1 2 /* 3 * CDDL HEADER START 4 * 5 * The contents of this file are subject to the terms of the 6 * Common Development and Distribution License (the "License"). 7 * You may not use this file except in compliance with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 /* 26 * Copyright (c) 2009-2010, Intel Corporation. 27 * All rights reserved. 28 * Copyright 2018 Joyent, Inc. 29 */ 30 31 #define PSMI_1_7 32 #include <sys/smp_impldefs.h> 33 #include <sys/psm.h> 34 #include <sys/psm_modctl.h> 35 #include <sys/pit.h> 36 #include <sys/cmn_err.h> 37 #include <sys/strlog.h> 38 #include <sys/clock.h> 39 #include <sys/debug.h> 40 #include <sys/rtc.h> 41 #include <sys/x86_archext.h> 42 #include <sys/cpupart.h> 43 #include <sys/cpuvar.h> 44 #include <sys/cpu_event.h> 45 #include <sys/cmt.h> 46 #include <sys/cpu.h> 47 #include <sys/disp.h> 48 #include <sys/archsystm.h> 49 #include <sys/machsystm.h> 50 #include <sys/sysmacros.h> 51 #include <sys/memlist.h> 52 #include <sys/param.h> 53 #include <sys/promif.h> 54 #include <sys/cpu_pm.h> 55 #if defined(__xpv) 56 #include <sys/hypervisor.h> 57 #endif 58 #include <sys/mach_intr.h> 59 #include <vm/hat_i86.h> 60 #include <sys/kdi_machimpl.h> 61 #include <sys/sdt.h> 62 #include <sys/hpet.h> 63 #include <sys/sunddi.h> 64 #include <sys/sunndi.h> 65 #include <sys/cpc_pcbe.h> 66 67 #define OFFSETOF(s, m) (size_t)(&(((s *)0)->m)) 68 69 /* 70 * Local function prototypes 71 */ 72 static int mp_disable_intr(processorid_t cpun); 73 static void mp_enable_intr(processorid_t cpun); 74 static void mach_init(); 75 static void mach_picinit(); 76 static int machhztomhz(uint64_t cpu_freq_hz); 77 static uint64_t mach_getcpufreq(void); 78 static void mach_fixcpufreq(void); 79 static int mach_clkinit(int, int *); 80 static void mach_smpinit(void); 81 static int mach_softlvl_to_vect(int ipl); 82 static void mach_get_platform(int owner); 83 static void mach_construct_info(); 84 static int mach_translate_irq(dev_info_t *dip, int irqno); 85 static int mach_intr_ops(dev_info_t *, ddi_intr_handle_impl_t *, 86 psm_intr_op_t, int *); 87 static void mach_notify_error(int level, char *errmsg); 88 static hrtime_t dummy_hrtime(void); 89 static void dummy_scalehrtime(hrtime_t *); 90 static uint64_t dummy_unscalehrtime(hrtime_t); 91 void cpu_idle(void); 92 static void cpu_wakeup(cpu_t *, int); 93 #ifndef __xpv 94 void cpu_idle_mwait(void); 95 static void cpu_wakeup_mwait(cpu_t *, int); 96 #endif 97 static int mach_cpu_create_devinfo(cpu_t *cp, dev_info_t **dipp); 98 99 /* 100 * External reference functions 101 */ 102 extern void return_instr(); 103 extern uint64_t freq_tsc(uint32_t *); 104 #if defined(__i386) 105 extern uint64_t freq_notsc(uint32_t *); 106 #endif 107 extern void pc_gethrestime(timestruc_t *); 108 extern int cpuid_get_coreid(cpu_t *); 109 extern int cpuid_get_chipid(cpu_t *); 110 111 /* 112 * PSM functions initialization 113 */ 114 void (*psm_shutdownf)(int, int) = (void (*)(int, int))return_instr; 115 void (*psm_preshutdownf)(int, int) = (void (*)(int, int))return_instr; 116 void (*psm_notifyf)(int) = (void (*)(int))return_instr; 117 void (*psm_set_idle_cpuf)(int) = (void (*)(int))return_instr; 118 void (*psm_unset_idle_cpuf)(int) = (void (*)(int))return_instr; 119 void (*psminitf)() = mach_init; 120 void (*picinitf)() = return_instr; 121 int (*clkinitf)(int, int *) = (int (*)(int, int *))return_instr; 122 int (*ap_mlsetup)() = (int (*)(void))return_instr; 123 void (*send_dirintf)() = return_instr; 124 void (*setspl)(int) = (void (*)(int))return_instr; 125 int (*addspl)(int, int, int, int) = (int (*)(int, int, int, int))return_instr; 126 int (*delspl)(int, int, int, int) = (int (*)(int, int, int, int))return_instr; 127 int (*get_pending_spl)(void) = (int (*)(void))return_instr; 128 int (*addintr)(void *, int, avfunc, char *, int, caddr_t, caddr_t, 129 uint64_t *, dev_info_t *) = NULL; 130 void (*remintr)(void *, int, avfunc, int) = NULL; 131 void (*kdisetsoftint)(int, struct av_softinfo *)= 132 (void (*)(int, struct av_softinfo *))return_instr; 133 void (*setsoftint)(int, struct av_softinfo *)= 134 (void (*)(int, struct av_softinfo *))return_instr; 135 int (*slvltovect)(int) = (int (*)(int))return_instr; 136 int (*setlvl)(int, int *) = (int (*)(int, int *))return_instr; 137 void (*setlvlx)(int, int) = (void (*)(int, int))return_instr; 138 int (*psm_disable_intr)(int) = mp_disable_intr; 139 void (*psm_enable_intr)(int) = mp_enable_intr; 140 hrtime_t (*gethrtimef)(void) = dummy_hrtime; 141 hrtime_t (*gethrtimeunscaledf)(void) = dummy_hrtime; 142 void (*scalehrtimef)(hrtime_t *) = dummy_scalehrtime; 143 uint64_t (*unscalehrtimef)(hrtime_t) = dummy_unscalehrtime; 144 int (*psm_translate_irq)(dev_info_t *, int) = mach_translate_irq; 145 void (*gethrestimef)(timestruc_t *) = pc_gethrestime; 146 void (*psm_notify_error)(int, char *) = (void (*)(int, char *))NULL; 147 int (*psm_get_clockirq)(int) = NULL; 148 int (*psm_get_ipivect)(int, int) = NULL; 149 uchar_t (*psm_get_ioapicid)(uchar_t) = NULL; 150 uint32_t (*psm_get_localapicid)(uint32_t) = NULL; 151 uchar_t (*psm_xlate_vector_by_irq)(uchar_t) = NULL; 152 int (*psm_get_pir_ipivect)(void) = NULL; 153 void (*psm_send_pir_ipi)(processorid_t) = NULL; 154 void (*psm_cmci_setup)(processorid_t, boolean_t) = NULL; 155 156 int (*psm_clkinit)(int) = NULL; 157 void (*psm_timer_reprogram)(hrtime_t) = NULL; 158 void (*psm_timer_enable)(void) = NULL; 159 void (*psm_timer_disable)(void) = NULL; 160 void (*psm_post_cyclic_setup)(void *arg) = NULL; 161 int (*psm_intr_ops)(dev_info_t *, ddi_intr_handle_impl_t *, psm_intr_op_t, 162 int *) = mach_intr_ops; 163 int (*psm_state)(psm_state_request_t *) = (int (*)(psm_state_request_t *)) 164 return_instr; 165 166 void (*notify_error)(int, char *) = (void (*)(int, char *))return_instr; 167 void (*hrtime_tick)(void) = return_instr; 168 169 int (*psm_cpu_create_devinfo)(cpu_t *, dev_info_t **) = mach_cpu_create_devinfo; 170 int (*psm_cpu_get_devinfo)(cpu_t *, dev_info_t **) = NULL; 171 172 /* global IRM pool for APIX (PSM) module */ 173 ddi_irm_pool_t *apix_irm_pool_p = NULL; 174 175 /* 176 * True if the generic TSC code is our source of hrtime, rather than whatever 177 * the PSM can provide. 178 */ 179 #ifdef __xpv 180 int tsc_gethrtime_enable = 0; 181 #else 182 int tsc_gethrtime_enable = 1; 183 #endif 184 int tsc_gethrtime_initted = 0; 185 186 /* 187 * True if the hrtime implementation is "hires"; namely, better than microdata. 188 */ 189 int gethrtime_hires = 0; 190 191 /* 192 * Local Static Data 193 */ 194 static struct psm_ops mach_ops; 195 static struct psm_ops *mach_set[4] = {&mach_ops, NULL, NULL, NULL}; 196 static ushort_t mach_ver[4] = {0, 0, 0, 0}; 197 198 /* 199 * virtualization support for psm 200 */ 201 void *psm_vt_ops = NULL; 202 /* 203 * If non-zero, idle cpus will become "halted" when there's 204 * no work to do. 205 */ 206 int idle_cpu_use_hlt = 1; 207 208 #ifndef __xpv 209 /* 210 * If non-zero, idle cpus will use mwait if available to halt instead of hlt. 211 */ 212 int idle_cpu_prefer_mwait = 1; 213 /* 214 * Set to 0 to avoid MONITOR+CLFLUSH assertion. 215 */ 216 int idle_cpu_assert_cflush_monitor = 1; 217 218 /* 219 * If non-zero, idle cpus will not use power saving Deep C-States idle loop. 220 */ 221 int idle_cpu_no_deep_c = 0; 222 /* 223 * Non-power saving idle loop and wakeup pointers. 224 * Allows user to toggle Deep Idle power saving feature on/off. 225 */ 226 void (*non_deep_idle_cpu)() = cpu_idle; 227 void (*non_deep_idle_disp_enq_thread)(cpu_t *, int); 228 229 /* 230 * Object for the kernel to access the HPET. 231 */ 232 hpet_t hpet; 233 234 #endif /* ifndef __xpv */ 235 236 uint_t cp_haltset_fanout = 0; 237 238 /*ARGSUSED*/ 239 int 240 pg_plat_hw_shared(cpu_t *cp, pghw_type_t hw) 241 { 242 switch (hw) { 243 case PGHW_IPIPE: 244 if (is_x86_feature(x86_featureset, X86FSET_HTT)) { 245 /* 246 * Hyper-threading is SMT 247 */ 248 return (1); 249 } else { 250 return (0); 251 } 252 case PGHW_FPU: 253 if (cpuid_get_cores_per_compunit(cp) > 1) 254 return (1); 255 else 256 return (0); 257 case PGHW_PROCNODE: 258 if (cpuid_get_procnodes_per_pkg(cp) > 1) 259 return (1); 260 else 261 return (0); 262 case PGHW_CHIP: 263 if (is_x86_feature(x86_featureset, X86FSET_CMP) || 264 is_x86_feature(x86_featureset, X86FSET_HTT)) 265 return (1); 266 else 267 return (0); 268 case PGHW_CACHE: 269 if (cpuid_get_ncpu_sharing_last_cache(cp) > 1) 270 return (1); 271 else 272 return (0); 273 case PGHW_POW_ACTIVE: 274 if (cpupm_domain_id(cp, CPUPM_DTYPE_ACTIVE) != (id_t)-1) 275 return (1); 276 else 277 return (0); 278 case PGHW_POW_IDLE: 279 if (cpupm_domain_id(cp, CPUPM_DTYPE_IDLE) != (id_t)-1) 280 return (1); 281 else 282 return (0); 283 default: 284 return (0); 285 } 286 } 287 288 /* 289 * Compare two CPUs and see if they have a pghw_type_t sharing relationship 290 * If pghw_type_t is an unsupported hardware type, then return -1 291 */ 292 int 293 pg_plat_cpus_share(cpu_t *cpu_a, cpu_t *cpu_b, pghw_type_t hw) 294 { 295 id_t pgp_a, pgp_b; 296 297 pgp_a = pg_plat_hw_instance_id(cpu_a, hw); 298 pgp_b = pg_plat_hw_instance_id(cpu_b, hw); 299 300 if (pgp_a == -1 || pgp_b == -1) 301 return (-1); 302 303 return (pgp_a == pgp_b); 304 } 305 306 /* 307 * Return a physical instance identifier for known hardware sharing 308 * relationships 309 */ 310 id_t 311 pg_plat_hw_instance_id(cpu_t *cpu, pghw_type_t hw) 312 { 313 switch (hw) { 314 case PGHW_IPIPE: 315 return (cpuid_get_coreid(cpu)); 316 case PGHW_CACHE: 317 return (cpuid_get_last_lvl_cacheid(cpu)); 318 case PGHW_FPU: 319 return (cpuid_get_compunitid(cpu)); 320 case PGHW_PROCNODE: 321 return (cpuid_get_procnodeid(cpu)); 322 case PGHW_CHIP: 323 return (cpuid_get_chipid(cpu)); 324 case PGHW_POW_ACTIVE: 325 return (cpupm_domain_id(cpu, CPUPM_DTYPE_ACTIVE)); 326 case PGHW_POW_IDLE: 327 return (cpupm_domain_id(cpu, CPUPM_DTYPE_IDLE)); 328 default: 329 return (-1); 330 } 331 } 332 333 /* 334 * Express preference for optimizing for sharing relationship 335 * hw1 vs hw2 336 */ 337 pghw_type_t 338 pg_plat_hw_rank(pghw_type_t hw1, pghw_type_t hw2) 339 { 340 int i, rank1, rank2; 341 342 static pghw_type_t hw_hier[] = { 343 PGHW_IPIPE, 344 PGHW_CACHE, 345 PGHW_FPU, 346 PGHW_PROCNODE, 347 PGHW_CHIP, 348 PGHW_POW_IDLE, 349 PGHW_POW_ACTIVE, 350 PGHW_NUM_COMPONENTS 351 }; 352 353 rank1 = 0; 354 rank2 = 0; 355 356 for (i = 0; hw_hier[i] != PGHW_NUM_COMPONENTS; i++) { 357 if (hw_hier[i] == hw1) 358 rank1 = i; 359 if (hw_hier[i] == hw2) 360 rank2 = i; 361 } 362 363 if (rank1 > rank2) 364 return (hw1); 365 else 366 return (hw2); 367 } 368 369 /* 370 * Override the default CMT dispatcher policy for the specified 371 * hardware sharing relationship 372 */ 373 pg_cmt_policy_t 374 pg_plat_cmt_policy(pghw_type_t hw) 375 { 376 /* 377 * For shared caches, also load balance across them to 378 * maximize aggregate cache capacity 379 * 380 * On AMD family 0x15 CPUs, cores come in pairs called 381 * compute units, sharing the FPU and the I$ and L2 382 * caches. Use balancing and cache affinity. 383 */ 384 switch (hw) { 385 case PGHW_FPU: 386 case PGHW_CACHE: 387 return (CMT_BALANCE|CMT_AFFINITY); 388 default: 389 return (CMT_NO_POLICY); 390 } 391 } 392 393 id_t 394 pg_plat_get_core_id(cpu_t *cpu) 395 { 396 return ((id_t)cpuid_get_coreid(cpu)); 397 } 398 399 void 400 cmp_set_nosteal_interval(void) 401 { 402 /* Set the nosteal interval (used by disp_getbest()) to 100us */ 403 nosteal_nsec = 100000UL; 404 } 405 406 /* 407 * Routine to ensure initial callers to hrtime gets 0 as return 408 */ 409 static hrtime_t 410 dummy_hrtime(void) 411 { 412 return (0); 413 } 414 415 /* ARGSUSED */ 416 static void 417 dummy_scalehrtime(hrtime_t *ticks) 418 {} 419 420 static uint64_t 421 dummy_unscalehrtime(hrtime_t nsecs) 422 { 423 return ((uint64_t)nsecs); 424 } 425 426 /* 427 * Supports Deep C-State power saving idle loop. 428 */ 429 void 430 cpu_idle_adaptive(void) 431 { 432 (*CPU->cpu_m.mcpu_idle_cpu)(); 433 } 434 435 /* 436 * Function called by CPU idle notification framework to check whether CPU 437 * has been awakened. It will be called with interrupt disabled. 438 * If CPU has been awakened, call cpu_idle_exit() to notify CPU idle 439 * notification framework. 440 */ 441 /*ARGSUSED*/ 442 static void 443 cpu_idle_check_wakeup(void *arg) 444 { 445 /* 446 * Toggle interrupt flag to detect pending interrupts. 447 * If interrupt happened, do_interrupt() will notify CPU idle 448 * notification framework so no need to call cpu_idle_exit() here. 449 */ 450 sti(); 451 SMT_PAUSE(); 452 cli(); 453 } 454 455 /* 456 * Idle the present CPU until wakened via an interrupt 457 */ 458 void 459 cpu_idle(void) 460 { 461 cpu_t *cpup = CPU; 462 processorid_t cpu_sid = cpup->cpu_seqid; 463 cpupart_t *cp = cpup->cpu_part; 464 int hset_update = 1; 465 466 /* 467 * If this CPU is online, and there's multiple CPUs 468 * in the system, then we should notate our halting 469 * by adding ourselves to the partition's halted CPU 470 * bitmap. This allows other CPUs to find/awaken us when 471 * work becomes available. 472 */ 473 if (cpup->cpu_flags & CPU_OFFLINE || ncpus == 1) 474 hset_update = 0; 475 476 /* 477 * Add ourselves to the partition's halted CPUs bitmap 478 * and set our HALTED flag, if necessary. 479 * 480 * When a thread becomes runnable, it is placed on the queue 481 * and then the halted CPU bitmap is checked to determine who 482 * (if anyone) should be awakened. We therefore need to first 483 * add ourselves to the bitmap, and and then check if there 484 * is any work available. The order is important to prevent a race 485 * that can lead to work languishing on a run queue somewhere while 486 * this CPU remains halted. 487 * 488 * Either the producing CPU will see we're halted and will awaken us, 489 * or this CPU will see the work available in disp_anywork(). 490 * 491 * Note that memory barriers after updating the HALTED flag 492 * are not necessary since an atomic operation (updating the bitset) 493 * immediately follows. On x86 the atomic operation acts as a 494 * memory barrier for the update of cpu_disp_flags. 495 */ 496 if (hset_update) { 497 cpup->cpu_disp_flags |= CPU_DISP_HALTED; 498 bitset_atomic_add(&cp->cp_haltset, cpu_sid); 499 } 500 501 /* 502 * Check to make sure there's really nothing to do. 503 * Work destined for this CPU may become available after 504 * this check. We'll be notified through the clearing of our 505 * bit in the halted CPU bitmap, and a poke. 506 */ 507 if (disp_anywork()) { 508 if (hset_update) { 509 cpup->cpu_disp_flags &= ~CPU_DISP_HALTED; 510 bitset_atomic_del(&cp->cp_haltset, cpu_sid); 511 } 512 return; 513 } 514 515 /* 516 * We're on our way to being halted. 517 * 518 * Disable interrupts now, so that we'll awaken immediately 519 * after halting if someone tries to poke us between now and 520 * the time we actually halt. 521 * 522 * We check for the presence of our bit after disabling interrupts. 523 * If it's cleared, we'll return. If the bit is cleared after 524 * we check then the poke will pop us out of the halted state. 525 * 526 * This means that the ordering of the poke and the clearing 527 * of the bit by cpu_wakeup is important. 528 * cpu_wakeup() must clear, then poke. 529 * cpu_idle() must disable interrupts, then check for the bit. 530 */ 531 cli(); 532 533 if (hset_update && bitset_in_set(&cp->cp_haltset, cpu_sid) == 0) { 534 cpup->cpu_disp_flags &= ~CPU_DISP_HALTED; 535 sti(); 536 return; 537 } 538 539 /* 540 * The check for anything locally runnable is here for performance 541 * and isn't needed for correctness. disp_nrunnable ought to be 542 * in our cache still, so it's inexpensive to check, and if there 543 * is anything runnable we won't have to wait for the poke. 544 */ 545 if (cpup->cpu_disp->disp_nrunnable != 0) { 546 if (hset_update) { 547 cpup->cpu_disp_flags &= ~CPU_DISP_HALTED; 548 bitset_atomic_del(&cp->cp_haltset, cpu_sid); 549 } 550 sti(); 551 return; 552 } 553 554 if (cpu_idle_enter(IDLE_STATE_C1, 0, 555 cpu_idle_check_wakeup, NULL) == 0) { 556 mach_cpu_idle(); 557 cpu_idle_exit(CPU_IDLE_CB_FLAG_IDLE); 558 } 559 560 /* 561 * We're no longer halted 562 */ 563 if (hset_update) { 564 cpup->cpu_disp_flags &= ~CPU_DISP_HALTED; 565 bitset_atomic_del(&cp->cp_haltset, cpu_sid); 566 } 567 } 568 569 570 /* 571 * If "cpu" is halted, then wake it up clearing its halted bit in advance. 572 * Otherwise, see if other CPUs in the cpu partition are halted and need to 573 * be woken up so that they can steal the thread we placed on this CPU. 574 * This function is only used on MP systems. 575 */ 576 static void 577 cpu_wakeup(cpu_t *cpu, int bound) 578 { 579 uint_t cpu_found; 580 processorid_t cpu_sid; 581 cpupart_t *cp; 582 583 cp = cpu->cpu_part; 584 cpu_sid = cpu->cpu_seqid; 585 if (bitset_in_set(&cp->cp_haltset, cpu_sid)) { 586 /* 587 * Clear the halted bit for that CPU since it will be 588 * poked in a moment. 589 */ 590 bitset_atomic_del(&cp->cp_haltset, cpu_sid); 591 /* 592 * We may find the current CPU present in the halted cpuset 593 * if we're in the context of an interrupt that occurred 594 * before we had a chance to clear our bit in cpu_idle(). 595 * Poking ourself is obviously unnecessary, since if 596 * we're here, we're not halted. 597 */ 598 if (cpu != CPU) 599 poke_cpu(cpu->cpu_id); 600 return; 601 } else { 602 /* 603 * This cpu isn't halted, but it's idle or undergoing a 604 * context switch. No need to awaken anyone else. 605 */ 606 if (cpu->cpu_thread == cpu->cpu_idle_thread || 607 cpu->cpu_disp_flags & CPU_DISP_DONTSTEAL) 608 return; 609 } 610 611 /* 612 * No need to wake up other CPUs if this is for a bound thread. 613 */ 614 if (bound) 615 return; 616 617 /* 618 * The CPU specified for wakeup isn't currently halted, so check 619 * to see if there are any other halted CPUs in the partition, 620 * and if there are then awaken one. 621 */ 622 do { 623 cpu_found = bitset_find(&cp->cp_haltset); 624 if (cpu_found == (uint_t)-1) 625 return; 626 } while (bitset_atomic_test_and_del(&cp->cp_haltset, cpu_found) < 0); 627 628 if (cpu_found != CPU->cpu_seqid) { 629 poke_cpu(cpu_seq[cpu_found]->cpu_id); 630 } 631 } 632 633 #ifndef __xpv 634 /* 635 * Function called by CPU idle notification framework to check whether CPU 636 * has been awakened. It will be called with interrupt disabled. 637 * If CPU has been awakened, call cpu_idle_exit() to notify CPU idle 638 * notification framework. 639 */ 640 static void 641 cpu_idle_mwait_check_wakeup(void *arg) 642 { 643 volatile uint32_t *mcpu_mwait = (volatile uint32_t *)arg; 644 645 ASSERT(arg != NULL); 646 if (*mcpu_mwait != MWAIT_HALTED) { 647 /* 648 * CPU has been awakened, notify CPU idle notification system. 649 */ 650 cpu_idle_exit(CPU_IDLE_CB_FLAG_IDLE); 651 } else { 652 /* 653 * Toggle interrupt flag to detect pending interrupts. 654 * If interrupt happened, do_interrupt() will notify CPU idle 655 * notification framework so no need to call cpu_idle_exit() 656 * here. 657 */ 658 sti(); 659 SMT_PAUSE(); 660 cli(); 661 } 662 } 663 664 /* 665 * Idle the present CPU until awakened via touching its monitored line 666 */ 667 void 668 cpu_idle_mwait(void) 669 { 670 volatile uint32_t *mcpu_mwait = CPU->cpu_m.mcpu_mwait; 671 cpu_t *cpup = CPU; 672 processorid_t cpu_sid = cpup->cpu_seqid; 673 cpupart_t *cp = cpup->cpu_part; 674 int hset_update = 1; 675 676 /* 677 * Set our mcpu_mwait here, so we can tell if anyone tries to 678 * wake us between now and when we call mwait. No other cpu will 679 * attempt to set our mcpu_mwait until we add ourself to the halted 680 * CPU bitmap. 681 */ 682 *mcpu_mwait = MWAIT_HALTED; 683 684 /* 685 * If this CPU is online, and there's multiple CPUs 686 * in the system, then we should note our halting 687 * by adding ourselves to the partition's halted CPU 688 * bitmap. This allows other CPUs to find/awaken us when 689 * work becomes available. 690 */ 691 if (cpup->cpu_flags & CPU_OFFLINE || ncpus == 1) 692 hset_update = 0; 693 694 /* 695 * Add ourselves to the partition's halted CPUs bitmap 696 * and set our HALTED flag, if necessary. 697 * 698 * When a thread becomes runnable, it is placed on the queue 699 * and then the halted CPU bitmap is checked to determine who 700 * (if anyone) should be awakened. We therefore need to first 701 * add ourselves to the bitmap, and and then check if there 702 * is any work available. 703 * 704 * Note that memory barriers after updating the HALTED flag 705 * are not necessary since an atomic operation (updating the bitmap) 706 * immediately follows. On x86 the atomic operation acts as a 707 * memory barrier for the update of cpu_disp_flags. 708 */ 709 if (hset_update) { 710 cpup->cpu_disp_flags |= CPU_DISP_HALTED; 711 bitset_atomic_add(&cp->cp_haltset, cpu_sid); 712 } 713 714 /* 715 * Check to make sure there's really nothing to do. 716 * Work destined for this CPU may become available after 717 * this check. We'll be notified through the clearing of our 718 * bit in the halted CPU bitmap, and a write to our mcpu_mwait. 719 * 720 * disp_anywork() checks disp_nrunnable, so we do not have to later. 721 */ 722 if (disp_anywork()) { 723 if (hset_update) { 724 cpup->cpu_disp_flags &= ~CPU_DISP_HALTED; 725 bitset_atomic_del(&cp->cp_haltset, cpu_sid); 726 } 727 return; 728 } 729 730 /* 731 * We're on our way to being halted. 732 * To avoid a lost wakeup, arm the monitor before checking if another 733 * cpu wrote to mcpu_mwait to wake us up. 734 */ 735 i86_monitor(mcpu_mwait, 0, 0); 736 if (*mcpu_mwait == MWAIT_HALTED) { 737 if (cpu_idle_enter(IDLE_STATE_C1, 0, 738 cpu_idle_mwait_check_wakeup, (void *)mcpu_mwait) == 0) { 739 if (*mcpu_mwait == MWAIT_HALTED) { 740 i86_mwait(0, 0); 741 } 742 cpu_idle_exit(CPU_IDLE_CB_FLAG_IDLE); 743 } 744 } 745 746 /* 747 * We're no longer halted 748 */ 749 if (hset_update) { 750 cpup->cpu_disp_flags &= ~CPU_DISP_HALTED; 751 bitset_atomic_del(&cp->cp_haltset, cpu_sid); 752 } 753 } 754 755 /* 756 * If "cpu" is halted in mwait, then wake it up clearing its halted bit in 757 * advance. Otherwise, see if other CPUs in the cpu partition are halted and 758 * need to be woken up so that they can steal the thread we placed on this CPU. 759 * This function is only used on MP systems. 760 */ 761 static void 762 cpu_wakeup_mwait(cpu_t *cp, int bound) 763 { 764 cpupart_t *cpu_part; 765 uint_t cpu_found; 766 processorid_t cpu_sid; 767 768 cpu_part = cp->cpu_part; 769 cpu_sid = cp->cpu_seqid; 770 771 /* 772 * Clear the halted bit for that CPU since it will be woken up 773 * in a moment. 774 */ 775 if (bitset_in_set(&cpu_part->cp_haltset, cpu_sid)) { 776 /* 777 * Clear the halted bit for that CPU since it will be 778 * poked in a moment. 779 */ 780 bitset_atomic_del(&cpu_part->cp_haltset, cpu_sid); 781 /* 782 * We may find the current CPU present in the halted cpuset 783 * if we're in the context of an interrupt that occurred 784 * before we had a chance to clear our bit in cpu_idle(). 785 * Waking ourself is obviously unnecessary, since if 786 * we're here, we're not halted. 787 * 788 * monitor/mwait wakeup via writing to our cache line is 789 * harmless and less expensive than always checking if we 790 * are waking ourself which is an uncommon case. 791 */ 792 MWAIT_WAKEUP(cp); /* write to monitored line */ 793 return; 794 } else { 795 /* 796 * This cpu isn't halted, but it's idle or undergoing a 797 * context switch. No need to awaken anyone else. 798 */ 799 if (cp->cpu_thread == cp->cpu_idle_thread || 800 cp->cpu_disp_flags & CPU_DISP_DONTSTEAL) 801 return; 802 } 803 804 /* 805 * No need to wake up other CPUs if the thread we just enqueued 806 * is bound. 807 */ 808 if (bound || ncpus == 1) 809 return; 810 811 /* 812 * See if there's any other halted CPUs. If there are, then 813 * select one, and awaken it. 814 * It's possible that after we find a CPU, somebody else 815 * will awaken it before we get the chance. 816 * In that case, look again. 817 */ 818 do { 819 cpu_found = bitset_find(&cpu_part->cp_haltset); 820 if (cpu_found == (uint_t)-1) 821 return; 822 } while (bitset_atomic_test_and_del(&cpu_part->cp_haltset, 823 cpu_found) < 0); 824 825 /* 826 * Do not check if cpu_found is ourself as monitor/mwait 827 * wakeup is cheap. 828 */ 829 MWAIT_WAKEUP(cpu_seq[cpu_found]); /* write to monitored line */ 830 } 831 832 #endif 833 834 void (*cpu_pause_handler)(volatile char *) = NULL; 835 836 static int 837 mp_disable_intr(int cpun) 838 { 839 /* 840 * switch to the offline cpu 841 */ 842 affinity_set(cpun); 843 /* 844 * raise ipl to just below cross call 845 */ 846 splx(XC_SYS_PIL - 1); 847 /* 848 * set base spl to prevent the next swtch to idle from 849 * lowering back to ipl 0 850 */ 851 CPU->cpu_intr_actv |= (1 << (XC_SYS_PIL - 1)); 852 set_base_spl(); 853 affinity_clear(); 854 return (DDI_SUCCESS); 855 } 856 857 static void 858 mp_enable_intr(int cpun) 859 { 860 /* 861 * switch to the online cpu 862 */ 863 affinity_set(cpun); 864 /* 865 * clear the interrupt active mask 866 */ 867 CPU->cpu_intr_actv &= ~(1 << (XC_SYS_PIL - 1)); 868 set_base_spl(); 869 (void) spl0(); 870 affinity_clear(); 871 } 872 873 static void 874 mach_get_platform(int owner) 875 { 876 void **srv_opsp; 877 void **clt_opsp; 878 int i; 879 int total_ops; 880 881 /* fix up psm ops */ 882 srv_opsp = (void **)mach_set[0]; 883 clt_opsp = (void **)mach_set[owner]; 884 if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01) 885 total_ops = sizeof (struct psm_ops_ver01) / 886 sizeof (void (*)(void)); 887 else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_1) 888 /* no psm_notify_func */ 889 total_ops = OFFSETOF(struct psm_ops, psm_notify_func) / 890 sizeof (void (*)(void)); 891 else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_2) 892 /* no psm_timer funcs */ 893 total_ops = OFFSETOF(struct psm_ops, psm_timer_reprogram) / 894 sizeof (void (*)(void)); 895 else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_3) 896 /* no psm_preshutdown function */ 897 total_ops = OFFSETOF(struct psm_ops, psm_preshutdown) / 898 sizeof (void (*)(void)); 899 else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_4) 900 /* no psm_intr_ops function */ 901 total_ops = OFFSETOF(struct psm_ops, psm_intr_ops) / 902 sizeof (void (*)(void)); 903 else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_5) 904 /* no psm_state function */ 905 total_ops = OFFSETOF(struct psm_ops, psm_state) / 906 sizeof (void (*)(void)); 907 else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_6) 908 /* no psm_cpu_ops function */ 909 total_ops = OFFSETOF(struct psm_ops, psm_cpu_ops) / 910 sizeof (void (*)(void)); 911 else 912 total_ops = sizeof (struct psm_ops) / sizeof (void (*)(void)); 913 914 /* 915 * Save the version of the PSM module, in case we need to 916 * behave differently based on version. 917 */ 918 mach_ver[0] = mach_ver[owner]; 919 920 for (i = 0; i < total_ops; i++) 921 if (clt_opsp[i] != NULL) 922 srv_opsp[i] = clt_opsp[i]; 923 } 924 925 static void 926 mach_construct_info() 927 { 928 struct psm_sw *swp; 929 int mach_cnt[PSM_OWN_OVERRIDE+1] = {0}; 930 int conflict_owner = 0; 931 932 if (psmsw->psw_forw == psmsw) 933 panic("No valid PSM modules found"); 934 mutex_enter(&psmsw_lock); 935 for (swp = psmsw->psw_forw; swp != psmsw; swp = swp->psw_forw) { 936 if (!(swp->psw_flag & PSM_MOD_IDENTIFY)) 937 continue; 938 mach_set[swp->psw_infop->p_owner] = swp->psw_infop->p_ops; 939 mach_ver[swp->psw_infop->p_owner] = swp->psw_infop->p_version; 940 mach_cnt[swp->psw_infop->p_owner]++; 941 } 942 mutex_exit(&psmsw_lock); 943 944 mach_get_platform(PSM_OWN_SYS_DEFAULT); 945 946 /* check to see are there any conflicts */ 947 if (mach_cnt[PSM_OWN_EXCLUSIVE] > 1) 948 conflict_owner = PSM_OWN_EXCLUSIVE; 949 if (mach_cnt[PSM_OWN_OVERRIDE] > 1) 950 conflict_owner = PSM_OWN_OVERRIDE; 951 if (conflict_owner) { 952 /* remove all psm modules except uppc */ 953 cmn_err(CE_WARN, 954 "Conflicts detected on the following PSM modules:"); 955 mutex_enter(&psmsw_lock); 956 for (swp = psmsw->psw_forw; swp != psmsw; swp = swp->psw_forw) { 957 if (swp->psw_infop->p_owner == conflict_owner) 958 cmn_err(CE_WARN, "%s ", 959 swp->psw_infop->p_mach_idstring); 960 } 961 mutex_exit(&psmsw_lock); 962 cmn_err(CE_WARN, 963 "Setting the system back to SINGLE processor mode!"); 964 cmn_err(CE_WARN, 965 "Please edit /etc/mach to remove the invalid PSM module."); 966 return; 967 } 968 969 if (mach_set[PSM_OWN_EXCLUSIVE]) 970 mach_get_platform(PSM_OWN_EXCLUSIVE); 971 972 if (mach_set[PSM_OWN_OVERRIDE]) 973 mach_get_platform(PSM_OWN_OVERRIDE); 974 } 975 976 static void 977 mach_init() 978 { 979 struct psm_ops *pops; 980 981 mach_construct_info(); 982 983 pops = mach_set[0]; 984 985 /* register the interrupt and clock initialization rotuines */ 986 picinitf = mach_picinit; 987 clkinitf = mach_clkinit; 988 psm_get_clockirq = pops->psm_get_clockirq; 989 990 /* register the interrupt setup code */ 991 slvltovect = mach_softlvl_to_vect; 992 addspl = pops->psm_addspl; 993 delspl = pops->psm_delspl; 994 995 if (pops->psm_translate_irq) 996 psm_translate_irq = pops->psm_translate_irq; 997 if (pops->psm_intr_ops) 998 psm_intr_ops = pops->psm_intr_ops; 999 1000 #if defined(PSMI_1_2) || defined(PSMI_1_3) || defined(PSMI_1_4) 1001 /* 1002 * Time-of-day functionality now handled in TOD modules. 1003 * (Warn about PSM modules that think that we're going to use 1004 * their ops vectors.) 1005 */ 1006 if (pops->psm_tod_get) 1007 cmn_err(CE_WARN, "obsolete psm_tod_get op %p", 1008 (void *)pops->psm_tod_get); 1009 1010 if (pops->psm_tod_set) 1011 cmn_err(CE_WARN, "obsolete psm_tod_set op %p", 1012 (void *)pops->psm_tod_set); 1013 #endif 1014 1015 if (pops->psm_notify_error) { 1016 psm_notify_error = mach_notify_error; 1017 notify_error = pops->psm_notify_error; 1018 } 1019 1020 (*pops->psm_softinit)(); 1021 1022 /* 1023 * Initialize the dispatcher's function hooks to enable CPU halting 1024 * when idle. Set both the deep-idle and non-deep-idle hooks. 1025 * 1026 * Assume we can use power saving deep-idle loop cpu_idle_adaptive. 1027 * Platform deep-idle driver will reset our idle loop to 1028 * non_deep_idle_cpu if power saving deep-idle feature is not available. 1029 * 1030 * Do not use monitor/mwait if idle_cpu_use_hlt is not set(spin idle) 1031 * or idle_cpu_prefer_mwait is not set. 1032 * Allocate monitor/mwait buffer for cpu0. 1033 */ 1034 #ifndef __xpv 1035 non_deep_idle_disp_enq_thread = disp_enq_thread; 1036 #endif 1037 if (idle_cpu_use_hlt) { 1038 idle_cpu = cpu_idle_adaptive; 1039 CPU->cpu_m.mcpu_idle_cpu = cpu_idle; 1040 #ifndef __xpv 1041 if (is_x86_feature(x86_featureset, X86FSET_MWAIT) && 1042 idle_cpu_prefer_mwait) { 1043 CPU->cpu_m.mcpu_mwait = cpuid_mwait_alloc(CPU); 1044 /* 1045 * Protect ourself from insane mwait size. 1046 */ 1047 if (CPU->cpu_m.mcpu_mwait == NULL) { 1048 #ifdef DEBUG 1049 cmn_err(CE_NOTE, "Using hlt idle. Cannot " 1050 "handle cpu 0 mwait size."); 1051 #endif 1052 idle_cpu_prefer_mwait = 0; 1053 CPU->cpu_m.mcpu_idle_cpu = cpu_idle; 1054 } else { 1055 CPU->cpu_m.mcpu_idle_cpu = cpu_idle_mwait; 1056 } 1057 } else { 1058 CPU->cpu_m.mcpu_idle_cpu = cpu_idle; 1059 } 1060 non_deep_idle_cpu = CPU->cpu_m.mcpu_idle_cpu; 1061 1062 /* 1063 * Disable power saving deep idle loop? 1064 */ 1065 if (idle_cpu_no_deep_c) { 1066 idle_cpu = non_deep_idle_cpu; 1067 } 1068 #endif 1069 } 1070 1071 mach_smpinit(); 1072 } 1073 1074 static void 1075 mach_smpinit(void) 1076 { 1077 struct psm_ops *pops; 1078 processorid_t cpu_id; 1079 int cnt; 1080 cpuset_t cpumask; 1081 1082 pops = mach_set[0]; 1083 CPUSET_ZERO(cpumask); 1084 1085 cpu_id = -1; 1086 cpu_id = (*pops->psm_get_next_processorid)(cpu_id); 1087 /* 1088 * Only add boot_ncpus CPUs to mp_cpus. Other CPUs will be handled 1089 * by CPU DR driver at runtime. 1090 */ 1091 for (cnt = 0; cpu_id != -1 && cnt < boot_ncpus; cnt++) { 1092 CPUSET_ADD(cpumask, cpu_id); 1093 cpu_id = (*pops->psm_get_next_processorid)(cpu_id); 1094 } 1095 1096 mp_cpus = cpumask; 1097 1098 /* MP related routines */ 1099 ap_mlsetup = pops->psm_post_cpu_start; 1100 send_dirintf = pops->psm_send_ipi; 1101 1102 /* optional MP related routines */ 1103 if (pops->psm_shutdown) 1104 psm_shutdownf = pops->psm_shutdown; 1105 if (pops->psm_preshutdown) 1106 psm_preshutdownf = pops->psm_preshutdown; 1107 if (pops->psm_notify_func) 1108 psm_notifyf = pops->psm_notify_func; 1109 if (pops->psm_set_idlecpu) 1110 psm_set_idle_cpuf = pops->psm_set_idlecpu; 1111 if (pops->psm_unset_idlecpu) 1112 psm_unset_idle_cpuf = pops->psm_unset_idlecpu; 1113 1114 psm_clkinit = pops->psm_clkinit; 1115 1116 if (pops->psm_timer_reprogram) 1117 psm_timer_reprogram = pops->psm_timer_reprogram; 1118 1119 if (pops->psm_timer_enable) 1120 psm_timer_enable = pops->psm_timer_enable; 1121 1122 if (pops->psm_timer_disable) 1123 psm_timer_disable = pops->psm_timer_disable; 1124 1125 if (pops->psm_post_cyclic_setup) 1126 psm_post_cyclic_setup = pops->psm_post_cyclic_setup; 1127 1128 if (pops->psm_state) 1129 psm_state = pops->psm_state; 1130 1131 /* 1132 * Set these vectors here so they can be used by Suspend/Resume 1133 * on UP machines. 1134 */ 1135 if (pops->psm_disable_intr) 1136 psm_disable_intr = pops->psm_disable_intr; 1137 if (pops->psm_enable_intr) 1138 psm_enable_intr = pops->psm_enable_intr; 1139 1140 /* 1141 * Set this vector so it can be used by vmbus (for Hyper-V) 1142 * Need this even for single-CPU systems. This works for 1143 * "pcplusmp" and "apix" platforms, but not "uppc" (because 1144 * "Uni-processor PC" does not provide a _get_ipivect). 1145 */ 1146 psm_get_ipivect = pops->psm_get_ipivect; 1147 1148 /* check for multiple CPUs */ 1149 if (cnt < 2 && plat_dr_support_cpu() == B_FALSE) 1150 return; 1151 1152 /* check for MP platforms */ 1153 if (pops->psm_cpu_start == NULL) 1154 return; 1155 1156 /* 1157 * Set the dispatcher hook to enable cpu "wake up" 1158 * when a thread becomes runnable. 1159 */ 1160 if (idle_cpu_use_hlt) { 1161 disp_enq_thread = cpu_wakeup; 1162 #ifndef __xpv 1163 if (is_x86_feature(x86_featureset, X86FSET_MWAIT) && 1164 idle_cpu_prefer_mwait) 1165 disp_enq_thread = cpu_wakeup_mwait; 1166 non_deep_idle_disp_enq_thread = disp_enq_thread; 1167 #endif 1168 } 1169 1170 psm_get_pir_ipivect = pops->psm_get_pir_ipivect; 1171 psm_send_pir_ipi = pops->psm_send_pir_ipi; 1172 psm_cmci_setup = pops->psm_cmci_setup; 1173 1174 1175 (void) add_avintr((void *)NULL, XC_HI_PIL, xc_serv, "xc_intr", 1176 (*pops->psm_get_ipivect)(XC_HI_PIL, PSM_INTR_IPI_HI), 1177 NULL, NULL, NULL, NULL); 1178 1179 (void) (*pops->psm_get_ipivect)(XC_CPUPOKE_PIL, PSM_INTR_POKE); 1180 } 1181 1182 static void 1183 mach_picinit() 1184 { 1185 struct psm_ops *pops; 1186 1187 pops = mach_set[0]; 1188 1189 /* register the interrupt handlers */ 1190 setlvl = pops->psm_intr_enter; 1191 setlvlx = pops->psm_intr_exit; 1192 1193 /* initialize the interrupt hardware */ 1194 (*pops->psm_picinit)(); 1195 1196 /* set interrupt mask for current ipl */ 1197 setspl = pops->psm_setspl; 1198 cli(); 1199 setspl(CPU->cpu_pri); 1200 } 1201 1202 uint_t cpu_freq; /* MHz */ 1203 uint64_t cpu_freq_hz; /* measured (in hertz) */ 1204 1205 #define MEGA_HZ 1000000 1206 1207 #ifdef __xpv 1208 1209 int xpv_cpufreq_workaround = 1; 1210 int xpv_cpufreq_verbose = 0; 1211 1212 #else /* __xpv */ 1213 1214 static uint64_t 1215 mach_calchz(uint32_t pit_counter, uint64_t *processor_clks) 1216 { 1217 uint64_t cpu_hz; 1218 1219 if ((pit_counter == 0) || (*processor_clks == 0) || 1220 (*processor_clks > (((uint64_t)-1) / PIT_HZ))) 1221 return (0); 1222 1223 cpu_hz = ((uint64_t)PIT_HZ * *processor_clks) / pit_counter; 1224 1225 return (cpu_hz); 1226 } 1227 1228 #endif /* __xpv */ 1229 1230 static uint64_t 1231 mach_getcpufreq(void) 1232 { 1233 #if defined(__xpv) 1234 vcpu_time_info_t *vti = &CPU->cpu_m.mcpu_vcpu_info->time; 1235 uint64_t cpu_hz; 1236 1237 /* 1238 * During dom0 bringup, it was noted that on at least one older 1239 * Intel HT machine, the hypervisor initially gives a tsc_to_system_mul 1240 * value that is quite wrong (the 3.06GHz clock was reported 1241 * as 4.77GHz) 1242 * 1243 * The curious thing is, that if you stop the kernel at entry, 1244 * breakpoint here and inspect the value with kmdb, the value 1245 * is correct - but if you don't stop and simply enable the 1246 * printf statement (below), you can see the bad value printed 1247 * here. Almost as if something kmdb did caused the hypervisor to 1248 * figure it out correctly. And, note that the hypervisor 1249 * eventually -does- figure it out correctly ... if you look at 1250 * the field later in the life of dom0, it is correct. 1251 * 1252 * For now, on dom0, we employ a slightly cheesy workaround of 1253 * using the DOM0_PHYSINFO hypercall. 1254 */ 1255 if (DOMAIN_IS_INITDOMAIN(xen_info) && xpv_cpufreq_workaround) { 1256 cpu_hz = 1000 * xpv_cpu_khz(); 1257 } else { 1258 cpu_hz = (UINT64_C(1000000000) << 32) / vti->tsc_to_system_mul; 1259 1260 if (vti->tsc_shift < 0) 1261 cpu_hz <<= -vti->tsc_shift; 1262 else 1263 cpu_hz >>= vti->tsc_shift; 1264 } 1265 1266 if (xpv_cpufreq_verbose) 1267 printf("mach_getcpufreq: system_mul 0x%x, shift %d, " 1268 "cpu_hz %" PRId64 "Hz\n", 1269 vti->tsc_to_system_mul, vti->tsc_shift, cpu_hz); 1270 1271 return (cpu_hz); 1272 #else /* __xpv */ 1273 uint32_t pit_counter; 1274 uint64_t processor_clks; 1275 1276 if (is_x86_feature(x86_featureset, X86FSET_TSC)) { 1277 /* 1278 * We have a TSC. freq_tsc() knows how to measure the number 1279 * of clock cycles sampled against the PIT. 1280 */ 1281 ulong_t flags = clear_int_flag(); 1282 processor_clks = freq_tsc(&pit_counter); 1283 restore_int_flag(flags); 1284 return (mach_calchz(pit_counter, &processor_clks)); 1285 } else if (x86_vendor == X86_VENDOR_Cyrix || x86_type == X86_TYPE_P5) { 1286 #if defined(__amd64) 1287 panic("mach_getcpufreq: no TSC!"); 1288 #elif defined(__i386) 1289 /* 1290 * We are a Cyrix based on a 6x86 core or an Intel Pentium 1291 * for which freq_notsc() knows how to measure the number of 1292 * elapsed clock cycles sampled against the PIT 1293 */ 1294 ulong_t flags = clear_int_flag(); 1295 processor_clks = freq_notsc(&pit_counter); 1296 restore_int_flag(flags); 1297 return (mach_calchz(pit_counter, &processor_clks)); 1298 #endif /* __i386 */ 1299 } 1300 1301 /* We do not know how to calculate cpu frequency for this cpu. */ 1302 return (0); 1303 #endif /* __xpv */ 1304 } 1305 1306 /* 1307 * If the clock speed of a cpu is found to be reported incorrectly, do not add 1308 * to this array, instead improve the accuracy of the algorithm that determines 1309 * the clock speed of the processor or extend the implementation to support the 1310 * vendor as appropriate. This is here only to support adjusting the speed on 1311 * older slower processors that mach_fixcpufreq() would not be able to account 1312 * for otherwise. 1313 */ 1314 static int x86_cpu_freq[] = { 60, 75, 80, 90, 120, 160, 166, 175, 180, 233 }; 1315 1316 /* 1317 * On fast processors the clock frequency that is measured may be off by 1318 * a few MHz from the value printed on the part. This is a combination of 1319 * the factors that for such fast parts being off by this much is within 1320 * the tolerances for manufacture and because of the difficulties in the 1321 * measurement that can lead to small error. This function uses some 1322 * heuristics in order to tweak the value that was measured to match what 1323 * is most likely printed on the part. 1324 * 1325 * Some examples: 1326 * AMD Athlon 1000 mhz measured as 998 mhz 1327 * Intel Pentium III Xeon 733 mhz measured as 731 mhz 1328 * Intel Pentium IV 1500 mhz measured as 1495mhz 1329 * 1330 * If in the future this function is no longer sufficient to correct 1331 * for the error in the measurement, then the algorithm used to perform 1332 * the measurement will have to be improved in order to increase accuracy 1333 * rather than adding horrible and questionable kludges here. 1334 * 1335 * This is called after the cyclics subsystem because of the potential 1336 * that the heuristics within may give a worse estimate of the clock 1337 * frequency than the value that was measured. 1338 */ 1339 static void 1340 mach_fixcpufreq(void) 1341 { 1342 uint32_t freq, mul, near66, delta66, near50, delta50, fixed, delta, i; 1343 1344 freq = (uint32_t)cpu_freq; 1345 1346 /* 1347 * Find the nearest integer multiple of 200/3 (about 66) MHz to the 1348 * measured speed taking into account that the 667 MHz parts were 1349 * the first to round-up. 1350 */ 1351 mul = (uint32_t)((3 * (uint64_t)freq + 100) / 200); 1352 near66 = (uint32_t)((200 * (uint64_t)mul + ((mul >= 10) ? 1 : 0)) / 3); 1353 delta66 = (near66 > freq) ? (near66 - freq) : (freq - near66); 1354 1355 /* Find the nearest integer multiple of 50 MHz to the measured speed */ 1356 mul = (freq + 25) / 50; 1357 near50 = mul * 50; 1358 delta50 = (near50 > freq) ? (near50 - freq) : (freq - near50); 1359 1360 /* Find the closer of the two */ 1361 if (delta66 < delta50) { 1362 fixed = near66; 1363 delta = delta66; 1364 } else { 1365 fixed = near50; 1366 delta = delta50; 1367 } 1368 1369 if (fixed > INT_MAX) 1370 return; 1371 1372 /* 1373 * Some older parts have a core clock frequency that is not an 1374 * integral multiple of 50 or 66 MHz. Check if one of the old 1375 * clock frequencies is closer to the measured value than any 1376 * of the integral multiples of 50 an 66, and if so set fixed 1377 * and delta appropriately to represent the closest value. 1378 */ 1379 i = sizeof (x86_cpu_freq) / sizeof (int); 1380 while (i > 0) { 1381 i--; 1382 1383 if (x86_cpu_freq[i] <= freq) { 1384 mul = freq - x86_cpu_freq[i]; 1385 1386 if (mul < delta) { 1387 fixed = x86_cpu_freq[i]; 1388 delta = mul; 1389 } 1390 1391 break; 1392 } 1393 1394 mul = x86_cpu_freq[i] - freq; 1395 1396 if (mul < delta) { 1397 fixed = x86_cpu_freq[i]; 1398 delta = mul; 1399 } 1400 } 1401 1402 /* 1403 * Set a reasonable maximum for how much to correct the measured 1404 * result by. This check is here to prevent the adjustment made 1405 * by this function from being more harm than good. It is entirely 1406 * possible that in the future parts will be made that are not 1407 * integral multiples of 66 or 50 in clock frequency or that 1408 * someone may overclock a part to some odd frequency. If the 1409 * measured value is farther from the corrected value than 1410 * allowed, then assume the corrected value is in error and use 1411 * the measured value. 1412 */ 1413 if (6 < delta) 1414 return; 1415 1416 cpu_freq = (int)fixed; 1417 } 1418 1419 1420 static int 1421 machhztomhz(uint64_t cpu_freq_hz) 1422 { 1423 uint64_t cpu_mhz; 1424 1425 /* Round to nearest MHZ */ 1426 cpu_mhz = (cpu_freq_hz + (MEGA_HZ / 2)) / MEGA_HZ; 1427 1428 if (cpu_mhz > INT_MAX) 1429 return (0); 1430 1431 return ((int)cpu_mhz); 1432 1433 } 1434 1435 1436 static int 1437 mach_clkinit(int preferred_mode, int *set_mode) 1438 { 1439 struct psm_ops *pops; 1440 int resolution; 1441 1442 pops = mach_set[0]; 1443 1444 cpu_freq_hz = mach_getcpufreq(); 1445 1446 cpu_freq = machhztomhz(cpu_freq_hz); 1447 1448 if (!is_x86_feature(x86_featureset, X86FSET_TSC) || (cpu_freq == 0)) 1449 tsc_gethrtime_enable = 0; 1450 1451 #ifndef __xpv 1452 if (tsc_gethrtime_enable) { 1453 tsc_hrtimeinit(cpu_freq_hz); 1454 } else 1455 #endif 1456 { 1457 if (pops->psm_hrtimeinit) 1458 (*pops->psm_hrtimeinit)(); 1459 gethrtimef = pops->psm_gethrtime; 1460 gethrtimeunscaledf = gethrtimef; 1461 /* scalehrtimef will remain dummy */ 1462 } 1463 1464 mach_fixcpufreq(); 1465 1466 if (mach_ver[0] >= PSM_INFO_VER01_3) { 1467 if (preferred_mode == TIMER_ONESHOT) { 1468 1469 resolution = (*pops->psm_clkinit)(0); 1470 if (resolution != 0) { 1471 *set_mode = TIMER_ONESHOT; 1472 return (resolution); 1473 } 1474 } 1475 1476 /* 1477 * either periodic mode was requested or could not set to 1478 * one-shot mode 1479 */ 1480 resolution = (*pops->psm_clkinit)(hz); 1481 /* 1482 * psm should be able to do periodic, so we do not check 1483 * for return value of psm_clkinit here. 1484 */ 1485 *set_mode = TIMER_PERIODIC; 1486 return (resolution); 1487 } else { 1488 /* 1489 * PSMI interface prior to PSMI_3 does not define a return 1490 * value for psm_clkinit, so the return value is ignored. 1491 */ 1492 (void) (*pops->psm_clkinit)(hz); 1493 *set_mode = TIMER_PERIODIC; 1494 return (nsec_per_tick); 1495 } 1496 } 1497 1498 1499 /*ARGSUSED*/ 1500 static int 1501 mach_softlvl_to_vect(int ipl) 1502 { 1503 setsoftint = av_set_softint_pending; 1504 kdisetsoftint = kdi_av_set_softint_pending; 1505 1506 return (PSM_SV_SOFTWARE); 1507 } 1508 1509 #ifdef DEBUG 1510 /* 1511 * This is here to allow us to simulate cpus that refuse to start. 1512 */ 1513 cpuset_t cpufailset; 1514 #endif 1515 1516 int 1517 mach_cpu_start(struct cpu *cp, void *ctx) 1518 { 1519 struct psm_ops *pops = mach_set[0]; 1520 processorid_t id = cp->cpu_id; 1521 1522 #ifdef DEBUG 1523 if (CPU_IN_SET(cpufailset, id)) 1524 return (0); 1525 #endif 1526 return ((*pops->psm_cpu_start)(id, ctx)); 1527 } 1528 1529 int 1530 mach_cpuid_start(processorid_t id, void *ctx) 1531 { 1532 struct psm_ops *pops = mach_set[0]; 1533 1534 #ifdef DEBUG 1535 if (CPU_IN_SET(cpufailset, id)) 1536 return (0); 1537 #endif 1538 return ((*pops->psm_cpu_start)(id, ctx)); 1539 } 1540 1541 int 1542 mach_cpu_stop(cpu_t *cp, void *ctx) 1543 { 1544 struct psm_ops *pops = mach_set[0]; 1545 psm_cpu_request_t request; 1546 1547 if (pops->psm_cpu_ops == NULL) { 1548 return (ENOTSUP); 1549 } 1550 1551 ASSERT(cp->cpu_id != -1); 1552 request.pcr_cmd = PSM_CPU_STOP; 1553 request.req.cpu_stop.cpuid = cp->cpu_id; 1554 request.req.cpu_stop.ctx = ctx; 1555 1556 return ((*pops->psm_cpu_ops)(&request)); 1557 } 1558 1559 int 1560 mach_cpu_add(mach_cpu_add_arg_t *argp, processorid_t *cpuidp) 1561 { 1562 int rc; 1563 struct psm_ops *pops = mach_set[0]; 1564 psm_cpu_request_t request; 1565 1566 if (pops->psm_cpu_ops == NULL) { 1567 return (ENOTSUP); 1568 } 1569 1570 request.pcr_cmd = PSM_CPU_ADD; 1571 request.req.cpu_add.argp = argp; 1572 request.req.cpu_add.cpuid = -1; 1573 rc = (*pops->psm_cpu_ops)(&request); 1574 if (rc == 0) { 1575 ASSERT(request.req.cpu_add.cpuid != -1); 1576 *cpuidp = request.req.cpu_add.cpuid; 1577 } 1578 1579 return (rc); 1580 } 1581 1582 int 1583 mach_cpu_remove(processorid_t cpuid) 1584 { 1585 struct psm_ops *pops = mach_set[0]; 1586 psm_cpu_request_t request; 1587 1588 if (pops->psm_cpu_ops == NULL) { 1589 return (ENOTSUP); 1590 } 1591 1592 request.pcr_cmd = PSM_CPU_REMOVE; 1593 request.req.cpu_remove.cpuid = cpuid; 1594 1595 return ((*pops->psm_cpu_ops)(&request)); 1596 } 1597 1598 /* 1599 * Default handler to create device node for CPU. 1600 * One reference count will be held on created device node. 1601 */ 1602 static int 1603 mach_cpu_create_devinfo(cpu_t *cp, dev_info_t **dipp) 1604 { 1605 int rv, circ; 1606 dev_info_t *dip; 1607 static kmutex_t cpu_node_lock; 1608 static dev_info_t *cpu_nex_devi = NULL; 1609 1610 ASSERT(cp != NULL); 1611 ASSERT(dipp != NULL); 1612 *dipp = NULL; 1613 1614 if (cpu_nex_devi == NULL) { 1615 mutex_enter(&cpu_node_lock); 1616 /* First check whether cpus exists. */ 1617 cpu_nex_devi = ddi_find_devinfo("cpus", -1, 0); 1618 /* Create cpus if it doesn't exist. */ 1619 if (cpu_nex_devi == NULL) { 1620 ndi_devi_enter(ddi_root_node(), &circ); 1621 rv = ndi_devi_alloc(ddi_root_node(), "cpus", 1622 (pnode_t)DEVI_SID_NODEID, &dip); 1623 if (rv != NDI_SUCCESS) { 1624 mutex_exit(&cpu_node_lock); 1625 cmn_err(CE_CONT, 1626 "?failed to create cpu nexus device.\n"); 1627 return (PSM_FAILURE); 1628 } 1629 ASSERT(dip != NULL); 1630 (void) ndi_devi_online(dip, 0); 1631 ndi_devi_exit(ddi_root_node(), circ); 1632 cpu_nex_devi = dip; 1633 } 1634 mutex_exit(&cpu_node_lock); 1635 } 1636 1637 /* 1638 * create a child node for cpu identified as 'cpu_id' 1639 */ 1640 ndi_devi_enter(cpu_nex_devi, &circ); 1641 dip = ddi_add_child(cpu_nex_devi, "cpu", DEVI_SID_NODEID, -1); 1642 if (dip == NULL) { 1643 cmn_err(CE_CONT, 1644 "?failed to create device node for cpu%d.\n", cp->cpu_id); 1645 rv = PSM_FAILURE; 1646 } else { 1647 *dipp = dip; 1648 (void) ndi_hold_devi(dip); 1649 rv = PSM_SUCCESS; 1650 } 1651 ndi_devi_exit(cpu_nex_devi, circ); 1652 1653 return (rv); 1654 } 1655 1656 /* 1657 * Create cpu device node in device tree and online it. 1658 * Return created dip with reference count held if requested. 1659 */ 1660 int 1661 mach_cpu_create_device_node(struct cpu *cp, dev_info_t **dipp) 1662 { 1663 int rv; 1664 dev_info_t *dip = NULL; 1665 1666 ASSERT(psm_cpu_create_devinfo != NULL); 1667 rv = psm_cpu_create_devinfo(cp, &dip); 1668 if (rv == PSM_SUCCESS) { 1669 cpuid_set_cpu_properties(dip, cp->cpu_id, cp->cpu_m.mcpu_cpi); 1670 /* Recursively attach driver for parent nexus device. */ 1671 if (i_ddi_attach_node_hierarchy(ddi_get_parent(dip)) == 1672 DDI_SUCCESS) { 1673 /* Configure cpu itself and descendants. */ 1674 (void) ndi_devi_online(dip, 1675 NDI_ONLINE_ATTACH | NDI_CONFIG); 1676 } 1677 if (dipp != NULL) { 1678 *dipp = dip; 1679 } else { 1680 (void) ndi_rele_devi(dip); 1681 } 1682 } 1683 1684 return (rv); 1685 } 1686 1687 /* 1688 * The dipp contains one of following values on return: 1689 * - NULL if no device node found 1690 * - pointer to device node if found 1691 */ 1692 int 1693 mach_cpu_get_device_node(struct cpu *cp, dev_info_t **dipp) 1694 { 1695 *dipp = NULL; 1696 if (psm_cpu_get_devinfo != NULL) { 1697 if (psm_cpu_get_devinfo(cp, dipp) == PSM_SUCCESS) { 1698 return (PSM_SUCCESS); 1699 } 1700 } 1701 1702 return (PSM_FAILURE); 1703 } 1704 1705 /*ARGSUSED*/ 1706 static int 1707 mach_translate_irq(dev_info_t *dip, int irqno) 1708 { 1709 return (irqno); /* default to NO translation */ 1710 } 1711 1712 static void 1713 mach_notify_error(int level, char *errmsg) 1714 { 1715 /* 1716 * SL_FATAL is pass in once panicstr is set, deliver it 1717 * as CE_PANIC. Also, translate SL_ codes back to CE_ 1718 * codes for the psmi handler 1719 */ 1720 if (level & SL_FATAL) 1721 (*notify_error)(CE_PANIC, errmsg); 1722 else if (level & SL_WARN) 1723 (*notify_error)(CE_WARN, errmsg); 1724 else if (level & SL_NOTE) 1725 (*notify_error)(CE_NOTE, errmsg); 1726 else if (level & SL_CONSOLE) 1727 (*notify_error)(CE_CONT, errmsg); 1728 } 1729 1730 /* 1731 * It provides the default basic intr_ops interface for the new DDI 1732 * interrupt framework if the PSM doesn't have one. 1733 * 1734 * Input: 1735 * dip - pointer to the dev_info structure of the requested device 1736 * hdlp - pointer to the internal interrupt handle structure for the 1737 * requested interrupt 1738 * intr_op - opcode for this call 1739 * result - pointer to the integer that will hold the result to be 1740 * passed back if return value is PSM_SUCCESS 1741 * 1742 * Output: 1743 * return value is either PSM_SUCCESS or PSM_FAILURE 1744 */ 1745 static int 1746 mach_intr_ops(dev_info_t *dip, ddi_intr_handle_impl_t *hdlp, 1747 psm_intr_op_t intr_op, int *result) 1748 { 1749 struct intrspec *ispec; 1750 1751 switch (intr_op) { 1752 case PSM_INTR_OP_CHECK_MSI: 1753 *result = hdlp->ih_type & ~(DDI_INTR_TYPE_MSI | 1754 DDI_INTR_TYPE_MSIX); 1755 break; 1756 case PSM_INTR_OP_ALLOC_VECTORS: 1757 if (hdlp->ih_type == DDI_INTR_TYPE_FIXED) 1758 *result = 1; 1759 else 1760 *result = 0; 1761 break; 1762 case PSM_INTR_OP_FREE_VECTORS: 1763 break; 1764 case PSM_INTR_OP_NAVAIL_VECTORS: 1765 if (hdlp->ih_type == DDI_INTR_TYPE_FIXED) 1766 *result = 1; 1767 else 1768 *result = 0; 1769 break; 1770 case PSM_INTR_OP_XLATE_VECTOR: 1771 ispec = ((ihdl_plat_t *)hdlp->ih_private)->ip_ispecp; 1772 *result = psm_translate_irq(dip, ispec->intrspec_vec); 1773 break; 1774 case PSM_INTR_OP_GET_CAP: 1775 *result = 0; 1776 break; 1777 case PSM_INTR_OP_GET_PENDING: 1778 case PSM_INTR_OP_CLEAR_MASK: 1779 case PSM_INTR_OP_SET_MASK: 1780 case PSM_INTR_OP_GET_SHARED: 1781 case PSM_INTR_OP_SET_PRI: 1782 case PSM_INTR_OP_SET_CAP: 1783 case PSM_INTR_OP_SET_CPU: 1784 case PSM_INTR_OP_GET_INTR: 1785 default: 1786 return (PSM_FAILURE); 1787 } 1788 return (PSM_SUCCESS); 1789 } 1790 /* 1791 * Return 1 if CMT load balancing policies should be 1792 * implemented across instances of the specified hardware 1793 * sharing relationship. 1794 */ 1795 int 1796 pg_cmt_load_bal_hw(pghw_type_t hw) 1797 { 1798 if (hw == PGHW_IPIPE || 1799 hw == PGHW_FPU || 1800 hw == PGHW_PROCNODE || 1801 hw == PGHW_CHIP) 1802 return (1); 1803 else 1804 return (0); 1805 } 1806 /* 1807 * Return 1 if thread affinity polices should be implemented 1808 * for instances of the specifed hardware sharing relationship. 1809 */ 1810 int 1811 pg_cmt_affinity_hw(pghw_type_t hw) 1812 { 1813 if (hw == PGHW_CACHE) 1814 return (1); 1815 else 1816 return (0); 1817 } 1818 1819 /* 1820 * Return number of counter events requested to measure hardware capacity and 1821 * utilization and setup CPC requests for specified CPU as needed 1822 * 1823 * May return 0 when platform or processor specific code knows that no CPC 1824 * events should be programmed on this CPU or -1 when platform or processor 1825 * specific code doesn't know which counter events are best to use and common 1826 * code should decide for itself 1827 */ 1828 int 1829 /* LINTED E_FUNC_ARG_UNUSED */ 1830 cu_plat_cpc_init(cpu_t *cp, kcpc_request_list_t *reqs, int nreqs) 1831 { 1832 const char *impl_name; 1833 1834 /* 1835 * Return error if pcbe_ops not set 1836 */ 1837 if (pcbe_ops == NULL) 1838 return (-1); 1839 1840 /* 1841 * Return that no CPC events should be programmed on hyperthreaded 1842 * Pentium 4 and return error for all other x86 processors to tell 1843 * common code to decide what counter events to program on those CPUs 1844 * for measuring hardware capacity and utilization 1845 */ 1846 impl_name = pcbe_ops->pcbe_impl_name(); 1847 if (impl_name != NULL && strcmp(impl_name, PCBE_IMPL_NAME_P4HT) == 0) 1848 return (0); 1849 else 1850 return (-1); 1851 } 1852