xref: /illumos-gate/usr/src/uts/i86pc/os/mp_machdep.c (revision f73e1ebf60792a8bdb2d559097c3131b68c09318)
1 
2 /*
3  * CDDL HEADER START
4  *
5  * The contents of this file are subject to the terms of the
6  * Common Development and Distribution License (the "License").
7  * You may not use this file except in compliance with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 /*
26  * Copyright (c) 2009-2010, Intel Corporation.
27  * All rights reserved.
28  * Copyright 2018 Joyent, Inc.
29  * Copyright 2020 Oxide Computer Company
30  */
31 
32 #define	PSMI_1_7
33 #include <sys/smp_impldefs.h>
34 #include <sys/psm.h>
35 #include <sys/psm_modctl.h>
36 #include <sys/pit.h>
37 #include <sys/cmn_err.h>
38 #include <sys/strlog.h>
39 #include <sys/clock.h>
40 #include <sys/debug.h>
41 #include <sys/rtc.h>
42 #include <sys/x86_archext.h>
43 #include <sys/cpupart.h>
44 #include <sys/cpuvar.h>
45 #include <sys/cpu_event.h>
46 #include <sys/cmt.h>
47 #include <sys/cpu.h>
48 #include <sys/disp.h>
49 #include <sys/archsystm.h>
50 #include <sys/machsystm.h>
51 #include <sys/sysmacros.h>
52 #include <sys/memlist.h>
53 #include <sys/param.h>
54 #include <sys/promif.h>
55 #include <sys/cpu_pm.h>
56 #if defined(__xpv)
57 #include <sys/hypervisor.h>
58 #endif
59 #include <sys/mach_intr.h>
60 #include <vm/hat_i86.h>
61 #include <sys/kdi_machimpl.h>
62 #include <sys/sdt.h>
63 #include <sys/hpet.h>
64 #include <sys/sunddi.h>
65 #include <sys/sunndi.h>
66 #include <sys/cpc_pcbe.h>
67 #include <sys/prom_debug.h>
68 
69 
70 #define	OFFSETOF(s, m)		(size_t)(&(((s *)0)->m))
71 
72 /*
73  *	Local function prototypes
74  */
75 static int mp_disable_intr(processorid_t cpun);
76 static void mp_enable_intr(processorid_t cpun);
77 static void mach_init();
78 static void mach_picinit();
79 static int machhztomhz(uint64_t cpu_freq_hz);
80 static uint64_t mach_getcpufreq(void);
81 static void mach_fixcpufreq(void);
82 static int mach_clkinit(int, int *);
83 static void mach_smpinit(void);
84 static int mach_softlvl_to_vect(int ipl);
85 static void mach_get_platform(int owner);
86 static void mach_construct_info();
87 static int mach_translate_irq(dev_info_t *dip, int irqno);
88 static int mach_intr_ops(dev_info_t *, ddi_intr_handle_impl_t *,
89     psm_intr_op_t, int *);
90 static void mach_notify_error(int level, char *errmsg);
91 static hrtime_t dummy_hrtime(void);
92 static void dummy_scalehrtime(hrtime_t *);
93 static uint64_t dummy_unscalehrtime(hrtime_t);
94 void cpu_idle(void);
95 static void cpu_wakeup(cpu_t *, int);
96 #ifndef __xpv
97 void cpu_idle_mwait(void);
98 static void cpu_wakeup_mwait(cpu_t *, int);
99 #endif
100 static int mach_cpu_create_devinfo(cpu_t *cp, dev_info_t **dipp);
101 
102 /*
103  *	External reference functions
104  */
105 extern void return_instr();
106 extern uint64_t freq_tsc(uint32_t *);
107 #if defined(__i386)
108 extern uint64_t freq_notsc(uint32_t *);
109 #endif
110 extern void pc_gethrestime(timestruc_t *);
111 extern int cpuid_get_coreid(cpu_t *);
112 extern int cpuid_get_chipid(cpu_t *);
113 
114 /*
115  *	PSM functions initialization
116  */
117 void (*psm_shutdownf)(int, int)	= (void (*)(int, int))return_instr;
118 void (*psm_preshutdownf)(int, int) = (void (*)(int, int))return_instr;
119 void (*psm_notifyf)(int)	= (void (*)(int))return_instr;
120 void (*psm_set_idle_cpuf)(int)	= (void (*)(int))return_instr;
121 void (*psm_unset_idle_cpuf)(int) = (void (*)(int))return_instr;
122 void (*psminitf)()		= mach_init;
123 void (*picinitf)()		= return_instr;
124 int (*clkinitf)(int, int *)	= (int (*)(int, int *))return_instr;
125 int (*ap_mlsetup)()		= (int (*)(void))return_instr;
126 void (*send_dirintf)()		= return_instr;
127 void (*setspl)(int)		= (void (*)(int))return_instr;
128 int (*addspl)(int, int, int, int) = (int (*)(int, int, int, int))return_instr;
129 int (*delspl)(int, int, int, int) = (int (*)(int, int, int, int))return_instr;
130 int (*get_pending_spl)(void)	= (int (*)(void))return_instr;
131 int (*addintr)(void *, int, avfunc, char *, int, caddr_t, caddr_t,
132     uint64_t *, dev_info_t *) = NULL;
133 void (*remintr)(void *, int, avfunc, int) = NULL;
134 void (*kdisetsoftint)(int, struct av_softinfo *)=
135 	(void (*)(int, struct av_softinfo *))return_instr;
136 void (*setsoftint)(int, struct av_softinfo *)=
137 	(void (*)(int, struct av_softinfo *))return_instr;
138 int (*slvltovect)(int)		= (int (*)(int))return_instr;
139 int (*setlvl)(int, int *)	= (int (*)(int, int *))return_instr;
140 void (*setlvlx)(int, int)	= (void (*)(int, int))return_instr;
141 int (*psm_disable_intr)(int)	= mp_disable_intr;
142 void (*psm_enable_intr)(int)	= mp_enable_intr;
143 hrtime_t (*gethrtimef)(void)	= dummy_hrtime;
144 hrtime_t (*gethrtimeunscaledf)(void)	= dummy_hrtime;
145 void (*scalehrtimef)(hrtime_t *)	= dummy_scalehrtime;
146 uint64_t (*unscalehrtimef)(hrtime_t)	= dummy_unscalehrtime;
147 int (*psm_translate_irq)(dev_info_t *, int) = mach_translate_irq;
148 void (*gethrestimef)(timestruc_t *) = pc_gethrestime;
149 void (*psm_notify_error)(int, char *) = (void (*)(int, char *))NULL;
150 int (*psm_get_clockirq)(int) = NULL;
151 int (*psm_get_ipivect)(int, int) = NULL;
152 uchar_t (*psm_get_ioapicid)(uchar_t) = NULL;
153 uint32_t (*psm_get_localapicid)(uint32_t) = NULL;
154 uchar_t (*psm_xlate_vector_by_irq)(uchar_t) = NULL;
155 int (*psm_get_pir_ipivect)(void) = NULL;
156 void (*psm_send_pir_ipi)(processorid_t) = NULL;
157 void (*psm_cmci_setup)(processorid_t, boolean_t) = NULL;
158 
159 int (*psm_clkinit)(int) = NULL;
160 void (*psm_timer_reprogram)(hrtime_t) = NULL;
161 void (*psm_timer_enable)(void) = NULL;
162 void (*psm_timer_disable)(void) = NULL;
163 void (*psm_post_cyclic_setup)(void *arg) = NULL;
164 int (*psm_intr_ops)(dev_info_t *, ddi_intr_handle_impl_t *, psm_intr_op_t,
165     int *) = mach_intr_ops;
166 int (*psm_state)(psm_state_request_t *) = (int (*)(psm_state_request_t *))
167     return_instr;
168 
169 void (*notify_error)(int, char *) = (void (*)(int, char *))return_instr;
170 void (*hrtime_tick)(void)	= return_instr;
171 
172 int (*psm_cpu_create_devinfo)(cpu_t *, dev_info_t **) = mach_cpu_create_devinfo;
173 int (*psm_cpu_get_devinfo)(cpu_t *, dev_info_t **) = NULL;
174 
175 /* global IRM pool for APIX (PSM) module */
176 ddi_irm_pool_t *apix_irm_pool_p = NULL;
177 
178 /*
179  * True if the generic TSC code is our source of hrtime, rather than whatever
180  * the PSM can provide.
181  */
182 #ifdef __xpv
183 int tsc_gethrtime_enable = 0;
184 #else
185 int tsc_gethrtime_enable = 1;
186 #endif
187 int tsc_gethrtime_initted = 0;
188 
189 /*
190  * True if the hrtime implementation is "hires"; namely, better than microdata.
191  */
192 int gethrtime_hires = 0;
193 
194 /*
195  * Local Static Data
196  */
197 static struct psm_ops mach_ops;
198 static struct psm_ops *mach_set[4] = {&mach_ops, NULL, NULL, NULL};
199 static ushort_t mach_ver[4] = {0, 0, 0, 0};
200 
201 /*
202  * virtualization support for psm
203  */
204 void *psm_vt_ops = NULL;
205 /*
206  * If non-zero, idle cpus will become "halted" when there's
207  * no work to do.
208  */
209 int	idle_cpu_use_hlt = 1;
210 
211 #ifndef __xpv
212 /*
213  * If non-zero, idle cpus will use mwait if available to halt instead of hlt.
214  */
215 int	idle_cpu_prefer_mwait = 1;
216 /*
217  * Set to 0 to avoid MONITOR+CLFLUSH assertion.
218  */
219 int	idle_cpu_assert_cflush_monitor = 1;
220 
221 /*
222  * If non-zero, idle cpus will not use power saving Deep C-States idle loop.
223  */
224 int	idle_cpu_no_deep_c = 0;
225 /*
226  * Non-power saving idle loop and wakeup pointers.
227  * Allows user to toggle Deep Idle power saving feature on/off.
228  */
229 void	(*non_deep_idle_cpu)() = cpu_idle;
230 void	(*non_deep_idle_disp_enq_thread)(cpu_t *, int);
231 
232 /*
233  * Object for the kernel to access the HPET.
234  */
235 hpet_t hpet;
236 
237 #endif	/* ifndef __xpv */
238 
239 uint_t cp_haltset_fanout = 0;
240 
241 /*ARGSUSED*/
242 int
243 pg_plat_hw_shared(cpu_t *cp, pghw_type_t hw)
244 {
245 	switch (hw) {
246 	case PGHW_IPIPE:
247 		if (is_x86_feature(x86_featureset, X86FSET_HTT)) {
248 			/*
249 			 * Hyper-threading is SMT
250 			 */
251 			return (1);
252 		} else {
253 			return (0);
254 		}
255 	case PGHW_FPU:
256 		if (cpuid_get_cores_per_compunit(cp) > 1)
257 			return (1);
258 		else
259 			return (0);
260 	case PGHW_PROCNODE:
261 		if (cpuid_get_procnodes_per_pkg(cp) > 1)
262 			return (1);
263 		else
264 			return (0);
265 	case PGHW_CHIP:
266 		if (is_x86_feature(x86_featureset, X86FSET_CMP) ||
267 		    is_x86_feature(x86_featureset, X86FSET_HTT))
268 			return (1);
269 		else
270 			return (0);
271 	case PGHW_CACHE:
272 		if (cpuid_get_ncpu_sharing_last_cache(cp) > 1)
273 			return (1);
274 		else
275 			return (0);
276 	case PGHW_POW_ACTIVE:
277 		if (cpupm_domain_id(cp, CPUPM_DTYPE_ACTIVE) != (id_t)-1)
278 			return (1);
279 		else
280 			return (0);
281 	case PGHW_POW_IDLE:
282 		if (cpupm_domain_id(cp, CPUPM_DTYPE_IDLE) != (id_t)-1)
283 			return (1);
284 		else
285 			return (0);
286 	default:
287 		return (0);
288 	}
289 }
290 
291 /*
292  * Compare two CPUs and see if they have a pghw_type_t sharing relationship
293  * If pghw_type_t is an unsupported hardware type, then return -1
294  */
295 int
296 pg_plat_cpus_share(cpu_t *cpu_a, cpu_t *cpu_b, pghw_type_t hw)
297 {
298 	id_t pgp_a, pgp_b;
299 
300 	pgp_a = pg_plat_hw_instance_id(cpu_a, hw);
301 	pgp_b = pg_plat_hw_instance_id(cpu_b, hw);
302 
303 	if (pgp_a == -1 || pgp_b == -1)
304 		return (-1);
305 
306 	return (pgp_a == pgp_b);
307 }
308 
309 /*
310  * Return a physical instance identifier for known hardware sharing
311  * relationships
312  */
313 id_t
314 pg_plat_hw_instance_id(cpu_t *cpu, pghw_type_t hw)
315 {
316 	switch (hw) {
317 	case PGHW_IPIPE:
318 		return (cpuid_get_coreid(cpu));
319 	case PGHW_CACHE:
320 		return (cpuid_get_last_lvl_cacheid(cpu));
321 	case PGHW_FPU:
322 		return (cpuid_get_compunitid(cpu));
323 	case PGHW_PROCNODE:
324 		return (cpuid_get_procnodeid(cpu));
325 	case PGHW_CHIP:
326 		return (cpuid_get_chipid(cpu));
327 	case PGHW_POW_ACTIVE:
328 		return (cpupm_domain_id(cpu, CPUPM_DTYPE_ACTIVE));
329 	case PGHW_POW_IDLE:
330 		return (cpupm_domain_id(cpu, CPUPM_DTYPE_IDLE));
331 	default:
332 		return (-1);
333 	}
334 }
335 
336 /*
337  * Express preference for optimizing for sharing relationship
338  * hw1 vs hw2
339  */
340 pghw_type_t
341 pg_plat_hw_rank(pghw_type_t hw1, pghw_type_t hw2)
342 {
343 	int i, rank1, rank2;
344 
345 	static pghw_type_t hw_hier[] = {
346 		PGHW_IPIPE,
347 		PGHW_CACHE,
348 		PGHW_FPU,
349 		PGHW_PROCNODE,
350 		PGHW_CHIP,
351 		PGHW_POW_IDLE,
352 		PGHW_POW_ACTIVE,
353 		PGHW_NUM_COMPONENTS
354 	};
355 
356 	rank1 = 0;
357 	rank2 = 0;
358 
359 	for (i = 0; hw_hier[i] != PGHW_NUM_COMPONENTS; i++) {
360 		if (hw_hier[i] == hw1)
361 			rank1 = i;
362 		if (hw_hier[i] == hw2)
363 			rank2 = i;
364 	}
365 
366 	if (rank1 > rank2)
367 		return (hw1);
368 	else
369 		return (hw2);
370 }
371 
372 /*
373  * Override the default CMT dispatcher policy for the specified
374  * hardware sharing relationship
375  */
376 pg_cmt_policy_t
377 pg_plat_cmt_policy(pghw_type_t hw)
378 {
379 	/*
380 	 * For shared caches, also load balance across them to
381 	 * maximize aggregate cache capacity
382 	 *
383 	 * On AMD family 0x15 CPUs, cores come in pairs called
384 	 * compute units, sharing the FPU and the I$ and L2
385 	 * caches. Use balancing and cache affinity.
386 	 */
387 	switch (hw) {
388 	case PGHW_FPU:
389 	case PGHW_CACHE:
390 		return (CMT_BALANCE|CMT_AFFINITY);
391 	default:
392 		return (CMT_NO_POLICY);
393 	}
394 }
395 
396 id_t
397 pg_plat_get_core_id(cpu_t *cpu)
398 {
399 	return ((id_t)cpuid_get_coreid(cpu));
400 }
401 
402 void
403 cmp_set_nosteal_interval(void)
404 {
405 	/* Set the nosteal interval (used by disp_getbest()) to 100us */
406 	nosteal_nsec = 100000UL;
407 }
408 
409 /*
410  * Routine to ensure initial callers to hrtime gets 0 as return
411  */
412 static hrtime_t
413 dummy_hrtime(void)
414 {
415 	return (0);
416 }
417 
418 /* ARGSUSED */
419 static void
420 dummy_scalehrtime(hrtime_t *ticks)
421 {}
422 
423 static uint64_t
424 dummy_unscalehrtime(hrtime_t nsecs)
425 {
426 	return ((uint64_t)nsecs);
427 }
428 
429 /*
430  * Supports Deep C-State power saving idle loop.
431  */
432 void
433 cpu_idle_adaptive(void)
434 {
435 	(*CPU->cpu_m.mcpu_idle_cpu)();
436 }
437 
438 /*
439  * Function called by CPU idle notification framework to check whether CPU
440  * has been awakened. It will be called with interrupt disabled.
441  * If CPU has been awakened, call cpu_idle_exit() to notify CPU idle
442  * notification framework.
443  */
444 /*ARGSUSED*/
445 static void
446 cpu_idle_check_wakeup(void *arg)
447 {
448 	/*
449 	 * Toggle interrupt flag to detect pending interrupts.
450 	 * If interrupt happened, do_interrupt() will notify CPU idle
451 	 * notification framework so no need to call cpu_idle_exit() here.
452 	 */
453 	sti();
454 	SMT_PAUSE();
455 	cli();
456 }
457 
458 /*
459  * Idle the present CPU until wakened via an interrupt
460  */
461 void
462 cpu_idle(void)
463 {
464 	cpu_t		*cpup = CPU;
465 	processorid_t	cpu_sid = cpup->cpu_seqid;
466 	cpupart_t	*cp = cpup->cpu_part;
467 	int		hset_update = 1;
468 
469 	/*
470 	 * If this CPU is online, and there's multiple CPUs
471 	 * in the system, then we should notate our halting
472 	 * by adding ourselves to the partition's halted CPU
473 	 * bitmap. This allows other CPUs to find/awaken us when
474 	 * work becomes available.
475 	 */
476 	if (cpup->cpu_flags & CPU_OFFLINE || ncpus == 1)
477 		hset_update = 0;
478 
479 	/*
480 	 * Add ourselves to the partition's halted CPUs bitmap
481 	 * and set our HALTED flag, if necessary.
482 	 *
483 	 * When a thread becomes runnable, it is placed on the queue
484 	 * and then the halted CPU bitmap is checked to determine who
485 	 * (if anyone) should be awakened. We therefore need to first
486 	 * add ourselves to the bitmap, and and then check if there
487 	 * is any work available. The order is important to prevent a race
488 	 * that can lead to work languishing on a run queue somewhere while
489 	 * this CPU remains halted.
490 	 *
491 	 * Either the producing CPU will see we're halted and will awaken us,
492 	 * or this CPU will see the work available in disp_anywork().
493 	 *
494 	 * Note that memory barriers after updating the HALTED flag
495 	 * are not necessary since an atomic operation (updating the bitset)
496 	 * immediately follows. On x86 the atomic operation acts as a
497 	 * memory barrier for the update of cpu_disp_flags.
498 	 */
499 	if (hset_update) {
500 		cpup->cpu_disp_flags |= CPU_DISP_HALTED;
501 		bitset_atomic_add(&cp->cp_haltset, cpu_sid);
502 	}
503 
504 	/*
505 	 * Check to make sure there's really nothing to do.
506 	 * Work destined for this CPU may become available after
507 	 * this check. We'll be notified through the clearing of our
508 	 * bit in the halted CPU bitmap, and a poke.
509 	 */
510 	if (disp_anywork()) {
511 		if (hset_update) {
512 			cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
513 			bitset_atomic_del(&cp->cp_haltset, cpu_sid);
514 		}
515 		return;
516 	}
517 
518 	/*
519 	 * We're on our way to being halted.
520 	 *
521 	 * Disable interrupts now, so that we'll awaken immediately
522 	 * after halting if someone tries to poke us between now and
523 	 * the time we actually halt.
524 	 *
525 	 * We check for the presence of our bit after disabling interrupts.
526 	 * If it's cleared, we'll return. If the bit is cleared after
527 	 * we check then the poke will pop us out of the halted state.
528 	 *
529 	 * This means that the ordering of the poke and the clearing
530 	 * of the bit by cpu_wakeup is important.
531 	 * cpu_wakeup() must clear, then poke.
532 	 * cpu_idle() must disable interrupts, then check for the bit.
533 	 */
534 	cli();
535 
536 	if (hset_update && bitset_in_set(&cp->cp_haltset, cpu_sid) == 0) {
537 		cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
538 		sti();
539 		return;
540 	}
541 
542 	/*
543 	 * The check for anything locally runnable is here for performance
544 	 * and isn't needed for correctness. disp_nrunnable ought to be
545 	 * in our cache still, so it's inexpensive to check, and if there
546 	 * is anything runnable we won't have to wait for the poke.
547 	 */
548 	if (cpup->cpu_disp->disp_nrunnable != 0) {
549 		if (hset_update) {
550 			cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
551 			bitset_atomic_del(&cp->cp_haltset, cpu_sid);
552 		}
553 		sti();
554 		return;
555 	}
556 
557 	if (cpu_idle_enter(IDLE_STATE_C1, 0,
558 	    cpu_idle_check_wakeup, NULL) == 0) {
559 		mach_cpu_idle();
560 		cpu_idle_exit(CPU_IDLE_CB_FLAG_IDLE);
561 	}
562 
563 	/*
564 	 * We're no longer halted
565 	 */
566 	if (hset_update) {
567 		cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
568 		bitset_atomic_del(&cp->cp_haltset, cpu_sid);
569 	}
570 }
571 
572 
573 /*
574  * If "cpu" is halted, then wake it up clearing its halted bit in advance.
575  * Otherwise, see if other CPUs in the cpu partition are halted and need to
576  * be woken up so that they can steal the thread we placed on this CPU.
577  * This function is only used on MP systems.
578  */
579 static void
580 cpu_wakeup(cpu_t *cpu, int bound)
581 {
582 	uint_t		cpu_found;
583 	processorid_t	cpu_sid;
584 	cpupart_t	*cp;
585 
586 	cp = cpu->cpu_part;
587 	cpu_sid = cpu->cpu_seqid;
588 	if (bitset_in_set(&cp->cp_haltset, cpu_sid)) {
589 		/*
590 		 * Clear the halted bit for that CPU since it will be
591 		 * poked in a moment.
592 		 */
593 		bitset_atomic_del(&cp->cp_haltset, cpu_sid);
594 		/*
595 		 * We may find the current CPU present in the halted cpuset
596 		 * if we're in the context of an interrupt that occurred
597 		 * before we had a chance to clear our bit in cpu_idle().
598 		 * Poking ourself is obviously unnecessary, since if
599 		 * we're here, we're not halted.
600 		 */
601 		if (cpu != CPU)
602 			poke_cpu(cpu->cpu_id);
603 		return;
604 	} else {
605 		/*
606 		 * This cpu isn't halted, but it's idle or undergoing a
607 		 * context switch. No need to awaken anyone else.
608 		 */
609 		if (cpu->cpu_thread == cpu->cpu_idle_thread ||
610 		    cpu->cpu_disp_flags & CPU_DISP_DONTSTEAL)
611 			return;
612 	}
613 
614 	/*
615 	 * No need to wake up other CPUs if this is for a bound thread.
616 	 */
617 	if (bound)
618 		return;
619 
620 	/*
621 	 * The CPU specified for wakeup isn't currently halted, so check
622 	 * to see if there are any other halted CPUs in the partition,
623 	 * and if there are then awaken one.
624 	 */
625 	do {
626 		cpu_found = bitset_find(&cp->cp_haltset);
627 		if (cpu_found == (uint_t)-1)
628 			return;
629 	} while (bitset_atomic_test_and_del(&cp->cp_haltset, cpu_found) < 0);
630 
631 	if (cpu_found != CPU->cpu_seqid) {
632 		poke_cpu(cpu_seq[cpu_found]->cpu_id);
633 	}
634 }
635 
636 #ifndef __xpv
637 /*
638  * Function called by CPU idle notification framework to check whether CPU
639  * has been awakened. It will be called with interrupt disabled.
640  * If CPU has been awakened, call cpu_idle_exit() to notify CPU idle
641  * notification framework.
642  */
643 static void
644 cpu_idle_mwait_check_wakeup(void *arg)
645 {
646 	volatile uint32_t *mcpu_mwait = (volatile uint32_t *)arg;
647 
648 	ASSERT(arg != NULL);
649 	if (*mcpu_mwait != MWAIT_HALTED) {
650 		/*
651 		 * CPU has been awakened, notify CPU idle notification system.
652 		 */
653 		cpu_idle_exit(CPU_IDLE_CB_FLAG_IDLE);
654 	} else {
655 		/*
656 		 * Toggle interrupt flag to detect pending interrupts.
657 		 * If interrupt happened, do_interrupt() will notify CPU idle
658 		 * notification framework so no need to call cpu_idle_exit()
659 		 * here.
660 		 */
661 		sti();
662 		SMT_PAUSE();
663 		cli();
664 	}
665 }
666 
667 /*
668  * Idle the present CPU until awakened via touching its monitored line
669  */
670 void
671 cpu_idle_mwait(void)
672 {
673 	volatile uint32_t	*mcpu_mwait = CPU->cpu_m.mcpu_mwait;
674 	cpu_t			*cpup = CPU;
675 	processorid_t		cpu_sid = cpup->cpu_seqid;
676 	cpupart_t		*cp = cpup->cpu_part;
677 	int			hset_update = 1;
678 
679 	/*
680 	 * Set our mcpu_mwait here, so we can tell if anyone tries to
681 	 * wake us between now and when we call mwait.  No other cpu will
682 	 * attempt to set our mcpu_mwait until we add ourself to the halted
683 	 * CPU bitmap.
684 	 */
685 	*mcpu_mwait = MWAIT_HALTED;
686 
687 	/*
688 	 * If this CPU is online, and there's multiple CPUs
689 	 * in the system, then we should note our halting
690 	 * by adding ourselves to the partition's halted CPU
691 	 * bitmap. This allows other CPUs to find/awaken us when
692 	 * work becomes available.
693 	 */
694 	if (cpup->cpu_flags & CPU_OFFLINE || ncpus == 1)
695 		hset_update = 0;
696 
697 	/*
698 	 * Add ourselves to the partition's halted CPUs bitmap
699 	 * and set our HALTED flag, if necessary.
700 	 *
701 	 * When a thread becomes runnable, it is placed on the queue
702 	 * and then the halted CPU bitmap is checked to determine who
703 	 * (if anyone) should be awakened. We therefore need to first
704 	 * add ourselves to the bitmap, and and then check if there
705 	 * is any work available.
706 	 *
707 	 * Note that memory barriers after updating the HALTED flag
708 	 * are not necessary since an atomic operation (updating the bitmap)
709 	 * immediately follows. On x86 the atomic operation acts as a
710 	 * memory barrier for the update of cpu_disp_flags.
711 	 */
712 	if (hset_update) {
713 		cpup->cpu_disp_flags |= CPU_DISP_HALTED;
714 		bitset_atomic_add(&cp->cp_haltset, cpu_sid);
715 	}
716 
717 	/*
718 	 * Check to make sure there's really nothing to do.
719 	 * Work destined for this CPU may become available after
720 	 * this check. We'll be notified through the clearing of our
721 	 * bit in the halted CPU bitmap, and a write to our mcpu_mwait.
722 	 *
723 	 * disp_anywork() checks disp_nrunnable, so we do not have to later.
724 	 */
725 	if (disp_anywork()) {
726 		if (hset_update) {
727 			cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
728 			bitset_atomic_del(&cp->cp_haltset, cpu_sid);
729 		}
730 		return;
731 	}
732 
733 	/*
734 	 * We're on our way to being halted.
735 	 * To avoid a lost wakeup, arm the monitor before checking if another
736 	 * cpu wrote to mcpu_mwait to wake us up.
737 	 */
738 	i86_monitor(mcpu_mwait, 0, 0);
739 	if (*mcpu_mwait == MWAIT_HALTED) {
740 		if (cpu_idle_enter(IDLE_STATE_C1, 0,
741 		    cpu_idle_mwait_check_wakeup, (void *)mcpu_mwait) == 0) {
742 			if (*mcpu_mwait == MWAIT_HALTED) {
743 				i86_mwait(0, 0);
744 			}
745 			cpu_idle_exit(CPU_IDLE_CB_FLAG_IDLE);
746 		}
747 	}
748 
749 	/*
750 	 * We're no longer halted
751 	 */
752 	if (hset_update) {
753 		cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
754 		bitset_atomic_del(&cp->cp_haltset, cpu_sid);
755 	}
756 }
757 
758 /*
759  * If "cpu" is halted in mwait, then wake it up clearing its halted bit in
760  * advance.  Otherwise, see if other CPUs in the cpu partition are halted and
761  * need to be woken up so that they can steal the thread we placed on this CPU.
762  * This function is only used on MP systems.
763  */
764 static void
765 cpu_wakeup_mwait(cpu_t *cp, int bound)
766 {
767 	cpupart_t	*cpu_part;
768 	uint_t		cpu_found;
769 	processorid_t	cpu_sid;
770 
771 	cpu_part = cp->cpu_part;
772 	cpu_sid = cp->cpu_seqid;
773 
774 	/*
775 	 * Clear the halted bit for that CPU since it will be woken up
776 	 * in a moment.
777 	 */
778 	if (bitset_in_set(&cpu_part->cp_haltset, cpu_sid)) {
779 		/*
780 		 * Clear the halted bit for that CPU since it will be
781 		 * poked in a moment.
782 		 */
783 		bitset_atomic_del(&cpu_part->cp_haltset, cpu_sid);
784 		/*
785 		 * We may find the current CPU present in the halted cpuset
786 		 * if we're in the context of an interrupt that occurred
787 		 * before we had a chance to clear our bit in cpu_idle().
788 		 * Waking ourself is obviously unnecessary, since if
789 		 * we're here, we're not halted.
790 		 *
791 		 * monitor/mwait wakeup via writing to our cache line is
792 		 * harmless and less expensive than always checking if we
793 		 * are waking ourself which is an uncommon case.
794 		 */
795 		MWAIT_WAKEUP(cp);	/* write to monitored line */
796 		return;
797 	} else {
798 		/*
799 		 * This cpu isn't halted, but it's idle or undergoing a
800 		 * context switch. No need to awaken anyone else.
801 		 */
802 		if (cp->cpu_thread == cp->cpu_idle_thread ||
803 		    cp->cpu_disp_flags & CPU_DISP_DONTSTEAL)
804 			return;
805 	}
806 
807 	/*
808 	 * No need to wake up other CPUs if the thread we just enqueued
809 	 * is bound.
810 	 */
811 	if (bound || ncpus == 1)
812 		return;
813 
814 	/*
815 	 * See if there's any other halted CPUs. If there are, then
816 	 * select one, and awaken it.
817 	 * It's possible that after we find a CPU, somebody else
818 	 * will awaken it before we get the chance.
819 	 * In that case, look again.
820 	 */
821 	do {
822 		cpu_found = bitset_find(&cpu_part->cp_haltset);
823 		if (cpu_found == (uint_t)-1)
824 			return;
825 	} while (bitset_atomic_test_and_del(&cpu_part->cp_haltset,
826 	    cpu_found) < 0);
827 
828 	/*
829 	 * Do not check if cpu_found is ourself as monitor/mwait
830 	 * wakeup is cheap.
831 	 */
832 	MWAIT_WAKEUP(cpu_seq[cpu_found]); /* write to monitored line */
833 }
834 
835 #endif
836 
837 void (*cpu_pause_handler)(volatile char *) = NULL;
838 
839 static int
840 mp_disable_intr(int cpun)
841 {
842 	/*
843 	 * switch to the offline cpu
844 	 */
845 	affinity_set(cpun);
846 	/*
847 	 * raise ipl to just below cross call
848 	 */
849 	splx(XC_SYS_PIL - 1);
850 	/*
851 	 *	set base spl to prevent the next swtch to idle from
852 	 *	lowering back to ipl 0
853 	 */
854 	CPU->cpu_intr_actv |= (1 << (XC_SYS_PIL - 1));
855 	set_base_spl();
856 	affinity_clear();
857 	return (DDI_SUCCESS);
858 }
859 
860 static void
861 mp_enable_intr(int cpun)
862 {
863 	/*
864 	 * switch to the online cpu
865 	 */
866 	affinity_set(cpun);
867 	/*
868 	 * clear the interrupt active mask
869 	 */
870 	CPU->cpu_intr_actv &= ~(1 << (XC_SYS_PIL - 1));
871 	set_base_spl();
872 	(void) spl0();
873 	affinity_clear();
874 }
875 
876 static void
877 mach_get_platform(int owner)
878 {
879 	void		**srv_opsp;
880 	void		**clt_opsp;
881 	int		i;
882 	int		total_ops;
883 
884 	/* fix up psm ops */
885 	srv_opsp = (void **)mach_set[0];
886 	clt_opsp = (void **)mach_set[owner];
887 	if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01)
888 		total_ops = sizeof (struct psm_ops_ver01) /
889 		    sizeof (void (*)(void));
890 	else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_1)
891 		/* no psm_notify_func */
892 		total_ops = OFFSETOF(struct psm_ops, psm_notify_func) /
893 		    sizeof (void (*)(void));
894 	else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_2)
895 		/* no psm_timer funcs */
896 		total_ops = OFFSETOF(struct psm_ops, psm_timer_reprogram) /
897 		    sizeof (void (*)(void));
898 	else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_3)
899 		/* no psm_preshutdown function */
900 		total_ops = OFFSETOF(struct psm_ops, psm_preshutdown) /
901 		    sizeof (void (*)(void));
902 	else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_4)
903 		/* no psm_intr_ops function */
904 		total_ops = OFFSETOF(struct psm_ops, psm_intr_ops) /
905 		    sizeof (void (*)(void));
906 	else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_5)
907 		/* no psm_state function */
908 		total_ops = OFFSETOF(struct psm_ops, psm_state) /
909 		    sizeof (void (*)(void));
910 	else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_6)
911 		/* no psm_cpu_ops function */
912 		total_ops = OFFSETOF(struct psm_ops, psm_cpu_ops) /
913 		    sizeof (void (*)(void));
914 	else
915 		total_ops = sizeof (struct psm_ops) / sizeof (void (*)(void));
916 
917 	/*
918 	 * Save the version of the PSM module, in case we need to
919 	 * behave differently based on version.
920 	 */
921 	mach_ver[0] = mach_ver[owner];
922 
923 	for (i = 0; i < total_ops; i++)
924 		if (clt_opsp[i] != NULL)
925 			srv_opsp[i] = clt_opsp[i];
926 }
927 
928 static void
929 mach_construct_info()
930 {
931 	struct psm_sw *swp;
932 	int	mach_cnt[PSM_OWN_OVERRIDE+1] = {0};
933 	int	conflict_owner = 0;
934 
935 	if (psmsw->psw_forw == psmsw)
936 		panic("No valid PSM modules found");
937 	mutex_enter(&psmsw_lock);
938 	for (swp = psmsw->psw_forw; swp != psmsw; swp = swp->psw_forw) {
939 		if (!(swp->psw_flag & PSM_MOD_IDENTIFY))
940 			continue;
941 		mach_set[swp->psw_infop->p_owner] = swp->psw_infop->p_ops;
942 		mach_ver[swp->psw_infop->p_owner] = swp->psw_infop->p_version;
943 		mach_cnt[swp->psw_infop->p_owner]++;
944 	}
945 	mutex_exit(&psmsw_lock);
946 
947 	mach_get_platform(PSM_OWN_SYS_DEFAULT);
948 
949 	/* check to see are there any conflicts */
950 	if (mach_cnt[PSM_OWN_EXCLUSIVE] > 1)
951 		conflict_owner = PSM_OWN_EXCLUSIVE;
952 	if (mach_cnt[PSM_OWN_OVERRIDE] > 1)
953 		conflict_owner = PSM_OWN_OVERRIDE;
954 	if (conflict_owner) {
955 		/* remove all psm modules except uppc */
956 		cmn_err(CE_WARN,
957 		    "Conflicts detected on the following PSM modules:");
958 		mutex_enter(&psmsw_lock);
959 		for (swp = psmsw->psw_forw; swp != psmsw; swp = swp->psw_forw) {
960 			if (swp->psw_infop->p_owner == conflict_owner)
961 				cmn_err(CE_WARN, "%s ",
962 				    swp->psw_infop->p_mach_idstring);
963 		}
964 		mutex_exit(&psmsw_lock);
965 		cmn_err(CE_WARN,
966 		    "Setting the system back to SINGLE processor mode!");
967 		cmn_err(CE_WARN,
968 		    "Please edit /etc/mach to remove the invalid PSM module.");
969 		return;
970 	}
971 
972 	if (mach_set[PSM_OWN_EXCLUSIVE])
973 		mach_get_platform(PSM_OWN_EXCLUSIVE);
974 
975 	if (mach_set[PSM_OWN_OVERRIDE])
976 		mach_get_platform(PSM_OWN_OVERRIDE);
977 }
978 
979 static void
980 mach_init()
981 {
982 	struct psm_ops  *pops;
983 
984 	PRM_POINT("mach_construct_info()");
985 	mach_construct_info();
986 
987 	pops = mach_set[0];
988 
989 	/* register the interrupt and clock initialization rotuines */
990 	picinitf = mach_picinit;
991 	clkinitf = mach_clkinit;
992 	psm_get_clockirq = pops->psm_get_clockirq;
993 
994 	/* register the interrupt setup code */
995 	slvltovect = mach_softlvl_to_vect;
996 	addspl	= pops->psm_addspl;
997 	delspl	= pops->psm_delspl;
998 
999 	if (pops->psm_translate_irq)
1000 		psm_translate_irq = pops->psm_translate_irq;
1001 	if (pops->psm_intr_ops)
1002 		psm_intr_ops = pops->psm_intr_ops;
1003 
1004 #if defined(PSMI_1_2) || defined(PSMI_1_3) || defined(PSMI_1_4)
1005 	/*
1006 	 * Time-of-day functionality now handled in TOD modules.
1007 	 * (Warn about PSM modules that think that we're going to use
1008 	 * their ops vectors.)
1009 	 */
1010 	if (pops->psm_tod_get)
1011 		cmn_err(CE_WARN, "obsolete psm_tod_get op %p",
1012 		    (void *)pops->psm_tod_get);
1013 
1014 	if (pops->psm_tod_set)
1015 		cmn_err(CE_WARN, "obsolete psm_tod_set op %p",
1016 		    (void *)pops->psm_tod_set);
1017 #endif
1018 
1019 	if (pops->psm_notify_error) {
1020 		psm_notify_error = mach_notify_error;
1021 		notify_error = pops->psm_notify_error;
1022 	}
1023 
1024 	PRM_POINT("psm_softinit()");
1025 	(*pops->psm_softinit)();
1026 
1027 	/*
1028 	 * Initialize the dispatcher's function hooks to enable CPU halting
1029 	 * when idle.  Set both the deep-idle and non-deep-idle hooks.
1030 	 *
1031 	 * Assume we can use power saving deep-idle loop cpu_idle_adaptive.
1032 	 * Platform deep-idle driver will reset our idle loop to
1033 	 * non_deep_idle_cpu if power saving deep-idle feature is not available.
1034 	 *
1035 	 * Do not use monitor/mwait if idle_cpu_use_hlt is not set(spin idle)
1036 	 * or idle_cpu_prefer_mwait is not set.
1037 	 * Allocate monitor/mwait buffer for cpu0.
1038 	 */
1039 #ifndef __xpv
1040 	non_deep_idle_disp_enq_thread = disp_enq_thread;
1041 #endif
1042 	PRM_DEBUG(idle_cpu_use_hlt);
1043 	if (idle_cpu_use_hlt) {
1044 		idle_cpu = cpu_idle_adaptive;
1045 		CPU->cpu_m.mcpu_idle_cpu = cpu_idle;
1046 #ifndef __xpv
1047 		if (is_x86_feature(x86_featureset, X86FSET_MWAIT) &&
1048 		    idle_cpu_prefer_mwait) {
1049 			CPU->cpu_m.mcpu_mwait = cpuid_mwait_alloc(CPU);
1050 			/*
1051 			 * Protect ourself from insane mwait size.
1052 			 */
1053 			if (CPU->cpu_m.mcpu_mwait == NULL) {
1054 #ifdef DEBUG
1055 				cmn_err(CE_NOTE, "Using hlt idle.  Cannot "
1056 				    "handle cpu 0 mwait size.");
1057 #endif
1058 				idle_cpu_prefer_mwait = 0;
1059 				CPU->cpu_m.mcpu_idle_cpu = cpu_idle;
1060 			} else {
1061 				CPU->cpu_m.mcpu_idle_cpu = cpu_idle_mwait;
1062 			}
1063 		} else {
1064 			CPU->cpu_m.mcpu_idle_cpu = cpu_idle;
1065 		}
1066 		non_deep_idle_cpu = CPU->cpu_m.mcpu_idle_cpu;
1067 
1068 		/*
1069 		 * Disable power saving deep idle loop?
1070 		 */
1071 		if (idle_cpu_no_deep_c) {
1072 			idle_cpu = non_deep_idle_cpu;
1073 		}
1074 #endif
1075 	}
1076 
1077 	PRM_POINT("mach_smpinit()");
1078 	mach_smpinit();
1079 }
1080 
1081 static void
1082 mach_smpinit(void)
1083 {
1084 	struct psm_ops  *pops;
1085 	processorid_t cpu_id;
1086 	int cnt;
1087 	cpuset_t cpumask;
1088 
1089 	pops = mach_set[0];
1090 	CPUSET_ZERO(cpumask);
1091 
1092 	cpu_id = -1;
1093 	cpu_id = (*pops->psm_get_next_processorid)(cpu_id);
1094 	/*
1095 	 * Only add boot_ncpus CPUs to mp_cpus. Other CPUs will be handled
1096 	 * by CPU DR driver at runtime.
1097 	 */
1098 	for (cnt = 0; cpu_id != -1 && cnt < boot_ncpus; cnt++) {
1099 		CPUSET_ADD(cpumask, cpu_id);
1100 		cpu_id = (*pops->psm_get_next_processorid)(cpu_id);
1101 	}
1102 
1103 	mp_cpus = cpumask;
1104 
1105 	/* MP related routines */
1106 	ap_mlsetup = pops->psm_post_cpu_start;
1107 	send_dirintf = pops->psm_send_ipi;
1108 
1109 	/* optional MP related routines */
1110 	if (pops->psm_shutdown)
1111 		psm_shutdownf = pops->psm_shutdown;
1112 	if (pops->psm_preshutdown)
1113 		psm_preshutdownf = pops->psm_preshutdown;
1114 	if (pops->psm_notify_func)
1115 		psm_notifyf = pops->psm_notify_func;
1116 	if (pops->psm_set_idlecpu)
1117 		psm_set_idle_cpuf = pops->psm_set_idlecpu;
1118 	if (pops->psm_unset_idlecpu)
1119 		psm_unset_idle_cpuf = pops->psm_unset_idlecpu;
1120 
1121 	psm_clkinit = pops->psm_clkinit;
1122 
1123 	if (pops->psm_timer_reprogram)
1124 		psm_timer_reprogram = pops->psm_timer_reprogram;
1125 
1126 	if (pops->psm_timer_enable)
1127 		psm_timer_enable = pops->psm_timer_enable;
1128 
1129 	if (pops->psm_timer_disable)
1130 		psm_timer_disable = pops->psm_timer_disable;
1131 
1132 	if (pops->psm_post_cyclic_setup)
1133 		psm_post_cyclic_setup = pops->psm_post_cyclic_setup;
1134 
1135 	if (pops->psm_state)
1136 		psm_state = pops->psm_state;
1137 
1138 	/*
1139 	 * Set these vectors here so they can be used by Suspend/Resume
1140 	 * on UP machines.
1141 	 */
1142 	if (pops->psm_disable_intr)
1143 		psm_disable_intr = pops->psm_disable_intr;
1144 	if (pops->psm_enable_intr)
1145 		psm_enable_intr  = pops->psm_enable_intr;
1146 
1147 	/*
1148 	 * Set this vector so it can be used by vmbus (for Hyper-V)
1149 	 * Need this even for single-CPU systems.  This works for
1150 	 * "pcplusmp" and "apix" platforms, but not "uppc" (because
1151 	 * "Uni-processor PC" does not provide a _get_ipivect).
1152 	 */
1153 	psm_get_ipivect = pops->psm_get_ipivect;
1154 
1155 	/* check for multiple CPUs */
1156 	if (cnt < 2 && plat_dr_support_cpu() == B_FALSE)
1157 		return;
1158 
1159 	/* check for MP platforms */
1160 	if (pops->psm_cpu_start == NULL)
1161 		return;
1162 
1163 	/*
1164 	 * Set the dispatcher hook to enable cpu "wake up"
1165 	 * when a thread becomes runnable.
1166 	 */
1167 	if (idle_cpu_use_hlt) {
1168 		disp_enq_thread = cpu_wakeup;
1169 #ifndef __xpv
1170 		if (is_x86_feature(x86_featureset, X86FSET_MWAIT) &&
1171 		    idle_cpu_prefer_mwait)
1172 			disp_enq_thread = cpu_wakeup_mwait;
1173 		non_deep_idle_disp_enq_thread = disp_enq_thread;
1174 #endif
1175 	}
1176 
1177 	psm_get_pir_ipivect = pops->psm_get_pir_ipivect;
1178 	psm_send_pir_ipi = pops->psm_send_pir_ipi;
1179 	psm_cmci_setup = pops->psm_cmci_setup;
1180 
1181 
1182 	(void) add_avintr((void *)NULL, XC_HI_PIL, xc_serv, "xc_intr",
1183 	    (*pops->psm_get_ipivect)(XC_HI_PIL, PSM_INTR_IPI_HI),
1184 	    NULL, NULL, NULL, NULL);
1185 
1186 	(void) (*pops->psm_get_ipivect)(XC_CPUPOKE_PIL, PSM_INTR_POKE);
1187 }
1188 
1189 static void
1190 mach_picinit()
1191 {
1192 	struct psm_ops  *pops;
1193 
1194 	pops = mach_set[0];
1195 
1196 	/* register the interrupt handlers */
1197 	setlvl = pops->psm_intr_enter;
1198 	setlvlx = pops->psm_intr_exit;
1199 
1200 	/* initialize the interrupt hardware */
1201 	(*pops->psm_picinit)();
1202 
1203 	/* set interrupt mask for current ipl */
1204 	setspl = pops->psm_setspl;
1205 	cli();
1206 	setspl(CPU->cpu_pri);
1207 }
1208 
1209 uint_t	cpu_freq;	/* MHz */
1210 uint64_t cpu_freq_hz;	/* measured (in hertz) */
1211 
1212 #define	MEGA_HZ		1000000
1213 
1214 #ifdef __xpv
1215 
1216 int xpv_cpufreq_workaround = 1;
1217 int xpv_cpufreq_verbose = 0;
1218 
1219 #else	/* __xpv */
1220 
1221 static uint64_t
1222 mach_calchz(uint32_t pit_counter, uint64_t *processor_clks)
1223 {
1224 	uint64_t cpu_hz;
1225 
1226 	if ((pit_counter == 0) || (*processor_clks == 0) ||
1227 	    (*processor_clks > (((uint64_t)-1) / PIT_HZ)))
1228 		return (0);
1229 
1230 	cpu_hz = ((uint64_t)PIT_HZ * *processor_clks) / pit_counter;
1231 
1232 	return (cpu_hz);
1233 }
1234 
1235 #endif	/* __xpv */
1236 
1237 static uint64_t
1238 mach_getcpufreq(void)
1239 {
1240 #if defined(__xpv)
1241 	vcpu_time_info_t *vti = &CPU->cpu_m.mcpu_vcpu_info->time;
1242 	uint64_t cpu_hz;
1243 
1244 	/*
1245 	 * During dom0 bringup, it was noted that on at least one older
1246 	 * Intel HT machine, the hypervisor initially gives a tsc_to_system_mul
1247 	 * value that is quite wrong (the 3.06GHz clock was reported
1248 	 * as 4.77GHz)
1249 	 *
1250 	 * The curious thing is, that if you stop the kernel at entry,
1251 	 * breakpoint here and inspect the value with kmdb, the value
1252 	 * is correct - but if you don't stop and simply enable the
1253 	 * printf statement (below), you can see the bad value printed
1254 	 * here.  Almost as if something kmdb did caused the hypervisor to
1255 	 * figure it out correctly.  And, note that the hypervisor
1256 	 * eventually -does- figure it out correctly ... if you look at
1257 	 * the field later in the life of dom0, it is correct.
1258 	 *
1259 	 * For now, on dom0, we employ a slightly cheesy workaround of
1260 	 * using the DOM0_PHYSINFO hypercall.
1261 	 */
1262 	if (DOMAIN_IS_INITDOMAIN(xen_info) && xpv_cpufreq_workaround) {
1263 		cpu_hz = 1000 * xpv_cpu_khz();
1264 	} else {
1265 		cpu_hz = (UINT64_C(1000000000) << 32) / vti->tsc_to_system_mul;
1266 
1267 		if (vti->tsc_shift < 0)
1268 			cpu_hz <<= -vti->tsc_shift;
1269 		else
1270 			cpu_hz >>= vti->tsc_shift;
1271 	}
1272 
1273 	if (xpv_cpufreq_verbose)
1274 		printf("mach_getcpufreq: system_mul 0x%x, shift %d, "
1275 		    "cpu_hz %" PRId64 "Hz\n",
1276 		    vti->tsc_to_system_mul, vti->tsc_shift, cpu_hz);
1277 
1278 	return (cpu_hz);
1279 #else	/* __xpv */
1280 	uint32_t pit_counter;
1281 	uint64_t processor_clks;
1282 
1283 	if (is_x86_feature(x86_featureset, X86FSET_TSC)) {
1284 		/*
1285 		 * We have a TSC. freq_tsc() knows how to measure the number
1286 		 * of clock cycles sampled against the PIT.
1287 		 */
1288 		ulong_t flags = clear_int_flag();
1289 		processor_clks = freq_tsc(&pit_counter);
1290 		restore_int_flag(flags);
1291 		return (mach_calchz(pit_counter, &processor_clks));
1292 	} else if (x86_vendor == X86_VENDOR_Cyrix || x86_type == X86_TYPE_P5) {
1293 #if defined(__amd64)
1294 		panic("mach_getcpufreq: no TSC!");
1295 #elif defined(__i386)
1296 		/*
1297 		 * We are a Cyrix based on a 6x86 core or an Intel Pentium
1298 		 * for which freq_notsc() knows how to measure the number of
1299 		 * elapsed clock cycles sampled against the PIT
1300 		 */
1301 		ulong_t flags = clear_int_flag();
1302 		processor_clks = freq_notsc(&pit_counter);
1303 		restore_int_flag(flags);
1304 		return (mach_calchz(pit_counter, &processor_clks));
1305 #endif	/* __i386 */
1306 	}
1307 
1308 	/* We do not know how to calculate cpu frequency for this cpu. */
1309 	return (0);
1310 #endif	/* __xpv */
1311 }
1312 
1313 /*
1314  * If the clock speed of a cpu is found to be reported incorrectly, do not add
1315  * to this array, instead improve the accuracy of the algorithm that determines
1316  * the clock speed of the processor or extend the implementation to support the
1317  * vendor as appropriate. This is here only to support adjusting the speed on
1318  * older slower processors that mach_fixcpufreq() would not be able to account
1319  * for otherwise.
1320  */
1321 static int x86_cpu_freq[] = { 60, 75, 80, 90, 120, 160, 166, 175, 180, 233 };
1322 
1323 /*
1324  * On fast processors the clock frequency that is measured may be off by
1325  * a few MHz from the value printed on the part. This is a combination of
1326  * the factors that for such fast parts being off by this much is within
1327  * the tolerances for manufacture and because of the difficulties in the
1328  * measurement that can lead to small error. This function uses some
1329  * heuristics in order to tweak the value that was measured to match what
1330  * is most likely printed on the part.
1331  *
1332  * Some examples:
1333  *	AMD Athlon 1000 mhz measured as 998 mhz
1334  *	Intel Pentium III Xeon 733 mhz measured as 731 mhz
1335  *	Intel Pentium IV 1500 mhz measured as 1495mhz
1336  *
1337  * If in the future this function is no longer sufficient to correct
1338  * for the error in the measurement, then the algorithm used to perform
1339  * the measurement will have to be improved in order to increase accuracy
1340  * rather than adding horrible and questionable kludges here.
1341  *
1342  * This is called after the cyclics subsystem because of the potential
1343  * that the heuristics within may give a worse estimate of the clock
1344  * frequency than the value that was measured.
1345  */
1346 static void
1347 mach_fixcpufreq(void)
1348 {
1349 	uint32_t freq, mul, near66, delta66, near50, delta50, fixed, delta, i;
1350 
1351 	freq = (uint32_t)cpu_freq;
1352 
1353 	/*
1354 	 * Find the nearest integer multiple of 200/3 (about 66) MHz to the
1355 	 * measured speed taking into account that the 667 MHz parts were
1356 	 * the first to round-up.
1357 	 */
1358 	mul = (uint32_t)((3 * (uint64_t)freq + 100) / 200);
1359 	near66 = (uint32_t)((200 * (uint64_t)mul + ((mul >= 10) ? 1 : 0)) / 3);
1360 	delta66 = (near66 > freq) ? (near66 - freq) : (freq - near66);
1361 
1362 	/* Find the nearest integer multiple of 50 MHz to the measured speed */
1363 	mul = (freq + 25) / 50;
1364 	near50 = mul * 50;
1365 	delta50 = (near50 > freq) ? (near50 - freq) : (freq - near50);
1366 
1367 	/* Find the closer of the two */
1368 	if (delta66 < delta50) {
1369 		fixed = near66;
1370 		delta = delta66;
1371 	} else {
1372 		fixed = near50;
1373 		delta = delta50;
1374 	}
1375 
1376 	if (fixed > INT_MAX)
1377 		return;
1378 
1379 	/*
1380 	 * Some older parts have a core clock frequency that is not an
1381 	 * integral multiple of 50 or 66 MHz. Check if one of the old
1382 	 * clock frequencies is closer to the measured value than any
1383 	 * of the integral multiples of 50 an 66, and if so set fixed
1384 	 * and delta appropriately to represent the closest value.
1385 	 */
1386 	i = sizeof (x86_cpu_freq) / sizeof (int);
1387 	while (i > 0) {
1388 		i--;
1389 
1390 		if (x86_cpu_freq[i] <= freq) {
1391 			mul = freq - x86_cpu_freq[i];
1392 
1393 			if (mul < delta) {
1394 				fixed = x86_cpu_freq[i];
1395 				delta = mul;
1396 			}
1397 
1398 			break;
1399 		}
1400 
1401 		mul = x86_cpu_freq[i] - freq;
1402 
1403 		if (mul < delta) {
1404 			fixed = x86_cpu_freq[i];
1405 			delta = mul;
1406 		}
1407 	}
1408 
1409 	/*
1410 	 * Set a reasonable maximum for how much to correct the measured
1411 	 * result by. This check is here to prevent the adjustment made
1412 	 * by this function from being more harm than good. It is entirely
1413 	 * possible that in the future parts will be made that are not
1414 	 * integral multiples of 66 or 50 in clock frequency or that
1415 	 * someone may overclock a part to some odd frequency. If the
1416 	 * measured value is farther from the corrected value than
1417 	 * allowed, then assume the corrected value is in error and use
1418 	 * the measured value.
1419 	 */
1420 	if (6 < delta)
1421 		return;
1422 
1423 	cpu_freq = (int)fixed;
1424 }
1425 
1426 
1427 static int
1428 machhztomhz(uint64_t cpu_freq_hz)
1429 {
1430 	uint64_t cpu_mhz;
1431 
1432 	/* Round to nearest MHZ */
1433 	cpu_mhz = (cpu_freq_hz + (MEGA_HZ / 2)) / MEGA_HZ;
1434 
1435 	if (cpu_mhz > INT_MAX)
1436 		return (0);
1437 
1438 	return ((int)cpu_mhz);
1439 
1440 }
1441 
1442 
1443 static int
1444 mach_clkinit(int preferred_mode, int *set_mode)
1445 {
1446 	struct psm_ops  *pops;
1447 	int resolution;
1448 
1449 	pops = mach_set[0];
1450 
1451 	cpu_freq_hz = mach_getcpufreq();
1452 
1453 	cpu_freq = machhztomhz(cpu_freq_hz);
1454 
1455 	if (!is_x86_feature(x86_featureset, X86FSET_TSC) || (cpu_freq == 0))
1456 		tsc_gethrtime_enable = 0;
1457 
1458 #ifndef __xpv
1459 	if (tsc_gethrtime_enable) {
1460 		tsc_hrtimeinit(cpu_freq_hz);
1461 	} else
1462 #endif
1463 	{
1464 		if (pops->psm_hrtimeinit)
1465 			(*pops->psm_hrtimeinit)();
1466 		gethrtimef = pops->psm_gethrtime;
1467 		gethrtimeunscaledf = gethrtimef;
1468 		/* scalehrtimef will remain dummy */
1469 	}
1470 
1471 	mach_fixcpufreq();
1472 
1473 	if (mach_ver[0] >= PSM_INFO_VER01_3) {
1474 		if (preferred_mode == TIMER_ONESHOT) {
1475 
1476 			resolution = (*pops->psm_clkinit)(0);
1477 			if (resolution != 0)  {
1478 				*set_mode = TIMER_ONESHOT;
1479 				return (resolution);
1480 			}
1481 		}
1482 
1483 		/*
1484 		 * either periodic mode was requested or could not set to
1485 		 * one-shot mode
1486 		 */
1487 		resolution = (*pops->psm_clkinit)(hz);
1488 		/*
1489 		 * psm should be able to do periodic, so we do not check
1490 		 * for return value of psm_clkinit here.
1491 		 */
1492 		*set_mode = TIMER_PERIODIC;
1493 		return (resolution);
1494 	} else {
1495 		/*
1496 		 * PSMI interface prior to PSMI_3 does not define a return
1497 		 * value for psm_clkinit, so the return value is ignored.
1498 		 */
1499 		(void) (*pops->psm_clkinit)(hz);
1500 		*set_mode = TIMER_PERIODIC;
1501 		return (nsec_per_tick);
1502 	}
1503 }
1504 
1505 
1506 /*ARGSUSED*/
1507 static int
1508 mach_softlvl_to_vect(int ipl)
1509 {
1510 	setsoftint = av_set_softint_pending;
1511 	kdisetsoftint = kdi_av_set_softint_pending;
1512 
1513 	return (PSM_SV_SOFTWARE);
1514 }
1515 
1516 #ifdef DEBUG
1517 /*
1518  * This is here to allow us to simulate cpus that refuse to start.
1519  */
1520 cpuset_t cpufailset;
1521 #endif
1522 
1523 int
1524 mach_cpu_start(struct cpu *cp, void *ctx)
1525 {
1526 	struct psm_ops *pops = mach_set[0];
1527 	processorid_t id = cp->cpu_id;
1528 
1529 #ifdef DEBUG
1530 	if (CPU_IN_SET(cpufailset, id))
1531 		return (0);
1532 #endif
1533 	return ((*pops->psm_cpu_start)(id, ctx));
1534 }
1535 
1536 int
1537 mach_cpuid_start(processorid_t id, void *ctx)
1538 {
1539 	struct psm_ops *pops = mach_set[0];
1540 
1541 #ifdef DEBUG
1542 	if (CPU_IN_SET(cpufailset, id))
1543 		return (0);
1544 #endif
1545 	return ((*pops->psm_cpu_start)(id, ctx));
1546 }
1547 
1548 int
1549 mach_cpu_stop(cpu_t *cp, void *ctx)
1550 {
1551 	struct psm_ops *pops = mach_set[0];
1552 	psm_cpu_request_t request;
1553 
1554 	if (pops->psm_cpu_ops == NULL) {
1555 		return (ENOTSUP);
1556 	}
1557 
1558 	ASSERT(cp->cpu_id != -1);
1559 	request.pcr_cmd = PSM_CPU_STOP;
1560 	request.req.cpu_stop.cpuid = cp->cpu_id;
1561 	request.req.cpu_stop.ctx = ctx;
1562 
1563 	return ((*pops->psm_cpu_ops)(&request));
1564 }
1565 
1566 int
1567 mach_cpu_add(mach_cpu_add_arg_t *argp, processorid_t *cpuidp)
1568 {
1569 	int rc;
1570 	struct psm_ops *pops = mach_set[0];
1571 	psm_cpu_request_t request;
1572 
1573 	if (pops->psm_cpu_ops == NULL) {
1574 		return (ENOTSUP);
1575 	}
1576 
1577 	request.pcr_cmd = PSM_CPU_ADD;
1578 	request.req.cpu_add.argp = argp;
1579 	request.req.cpu_add.cpuid = -1;
1580 	rc = (*pops->psm_cpu_ops)(&request);
1581 	if (rc == 0) {
1582 		ASSERT(request.req.cpu_add.cpuid != -1);
1583 		*cpuidp = request.req.cpu_add.cpuid;
1584 	}
1585 
1586 	return (rc);
1587 }
1588 
1589 int
1590 mach_cpu_remove(processorid_t cpuid)
1591 {
1592 	struct psm_ops *pops = mach_set[0];
1593 	psm_cpu_request_t request;
1594 
1595 	if (pops->psm_cpu_ops == NULL) {
1596 		return (ENOTSUP);
1597 	}
1598 
1599 	request.pcr_cmd = PSM_CPU_REMOVE;
1600 	request.req.cpu_remove.cpuid = cpuid;
1601 
1602 	return ((*pops->psm_cpu_ops)(&request));
1603 }
1604 
1605 /*
1606  * Default handler to create device node for CPU.
1607  * One reference count will be held on created device node.
1608  */
1609 static int
1610 mach_cpu_create_devinfo(cpu_t *cp, dev_info_t **dipp)
1611 {
1612 	int rv, circ;
1613 	dev_info_t *dip;
1614 	static kmutex_t cpu_node_lock;
1615 	static dev_info_t *cpu_nex_devi = NULL;
1616 
1617 	ASSERT(cp != NULL);
1618 	ASSERT(dipp != NULL);
1619 	*dipp = NULL;
1620 
1621 	if (cpu_nex_devi == NULL) {
1622 		mutex_enter(&cpu_node_lock);
1623 		/* First check whether cpus exists. */
1624 		cpu_nex_devi = ddi_find_devinfo("cpus", -1, 0);
1625 		/* Create cpus if it doesn't exist. */
1626 		if (cpu_nex_devi == NULL) {
1627 			ndi_devi_enter(ddi_root_node(), &circ);
1628 			rv = ndi_devi_alloc(ddi_root_node(), "cpus",
1629 			    (pnode_t)DEVI_SID_NODEID, &dip);
1630 			if (rv != NDI_SUCCESS) {
1631 				mutex_exit(&cpu_node_lock);
1632 				cmn_err(CE_CONT,
1633 				    "?failed to create cpu nexus device.\n");
1634 				return (PSM_FAILURE);
1635 			}
1636 			ASSERT(dip != NULL);
1637 			(void) ndi_devi_online(dip, 0);
1638 			ndi_devi_exit(ddi_root_node(), circ);
1639 			cpu_nex_devi = dip;
1640 		}
1641 		mutex_exit(&cpu_node_lock);
1642 	}
1643 
1644 	/*
1645 	 * create a child node for cpu identified as 'cpu_id'
1646 	 */
1647 	ndi_devi_enter(cpu_nex_devi, &circ);
1648 	dip = ddi_add_child(cpu_nex_devi, "cpu", DEVI_SID_NODEID, -1);
1649 	if (dip == NULL) {
1650 		cmn_err(CE_CONT,
1651 		    "?failed to create device node for cpu%d.\n", cp->cpu_id);
1652 		rv = PSM_FAILURE;
1653 	} else {
1654 		*dipp = dip;
1655 		(void) ndi_hold_devi(dip);
1656 		rv = PSM_SUCCESS;
1657 	}
1658 	ndi_devi_exit(cpu_nex_devi, circ);
1659 
1660 	return (rv);
1661 }
1662 
1663 /*
1664  * Create cpu device node in device tree and online it.
1665  * Return created dip with reference count held if requested.
1666  */
1667 int
1668 mach_cpu_create_device_node(struct cpu *cp, dev_info_t **dipp)
1669 {
1670 	int rv;
1671 	dev_info_t *dip = NULL;
1672 
1673 	ASSERT(psm_cpu_create_devinfo != NULL);
1674 	rv = psm_cpu_create_devinfo(cp, &dip);
1675 	if (rv == PSM_SUCCESS) {
1676 		cpuid_set_cpu_properties(dip, cp->cpu_id, cp->cpu_m.mcpu_cpi);
1677 		/* Recursively attach driver for parent nexus device. */
1678 		if (i_ddi_attach_node_hierarchy(ddi_get_parent(dip)) ==
1679 		    DDI_SUCCESS) {
1680 			/* Configure cpu itself and descendants. */
1681 			(void) ndi_devi_online(dip,
1682 			    NDI_ONLINE_ATTACH | NDI_CONFIG);
1683 		}
1684 		if (dipp != NULL) {
1685 			*dipp = dip;
1686 		} else {
1687 			(void) ndi_rele_devi(dip);
1688 		}
1689 	}
1690 
1691 	return (rv);
1692 }
1693 
1694 /*
1695  * The dipp contains one of following values on return:
1696  * - NULL if no device node found
1697  * - pointer to device node if found
1698  */
1699 int
1700 mach_cpu_get_device_node(struct cpu *cp, dev_info_t **dipp)
1701 {
1702 	*dipp = NULL;
1703 	if (psm_cpu_get_devinfo != NULL) {
1704 		if (psm_cpu_get_devinfo(cp, dipp) == PSM_SUCCESS) {
1705 			return (PSM_SUCCESS);
1706 		}
1707 	}
1708 
1709 	return (PSM_FAILURE);
1710 }
1711 
1712 /*ARGSUSED*/
1713 static int
1714 mach_translate_irq(dev_info_t *dip, int irqno)
1715 {
1716 	return (irqno);	/* default to NO translation */
1717 }
1718 
1719 static void
1720 mach_notify_error(int level, char *errmsg)
1721 {
1722 	/*
1723 	 * SL_FATAL is pass in once panicstr is set, deliver it
1724 	 * as CE_PANIC.  Also, translate SL_ codes back to CE_
1725 	 * codes for the psmi handler
1726 	 */
1727 	if (level & SL_FATAL)
1728 		(*notify_error)(CE_PANIC, errmsg);
1729 	else if (level & SL_WARN)
1730 		(*notify_error)(CE_WARN, errmsg);
1731 	else if (level & SL_NOTE)
1732 		(*notify_error)(CE_NOTE, errmsg);
1733 	else if (level & SL_CONSOLE)
1734 		(*notify_error)(CE_CONT, errmsg);
1735 }
1736 
1737 /*
1738  * It provides the default basic intr_ops interface for the new DDI
1739  * interrupt framework if the PSM doesn't have one.
1740  *
1741  * Input:
1742  * dip     - pointer to the dev_info structure of the requested device
1743  * hdlp    - pointer to the internal interrupt handle structure for the
1744  *	     requested interrupt
1745  * intr_op - opcode for this call
1746  * result  - pointer to the integer that will hold the result to be
1747  *	     passed back if return value is PSM_SUCCESS
1748  *
1749  * Output:
1750  * return value is either PSM_SUCCESS or PSM_FAILURE
1751  */
1752 static int
1753 mach_intr_ops(dev_info_t *dip, ddi_intr_handle_impl_t *hdlp,
1754     psm_intr_op_t intr_op, int *result)
1755 {
1756 	struct intrspec *ispec;
1757 
1758 	switch (intr_op) {
1759 	case PSM_INTR_OP_CHECK_MSI:
1760 		*result = hdlp->ih_type & ~(DDI_INTR_TYPE_MSI |
1761 		    DDI_INTR_TYPE_MSIX);
1762 		break;
1763 	case PSM_INTR_OP_ALLOC_VECTORS:
1764 		if (hdlp->ih_type == DDI_INTR_TYPE_FIXED)
1765 			*result = 1;
1766 		else
1767 			*result = 0;
1768 		break;
1769 	case PSM_INTR_OP_FREE_VECTORS:
1770 		break;
1771 	case PSM_INTR_OP_NAVAIL_VECTORS:
1772 		if (hdlp->ih_type == DDI_INTR_TYPE_FIXED)
1773 			*result = 1;
1774 		else
1775 			*result = 0;
1776 		break;
1777 	case PSM_INTR_OP_XLATE_VECTOR:
1778 		ispec = ((ihdl_plat_t *)hdlp->ih_private)->ip_ispecp;
1779 		*result = psm_translate_irq(dip, ispec->intrspec_vec);
1780 		break;
1781 	case PSM_INTR_OP_GET_CAP:
1782 		*result = 0;
1783 		break;
1784 	case PSM_INTR_OP_GET_PENDING:
1785 	case PSM_INTR_OP_CLEAR_MASK:
1786 	case PSM_INTR_OP_SET_MASK:
1787 	case PSM_INTR_OP_GET_SHARED:
1788 	case PSM_INTR_OP_SET_PRI:
1789 	case PSM_INTR_OP_SET_CAP:
1790 	case PSM_INTR_OP_SET_CPU:
1791 	case PSM_INTR_OP_GET_INTR:
1792 	default:
1793 		return (PSM_FAILURE);
1794 	}
1795 	return (PSM_SUCCESS);
1796 }
1797 /*
1798  * Return 1 if CMT load balancing policies should be
1799  * implemented across instances of the specified hardware
1800  * sharing relationship.
1801  */
1802 int
1803 pg_cmt_load_bal_hw(pghw_type_t hw)
1804 {
1805 	if (hw == PGHW_IPIPE ||
1806 	    hw == PGHW_FPU ||
1807 	    hw == PGHW_PROCNODE ||
1808 	    hw == PGHW_CHIP)
1809 		return (1);
1810 	else
1811 		return (0);
1812 }
1813 /*
1814  * Return 1 if thread affinity polices should be implemented
1815  * for instances of the specifed hardware sharing relationship.
1816  */
1817 int
1818 pg_cmt_affinity_hw(pghw_type_t hw)
1819 {
1820 	if (hw == PGHW_CACHE)
1821 		return (1);
1822 	else
1823 		return (0);
1824 }
1825 
1826 /*
1827  * Return number of counter events requested to measure hardware capacity and
1828  * utilization and setup CPC requests for specified CPU as needed
1829  *
1830  * May return 0 when platform or processor specific code knows that no CPC
1831  * events should be programmed on this CPU or -1 when platform or processor
1832  * specific code doesn't know which counter events are best to use and common
1833  * code should decide for itself
1834  */
1835 int
1836 /* LINTED E_FUNC_ARG_UNUSED */
1837 cu_plat_cpc_init(cpu_t *cp, kcpc_request_list_t *reqs, int nreqs)
1838 {
1839 	const char	*impl_name;
1840 
1841 	/*
1842 	 * Return error if pcbe_ops not set
1843 	 */
1844 	if (pcbe_ops == NULL)
1845 		return (-1);
1846 
1847 	/*
1848 	 * Return that no CPC events should be programmed on hyperthreaded
1849 	 * Pentium 4 and return error for all other x86 processors to tell
1850 	 * common code to decide what counter events to program on those CPUs
1851 	 * for measuring hardware capacity and utilization
1852 	 */
1853 	impl_name = pcbe_ops->pcbe_impl_name();
1854 	if (impl_name != NULL && strcmp(impl_name, PCBE_IMPL_NAME_P4HT) == 0)
1855 		return (0);
1856 	else
1857 		return (-1);
1858 }
1859