xref: /illumos-gate/usr/src/uts/i86pc/os/mp_machdep.c (revision 8af2c5b9bdbf69a55f079d7ad9483d38fae9f023)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #define	PSMI_1_5
29 #include <sys/smp_impldefs.h>
30 #include <sys/psm.h>
31 #include <sys/psm_modctl.h>
32 #include <sys/pit.h>
33 #include <sys/cmn_err.h>
34 #include <sys/strlog.h>
35 #include <sys/clock.h>
36 #include <sys/debug.h>
37 #include <sys/rtc.h>
38 #include <sys/x86_archext.h>
39 #include <sys/cpupart.h>
40 #include <sys/cpuvar.h>
41 #include <sys/cmt.h>
42 #include <sys/cpu.h>
43 #include <sys/disp.h>
44 #include <sys/archsystm.h>
45 #include <sys/machsystm.h>
46 #include <sys/sysmacros.h>
47 #include <sys/param.h>
48 #include <sys/promif.h>
49 #include <sys/mach_intr.h>
50 #include <vm/hat_i86.h>
51 #include <sys/kdi_machimpl.h>
52 
53 #define	OFFSETOF(s, m)		(size_t)(&(((s *)0)->m))
54 
55 /*
56  *	Local function prototypes
57  */
58 static int mp_disable_intr(processorid_t cpun);
59 static void mp_enable_intr(processorid_t cpun);
60 static void mach_init();
61 static void mach_picinit();
62 static uint64_t mach_calchz(uint32_t pit_counter, uint64_t *processor_clks);
63 static int machhztomhz(uint64_t cpu_freq_hz);
64 static uint64_t mach_getcpufreq(void);
65 static void mach_fixcpufreq(void);
66 static int mach_clkinit(int, int *);
67 static void mach_smpinit(void);
68 static int mach_softlvl_to_vect(int ipl);
69 static void mach_get_platform(int owner);
70 static void mach_construct_info();
71 static int mach_translate_irq(dev_info_t *dip, int irqno);
72 static int mach_intr_ops(dev_info_t *, ddi_intr_handle_impl_t *,
73     psm_intr_op_t, int *);
74 static void mach_notify_error(int level, char *errmsg);
75 static hrtime_t dummy_hrtime(void);
76 static void dummy_scalehrtime(hrtime_t *);
77 static void cpu_idle(void);
78 static void cpu_wakeup(cpu_t *, int);
79 static void cpu_idle_mwait(void);
80 static void cpu_wakeup_mwait(cpu_t *, int);
81 /*
82  *	External reference functions
83  */
84 extern void return_instr();
85 extern uint64_t freq_tsc(uint32_t *);
86 #if defined(__i386)
87 extern uint64_t freq_notsc(uint32_t *);
88 #endif
89 extern void pc_gethrestime(timestruc_t *);
90 extern int cpuid_get_coreid(cpu_t *);
91 extern int cpuid_get_chipid(cpu_t *);
92 
93 /*
94  *	PSM functions initialization
95  */
96 void (*psm_shutdownf)(int, int)	= (void (*)(int, int))return_instr;
97 void (*psm_preshutdownf)(int, int) = (void (*)(int, int))return_instr;
98 void (*psm_notifyf)(int)	= (void (*)(int))return_instr;
99 void (*psm_set_idle_cpuf)(int)	= (void (*)(int))return_instr;
100 void (*psm_unset_idle_cpuf)(int) = (void (*)(int))return_instr;
101 void (*psminitf)()		= mach_init;
102 void (*picinitf)() 		= return_instr;
103 int (*clkinitf)(int, int *) 	= (int (*)(int, int *))return_instr;
104 int (*ap_mlsetup)() 		= (int (*)(void))return_instr;
105 void (*send_dirintf)() 		= return_instr;
106 void (*setspl)(int)		= (void (*)(int))return_instr;
107 int (*addspl)(int, int, int, int) = (int (*)(int, int, int, int))return_instr;
108 int (*delspl)(int, int, int, int) = (int (*)(int, int, int, int))return_instr;
109 void (*kdisetsoftint)(int, struct av_softinfo *)=
110 	(void (*)(int, struct av_softinfo *))return_instr;
111 void (*setsoftint)(int, struct av_softinfo *)=
112 	(void (*)(int, struct av_softinfo *))return_instr;
113 int (*slvltovect)(int)		= (int (*)(int))return_instr;
114 int (*setlvl)(int, int *)	= (int (*)(int, int *))return_instr;
115 void (*setlvlx)(int, int)	= (void (*)(int, int))return_instr;
116 int (*psm_disable_intr)(int)	= mp_disable_intr;
117 void (*psm_enable_intr)(int)	= mp_enable_intr;
118 hrtime_t (*gethrtimef)(void)	= dummy_hrtime;
119 hrtime_t (*gethrtimeunscaledf)(void)	= dummy_hrtime;
120 void (*scalehrtimef)(hrtime_t *)	= dummy_scalehrtime;
121 int (*psm_translate_irq)(dev_info_t *, int) = mach_translate_irq;
122 void (*gethrestimef)(timestruc_t *) = pc_gethrestime;
123 void (*psm_notify_error)(int, char *) = (void (*)(int, char *))NULL;
124 int (*psm_get_clockirq)(int) = NULL;
125 int (*psm_get_ipivect)(int, int) = NULL;
126 
127 int (*psm_clkinit)(int) = NULL;
128 void (*psm_timer_reprogram)(hrtime_t) = NULL;
129 void (*psm_timer_enable)(void) = NULL;
130 void (*psm_timer_disable)(void) = NULL;
131 void (*psm_post_cyclic_setup)(void *arg) = NULL;
132 int (*psm_intr_ops)(dev_info_t *, ddi_intr_handle_impl_t *, psm_intr_op_t,
133     int *) = mach_intr_ops;
134 
135 void (*notify_error)(int, char *) = (void (*)(int, char *))return_instr;
136 void (*hrtime_tick)(void)	= return_instr;
137 
138 int tsc_gethrtime_enable = 1;
139 int tsc_gethrtime_initted = 0;
140 
141 /*
142  * Local Static Data
143  */
144 static struct psm_ops mach_ops;
145 static struct psm_ops *mach_set[4] = {&mach_ops, NULL, NULL, NULL};
146 static ushort_t mach_ver[4] = {0, 0, 0, 0};
147 
148 /*
149  * If non-zero, idle cpus will become "halted" when there's
150  * no work to do.
151  */
152 int	idle_cpu_use_hlt = 1;
153 
154 /*
155  * If non-zero, idle cpus will use mwait if available to halt instead of hlt.
156  */
157 int	idle_cpu_prefer_mwait = 1;
158 
159 
160 /*ARGSUSED*/
161 int
162 pg_plat_hw_shared(cpu_t *cp, pghw_type_t hw)
163 {
164 	switch (hw) {
165 	case PGHW_IPIPE:
166 		if (x86_feature & (X86_HTT)) {
167 			/*
168 			 * Hyper-threading is SMT
169 			 */
170 			return (1);
171 		} else {
172 			return (0);
173 		}
174 	case PGHW_CHIP:
175 		if (x86_feature & (X86_CMP|X86_HTT))
176 			return (1);
177 		else
178 			return (0);
179 	case PGHW_CACHE:
180 		if (cpuid_get_ncpu_sharing_last_cache(cp) > 1)
181 			return (1);
182 		else
183 			return (0);
184 	default:
185 		return (0);
186 	}
187 }
188 
189 /*
190  * Compare two CPUs and see if they have a pghw_type_t sharing relationship
191  * If pghw_type_t is an unsupported hardware type, then return -1
192  */
193 int
194 pg_plat_cpus_share(cpu_t *cpu_a, cpu_t *cpu_b, pghw_type_t hw)
195 {
196 	id_t pgp_a, pgp_b;
197 
198 	pgp_a = pg_plat_hw_instance_id(cpu_a, hw);
199 	pgp_b = pg_plat_hw_instance_id(cpu_b, hw);
200 
201 	if (pgp_a == -1 || pgp_b == -1)
202 		return (-1);
203 
204 	return (pgp_a == pgp_b);
205 }
206 
207 /*
208  * Return a physical instance identifier for known hardware sharing
209  * relationships
210  */
211 id_t
212 pg_plat_hw_instance_id(cpu_t *cpu, pghw_type_t hw)
213 {
214 	switch (hw) {
215 	case PGHW_IPIPE:
216 		return (cpuid_get_coreid(cpu));
217 	case PGHW_CACHE:
218 		return (cpuid_get_last_lvl_cacheid(cpu));
219 	case PGHW_CHIP:
220 		return (cpuid_get_chipid(cpu));
221 	default:
222 		return (-1);
223 	}
224 }
225 
226 int
227 pg_plat_hw_level(pghw_type_t hw)
228 {
229 	int i;
230 	static pghw_type_t hw_hier[] = {
231 		PGHW_IPIPE,
232 		PGHW_CACHE,
233 		PGHW_CHIP,
234 		PGHW_NUM_COMPONENTS
235 	};
236 
237 	for (i = 0; hw_hier[i] != PGHW_NUM_COMPONENTS; i++) {
238 		if (hw_hier[i] == hw)
239 			return (i);
240 	}
241 	return (-1);
242 }
243 
244 /*
245  * Return 1 if CMT load balancing policies should be
246  * implemented across instances of the specified hardware
247  * sharing relationship.
248  */
249 int
250 pg_plat_cmt_load_bal_hw(pghw_type_t hw)
251 {
252 	if (hw == PGHW_IPIPE ||
253 	    hw == PGHW_FPU ||
254 	    hw == PGHW_CHIP ||
255 	    hw == PGHW_CACHE)
256 		return (1);
257 	else
258 		return (0);
259 }
260 
261 
262 /*
263  * Return 1 if thread affinity polices should be implemented
264  * for instances of the specifed hardware sharing relationship.
265  */
266 int
267 pg_plat_cmt_affinity_hw(pghw_type_t hw)
268 {
269 	if (hw == PGHW_CACHE)
270 		return (1);
271 	else
272 		return (0);
273 }
274 
275 id_t
276 pg_plat_get_core_id(cpu_t *cpu)
277 {
278 	return ((id_t)cpuid_get_coreid(cpu));
279 }
280 
281 void
282 cmp_set_nosteal_interval(void)
283 {
284 	/* Set the nosteal interval (used by disp_getbest()) to 100us */
285 	nosteal_nsec = 100000UL;
286 }
287 
288 /*
289  * Routine to ensure initial callers to hrtime gets 0 as return
290  */
291 static hrtime_t
292 dummy_hrtime(void)
293 {
294 	return (0);
295 }
296 
297 /* ARGSUSED */
298 static void
299 dummy_scalehrtime(hrtime_t *ticks)
300 {}
301 
302 /*
303  * Idle the present CPU until awoken via an interrupt
304  */
305 static void
306 cpu_idle(void)
307 {
308 	cpu_t		*cpup = CPU;
309 	processorid_t	cpun = cpup->cpu_id;
310 	cpupart_t	*cp = cpup->cpu_part;
311 	int		hset_update = 1;
312 
313 	/*
314 	 * If this CPU is online, and there's multiple CPUs
315 	 * in the system, then we should notate our halting
316 	 * by adding ourselves to the partition's halted CPU
317 	 * bitmap. This allows other CPUs to find/awaken us when
318 	 * work becomes available.
319 	 */
320 	if (cpup->cpu_flags & CPU_OFFLINE || ncpus == 1)
321 		hset_update = 0;
322 
323 	/*
324 	 * Add ourselves to the partition's halted CPUs bitmask
325 	 * and set our HALTED flag, if necessary.
326 	 *
327 	 * When a thread becomes runnable, it is placed on the queue
328 	 * and then the halted cpuset is checked to determine who
329 	 * (if anyone) should be awoken. We therefore need to first
330 	 * add ourselves to the halted cpuset, and and then check if there
331 	 * is any work available.
332 	 *
333 	 * Note that memory barriers after updating the HALTED flag
334 	 * are not necessary since an atomic operation (updating the bitmap)
335 	 * immediately follows. On x86 the atomic operation acts as a
336 	 * memory barrier for the update of cpu_disp_flags.
337 	 */
338 	if (hset_update) {
339 		cpup->cpu_disp_flags |= CPU_DISP_HALTED;
340 		CPUSET_ATOMIC_ADD(cp->cp_mach->mc_haltset, cpun);
341 	}
342 
343 	/*
344 	 * Check to make sure there's really nothing to do.
345 	 * Work destined for this CPU may become available after
346 	 * this check. We'll be notified through the clearing of our
347 	 * bit in the halted CPU bitmask, and a poke.
348 	 */
349 	if (disp_anywork()) {
350 		if (hset_update) {
351 			cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
352 			CPUSET_ATOMIC_DEL(cp->cp_mach->mc_haltset, cpun);
353 		}
354 		return;
355 	}
356 
357 	/*
358 	 * We're on our way to being halted.
359 	 *
360 	 * Disable interrupts now, so that we'll awaken immediately
361 	 * after halting if someone tries to poke us between now and
362 	 * the time we actually halt.
363 	 *
364 	 * We check for the presence of our bit after disabling interrupts.
365 	 * If it's cleared, we'll return. If the bit is cleared after
366 	 * we check then the poke will pop us out of the halted state.
367 	 *
368 	 * This means that the ordering of the poke and the clearing
369 	 * of the bit by cpu_wakeup is important.
370 	 * cpu_wakeup() must clear, then poke.
371 	 * cpu_idle() must disable interrupts, then check for the bit.
372 	 */
373 	cli();
374 
375 	if (hset_update && !CPU_IN_SET(cp->cp_mach->mc_haltset, cpun)) {
376 		cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
377 		sti();
378 		return;
379 	}
380 
381 	/*
382 	 * The check for anything locally runnable is here for performance
383 	 * and isn't needed for correctness. disp_nrunnable ought to be
384 	 * in our cache still, so it's inexpensive to check, and if there
385 	 * is anything runnable we won't have to wait for the poke.
386 	 */
387 	if (cpup->cpu_disp->disp_nrunnable != 0) {
388 		if (hset_update) {
389 			cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
390 			CPUSET_ATOMIC_DEL(cp->cp_mach->mc_haltset, cpun);
391 		}
392 		sti();
393 		return;
394 	}
395 
396 	mach_cpu_idle();
397 
398 	/*
399 	 * We're no longer halted
400 	 */
401 	if (hset_update) {
402 		cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
403 		CPUSET_ATOMIC_DEL(cp->cp_mach->mc_haltset, cpun);
404 	}
405 }
406 
407 
408 /*
409  * If "cpu" is halted, then wake it up clearing its halted bit in advance.
410  * Otherwise, see if other CPUs in the cpu partition are halted and need to
411  * be woken up so that they can steal the thread we placed on this CPU.
412  * This function is only used on MP systems.
413  */
414 static void
415 cpu_wakeup(cpu_t *cpu, int bound)
416 {
417 	uint_t		cpu_found;
418 	int		result;
419 	cpupart_t	*cp;
420 
421 	cp = cpu->cpu_part;
422 	if (CPU_IN_SET(cp->cp_mach->mc_haltset, cpu->cpu_id)) {
423 		/*
424 		 * Clear the halted bit for that CPU since it will be
425 		 * poked in a moment.
426 		 */
427 		CPUSET_ATOMIC_DEL(cp->cp_mach->mc_haltset, cpu->cpu_id);
428 		/*
429 		 * We may find the current CPU present in the halted cpuset
430 		 * if we're in the context of an interrupt that occurred
431 		 * before we had a chance to clear our bit in cpu_idle().
432 		 * Poking ourself is obviously unnecessary, since if
433 		 * we're here, we're not halted.
434 		 */
435 		if (cpu != CPU)
436 			poke_cpu(cpu->cpu_id);
437 		return;
438 	} else {
439 		/*
440 		 * This cpu isn't halted, but it's idle or undergoing a
441 		 * context switch. No need to awaken anyone else.
442 		 */
443 		if (cpu->cpu_thread == cpu->cpu_idle_thread ||
444 		    cpu->cpu_disp_flags & CPU_DISP_DONTSTEAL)
445 			return;
446 	}
447 
448 	/*
449 	 * No need to wake up other CPUs if the thread we just enqueued
450 	 * is bound.
451 	 */
452 	if (bound)
453 		return;
454 
455 
456 	/*
457 	 * See if there's any other halted CPUs. If there are, then
458 	 * select one, and awaken it.
459 	 * It's possible that after we find a CPU, somebody else
460 	 * will awaken it before we get the chance.
461 	 * In that case, look again.
462 	 */
463 	do {
464 		CPUSET_FIND(cp->cp_mach->mc_haltset, cpu_found);
465 		if (cpu_found == CPUSET_NOTINSET)
466 			return;
467 
468 		ASSERT(cpu_found >= 0 && cpu_found < NCPU);
469 		CPUSET_ATOMIC_XDEL(cp->cp_mach->mc_haltset, cpu_found, result);
470 	} while (result < 0);
471 
472 	if (cpu_found != CPU->cpu_id)
473 		poke_cpu(cpu_found);
474 }
475 
476 /*
477  * Idle the present CPU until awoken via touching its monitored line
478  */
479 static void
480 cpu_idle_mwait(void)
481 {
482 	volatile uint32_t	*mcpu_mwait = CPU->cpu_m.mcpu_mwait;
483 	cpu_t			*cpup = CPU;
484 	processorid_t		cpun = cpup->cpu_id;
485 	cpupart_t		*cp = cpup->cpu_part;
486 	int			hset_update = 1;
487 
488 	/*
489 	 * Set our mcpu_mwait here, so we can tell if anyone trys to
490 	 * wake us between now and when we call mwait.  No other cpu will
491 	 * attempt to set our mcpu_mwait until we add ourself to the haltset.
492 	 */
493 	*mcpu_mwait = MWAIT_HALTED;
494 
495 	/*
496 	 * If this CPU is online, and there's multiple CPUs
497 	 * in the system, then we should notate our halting
498 	 * by adding ourselves to the partition's halted CPU
499 	 * bitmap. This allows other CPUs to find/awaken us when
500 	 * work becomes available.
501 	 */
502 	if (cpup->cpu_flags & CPU_OFFLINE || ncpus == 1)
503 		hset_update = 0;
504 
505 	/*
506 	 * Add ourselves to the partition's halted CPUs bitmask
507 	 * and set our HALTED flag, if necessary.
508 	 *
509 	 * When a thread becomes runnable, it is placed on the queue
510 	 * and then the halted cpuset is checked to determine who
511 	 * (if anyone) should be awoken. We therefore need to first
512 	 * add ourselves to the halted cpuset, and and then check if there
513 	 * is any work available.
514 	 *
515 	 * Note that memory barriers after updating the HALTED flag
516 	 * are not necessary since an atomic operation (updating the bitmap)
517 	 * immediately follows. On x86 the atomic operation acts as a
518 	 * memory barrier for the update of cpu_disp_flags.
519 	 */
520 	if (hset_update) {
521 		cpup->cpu_disp_flags |= CPU_DISP_HALTED;
522 		CPUSET_ATOMIC_ADD(cp->cp_mach->mc_haltset, cpun);
523 	}
524 
525 	/*
526 	 * Check to make sure there's really nothing to do.
527 	 * Work destined for this CPU may become available after
528 	 * this check. We'll be notified through the clearing of our
529 	 * bit in the halted CPU bitmask, and a write to our mcpu_mwait.
530 	 *
531 	 * disp_anywork() checks disp_nrunnable, so we do not have to later.
532 	 */
533 	if (disp_anywork()) {
534 		if (hset_update) {
535 			cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
536 			CPUSET_ATOMIC_DEL(cp->cp_mach->mc_haltset, cpun);
537 		}
538 		return;
539 	}
540 
541 	/*
542 	 * We're on our way to being halted.
543 	 * To avoid a lost wakeup, arm the monitor before checking if another
544 	 * cpu wrote to mcpu_mwait to wake us up.
545 	 */
546 	i86_monitor(mcpu_mwait, 0, 0);
547 	if (*mcpu_mwait == MWAIT_HALTED) {
548 		tlb_going_idle();
549 		i86_mwait(0, 0);
550 		tlb_service();
551 	}
552 
553 	/*
554 	 * We're no longer halted
555 	 */
556 	if (hset_update) {
557 		cpup->cpu_disp_flags &= ~CPU_DISP_HALTED;
558 		CPUSET_ATOMIC_DEL(cp->cp_mach->mc_haltset, cpun);
559 	}
560 }
561 
562 /*
563  * If "cpu" is halted in mwait, then wake it up clearing its halted bit in
564  * advance.  Otherwise, see if other CPUs in the cpu partition are halted and
565  * need to be woken up so that they can steal the thread we placed on this CPU.
566  * This function is only used on MP systems.
567  */
568 static void
569 cpu_wakeup_mwait(cpu_t *cp, int bound)
570 {
571 	cpupart_t	*cpu_part;
572 	uint_t		cpu_found;
573 	int		result;
574 
575 	cpu_part = cp->cpu_part;
576 
577 	/*
578 	 * Clear the halted bit for that CPU since it will be woken up
579 	 * in a moment.
580 	 */
581 	if (CPU_IN_SET(cpu_part->cp_mach->mc_haltset, cp->cpu_id)) {
582 		/*
583 		 * Clear the halted bit for that CPU since it will be
584 		 * poked in a moment.
585 		 */
586 		CPUSET_ATOMIC_DEL(cpu_part->cp_mach->mc_haltset, cp->cpu_id);
587 		/*
588 		 * We may find the current CPU present in the halted cpuset
589 		 * if we're in the context of an interrupt that occurred
590 		 * before we had a chance to clear our bit in cpu_idle().
591 		 * Waking ourself is obviously unnecessary, since if
592 		 * we're here, we're not halted.
593 		 *
594 		 * monitor/mwait wakeup via writing to our cache line is
595 		 * harmless and less expensive than always checking if we
596 		 * are waking ourself which is an uncommon case.
597 		 */
598 		MWAIT_WAKEUP(cp);	/* write to monitored line */
599 		return;
600 	} else {
601 		/*
602 		 * This cpu isn't halted, but it's idle or undergoing a
603 		 * context switch. No need to awaken anyone else.
604 		 */
605 		if (cp->cpu_thread == cp->cpu_idle_thread ||
606 		    cp->cpu_disp_flags & CPU_DISP_DONTSTEAL)
607 			return;
608 	}
609 
610 	/*
611 	 * No need to wake up other CPUs if the thread we just enqueued
612 	 * is bound.
613 	 */
614 	if (bound)
615 		return;
616 
617 
618 	/*
619 	 * See if there's any other halted CPUs. If there are, then
620 	 * select one, and awaken it.
621 	 * It's possible that after we find a CPU, somebody else
622 	 * will awaken it before we get the chance.
623 	 * In that case, look again.
624 	 */
625 	do {
626 		CPUSET_FIND(cpu_part->cp_mach->mc_haltset, cpu_found);
627 		if (cpu_found == CPUSET_NOTINSET)
628 			return;
629 
630 		ASSERT(cpu_found >= 0 && cpu_found < NCPU);
631 		CPUSET_ATOMIC_XDEL(cpu_part->cp_mach->mc_haltset, cpu_found,
632 		    result);
633 	} while (result < 0);
634 
635 	/*
636 	 * Do not check if cpu_found is ourself as monitor/mwait wakeup is
637 	 * cheap.
638 	 */
639 	MWAIT_WAKEUP(cpu[cpu_found]);	/* write to monitored line */
640 }
641 
642 void (*cpu_pause_handler)(volatile char *) = NULL;
643 
644 static int
645 mp_disable_intr(int cpun)
646 {
647 	/*
648 	 * switch to the offline cpu
649 	 */
650 	affinity_set(cpun);
651 	/*
652 	 * raise ipl to just below cross call
653 	 */
654 	splx(XC_MED_PIL-1);
655 	/*
656 	 *	set base spl to prevent the next swtch to idle from
657 	 *	lowering back to ipl 0
658 	 */
659 	CPU->cpu_intr_actv |= (1 << (XC_MED_PIL-1));
660 	set_base_spl();
661 	affinity_clear();
662 	return (DDI_SUCCESS);
663 }
664 
665 static void
666 mp_enable_intr(int cpun)
667 {
668 	/*
669 	 * switch to the online cpu
670 	 */
671 	affinity_set(cpun);
672 	/*
673 	 * clear the interrupt active mask
674 	 */
675 	CPU->cpu_intr_actv &= ~(1 << (XC_MED_PIL-1));
676 	set_base_spl();
677 	(void) spl0();
678 	affinity_clear();
679 }
680 
681 static void
682 mach_get_platform(int owner)
683 {
684 	void		**srv_opsp;
685 	void		**clt_opsp;
686 	int		i;
687 	int		total_ops;
688 
689 	/* fix up psm ops */
690 	srv_opsp = (void **)mach_set[0];
691 	clt_opsp = (void **)mach_set[owner];
692 	if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01)
693 		total_ops = sizeof (struct psm_ops_ver01) /
694 		    sizeof (void (*)(void));
695 	else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_1)
696 		/* no psm_notify_func */
697 		total_ops = OFFSETOF(struct psm_ops, psm_notify_func) /
698 		    sizeof (void (*)(void));
699 	else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_2)
700 		/* no psm_timer funcs */
701 		total_ops = OFFSETOF(struct psm_ops, psm_timer_reprogram) /
702 		    sizeof (void (*)(void));
703 	else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_3)
704 		/* no psm_preshutdown function */
705 		total_ops = OFFSETOF(struct psm_ops, psm_preshutdown) /
706 		    sizeof (void (*)(void));
707 	else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_4)
708 		/* no psm_preshutdown function */
709 		total_ops = OFFSETOF(struct psm_ops, psm_intr_ops) /
710 		    sizeof (void (*)(void));
711 	else
712 		total_ops = sizeof (struct psm_ops) / sizeof (void (*)(void));
713 
714 	/*
715 	 * Save the version of the PSM module, in case we need to
716 	 * bahave differently based on version.
717 	 */
718 	mach_ver[0] = mach_ver[owner];
719 
720 	for (i = 0; i < total_ops; i++)
721 		if (clt_opsp[i] != NULL)
722 			srv_opsp[i] = clt_opsp[i];
723 }
724 
725 static void
726 mach_construct_info()
727 {
728 	struct psm_sw *swp;
729 	int	mach_cnt[PSM_OWN_OVERRIDE+1] = {0};
730 	int	conflict_owner = 0;
731 
732 	if (psmsw->psw_forw == psmsw)
733 		panic("No valid PSM modules found");
734 	mutex_enter(&psmsw_lock);
735 	for (swp = psmsw->psw_forw; swp != psmsw; swp = swp->psw_forw) {
736 		if (!(swp->psw_flag & PSM_MOD_IDENTIFY))
737 			continue;
738 		mach_set[swp->psw_infop->p_owner] = swp->psw_infop->p_ops;
739 		mach_ver[swp->psw_infop->p_owner] = swp->psw_infop->p_version;
740 		mach_cnt[swp->psw_infop->p_owner]++;
741 	}
742 	mutex_exit(&psmsw_lock);
743 
744 	mach_get_platform(PSM_OWN_SYS_DEFAULT);
745 
746 	/* check to see are there any conflicts */
747 	if (mach_cnt[PSM_OWN_EXCLUSIVE] > 1)
748 		conflict_owner = PSM_OWN_EXCLUSIVE;
749 	if (mach_cnt[PSM_OWN_OVERRIDE] > 1)
750 		conflict_owner = PSM_OWN_OVERRIDE;
751 	if (conflict_owner) {
752 		/* remove all psm modules except uppc */
753 		cmn_err(CE_WARN,
754 		    "Conflicts detected on the following PSM modules:");
755 		mutex_enter(&psmsw_lock);
756 		for (swp = psmsw->psw_forw; swp != psmsw; swp = swp->psw_forw) {
757 			if (swp->psw_infop->p_owner == conflict_owner)
758 				cmn_err(CE_WARN, "%s ",
759 				    swp->psw_infop->p_mach_idstring);
760 		}
761 		mutex_exit(&psmsw_lock);
762 		cmn_err(CE_WARN,
763 		    "Setting the system back to SINGLE processor mode!");
764 		cmn_err(CE_WARN,
765 		    "Please edit /etc/mach to remove the invalid PSM module.");
766 		return;
767 	}
768 
769 	if (mach_set[PSM_OWN_EXCLUSIVE])
770 		mach_get_platform(PSM_OWN_EXCLUSIVE);
771 
772 	if (mach_set[PSM_OWN_OVERRIDE])
773 		mach_get_platform(PSM_OWN_OVERRIDE);
774 }
775 
776 static void
777 mach_init()
778 {
779 	struct psm_ops  *pops;
780 
781 	mach_construct_info();
782 
783 	pops = mach_set[0];
784 
785 	/* register the interrupt and clock initialization rotuines */
786 	picinitf = mach_picinit;
787 	clkinitf = mach_clkinit;
788 	psm_get_clockirq = pops->psm_get_clockirq;
789 
790 	/* register the interrupt setup code */
791 	slvltovect = mach_softlvl_to_vect;
792 	addspl	= pops->psm_addspl;
793 	delspl	= pops->psm_delspl;
794 
795 	if (pops->psm_translate_irq)
796 		psm_translate_irq = pops->psm_translate_irq;
797 	if (pops->psm_intr_ops)
798 		psm_intr_ops = pops->psm_intr_ops;
799 
800 #if defined(PSMI_1_2) || defined(PSMI_1_3) || defined(PSMI_1_4)
801 	/*
802 	 * Time-of-day functionality now handled in TOD modules.
803 	 * (Warn about PSM modules that think that we're going to use
804 	 * their ops vectors.)
805 	 */
806 	if (pops->psm_tod_get)
807 		cmn_err(CE_WARN, "obsolete psm_tod_get op %p",
808 		    (void *)pops->psm_tod_get);
809 
810 	if (pops->psm_tod_set)
811 		cmn_err(CE_WARN, "obsolete psm_tod_set op %p",
812 		    (void *)pops->psm_tod_set);
813 #endif
814 
815 	if (pops->psm_notify_error) {
816 		psm_notify_error = mach_notify_error;
817 		notify_error = pops->psm_notify_error;
818 	}
819 
820 	(*pops->psm_softinit)();
821 
822 	/*
823 	 * Initialize the dispatcher's function hooks
824 	 * to enable CPU halting when idle.
825 	 * Do not use monitor/mwait if idle_cpu_use_hlt is not set(spin idle)
826 	 * or idle_cpu_prefer_mwait is not set.
827 	 * Allocate monitor/mwait buffer for cpu0.
828 	 */
829 	if (idle_cpu_use_hlt) {
830 		if ((x86_feature & X86_MWAIT) && idle_cpu_prefer_mwait) {
831 			CPU->cpu_m.mcpu_mwait = cpuid_mwait_alloc(CPU);
832 			/*
833 			 * Protect ourself from insane mwait size.
834 			 */
835 			if (CPU->cpu_m.mcpu_mwait == NULL) {
836 #ifdef DEBUG
837 				cmn_err(CE_NOTE, "Using hlt idle.  Cannot "
838 				    "handle cpu 0 mwait size.");
839 #endif
840 				idle_cpu_prefer_mwait = 0;
841 				idle_cpu = cpu_idle;
842 			} else {
843 				idle_cpu = cpu_idle_mwait;
844 			}
845 		} else {
846 			idle_cpu = cpu_idle;
847 		}
848 	}
849 
850 	mach_smpinit();
851 }
852 
853 static void
854 mach_smpinit(void)
855 {
856 	struct psm_ops  *pops;
857 	processorid_t cpu_id;
858 	int cnt;
859 	cpuset_t cpumask;
860 
861 	pops = mach_set[0];
862 
863 	cpu_id = -1;
864 	cpu_id = (*pops->psm_get_next_processorid)(cpu_id);
865 	for (cnt = 0, CPUSET_ZERO(cpumask); cpu_id != -1; cnt++) {
866 		CPUSET_ADD(cpumask, cpu_id);
867 		cpu_id = (*pops->psm_get_next_processorid)(cpu_id);
868 	}
869 
870 	mp_cpus = cpumask;
871 
872 	/* MP related routines */
873 	ap_mlsetup = pops->psm_post_cpu_start;
874 	send_dirintf = pops->psm_send_ipi;
875 
876 	/* optional MP related routines */
877 	if (pops->psm_shutdown)
878 		psm_shutdownf = pops->psm_shutdown;
879 	if (pops->psm_preshutdown)
880 		psm_preshutdownf = pops->psm_preshutdown;
881 	if (pops->psm_notify_func)
882 		psm_notifyf = pops->psm_notify_func;
883 	if (pops->psm_set_idlecpu)
884 		psm_set_idle_cpuf = pops->psm_set_idlecpu;
885 	if (pops->psm_unset_idlecpu)
886 		psm_unset_idle_cpuf = pops->psm_unset_idlecpu;
887 
888 	psm_clkinit = pops->psm_clkinit;
889 
890 	if (pops->psm_timer_reprogram)
891 		psm_timer_reprogram = pops->psm_timer_reprogram;
892 
893 	if (pops->psm_timer_enable)
894 		psm_timer_enable = pops->psm_timer_enable;
895 
896 	if (pops->psm_timer_disable)
897 		psm_timer_disable = pops->psm_timer_disable;
898 
899 	if (pops->psm_post_cyclic_setup)
900 		psm_post_cyclic_setup = pops->psm_post_cyclic_setup;
901 
902 	/* check for multiple cpu's */
903 	if (cnt < 2)
904 		return;
905 
906 	/* check for MP platforms */
907 	if (pops->psm_cpu_start == NULL)
908 		return;
909 
910 	/*
911 	 * Set the dispatcher hook to enable cpu "wake up"
912 	 * when a thread becomes runnable.
913 	 */
914 	if (idle_cpu_use_hlt)
915 		if ((x86_feature & X86_MWAIT) && idle_cpu_prefer_mwait)
916 			disp_enq_thread = cpu_wakeup_mwait;
917 		else
918 			disp_enq_thread = cpu_wakeup;
919 
920 	if (pops->psm_disable_intr)
921 		psm_disable_intr = pops->psm_disable_intr;
922 	if (pops->psm_enable_intr)
923 		psm_enable_intr  = pops->psm_enable_intr;
924 
925 	psm_get_ipivect = pops->psm_get_ipivect;
926 
927 	(void) add_avintr((void *)NULL, XC_HI_PIL, xc_serv, "xc_hi_intr",
928 	    (*pops->psm_get_ipivect)(XC_HI_PIL, PSM_INTR_IPI_HI),
929 	    (caddr_t)X_CALL_HIPRI, NULL, NULL, NULL);
930 	(void) add_avintr((void *)NULL, XC_MED_PIL, xc_serv, "xc_med_intr",
931 	    (*pops->psm_get_ipivect)(XC_MED_PIL, PSM_INTR_IPI_LO),
932 	    (caddr_t)X_CALL_MEDPRI, NULL, NULL, NULL);
933 
934 	(void) (*pops->psm_get_ipivect)(XC_CPUPOKE_PIL, PSM_INTR_POKE);
935 }
936 
937 static void
938 mach_picinit()
939 {
940 	struct psm_ops  *pops;
941 
942 	pops = mach_set[0];
943 
944 	/* register the interrupt handlers */
945 	setlvl = pops->psm_intr_enter;
946 	setlvlx = pops->psm_intr_exit;
947 
948 	/* initialize the interrupt hardware */
949 	(*pops->psm_picinit)();
950 
951 	/* set interrupt mask for current ipl */
952 	setspl = pops->psm_setspl;
953 	cli();
954 	setspl(CPU->cpu_pri);
955 }
956 
957 uint_t	cpu_freq;	/* MHz */
958 uint64_t cpu_freq_hz;	/* measured (in hertz) */
959 
960 #define	MEGA_HZ		1000000
961 
962 static uint64_t
963 mach_calchz(uint32_t pit_counter, uint64_t *processor_clks)
964 {
965 	uint64_t cpu_hz;
966 
967 	if ((pit_counter == 0) || (*processor_clks == 0) ||
968 	    (*processor_clks > (((uint64_t)-1) / PIT_HZ)))
969 		return (0);
970 
971 	cpu_hz = ((uint64_t)PIT_HZ * *processor_clks) / pit_counter;
972 
973 	return (cpu_hz);
974 }
975 
976 static uint64_t
977 mach_getcpufreq(void)
978 {
979 	uint32_t pit_counter;
980 	uint64_t processor_clks;
981 
982 	if (x86_feature & X86_TSC) {
983 		/*
984 		 * We have a TSC. freq_tsc() knows how to measure the number
985 		 * of clock cycles sampled against the PIT.
986 		 */
987 		ulong_t flags = clear_int_flag();
988 		processor_clks = freq_tsc(&pit_counter);
989 		restore_int_flag(flags);
990 		return (mach_calchz(pit_counter, &processor_clks));
991 	} else if (x86_vendor == X86_VENDOR_Cyrix || x86_type == X86_TYPE_P5) {
992 #if defined(__amd64)
993 		panic("mach_getcpufreq: no TSC!");
994 #elif defined(__i386)
995 		/*
996 		 * We are a Cyrix based on a 6x86 core or an Intel Pentium
997 		 * for which freq_notsc() knows how to measure the number of
998 		 * elapsed clock cycles sampled against the PIT
999 		 */
1000 		ulong_t flags = clear_int_flag();
1001 		processor_clks = freq_notsc(&pit_counter);
1002 		restore_int_flag(flags);
1003 		return (mach_calchz(pit_counter, &processor_clks));
1004 #endif	/* __i386 */
1005 	}
1006 
1007 	/* We do not know how to calculate cpu frequency for this cpu. */
1008 	return (0);
1009 }
1010 
1011 /*
1012  * If the clock speed of a cpu is found to be reported incorrectly, do not add
1013  * to this array, instead improve the accuracy of the algorithm that determines
1014  * the clock speed of the processor or extend the implementation to support the
1015  * vendor as appropriate. This is here only to support adjusting the speed on
1016  * older slower processors that mach_fixcpufreq() would not be able to account
1017  * for otherwise.
1018  */
1019 static int x86_cpu_freq[] = { 60, 75, 80, 90, 120, 160, 166, 175, 180, 233 };
1020 
1021 /*
1022  * On fast processors the clock frequency that is measured may be off by
1023  * a few MHz from the value printed on the part. This is a combination of
1024  * the factors that for such fast parts being off by this much is within
1025  * the tolerances for manufacture and because of the difficulties in the
1026  * measurement that can lead to small error. This function uses some
1027  * heuristics in order to tweak the value that was measured to match what
1028  * is most likely printed on the part.
1029  *
1030  * Some examples:
1031  * 	AMD Athlon 1000 mhz measured as 998 mhz
1032  * 	Intel Pentium III Xeon 733 mhz measured as 731 mhz
1033  * 	Intel Pentium IV 1500 mhz measured as 1495mhz
1034  *
1035  * If in the future this function is no longer sufficient to correct
1036  * for the error in the measurement, then the algorithm used to perform
1037  * the measurement will have to be improved in order to increase accuracy
1038  * rather than adding horrible and questionable kludges here.
1039  *
1040  * This is called after the cyclics subsystem because of the potential
1041  * that the heuristics within may give a worse estimate of the clock
1042  * frequency than the value that was measured.
1043  */
1044 static void
1045 mach_fixcpufreq(void)
1046 {
1047 	uint32_t freq, mul, near66, delta66, near50, delta50, fixed, delta, i;
1048 
1049 	freq = (uint32_t)cpu_freq;
1050 
1051 	/*
1052 	 * Find the nearest integer multiple of 200/3 (about 66) MHz to the
1053 	 * measured speed taking into account that the 667 MHz parts were
1054 	 * the first to round-up.
1055 	 */
1056 	mul = (uint32_t)((3 * (uint64_t)freq + 100) / 200);
1057 	near66 = (uint32_t)((200 * (uint64_t)mul + ((mul >= 10) ? 1 : 0)) / 3);
1058 	delta66 = (near66 > freq) ? (near66 - freq) : (freq - near66);
1059 
1060 	/* Find the nearest integer multiple of 50 MHz to the measured speed */
1061 	mul = (freq + 25) / 50;
1062 	near50 = mul * 50;
1063 	delta50 = (near50 > freq) ? (near50 - freq) : (freq - near50);
1064 
1065 	/* Find the closer of the two */
1066 	if (delta66 < delta50) {
1067 		fixed = near66;
1068 		delta = delta66;
1069 	} else {
1070 		fixed = near50;
1071 		delta = delta50;
1072 	}
1073 
1074 	if (fixed > INT_MAX)
1075 		return;
1076 
1077 	/*
1078 	 * Some older parts have a core clock frequency that is not an
1079 	 * integral multiple of 50 or 66 MHz. Check if one of the old
1080 	 * clock frequencies is closer to the measured value than any
1081 	 * of the integral multiples of 50 an 66, and if so set fixed
1082 	 * and delta appropriately to represent the closest value.
1083 	 */
1084 	i = sizeof (x86_cpu_freq) / sizeof (int);
1085 	while (i > 0) {
1086 		i--;
1087 
1088 		if (x86_cpu_freq[i] <= freq) {
1089 			mul = freq - x86_cpu_freq[i];
1090 
1091 			if (mul < delta) {
1092 				fixed = x86_cpu_freq[i];
1093 				delta = mul;
1094 			}
1095 
1096 			break;
1097 		}
1098 
1099 		mul = x86_cpu_freq[i] - freq;
1100 
1101 		if (mul < delta) {
1102 			fixed = x86_cpu_freq[i];
1103 			delta = mul;
1104 		}
1105 	}
1106 
1107 	/*
1108 	 * Set a reasonable maximum for how much to correct the measured
1109 	 * result by. This check is here to prevent the adjustment made
1110 	 * by this function from being more harm than good. It is entirely
1111 	 * possible that in the future parts will be made that are not
1112 	 * integral multiples of 66 or 50 in clock frequency or that
1113 	 * someone may overclock a part to some odd frequency. If the
1114 	 * measured value is farther from the corrected value than
1115 	 * allowed, then assume the corrected value is in error and use
1116 	 * the measured value.
1117 	 */
1118 	if (6 < delta)
1119 		return;
1120 
1121 	cpu_freq = (int)fixed;
1122 }
1123 
1124 
1125 static int
1126 machhztomhz(uint64_t cpu_freq_hz)
1127 {
1128 	uint64_t cpu_mhz;
1129 
1130 	/* Round to nearest MHZ */
1131 	cpu_mhz = (cpu_freq_hz + (MEGA_HZ / 2)) / MEGA_HZ;
1132 
1133 	if (cpu_mhz > INT_MAX)
1134 		return (0);
1135 
1136 	return ((int)cpu_mhz);
1137 
1138 }
1139 
1140 
1141 static int
1142 mach_clkinit(int preferred_mode, int *set_mode)
1143 {
1144 	struct psm_ops  *pops;
1145 	int resolution;
1146 
1147 	pops = mach_set[0];
1148 
1149 	cpu_freq_hz = mach_getcpufreq();
1150 
1151 	cpu_freq = machhztomhz(cpu_freq_hz);
1152 
1153 	if (!(x86_feature & X86_TSC) || (cpu_freq == 0))
1154 		tsc_gethrtime_enable = 0;
1155 
1156 	if (tsc_gethrtime_enable) {
1157 		tsc_hrtimeinit(cpu_freq_hz);
1158 		gethrtimef = tsc_gethrtime;
1159 		gethrtimeunscaledf = tsc_gethrtimeunscaled;
1160 		scalehrtimef = tsc_scalehrtime;
1161 		hrtime_tick = tsc_tick;
1162 		tsc_gethrtime_initted = 1;
1163 	} else {
1164 		if (pops->psm_hrtimeinit)
1165 			(*pops->psm_hrtimeinit)();
1166 		gethrtimef = pops->psm_gethrtime;
1167 		gethrtimeunscaledf = gethrtimef;
1168 		/* scalehrtimef will remain dummy */
1169 	}
1170 
1171 	mach_fixcpufreq();
1172 
1173 	if (mach_ver[0] >= PSM_INFO_VER01_3) {
1174 		if ((preferred_mode == TIMER_ONESHOT) &&
1175 		    (tsc_gethrtime_enable)) {
1176 
1177 			resolution = (*pops->psm_clkinit)(0);
1178 			if (resolution != 0)  {
1179 				*set_mode = TIMER_ONESHOT;
1180 				return (resolution);
1181 			}
1182 
1183 		}
1184 
1185 		/*
1186 		 * either periodic mode was requested or could not set to
1187 		 * one-shot mode
1188 		 */
1189 		resolution = (*pops->psm_clkinit)(hz);
1190 		/*
1191 		 * psm should be able to do periodic, so we do not check
1192 		 * for return value of psm_clkinit here.
1193 		 */
1194 		*set_mode = TIMER_PERIODIC;
1195 		return (resolution);
1196 	} else {
1197 		/*
1198 		 * PSMI interface prior to PSMI_3 does not define a return
1199 		 * value for psm_clkinit, so the return value is ignored.
1200 		 */
1201 		(void) (*pops->psm_clkinit)(hz);
1202 		*set_mode = TIMER_PERIODIC;
1203 		return (nsec_per_tick);
1204 	}
1205 }
1206 
1207 
1208 /*ARGSUSED*/
1209 static int
1210 mach_softlvl_to_vect(int ipl)
1211 {
1212 	setsoftint = av_set_softint_pending;
1213 	kdisetsoftint = kdi_av_set_softint_pending;
1214 
1215 	return (PSM_SV_SOFTWARE);
1216 }
1217 
1218 #ifdef DEBUG
1219 /*
1220  * This is here to allow us to simulate cpus that refuse to start.
1221  */
1222 cpuset_t cpufailset;
1223 #endif
1224 
1225 int
1226 mach_cpu_start(struct cpu *cp, void *ctx)
1227 {
1228 	struct psm_ops *pops = mach_set[0];
1229 	processorid_t id = cp->cpu_id;
1230 
1231 #ifdef DEBUG
1232 	if (CPU_IN_SET(cpufailset, id))
1233 		return (0);
1234 #endif
1235 	return ((*pops->psm_cpu_start)(id, ctx));
1236 }
1237 
1238 /*ARGSUSED*/
1239 static int
1240 mach_translate_irq(dev_info_t *dip, int irqno)
1241 {
1242 	return (irqno);	/* default to NO translation */
1243 }
1244 
1245 static void
1246 mach_notify_error(int level, char *errmsg)
1247 {
1248 	/*
1249 	 * SL_FATAL is pass in once panicstr is set, deliver it
1250 	 * as CE_PANIC.  Also, translate SL_ codes back to CE_
1251 	 * codes for the psmi handler
1252 	 */
1253 	if (level & SL_FATAL)
1254 		(*notify_error)(CE_PANIC, errmsg);
1255 	else if (level & SL_WARN)
1256 		(*notify_error)(CE_WARN, errmsg);
1257 	else if (level & SL_NOTE)
1258 		(*notify_error)(CE_NOTE, errmsg);
1259 	else if (level & SL_CONSOLE)
1260 		(*notify_error)(CE_CONT, errmsg);
1261 }
1262 
1263 /*
1264  * It provides the default basic intr_ops interface for the new DDI
1265  * interrupt framework if the PSM doesn't have one.
1266  *
1267  * Input:
1268  * dip     - pointer to the dev_info structure of the requested device
1269  * hdlp    - pointer to the internal interrupt handle structure for the
1270  *	     requested interrupt
1271  * intr_op - opcode for this call
1272  * result  - pointer to the integer that will hold the result to be
1273  *	     passed back if return value is PSM_SUCCESS
1274  *
1275  * Output:
1276  * return value is either PSM_SUCCESS or PSM_FAILURE
1277  */
1278 static int
1279 mach_intr_ops(dev_info_t *dip, ddi_intr_handle_impl_t *hdlp,
1280     psm_intr_op_t intr_op, int *result)
1281 {
1282 	struct intrspec *ispec;
1283 
1284 	switch (intr_op) {
1285 	case PSM_INTR_OP_CHECK_MSI:
1286 		*result = hdlp->ih_type & ~(DDI_INTR_TYPE_MSI |
1287 		    DDI_INTR_TYPE_MSIX);
1288 		break;
1289 	case PSM_INTR_OP_ALLOC_VECTORS:
1290 		if (hdlp->ih_type == DDI_INTR_TYPE_FIXED)
1291 			*result = 1;
1292 		else
1293 			*result = 0;
1294 		break;
1295 	case PSM_INTR_OP_FREE_VECTORS:
1296 		break;
1297 	case PSM_INTR_OP_NAVAIL_VECTORS:
1298 		if (hdlp->ih_type == DDI_INTR_TYPE_FIXED)
1299 			*result = 1;
1300 		else
1301 			*result = 0;
1302 		break;
1303 	case PSM_INTR_OP_XLATE_VECTOR:
1304 		ispec = ((ihdl_plat_t *)hdlp->ih_private)->ip_ispecp;
1305 		*result = psm_translate_irq(dip, ispec->intrspec_vec);
1306 		break;
1307 	case PSM_INTR_OP_GET_CAP:
1308 		*result = 0;
1309 		break;
1310 	case PSM_INTR_OP_GET_PENDING:
1311 	case PSM_INTR_OP_CLEAR_MASK:
1312 	case PSM_INTR_OP_SET_MASK:
1313 	case PSM_INTR_OP_GET_SHARED:
1314 	case PSM_INTR_OP_SET_PRI:
1315 	case PSM_INTR_OP_SET_CAP:
1316 	case PSM_INTR_OP_SET_CPU:
1317 	case PSM_INTR_OP_GET_INTR:
1318 	default:
1319 		return (PSM_FAILURE);
1320 	}
1321 	return (PSM_SUCCESS);
1322 }
1323 /*
1324  * Return 1 if CMT load balancing policies should be
1325  * implemented across instances of the specified hardware
1326  * sharing relationship.
1327  */
1328 int
1329 pg_cmt_load_bal_hw(pghw_type_t hw)
1330 {
1331 	if (hw == PGHW_IPIPE ||
1332 	    hw == PGHW_FPU ||
1333 	    hw == PGHW_CHIP)
1334 		return (1);
1335 	else
1336 		return (0);
1337 }
1338 /*
1339  * Return 1 if thread affinity polices should be implemented
1340  * for instances of the specifed hardware sharing relationship.
1341  */
1342 int
1343 pg_cmt_affinity_hw(pghw_type_t hw)
1344 {
1345 	if (hw == PGHW_CACHE)
1346 		return (1);
1347 	else
1348 		return (0);
1349 }
1350