1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #define PSMI_1_5 29 #include <sys/smp_impldefs.h> 30 #include <sys/psm.h> 31 #include <sys/psm_modctl.h> 32 #include <sys/pit.h> 33 #include <sys/cmn_err.h> 34 #include <sys/strlog.h> 35 #include <sys/clock.h> 36 #include <sys/debug.h> 37 #include <sys/rtc.h> 38 #include <sys/x86_archext.h> 39 #include <sys/cpupart.h> 40 #include <sys/cpuvar.h> 41 #include <sys/chip.h> 42 #include <sys/disp.h> 43 #include <sys/cpu.h> 44 #include <sys/archsystm.h> 45 #include <sys/mach_intr.h> 46 47 #define OFFSETOF(s, m) (size_t)(&(((s *)0)->m)) 48 49 /* 50 * Local function prototypes 51 */ 52 static int mp_disable_intr(processorid_t cpun); 53 static void mp_enable_intr(processorid_t cpun); 54 static void mach_init(); 55 static void mach_picinit(); 56 static uint64_t mach_calchz(uint32_t pit_counter, uint64_t *processor_clks); 57 static int machhztomhz(uint64_t cpu_freq_hz); 58 static uint64_t mach_getcpufreq(void); 59 static void mach_fixcpufreq(void); 60 static int mach_clkinit(int, int *); 61 static void mach_smpinit(void); 62 static void mach_set_softintr(int ipl, struct av_softinfo *); 63 static void mach_cpu_start(int cpun); 64 static int mach_softlvl_to_vect(int ipl); 65 static void mach_get_platform(int owner); 66 static void mach_construct_info(); 67 static int mach_translate_irq(dev_info_t *dip, int irqno); 68 static int mach_intr_ops(dev_info_t *, ddi_intr_handle_impl_t *, 69 psm_intr_op_t, int *); 70 static timestruc_t mach_tod_get(void); 71 static void mach_tod_set(timestruc_t ts); 72 static void mach_notify_error(int level, char *errmsg); 73 static hrtime_t dummy_hrtime(void); 74 static void dummy_scalehrtime(hrtime_t *); 75 static void cpu_halt(void); 76 static void cpu_wakeup(cpu_t *, int); 77 /* 78 * External reference functions 79 */ 80 extern void return_instr(); 81 extern timestruc_t (*todgetf)(void); 82 extern void (*todsetf)(timestruc_t); 83 extern long gmt_lag; 84 extern uint64_t freq_tsc(uint32_t *); 85 #if defined(__i386) 86 extern uint64_t freq_notsc(uint32_t *); 87 #endif 88 extern void pc_gethrestime(timestruc_t *); 89 90 /* 91 * PSM functions initialization 92 */ 93 void (*psm_shutdownf)(int, int) = return_instr; 94 void (*psm_preshutdownf)(int, int) = return_instr; 95 void (*psm_notifyf)(int) = return_instr; 96 void (*psm_set_idle_cpuf)(int) = return_instr; 97 void (*psm_unset_idle_cpuf)(int) = return_instr; 98 void (*psminitf)() = mach_init; 99 void (*picinitf)() = return_instr; 100 int (*clkinitf)(int, int *) = (int (*)(int, int *))return_instr; 101 void (*cpu_startf)() = return_instr; 102 int (*ap_mlsetup)() = (int (*)(void))return_instr; 103 void (*send_dirintf)() = return_instr; 104 void (*setspl)(int) = return_instr; 105 int (*addspl)(int, int, int, int) = (int (*)(int, int, int, int))return_instr; 106 int (*delspl)(int, int, int, int) = (int (*)(int, int, int, int))return_instr; 107 void (*setsoftint)(int, struct av_softinfo *)= 108 (void (*)(int, struct av_softinfo *))return_instr; 109 int (*slvltovect)(int) = (int (*)(int))return_instr; 110 int (*setlvl)(int, int *) = (int (*)(int, int *))return_instr; 111 void (*setlvlx)(int, int) = (void (*)(int, int))return_instr; 112 int (*psm_disable_intr)(int) = mp_disable_intr; 113 void (*psm_enable_intr)(int) = mp_enable_intr; 114 hrtime_t (*gethrtimef)(void) = dummy_hrtime; 115 hrtime_t (*gethrtimeunscaledf)(void) = dummy_hrtime; 116 void (*scalehrtimef)(hrtime_t *) = dummy_scalehrtime; 117 int (*psm_translate_irq)(dev_info_t *, int) = mach_translate_irq; 118 void (*gethrestimef)(timestruc_t *) = pc_gethrestime; 119 int (*psm_todgetf)(todinfo_t *) = (int (*)(todinfo_t *))return_instr; 120 int (*psm_todsetf)(todinfo_t *) = (int (*)(todinfo_t *))return_instr; 121 void (*psm_notify_error)(int, char *) = (void (*)(int, char *))NULL; 122 int (*psm_get_clockirq)(int) = NULL; 123 int (*psm_get_ipivect)(int, int) = NULL; 124 125 int (*psm_clkinit)(int) = NULL; 126 void (*psm_timer_reprogram)(hrtime_t) = NULL; 127 void (*psm_timer_enable)(void) = NULL; 128 void (*psm_timer_disable)(void) = NULL; 129 void (*psm_post_cyclic_setup)(void *arg) = NULL; 130 int (*psm_intr_ops)(dev_info_t *, ddi_intr_handle_impl_t *, psm_intr_op_t, 131 int *) = mach_intr_ops; 132 133 void (*notify_error)(int, char *) = (void (*)(int, char *))return_instr; 134 void (*hrtime_tick)(void) = return_instr; 135 136 int tsc_gethrtime_enable = 1; 137 int tsc_gethrtime_initted = 0; 138 139 /* 140 * Local Static Data 141 */ 142 static struct psm_ops mach_ops; 143 static struct psm_ops *mach_set[4] = {&mach_ops, NULL, NULL, NULL}; 144 static ushort_t mach_ver[4] = {0, 0, 0, 0}; 145 146 /* 147 * If non-zero, idle cpus will "halted" when there's 148 * no work to do. 149 */ 150 int halt_idle_cpus = 1; 151 152 #if defined(__amd64) 153 /* 154 * If non-zero, will use cr8 for interrupt priority masking 155 * We declare this here since install_spl is called from here 156 * (where this is checked). 157 */ 158 int intpri_use_cr8 = 0; 159 #endif /* __amd64 */ 160 161 #ifdef _SIMULATOR_SUPPORT 162 163 int simulator_run = 0; /* patch to non-zero if running under simics */ 164 165 #endif /* _SIMULATOR_SUPPORT */ 166 167 /* ARGSUSED */ 168 void 169 chip_plat_define_chip(cpu_t *cp, chip_def_t *cd) 170 { 171 if ((x86_feature & (X86_HTT|X86_CMP)) == X86_HTT) { 172 /* 173 * Single-core Pentiums with Hyper-Threading enabled. 174 */ 175 cd->chipd_type = CHIP_SMT; 176 } else if ((x86_feature & (X86_HTT|X86_CMP)) == X86_CMP) { 177 /* 178 * Multi-core Opterons or Multi-core Pentiums with 179 * Hyper-Threading disabled. 180 */ 181 cd->chipd_type = CHIP_CMP_SPLIT_CACHE; 182 } else if ((x86_feature & (X86_HTT|X86_CMP)) == (X86_HTT|X86_CMP)) { 183 /* 184 * Multi-core Pentiums with Hyper-Threading enabled. 185 */ 186 cd->chipd_type = CHIP_CMT; 187 } else { 188 /* 189 * Single-core/single-threaded chips. 190 */ 191 cd->chipd_type = CHIP_DEFAULT; 192 } 193 194 cd->chipd_rechoose_adj = 0; 195 cd->chipd_nosteal = 100000ULL; /* 100 usec */ 196 } 197 198 /* 199 * Routine to ensure initial callers to hrtime gets 0 as return 200 */ 201 static hrtime_t 202 dummy_hrtime(void) 203 { 204 return (0); 205 } 206 207 /* ARGSUSED */ 208 static void 209 dummy_scalehrtime(hrtime_t *ticks) 210 {} 211 212 /* 213 * Halt the present CPU until awoken via an interrupt 214 */ 215 static void 216 cpu_halt(void) 217 { 218 cpu_t *cpup = CPU; 219 processorid_t cpun = cpup->cpu_id; 220 cpupart_t *cp = cpup->cpu_part; 221 int hset_update = 1; 222 223 /* 224 * If this CPU is online, and there's multiple CPUs 225 * in the system, then we should notate our halting 226 * by adding ourselves to the partition's halted CPU 227 * bitmap. This allows other CPUs to find/awaken us when 228 * work becomes available. 229 */ 230 if (cpup->cpu_flags & CPU_OFFLINE || ncpus == 1) 231 hset_update = 0; 232 233 /* 234 * Add ourselves to the partition's halted CPUs bitmask 235 * and set our HALTED flag, if necessary. 236 * 237 * When a thread becomes runnable, it is placed on the queue 238 * and then the halted cpuset is checked to determine who 239 * (if anyone) should be awoken. We therefore need to first 240 * add ourselves to the halted cpuset, and and then check if there 241 * is any work available. 242 * 243 * Note that memory barriers after updating the HALTED flag 244 * are not necessary since an atomic operation (updating the bitmap) 245 * immediately follows. On x86 the atomic operation acts as a 246 * memory barrier for the update of cpu_disp_flags. 247 */ 248 if (hset_update) { 249 cpup->cpu_disp_flags |= CPU_DISP_HALTED; 250 CPUSET_ATOMIC_ADD(cp->cp_mach->mc_haltset, cpun); 251 } 252 253 /* 254 * Check to make sure there's really nothing to do. 255 * Work destined for this CPU may become available after 256 * this check. We'll be notified through the clearing of our 257 * bit in the halted CPU bitmask, and a poke. 258 */ 259 if (disp_anywork()) { 260 if (hset_update) { 261 cpup->cpu_disp_flags &= ~CPU_DISP_HALTED; 262 CPUSET_ATOMIC_DEL(cp->cp_mach->mc_haltset, cpun); 263 } 264 return; 265 } 266 267 /* 268 * We're on our way to being halted. 269 * 270 * Disable interrupts now, so that we'll awaken immediately 271 * after halting if someone tries to poke us between now and 272 * the time we actually halt. 273 * 274 * We check for the presence of our bit after disabling interrupts. 275 * If it's cleared, we'll return. If the bit is cleared after 276 * we check then the poke will pop us out of the halted state. 277 * 278 * This means that the ordering of the poke and the clearing 279 * of the bit by cpu_wakeup is important. 280 * cpu_wakeup() must clear, then poke. 281 * cpu_halt() must disable interrupts, then check for the bit. 282 */ 283 cli(); 284 285 if (hset_update && !CPU_IN_SET(cp->cp_mach->mc_haltset, cpun)) { 286 cpup->cpu_disp_flags &= ~CPU_DISP_HALTED; 287 sti(); 288 return; 289 } 290 291 /* 292 * The check for anything locally runnable is here for performance 293 * and isn't needed for correctness. disp_nrunnable ought to be 294 * in our cache still, so it's inexpensive to check, and if there 295 * is anything runnable we won't have to wait for the poke. 296 */ 297 if (cpup->cpu_disp->disp_nrunnable != 0) { 298 if (hset_update) { 299 cpup->cpu_disp_flags &= ~CPU_DISP_HALTED; 300 CPUSET_ATOMIC_DEL(cp->cp_mach->mc_haltset, cpun); 301 } 302 sti(); 303 return; 304 } 305 306 /* 307 * Call the halt sequence: 308 * sti 309 * hlt 310 */ 311 i86_halt(); 312 313 /* 314 * We're no longer halted 315 */ 316 if (hset_update) { 317 cpup->cpu_disp_flags &= ~CPU_DISP_HALTED; 318 CPUSET_ATOMIC_DEL(cp->cp_mach->mc_haltset, cpun); 319 } 320 } 321 322 323 /* 324 * If "cpu" is halted, then wake it up clearing its halted bit in advance. 325 * Otherwise, see if other CPUs in the cpu partition are halted and need to 326 * be woken up so that they can steal the thread we placed on this CPU. 327 * This function is only used on MP systems. 328 */ 329 static void 330 cpu_wakeup(cpu_t *cpu, int bound) 331 { 332 uint_t cpu_found; 333 int result; 334 cpupart_t *cp; 335 336 cp = cpu->cpu_part; 337 if (CPU_IN_SET(cp->cp_mach->mc_haltset, cpu->cpu_id)) { 338 /* 339 * Clear the halted bit for that CPU since it will be 340 * poked in a moment. 341 */ 342 CPUSET_ATOMIC_DEL(cp->cp_mach->mc_haltset, cpu->cpu_id); 343 /* 344 * We may find the current CPU present in the halted cpuset 345 * if we're in the context of an interrupt that occurred 346 * before we had a chance to clear our bit in cpu_halt(). 347 * Poking ourself is obviously unnecessary, since if 348 * we're here, we're not halted. 349 */ 350 if (cpu != CPU) 351 poke_cpu(cpu->cpu_id); 352 return; 353 } else { 354 /* 355 * This cpu isn't halted, but it's idle or undergoing a 356 * context switch. No need to awaken anyone else. 357 */ 358 if (cpu->cpu_thread == cpu->cpu_idle_thread || 359 cpu->cpu_disp_flags & CPU_DISP_DONTSTEAL) 360 return; 361 } 362 363 /* 364 * No need to wake up other CPUs if the thread we just enqueued 365 * is bound. 366 */ 367 if (bound) 368 return; 369 370 371 /* 372 * See if there's any other halted CPUs. If there are, then 373 * select one, and awaken it. 374 * It's possible that after we find a CPU, somebody else 375 * will awaken it before we get the chance. 376 * In that case, look again. 377 */ 378 do { 379 CPUSET_FIND(cp->cp_mach->mc_haltset, cpu_found); 380 if (cpu_found == CPUSET_NOTINSET) 381 return; 382 383 ASSERT(cpu_found >= 0 && cpu_found < NCPU); 384 CPUSET_ATOMIC_XDEL(cp->cp_mach->mc_haltset, cpu_found, result); 385 } while (result < 0); 386 387 if (cpu_found != CPU->cpu_id) 388 poke_cpu(cpu_found); 389 } 390 391 static int 392 mp_disable_intr(int cpun) 393 { 394 /* 395 * switch to the offline cpu 396 */ 397 affinity_set(cpun); 398 /* 399 * raise ipl to just below cross call 400 */ 401 splx(XC_MED_PIL-1); 402 /* 403 * set base spl to prevent the next swtch to idle from 404 * lowering back to ipl 0 405 */ 406 CPU->cpu_intr_actv |= (1 << (XC_MED_PIL-1)); 407 set_base_spl(); 408 affinity_clear(); 409 return (DDI_SUCCESS); 410 } 411 412 static void 413 mp_enable_intr(int cpun) 414 { 415 /* 416 * switch to the online cpu 417 */ 418 affinity_set(cpun); 419 /* 420 * clear the interrupt active mask 421 */ 422 CPU->cpu_intr_actv &= ~(1 << (XC_MED_PIL-1)); 423 set_base_spl(); 424 (void) spl0(); 425 affinity_clear(); 426 } 427 428 static void 429 mach_get_platform(int owner) 430 { 431 void **srv_opsp; 432 void **clt_opsp; 433 int i; 434 int total_ops; 435 436 /* fix up psm ops */ 437 srv_opsp = (void **)mach_set[0]; 438 clt_opsp = (void **)mach_set[owner]; 439 if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01) 440 total_ops = sizeof (struct psm_ops_ver01) / 441 sizeof (void (*)(void)); 442 else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_1) 443 /* no psm_notify_func */ 444 total_ops = OFFSETOF(struct psm_ops, psm_notify_func) / 445 sizeof (void (*)(void)); 446 else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_2) 447 /* no psm_timer funcs */ 448 total_ops = OFFSETOF(struct psm_ops, psm_timer_reprogram) / 449 sizeof (void (*)(void)); 450 else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_3) 451 /* no psm_preshutdown function */ 452 total_ops = OFFSETOF(struct psm_ops, psm_preshutdown) / 453 sizeof (void (*)(void)); 454 else if (mach_ver[owner] == (ushort_t)PSM_INFO_VER01_4) 455 /* no psm_preshutdown function */ 456 total_ops = OFFSETOF(struct psm_ops, psm_intr_ops) / 457 sizeof (void (*)(void)); 458 else 459 total_ops = sizeof (struct psm_ops) / sizeof (void (*)(void)); 460 461 /* 462 * Save the version of the PSM module, in case we need to 463 * bahave differently based on version. 464 */ 465 mach_ver[0] = mach_ver[owner]; 466 467 for (i = 0; i < total_ops; i++) 468 if (clt_opsp[i] != NULL) 469 srv_opsp[i] = clt_opsp[i]; 470 } 471 472 static void 473 mach_construct_info() 474 { 475 register struct psm_sw *swp; 476 int mach_cnt[PSM_OWN_OVERRIDE+1] = {0}; 477 int conflict_owner = 0; 478 479 if (psmsw->psw_forw == psmsw) 480 panic("No valid PSM modules found"); 481 mutex_enter(&psmsw_lock); 482 for (swp = psmsw->psw_forw; swp != psmsw; swp = swp->psw_forw) { 483 if (!(swp->psw_flag & PSM_MOD_IDENTIFY)) 484 continue; 485 mach_set[swp->psw_infop->p_owner] = swp->psw_infop->p_ops; 486 mach_ver[swp->psw_infop->p_owner] = swp->psw_infop->p_version; 487 mach_cnt[swp->psw_infop->p_owner]++; 488 } 489 mutex_exit(&psmsw_lock); 490 491 mach_get_platform(PSM_OWN_SYS_DEFAULT); 492 493 /* check to see are there any conflicts */ 494 if (mach_cnt[PSM_OWN_EXCLUSIVE] > 1) 495 conflict_owner = PSM_OWN_EXCLUSIVE; 496 if (mach_cnt[PSM_OWN_OVERRIDE] > 1) 497 conflict_owner = PSM_OWN_OVERRIDE; 498 if (conflict_owner) { 499 /* remove all psm modules except uppc */ 500 cmn_err(CE_WARN, 501 "Conflicts detected on the following PSM modules:"); 502 mutex_enter(&psmsw_lock); 503 for (swp = psmsw->psw_forw; swp != psmsw; swp = swp->psw_forw) { 504 if (swp->psw_infop->p_owner == conflict_owner) 505 cmn_err(CE_WARN, "%s ", 506 swp->psw_infop->p_mach_idstring); 507 } 508 mutex_exit(&psmsw_lock); 509 cmn_err(CE_WARN, 510 "Setting the system back to SINGLE processor mode!"); 511 cmn_err(CE_WARN, 512 "Please edit /etc/mach to remove the invalid PSM module."); 513 return; 514 } 515 516 if (mach_set[PSM_OWN_EXCLUSIVE]) 517 mach_get_platform(PSM_OWN_EXCLUSIVE); 518 519 if (mach_set[PSM_OWN_OVERRIDE]) 520 mach_get_platform(PSM_OWN_OVERRIDE); 521 } 522 523 static void 524 mach_init() 525 { 526 register struct psm_ops *pops; 527 528 mach_construct_info(); 529 530 pops = mach_set[0]; 531 532 /* register the interrupt and clock initialization rotuines */ 533 picinitf = mach_picinit; 534 clkinitf = mach_clkinit; 535 psm_get_clockirq = pops->psm_get_clockirq; 536 537 /* register the interrupt setup code */ 538 slvltovect = mach_softlvl_to_vect; 539 addspl = pops->psm_addspl; 540 delspl = pops->psm_delspl; 541 542 if (pops->psm_translate_irq) 543 psm_translate_irq = pops->psm_translate_irq; 544 if (pops->psm_intr_ops) 545 psm_intr_ops = pops->psm_intr_ops; 546 if (pops->psm_tod_get) { 547 todgetf = mach_tod_get; 548 psm_todgetf = pops->psm_tod_get; 549 } 550 if (pops->psm_tod_set) { 551 todsetf = mach_tod_set; 552 psm_todsetf = pops->psm_tod_set; 553 } 554 if (pops->psm_notify_error) { 555 psm_notify_error = mach_notify_error; 556 notify_error = pops->psm_notify_error; 557 } 558 559 (*pops->psm_softinit)(); 560 561 /* 562 * Initialize the dispatcher's function hooks 563 * to enable CPU halting when idle 564 */ 565 #if defined(_SIMULATOR_SUPPORT) 566 if (halt_idle_cpus && !simulator_run) 567 idle_cpu = cpu_halt; 568 #else 569 if (halt_idle_cpus) 570 idle_cpu = cpu_halt; 571 #endif /* _SIMULATOR_SUPPORT */ 572 573 mach_smpinit(); 574 } 575 576 static void 577 mach_smpinit(void) 578 { 579 struct psm_ops *pops; 580 processorid_t cpu_id; 581 int cnt; 582 cpuset_t cpumask; 583 584 pops = mach_set[0]; 585 586 cpu_id = -1; 587 cpu_id = (*pops->psm_get_next_processorid)(cpu_id); 588 for (cnt = 0, CPUSET_ZERO(cpumask); cpu_id != -1; cnt++) { 589 CPUSET_ADD(cpumask, cpu_id); 590 cpu_id = (*pops->psm_get_next_processorid)(cpu_id); 591 } 592 593 mp_cpus = cpumask; 594 595 /* MP related routines */ 596 cpu_startf = mach_cpu_start; 597 ap_mlsetup = pops->psm_post_cpu_start; 598 send_dirintf = pops->psm_send_ipi; 599 600 /* optional MP related routines */ 601 if (pops->psm_shutdown) 602 psm_shutdownf = pops->psm_shutdown; 603 if (pops->psm_preshutdown) 604 psm_preshutdownf = pops->psm_preshutdown; 605 if (pops->psm_notify_func) 606 psm_notifyf = pops->psm_notify_func; 607 if (pops->psm_set_idlecpu) 608 psm_set_idle_cpuf = pops->psm_set_idlecpu; 609 if (pops->psm_unset_idlecpu) 610 psm_unset_idle_cpuf = pops->psm_unset_idlecpu; 611 612 psm_clkinit = pops->psm_clkinit; 613 614 if (pops->psm_timer_reprogram) 615 psm_timer_reprogram = pops->psm_timer_reprogram; 616 617 if (pops->psm_timer_enable) 618 psm_timer_enable = pops->psm_timer_enable; 619 620 if (pops->psm_timer_disable) 621 psm_timer_disable = pops->psm_timer_disable; 622 623 if (pops->psm_post_cyclic_setup) 624 psm_post_cyclic_setup = pops->psm_post_cyclic_setup; 625 626 /* check for multiple cpu's */ 627 if (cnt < 2) 628 return; 629 630 /* check for MP platforms */ 631 if (pops->psm_cpu_start == NULL) 632 return; 633 634 /* 635 * Set the dispatcher hook to enable cpu "wake up" 636 * when a thread becomes runnable. 637 */ 638 #if defined(_SIMULATOR_SUPPORT) 639 if (halt_idle_cpus && !simulator_run) { 640 disp_enq_thread = cpu_wakeup; 641 } 642 #else 643 if (halt_idle_cpus) { 644 disp_enq_thread = cpu_wakeup; 645 } 646 #endif /* _SIMULATOR_SUPPORT */ 647 648 if (pops->psm_disable_intr) 649 psm_disable_intr = pops->psm_disable_intr; 650 if (pops->psm_enable_intr) 651 psm_enable_intr = pops->psm_enable_intr; 652 653 psm_get_ipivect = pops->psm_get_ipivect; 654 655 (void) add_avintr((void *)NULL, XC_HI_PIL, xc_serv, "xc_hi_intr", 656 (*pops->psm_get_ipivect)(XC_HI_PIL, PSM_INTR_IPI_HI), 657 (caddr_t)X_CALL_HIPRI, NULL, NULL, NULL); 658 (void) add_avintr((void *)NULL, XC_MED_PIL, xc_serv, "xc_med_intr", 659 (*pops->psm_get_ipivect)(XC_MED_PIL, PSM_INTR_IPI_LO), 660 (caddr_t)X_CALL_MEDPRI, NULL, NULL, NULL); 661 662 (void) (*pops->psm_get_ipivect)(XC_CPUPOKE_PIL, PSM_INTR_POKE); 663 } 664 665 static void 666 mach_picinit() 667 { 668 struct psm_ops *pops; 669 extern void install_spl(void); /* XXX: belongs in a header file */ 670 #if defined(__amd64) && defined(DEBUG) 671 extern void *spl_patch, *slow_spl, *setsplhi_patch, *slow_setsplhi; 672 #endif 673 674 pops = mach_set[0]; 675 676 /* register the interrupt handlers */ 677 setlvl = pops->psm_intr_enter; 678 setlvlx = pops->psm_intr_exit; 679 680 /* initialize the interrupt hardware */ 681 (*pops->psm_picinit)(); 682 683 /* set interrupt mask for current ipl */ 684 setspl = pops->psm_setspl; 685 setspl(CPU->cpu_pri); 686 687 /* Install proper spl routine now that we can Program the PIC */ 688 #if defined(__amd64) 689 /* 690 * It would be better if we could check this at compile time 691 */ 692 ASSERT(((uintptr_t)&slow_setsplhi - (uintptr_t)&setsplhi_patch < 128) && 693 ((uintptr_t)&slow_spl - (uintptr_t)&spl_patch < 128)); 694 #endif 695 install_spl(); 696 } 697 698 uint_t cpu_freq; /* MHz */ 699 uint64_t cpu_freq_hz; /* measured (in hertz) */ 700 701 #define MEGA_HZ 1000000 702 703 static uint64_t 704 mach_calchz(uint32_t pit_counter, uint64_t *processor_clks) 705 { 706 uint64_t cpu_hz; 707 708 if ((pit_counter == 0) || (*processor_clks == 0) || 709 (*processor_clks > (((uint64_t)-1) / PIT_HZ))) 710 return (0); 711 712 cpu_hz = ((uint64_t)PIT_HZ * *processor_clks) / pit_counter; 713 714 return (cpu_hz); 715 } 716 717 static uint64_t 718 mach_getcpufreq(void) 719 { 720 uint32_t pit_counter; 721 uint64_t processor_clks; 722 723 if (x86_feature & X86_TSC) { 724 /* 725 * We have a TSC. freq_tsc() knows how to measure the number 726 * of clock cycles sampled against the PIT. 727 */ 728 processor_clks = freq_tsc(&pit_counter); 729 return (mach_calchz(pit_counter, &processor_clks)); 730 } else if (x86_vendor == X86_VENDOR_Cyrix || x86_type == X86_TYPE_P5) { 731 #if defined(__amd64) 732 panic("mach_getcpufreq: no TSC!"); 733 #elif defined(__i386) 734 /* 735 * We are a Cyrix based on a 6x86 core or an Intel Pentium 736 * for which freq_notsc() knows how to measure the number of 737 * elapsed clock cycles sampled against the PIT 738 */ 739 processor_clks = freq_notsc(&pit_counter); 740 return (mach_calchz(pit_counter, &processor_clks)); 741 #endif /* __i386 */ 742 } 743 744 /* We do not know how to calculate cpu frequency for this cpu. */ 745 return (0); 746 } 747 748 /* 749 * If the clock speed of a cpu is found to be reported incorrectly, do not add 750 * to this array, instead improve the accuracy of the algorithm that determines 751 * the clock speed of the processor or extend the implementation to support the 752 * vendor as appropriate. This is here only to support adjusting the speed on 753 * older slower processors that mach_fixcpufreq() would not be able to account 754 * for otherwise. 755 */ 756 static int x86_cpu_freq[] = { 60, 75, 80, 90, 120, 160, 166, 175, 180, 233 }; 757 758 /* 759 * On fast processors the clock frequency that is measured may be off by 760 * a few MHz from the value printed on the part. This is a combination of 761 * the factors that for such fast parts being off by this much is within 762 * the tolerances for manufacture and because of the difficulties in the 763 * measurement that can lead to small error. This function uses some 764 * heuristics in order to tweak the value that was measured to match what 765 * is most likely printed on the part. 766 * 767 * Some examples: 768 * AMD Athlon 1000 mhz measured as 998 mhz 769 * Intel Pentium III Xeon 733 mhz measured as 731 mhz 770 * Intel Pentium IV 1500 mhz measured as 1495mhz 771 * 772 * If in the future this function is no longer sufficient to correct 773 * for the error in the measurement, then the algorithm used to perform 774 * the measurement will have to be improved in order to increase accuracy 775 * rather than adding horrible and questionable kludges here. 776 * 777 * This is called after the cyclics subsystem because of the potential 778 * that the heuristics within may give a worse estimate of the clock 779 * frequency than the value that was measured. 780 */ 781 static void 782 mach_fixcpufreq(void) 783 { 784 uint32_t freq, mul, near66, delta66, near50, delta50, fixed, delta, i; 785 786 freq = (uint32_t)cpu_freq; 787 788 /* 789 * Find the nearest integer multiple of 200/3 (about 66) MHz to the 790 * measured speed taking into account that the 667 MHz parts were 791 * the first to round-up. 792 */ 793 mul = (uint32_t)((3 * (uint64_t)freq + 100) / 200); 794 near66 = (uint32_t)((200 * (uint64_t)mul + ((mul >= 10) ? 1 : 0)) / 3); 795 delta66 = (near66 > freq) ? (near66 - freq) : (freq - near66); 796 797 /* Find the nearest integer multiple of 50 MHz to the measured speed */ 798 mul = (freq + 25) / 50; 799 near50 = mul * 50; 800 delta50 = (near50 > freq) ? (near50 - freq) : (freq - near50); 801 802 /* Find the closer of the two */ 803 if (delta66 < delta50) { 804 fixed = near66; 805 delta = delta66; 806 } else { 807 fixed = near50; 808 delta = delta50; 809 } 810 811 if (fixed > INT_MAX) 812 return; 813 814 /* 815 * Some older parts have a core clock frequency that is not an 816 * integral multiple of 50 or 66 MHz. Check if one of the old 817 * clock frequencies is closer to the measured value than any 818 * of the integral multiples of 50 an 66, and if so set fixed 819 * and delta appropriately to represent the closest value. 820 */ 821 i = sizeof (x86_cpu_freq) / sizeof (int); 822 while (i > 0) { 823 i--; 824 825 if (x86_cpu_freq[i] <= freq) { 826 mul = freq - x86_cpu_freq[i]; 827 828 if (mul < delta) { 829 fixed = x86_cpu_freq[i]; 830 delta = mul; 831 } 832 833 break; 834 } 835 836 mul = x86_cpu_freq[i] - freq; 837 838 if (mul < delta) { 839 fixed = x86_cpu_freq[i]; 840 delta = mul; 841 } 842 } 843 844 /* 845 * Set a reasonable maximum for how much to correct the measured 846 * result by. This check is here to prevent the adjustment made 847 * by this function from being more harm than good. It is entirely 848 * possible that in the future parts will be made that are not 849 * integral multiples of 66 or 50 in clock frequency or that 850 * someone may overclock a part to some odd frequency. If the 851 * measured value is farther from the corrected value than 852 * allowed, then assume the corrected value is in error and use 853 * the measured value. 854 */ 855 if (6 < delta) 856 return; 857 858 cpu_freq = (int)fixed; 859 } 860 861 862 static int 863 machhztomhz(uint64_t cpu_freq_hz) 864 { 865 uint64_t cpu_mhz; 866 867 /* Round to nearest MHZ */ 868 cpu_mhz = (cpu_freq_hz + (MEGA_HZ / 2)) / MEGA_HZ; 869 870 if (cpu_mhz > INT_MAX) 871 return (0); 872 873 return ((int)cpu_mhz); 874 875 } 876 877 878 static int 879 mach_clkinit(int preferred_mode, int *set_mode) 880 { 881 register struct psm_ops *pops; 882 int resolution; 883 884 pops = mach_set[0]; 885 886 #ifdef _SIMULATOR_SUPPORT 887 if (!simulator_run) 888 cpu_freq_hz = mach_getcpufreq(); 889 else 890 cpu_freq_hz = 40000000; /* use 40 Mhz (hack for simulator) */ 891 #else 892 cpu_freq_hz = mach_getcpufreq(); 893 #endif /* _SIMULATOR_SUPPORT */ 894 895 cpu_freq = machhztomhz(cpu_freq_hz); 896 897 if (!(x86_feature & X86_TSC) || (cpu_freq == 0)) 898 tsc_gethrtime_enable = 0; 899 900 if (tsc_gethrtime_enable) { 901 tsc_hrtimeinit(cpu_freq_hz); 902 gethrtimef = tsc_gethrtime; 903 gethrtimeunscaledf = tsc_gethrtimeunscaled; 904 scalehrtimef = tsc_scalehrtime; 905 hrtime_tick = tsc_tick; 906 tsc_gethrtime_initted = 1; 907 } else { 908 if (pops->psm_hrtimeinit) 909 (*pops->psm_hrtimeinit)(); 910 gethrtimef = pops->psm_gethrtime; 911 gethrtimeunscaledf = gethrtimef; 912 /* scalehrtimef will remain dummy */ 913 } 914 915 mach_fixcpufreq(); 916 917 if (mach_ver[0] >= PSM_INFO_VER01_3) { 918 if ((preferred_mode == TIMER_ONESHOT) && 919 (tsc_gethrtime_enable)) { 920 921 resolution = (*pops->psm_clkinit)(0); 922 if (resolution != 0) { 923 *set_mode = TIMER_ONESHOT; 924 return (resolution); 925 } 926 927 } 928 929 /* 930 * either periodic mode was requested or could not set to 931 * one-shot mode 932 */ 933 resolution = (*pops->psm_clkinit)(hz); 934 /* 935 * psm should be able to do periodic, so we do not check 936 * for return value of psm_clkinit here. 937 */ 938 *set_mode = TIMER_PERIODIC; 939 return (resolution); 940 } else { 941 /* 942 * PSMI interface prior to PSMI_3 does not define a return 943 * value for psm_clkinit, so the return value is ignored. 944 */ 945 (void) (*pops->psm_clkinit)(hz); 946 *set_mode = TIMER_PERIODIC; 947 return (nsec_per_tick); 948 } 949 } 950 951 /*ARGSUSED*/ 952 static void 953 mach_psm_set_softintr(int ipl, struct av_softinfo *pending) 954 { 955 register struct psm_ops *pops; 956 957 /* invoke hardware interrupt */ 958 pops = mach_set[0]; 959 (*pops->psm_set_softintr)(ipl); 960 } 961 962 static int 963 mach_softlvl_to_vect(register int ipl) 964 { 965 register int softvect; 966 register struct psm_ops *pops; 967 968 pops = mach_set[0]; 969 970 /* check for null handler for set soft interrupt call */ 971 if (pops->psm_set_softintr == NULL) { 972 setsoftint = av_set_softint_pending; 973 return (PSM_SV_SOFTWARE); 974 } 975 976 softvect = (*pops->psm_softlvl_to_irq)(ipl); 977 /* check for hardware scheme */ 978 if (softvect > PSM_SV_SOFTWARE) { 979 setsoftint = mach_psm_set_softintr; 980 return (softvect); 981 } 982 983 if (softvect == PSM_SV_SOFTWARE) 984 setsoftint = av_set_softint_pending; 985 else /* hardware and software mixed scheme */ 986 setsoftint = mach_set_softintr; 987 988 return (PSM_SV_SOFTWARE); 989 } 990 991 static void 992 mach_set_softintr(register int ipl, struct av_softinfo *pending) 993 { 994 register struct psm_ops *pops; 995 996 /* set software pending bits */ 997 av_set_softint_pending(ipl, pending); 998 999 /* check if dosoftint will be called at the end of intr */ 1000 if (CPU_ON_INTR(CPU) || (curthread->t_intr)) 1001 return; 1002 1003 /* invoke hardware interrupt */ 1004 pops = mach_set[0]; 1005 (*pops->psm_set_softintr)(ipl); 1006 } 1007 1008 static void 1009 mach_cpu_start(register int cpun) 1010 { 1011 struct psm_ops *pops; 1012 1013 pops = mach_set[0]; 1014 1015 (*pops->psm_cpu_start)(cpun, rm_platter_va); 1016 } 1017 1018 /*ARGSUSED*/ 1019 static int 1020 mach_translate_irq(dev_info_t *dip, int irqno) 1021 { 1022 return (irqno); /* default to NO translation */ 1023 } 1024 1025 static timestruc_t 1026 mach_tod_get(void) 1027 { 1028 timestruc_t ts; 1029 todinfo_t tod; 1030 static int mach_range_warn = 1; /* warn only once */ 1031 1032 ASSERT(MUTEX_HELD(&tod_lock)); 1033 1034 /* The year returned from is the last 2 digit only */ 1035 if ((*psm_todgetf)(&tod)) { 1036 ts.tv_sec = 0; 1037 ts.tv_nsec = 0; 1038 tod_fault_reset(); 1039 return (ts); 1040 } 1041 1042 /* assume that we wrap the rtc year back to zero at 2000 */ 1043 if (tod.tod_year < 69) { 1044 if (mach_range_warn && tod.tod_year > 38) { 1045 cmn_err(CE_WARN, "hardware real-time clock is out " 1046 "of range -- time needs to be reset"); 1047 mach_range_warn = 0; 1048 } 1049 tod.tod_year += 100; 1050 } 1051 1052 /* tod_to_utc uses 1900 as base for the year */ 1053 ts.tv_sec = tod_to_utc(tod) + gmt_lag; 1054 ts.tv_nsec = 0; 1055 1056 return (ts); 1057 } 1058 1059 static void 1060 mach_tod_set(timestruc_t ts) 1061 { 1062 todinfo_t tod = utc_to_tod(ts.tv_sec - gmt_lag); 1063 1064 ASSERT(MUTEX_HELD(&tod_lock)); 1065 1066 if (tod.tod_year >= 100) 1067 tod.tod_year -= 100; 1068 1069 (*psm_todsetf)(&tod); 1070 } 1071 1072 static void 1073 mach_notify_error(int level, char *errmsg) 1074 { 1075 /* 1076 * SL_FATAL is pass in once panicstr is set, deliver it 1077 * as CE_PANIC. Also, translate SL_ codes back to CE_ 1078 * codes for the psmi handler 1079 */ 1080 if (level & SL_FATAL) 1081 (*notify_error)(CE_PANIC, errmsg); 1082 else if (level & SL_WARN) 1083 (*notify_error)(CE_WARN, errmsg); 1084 else if (level & SL_NOTE) 1085 (*notify_error)(CE_NOTE, errmsg); 1086 else if (level & SL_CONSOLE) 1087 (*notify_error)(CE_CONT, errmsg); 1088 } 1089 1090 /* 1091 * It provides the default basic intr_ops interface for the new DDI 1092 * interrupt framework if the PSM doesn't have one. 1093 * 1094 * Input: 1095 * dip - pointer to the dev_info structure of the requested device 1096 * hdlp - pointer to the internal interrupt handle structure for the 1097 * requested interrupt 1098 * intr_op - opcode for this call 1099 * result - pointer to the integer that will hold the result to be 1100 * passed back if return value is PSM_SUCCESS 1101 * 1102 * Output: 1103 * return value is either PSM_SUCCESS or PSM_FAILURE 1104 */ 1105 static int 1106 mach_intr_ops(dev_info_t *dip, ddi_intr_handle_impl_t *hdlp, 1107 psm_intr_op_t intr_op, int *result) 1108 { 1109 struct intrspec *ispec; 1110 1111 switch (intr_op) { 1112 case PSM_INTR_OP_CHECK_MSI: 1113 *result = hdlp->ih_type & ~(DDI_INTR_TYPE_MSI | 1114 DDI_INTR_TYPE_MSIX); 1115 break; 1116 case PSM_INTR_OP_ALLOC_VECTORS: 1117 if (hdlp->ih_type == DDI_INTR_TYPE_FIXED) 1118 *result = 1; 1119 else 1120 *result = 0; 1121 break; 1122 case PSM_INTR_OP_FREE_VECTORS: 1123 break; 1124 case PSM_INTR_OP_NAVAIL_VECTORS: 1125 if (hdlp->ih_type == DDI_INTR_TYPE_FIXED) 1126 *result = 1; 1127 else 1128 *result = 0; 1129 break; 1130 case PSM_INTR_OP_XLATE_VECTOR: 1131 ispec = ((ihdl_plat_t *)hdlp->ih_private)->ip_ispecp; 1132 *result = psm_translate_irq(dip, ispec->intrspec_vec); 1133 break; 1134 case PSM_INTR_OP_GET_CAP: 1135 *result = 0; 1136 break; 1137 case PSM_INTR_OP_GET_PENDING: 1138 case PSM_INTR_OP_CLEAR_MASK: 1139 case PSM_INTR_OP_SET_MASK: 1140 case PSM_INTR_OP_GET_SHARED: 1141 case PSM_INTR_OP_SET_PRI: 1142 case PSM_INTR_OP_SET_CAP: 1143 case PSM_INTR_OP_SET_CPU: 1144 case PSM_INTR_OP_GET_INTR: 1145 default: 1146 return (PSM_FAILURE); 1147 } 1148 return (PSM_SUCCESS); 1149 } 1150