if 1553 * . only 1 cpu dectected and system isn't hotplug-capable 1554 * . not using MP 1555 */ 1556 if ((CPUSET_ISNULL(mp_cpus) && plat_dr_support_cpu() == 0) || 1557 use_mp == 0) { 1558 if (use_mp == 0) 1559 cmn_err(CE_CONT, "?***** Not in MP mode\n"); 1560 goto done; 1561 } 1562 1563 /* 1564 * perform such initialization as is needed 1565 * to be able to take CPUs on- and off-line. 1566 */ 1567 cpu_pause_init(); 1568 1569 xc_init_cpu(CPU); /* initialize processor crosscalls */ 1570 1571 if (mach_cpucontext_init() != 0) 1572 goto done; 1573 1574 flushes_require_xcalls = 1; 1575 1576 /* 1577 * We lock our affinity to the master CPU to ensure that all slave CPUs 1578 * do their TSC syncs with the same CPU. 1579 */ 1580 affinity_set(CPU_CURRENT); 1581 1582 for (who = 0; who < NCPU; who++) { 1583 if (!CPU_IN_SET(mp_cpus, who)) 1584 continue; 1585 ASSERT(who != bootcpuid); 1586 1587 mutex_enter(&cpu_lock); 1588 if (start_cpu(who) != 0) 1589 CPUSET_DEL(mp_cpus, who); 1590 cpu_state_change_notify(who, CPU_SETUP); 1591 mutex_exit(&cpu_lock); 1592 } 1593 1594 /* Free the space allocated to hold the microcode file */ 1595 ucode_cleanup(); 1596 1597 affinity_clear(); 1598 1599 mach_cpucontext_fini(); 1600 1601 done: 1602 if (get_hwenv() == HW_NATIVE) 1603 workaround_errata_end(); 1604 cmi_post_mpstartup(); 1605 1606 #if !defined(__xpv) 1607 /* 1608 * Once other CPUs have completed startup procedures, perform 1609 * initialization of hypervisor resources for HMA. 1610 */ 1611 hma_init(); 1612 #endif 1613 1614 if (use_mp && ncpus != boot_max_ncpus) { 1615 cmn_err(CE_NOTE, 1616 "System detected %d cpus, but " 1617 "only %d cpu(s) were enabled during boot.", 1618 boot_max_ncpus, ncpus); 1619 cmn_err(CE_NOTE, 1620 "Use \"boot-ncpus\" parameter to enable more CPU(s). " 1621 "See eeprom(1M)."); 1622 } 1623 } 1624 1625 int 1626 mp_cpu_configure(int cpuid) 1627 { 1628 cpu_t *cp; 1629 1630 if (use_mp == 0 || plat_dr_support_cpu() == 0) { 1631 return (ENOTSUP); 1632 } 1633 1634 cp = cpu_get(cpuid); 1635 if (cp != NULL) { 1636 return (EALREADY); 1637 } 1638 1639 /* 1640 * Check if there's at least a Mbyte of kmem available 1641 * before attempting to start the cpu. 1642 */ 1643 if (kmem_avail() < 1024 * 1024) { 1644 /* 1645 * Kick off a reap in case that helps us with 1646 * later attempts .. 1647 */ 1648 kmem_reap(); 1649 return (ENOMEM); 1650 } 1651 1652 cp = mp_cpu_configure_common(cpuid, B_FALSE); 1653 ASSERT(cp != NULL && cpu_get(cpuid) == cp); 1654 1655 return (cp != NULL ? 0 : EAGAIN); 1656 } 1657 1658 int 1659 mp_cpu_unconfigure(int cpuid) 1660 { 1661 cpu_t *cp; 1662 1663 if (use_mp == 0 || plat_dr_support_cpu() == 0) { 1664 return (ENOTSUP); 1665 } else if (cpuid < 0 || cpuid >= max_ncpus) { 1666 return (EINVAL); 1667 } 1668 1669 cp = cpu_get(cpuid); 1670 if (cp == NULL) { 1671 return (ENODEV); 1672 } 1673 mp_cpu_unconfigure_common(cp, 0); 1674 1675 return (0); 1676 } 1677 1678 /* 1679 * Startup function for 'other' CPUs (besides boot cpu). 1680 * Called from real_mode_start. 1681 * 1682 * WARNING: until CPU_READY is set, mp_startup_common and routines called by 1683 * mp_startup_common should not call routines (e.g. kmem_free) that could call 1684 * hat_unload which requires CPU_READY to be set. 1685 */ 1686 static void 1687 mp_startup_common(boolean_t boot) 1688 { 1689 cpu_t *cp = CPU; 1690 uchar_t new_x86_featureset[BT_SIZEOFMAP(NUM_X86_FEATURES)]; 1691 extern void cpu_event_init_cpu(cpu_t *); 1692 1693 /* 1694 * We need to get TSC on this proc synced (i.e., any delta 1695 * from cpu0 accounted for) as soon as we can, because many 1696 * many things use gethrtime/pc_gethrestime, including 1697 * interrupts, cmn_err, etc. Before we can do that, we want to 1698 * clear TSC if we're on a buggy Sandy/Ivy Bridge CPU, so do that 1699 * right away. 1700 */ 1701 bzero(new_x86_featureset, BT_SIZEOFMAP(NUM_X86_FEATURES)); 1702 cpuid_pass1(cp, new_x86_featureset); 1703 1704 if (boot && get_hwenv() == HW_NATIVE && 1705 cpuid_getvendor(CPU) == X86_VENDOR_Intel && 1706 cpuid_getfamily(CPU) == 6 && 1707 (cpuid_getmodel(CPU) == 0x2d || cpuid_getmodel(CPU) == 0x3e) && 1708 is_x86_feature(new_x86_featureset, X86FSET_TSC)) { 1709 (void) wrmsr(REG_TSC, 0UL); 1710 } 1711 1712 /* Let the control CPU continue into tsc_sync_master() */ 1713 mp_startup_signal(&procset_slave, cp->cpu_id); 1714 1715 #ifndef __xpv 1716 if (tsc_gethrtime_enable) 1717 tsc_sync_slave(); 1718 #endif 1719 1720 /* 1721 * Once this was done from assembly, but it's safer here; if 1722 * it blocks, we need to be able to swtch() to and from, and 1723 * since we get here by calling t_pc, we need to do that call 1724 * before swtch() overwrites it. 1725 */ 1726 (void) (*ap_mlsetup)(); 1727 1728 #ifndef __xpv 1729 /* 1730 * Program this cpu's PAT 1731 */ 1732 pat_sync(); 1733 #endif 1734 1735 /* 1736 * Set up TSC_AUX to contain the cpuid for this processor 1737 * for the rdtscp instruction. 1738 */ 1739 if (is_x86_feature(x86_featureset, X86FSET_TSCP)) 1740 (void) wrmsr(MSR_AMD_TSCAUX, cp->cpu_id); 1741 1742 /* 1743 * Initialize this CPU's syscall handlers 1744 */ 1745 init_cpu_syscall(cp); 1746 1747 /* 1748 * Enable interrupts with spl set to LOCK_LEVEL. LOCK_LEVEL is the 1749 * highest level at which a routine is permitted to block on 1750 * an adaptive mutex (allows for cpu poke interrupt in case 1751 * the cpu is blocked on a mutex and halts). Setting LOCK_LEVEL blocks 1752 * device interrupts that may end up in the hat layer issuing cross 1753 * calls before CPU_READY is set. 1754 */ 1755 splx(ipltospl(LOCK_LEVEL)); 1756 sti(); 1757 1758 /* 1759 * There exists a small subset of systems which expose differing 1760 * MWAIT/MONITOR support between CPUs. If MWAIT support is absent from 1761 * the boot CPU, but is found on a later CPU, the system continues to 1762 * operate as if no MWAIT support is available. 1763 * 1764 * The reverse case, where MWAIT is available on the boot CPU but not 1765 * on a subsequently initialized CPU, is not presently allowed and will 1766 * result in a panic. 1767 */ 1768 if (is_x86_feature(x86_featureset, X86FSET_MWAIT) != 1769 is_x86_feature(new_x86_featureset, X86FSET_MWAIT)) { 1770 if (!is_x86_feature(x86_featureset, X86FSET_MWAIT)) { 1771 remove_x86_feature(new_x86_featureset, X86FSET_MWAIT); 1772 } else { 1773 panic("unsupported mixed cpu mwait support detected"); 1774 } 1775 } 1776 1777 /* 1778 * We could be more sophisticated here, and just mark the CPU 1779 * as "faulted" but at this point we'll opt for the easier 1780 * answer of dying horribly. Provided the boot cpu is ok, 1781 * the system can be recovered by booting with use_mp set to zero. 1782 */ 1783 if (workaround_errata(cp) != 0) 1784 panic("critical workaround(s) missing for cpu%d", cp->cpu_id); 1785 1786 /* 1787 * We can touch cpu_flags here without acquiring the cpu_lock here 1788 * because the cpu_lock is held by the control CPU which is running 1789 * mp_start_cpu_common(). 1790 * Need to clear CPU_QUIESCED flag before calling any function which 1791 * may cause thread context switching, such as kmem_alloc() etc. 1792 * The idle thread checks for CPU_QUIESCED flag and loops for ever if 1793 * it's set. So the startup thread may have no chance to switch back 1794 * again if it's switched away with CPU_QUIESCED set. 1795 */ 1796 cp->cpu_flags &= ~(CPU_POWEROFF | CPU_QUIESCED); 1797 1798 enable_pcid(); 1799 1800 /* 1801 * Setup this processor for XSAVE. 1802 */ 1803 if (fp_save_mech == FP_XSAVE) { 1804 xsave_setup_msr(cp); 1805 } 1806 1807 cpuid_pass2(cp); 1808 cpuid_pass3(cp); 1809 cpuid_pass4(cp, NULL); 1810 1811 /* 1812 * Correct cpu_idstr and cpu_brandstr on target CPU after 1813 * cpuid_pass1() is done. 1814 */ 1815 (void) cpuid_getidstr(cp, cp->cpu_idstr, CPU_IDSTRLEN); 1816 (void) cpuid_getbrandstr(cp, cp->cpu_brandstr, CPU_IDSTRLEN); 1817 1818 cp->cpu_flags |= CPU_RUNNING | CPU_READY | CPU_EXISTS; 1819 1820 post_startup_cpu_fixups(); 1821 1822 cpu_event_init_cpu(cp); 1823 1824 /* 1825 * Enable preemption here so that contention for any locks acquired 1826 * later in mp_startup_common may be preempted if the thread owning 1827 * those locks is continuously executing on other CPUs (for example, 1828 * this CPU must be preemptible to allow other CPUs to pause it during 1829 * their startup phases). It's safe to enable preemption here because 1830 * the CPU state is pretty-much fully constructed. 1831 */ 1832 curthread->t_preempt = 0; 1833 1834 /* The base spl should still be at LOCK LEVEL here */ 1835 ASSERT(cp->cpu_base_spl == ipltospl(LOCK_LEVEL)); 1836 set_base_spl(); /* Restore the spl to its proper value */ 1837 1838 pghw_physid_create(cp); 1839 /* 1840 * Delegate initialization tasks, which need to access the cpu_lock, 1841 * to mp_start_cpu_common() because we can't acquire the cpu_lock here 1842 * during CPU DR operations. 1843 */ 1844 mp_startup_signal(&procset_slave, cp->cpu_id); 1845 mp_startup_wait(&procset_master, cp->cpu_id); 1846 pg_cmt_cpu_startup(cp); 1847 1848 if (boot) { 1849 mutex_enter(&cpu_lock); 1850 cp->cpu_flags &= ~CPU_OFFLINE; 1851 cpu_enable_intr(cp); 1852 cpu_add_active(cp); 1853 mutex_exit(&cpu_lock); 1854 } 1855 1856 /* Enable interrupts */ 1857 (void) spl0(); 1858 1859 /* 1860 * Fill out cpu_ucode_info. Update microcode if necessary. Note that 1861 * this is done after pass1 on the boot CPU, but it needs to be later on 1862 * for the other CPUs. 1863 */ 1864 ucode_check(cp); 1865 cpuid_pass_ucode(cp, new_x86_featureset); 1866 1867 /* 1868 * Do a sanity check to make sure this new CPU is a sane thing 1869 * to add to the collection of processors running this system. 1870 * 1871 * XXX Clearly this needs to get more sophisticated, if x86 1872 * systems start to get built out of heterogenous CPUs; as is 1873 * likely to happen once the number of processors in a configuration 1874 * gets large enough. 1875 */ 1876 if (compare_x86_featureset(x86_featureset, new_x86_featureset) == 1877 B_FALSE) { 1878 cmn_err(CE_CONT, "cpu%d: featureset\n", cp->cpu_id); 1879 print_x86_featureset(new_x86_featureset); 1880 cmn_err(CE_WARN, "cpu%d feature mismatch", cp->cpu_id); 1881 } 1882 1883 #ifndef __xpv 1884 { 1885 /* 1886 * Set up the CPU module for this CPU. This can't be done 1887 * before this CPU is made CPU_READY, because we may (in 1888 * heterogeneous systems) need to go load another CPU module. 1889 * The act of attempting to load a module may trigger a 1890 * cross-call, which will ASSERT unless this cpu is CPU_READY. 1891 */ 1892 cmi_hdl_t hdl; 1893 1894 if ((hdl = cmi_init(CMI_HDL_NATIVE, cmi_ntv_hwchipid(CPU), 1895 cmi_ntv_hwcoreid(CPU), cmi_ntv_hwstrandid(CPU))) != NULL) { 1896 if (is_x86_feature(x86_featureset, X86FSET_MCA)) 1897 cmi_mca_init(hdl); 1898 cp->cpu_m.mcpu_cmi_hdl = hdl; 1899 } 1900 } 1901 #endif /* __xpv */ 1902 1903 if (boothowto & RB_DEBUG) 1904 kdi_cpu_init(); 1905 1906 (void) mach_cpu_create_device_node(cp, NULL); 1907 1908 /* 1909 * Setting the bit in cpu_ready_set must be the last operation in 1910 * processor initialization; the boot CPU will continue to boot once 1911 * it sees this bit set for all active CPUs. 1912 */ 1913 CPUSET_ATOMIC_ADD(cpu_ready_set, cp->cpu_id); 1914 1915 cmn_err(CE_CONT, "?cpu%d: %s\n", cp->cpu_id, cp->cpu_idstr); 1916 cmn_err(CE_CONT, "?cpu%d: %s\n", cp->cpu_id, cp->cpu_brandstr); 1917 cmn_err(CE_CONT, "?cpu%d initialization complete - online\n", 1918 cp->cpu_id); 1919 1920 /* 1921 * Now we are done with the startup thread, so free it up. 1922 */ 1923 thread_exit(); 1924 /*NOTREACHED*/ 1925 } 1926 1927 /* 1928 * Startup function for 'other' CPUs at boot time (besides boot cpu). 1929 */ 1930 static void 1931 mp_startup_boot(void) 1932 { 1933 mp_startup_common(B_TRUE); 1934 } 1935 1936 /* 1937 * Startup function for hotplug CPUs at runtime. 1938 */ 1939 void 1940 mp_startup_hotplug(void) 1941 { 1942 mp_startup_common(B_FALSE); 1943 } 1944 1945 /* 1946 * Start CPU on user request. 1947 */ 1948 /* ARGSUSED */ 1949 int 1950 mp_cpu_start(struct cpu *cp) 1951 { 1952 ASSERT(MUTEX_HELD(&cpu_lock)); 1953 return (0); 1954 } 1955 1956 /* 1957 * Stop CPU on user request. 1958 */ 1959 int 1960 mp_cpu_stop(struct cpu *cp) 1961 { 1962 extern int cbe_psm_timer_mode; 1963 ASSERT(MUTEX_HELD(&cpu_lock)); 1964 1965 #ifdef __xpv 1966 /* 1967 * We can't offline vcpu0. 1968 */ 1969 if (cp->cpu_id == 0) 1970 return (EBUSY); 1971 #endif 1972 1973 /* 1974 * If TIMER_PERIODIC mode is used, CPU0 is the one running it; 1975 * can't stop it. (This is true only for machines with no TSC.) 1976 */ 1977 1978 if ((cbe_psm_timer_mode == TIMER_PERIODIC) && (cp->cpu_id == 0)) 1979 return (EBUSY); 1980 1981 return (0); 1982 } 1983 1984 /* 1985 * Take the specified CPU out of participation in interrupts. 1986 * 1987 * Usually, we hold cpu_lock. But we cannot assert as such due to the 1988 * exception - i_cpr_save_context() - where we have mutual exclusion via a 1989 * separate mechanism. 1990 */ 1991 int 1992 cpu_disable_intr(struct cpu *cp) 1993 { 1994 if (psm_disable_intr(cp->cpu_id) != DDI_SUCCESS) 1995 return (EBUSY); 1996 1997 cp->cpu_flags &= ~CPU_ENABLE; 1998 ncpus_intr_enabled--; 1999 return (0); 2000 } 2001 2002 /* 2003 * Allow the specified CPU to participate in interrupts. 2004 */ 2005 void 2006 cpu_enable_intr(struct cpu *cp) 2007 { 2008 ASSERT(MUTEX_HELD(&cpu_lock)); 2009 cp->cpu_flags |= CPU_ENABLE; 2010 ncpus_intr_enabled++; 2011 psm_enable_intr(cp->cpu_id); 2012 } 2013 2014 void 2015 mp_cpu_faulted_enter(struct cpu *cp) 2016 { 2017 #ifdef __xpv 2018 _NOTE(ARGUNUSED(cp)); 2019 #else 2020 cmi_hdl_t hdl = cp->cpu_m.mcpu_cmi_hdl; 2021 2022 if (hdl != NULL) { 2023 cmi_hdl_hold(hdl); 2024 } else { 2025 hdl = cmi_hdl_lookup(CMI_HDL_NATIVE, cmi_ntv_hwchipid(cp), 2026 cmi_ntv_hwcoreid(cp), cmi_ntv_hwstrandid(cp)); 2027 } 2028 if (hdl != NULL) { 2029 cmi_faulted_enter(hdl); 2030 cmi_hdl_rele(hdl); 2031 } 2032 #endif 2033 } 2034 2035 void 2036 mp_cpu_faulted_exit(struct cpu *cp) 2037 { 2038 #ifdef __xpv 2039 _NOTE(ARGUNUSED(cp)); 2040 #else 2041 cmi_hdl_t hdl = cp->cpu_m.mcpu_cmi_hdl; 2042 2043 if (hdl != NULL) { 2044 cmi_hdl_hold(hdl); 2045 } else { 2046 hdl = cmi_hdl_lookup(CMI_HDL_NATIVE, cmi_ntv_hwchipid(cp), 2047 cmi_ntv_hwcoreid(cp), cmi_ntv_hwstrandid(cp)); 2048 } 2049 if (hdl != NULL) { 2050 cmi_faulted_exit(hdl); 2051 cmi_hdl_rele(hdl); 2052 } 2053 #endif 2054 } 2055 2056 /* 2057 * The following two routines are used as context operators on threads belonging 2058 * to processes with a private LDT (see sysi86). Due to the rarity of such 2059 * processes, these routines are currently written for best code readability and 2060 * organization rather than speed. We could avoid checking x86_featureset at 2061 * every context switch by installing different context ops, depending on 2062 * x86_featureset, at LDT creation time -- one for each combination of fast 2063 * syscall features. 2064 */ 2065 2066 void 2067 cpu_fast_syscall_disable(void) 2068 { 2069 if (is_x86_feature(x86_featureset, X86FSET_MSR) && 2070 is_x86_feature(x86_featureset, X86FSET_SEP)) 2071 cpu_sep_disable(); 2072 if (is_x86_feature(x86_featureset, X86FSET_MSR) && 2073 is_x86_feature(x86_featureset, X86FSET_ASYSC)) 2074 cpu_asysc_disable(); 2075 } 2076 2077 void 2078 cpu_fast_syscall_enable(void) 2079 { 2080 if (is_x86_feature(x86_featureset, X86FSET_MSR) && 2081 is_x86_feature(x86_featureset, X86FSET_SEP)) 2082 cpu_sep_enable(); 2083 if (is_x86_feature(x86_featureset, X86FSET_MSR) && 2084 is_x86_feature(x86_featureset, X86FSET_ASYSC)) 2085 cpu_asysc_enable(); 2086 } 2087 2088 static void 2089 cpu_sep_enable(void) 2090 { 2091 ASSERT(is_x86_feature(x86_featureset, X86FSET_SEP)); 2092 ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL); 2093 2094 wrmsr(MSR_INTC_SEP_CS, (uint64_t)(uintptr_t)KCS_SEL); 2095 2096 CPU->cpu_m.mcpu_fast_syscall_state |= FSS_SEP_ENABLED; 2097 } 2098 2099 static void 2100 cpu_sep_disable(void) 2101 { 2102 ASSERT(is_x86_feature(x86_featureset, X86FSET_SEP)); 2103 ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL); 2104 2105 /* 2106 * Setting the SYSENTER_CS_MSR register to 0 causes software executing 2107 * the sysenter or sysexit instruction to trigger a #gp fault. 2108 */ 2109 wrmsr(MSR_INTC_SEP_CS, 0); 2110 2111 CPU->cpu_m.mcpu_fast_syscall_state &= ~FSS_SEP_ENABLED; 2112 } 2113 2114 static void 2115 cpu_asysc_enable(void) 2116 { 2117 ASSERT(is_x86_feature(x86_featureset, X86FSET_ASYSC)); 2118 ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL); 2119 2120 wrmsr(MSR_AMD_EFER, rdmsr(MSR_AMD_EFER) | 2121 (uint64_t)(uintptr_t)AMD_EFER_SCE); 2122 2123 CPU->cpu_m.mcpu_fast_syscall_state |= FSS_ASYSC_ENABLED; 2124 } 2125 2126 static void 2127 cpu_asysc_disable(void) 2128 { 2129 ASSERT(is_x86_feature(x86_featureset, X86FSET_ASYSC)); 2130 ASSERT(curthread->t_preempt || getpil() >= LOCK_LEVEL); 2131 2132 /* 2133 * Turn off the SCE (syscall enable) bit in the EFER register. Software 2134 * executing syscall or sysret with this bit off will incur a #ud trap. 2135 */ 2136 wrmsr(MSR_AMD_EFER, rdmsr(MSR_AMD_EFER) & 2137 ~((uint64_t)(uintptr_t)AMD_EFER_SCE)); 2138 2139 CPU->cpu_m.mcpu_fast_syscall_state &= ~FSS_ASYSC_ENABLED; 2140 } 2141