1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/systm.h> 27 #include <sys/sysmacros.h> 28 #include <sys/bootconf.h> 29 #include <sys/atomic.h> 30 #include <sys/lgrp.h> 31 #include <sys/memlist.h> 32 #include <sys/memnode.h> 33 #include <sys/platform_module.h> 34 #include <vm/vm_dep.h> 35 36 int max_mem_nodes = 1; 37 38 struct mem_node_conf mem_node_config[MAX_MEM_NODES]; 39 int mem_node_pfn_shift; 40 /* 41 * num_memnodes should be updated atomically and always >= 42 * the number of bits in memnodes_mask or the algorithm may fail. 43 */ 44 uint16_t num_memnodes; 45 mnodeset_t memnodes_mask; /* assumes 8*(sizeof(mnodeset_t)) >= MAX_MEM_NODES */ 46 47 /* 48 * If set, mem_node_physalign should be a power of two, and 49 * should reflect the minimum address alignment of each node. 50 */ 51 uint64_t mem_node_physalign; 52 53 /* 54 * Platform hooks we will need. 55 */ 56 57 #pragma weak plat_build_mem_nodes 58 #pragma weak plat_slice_add 59 #pragma weak plat_slice_del 60 61 /* 62 * Adjust the memnode config after a DR operation. 63 * 64 * It is rather tricky to do these updates since we can't 65 * protect the memnode structures with locks, so we must 66 * be mindful of the order in which updates and reads to 67 * these values can occur. 68 */ 69 70 void 71 mem_node_add_slice(pfn_t start, pfn_t end) 72 { 73 int mnode; 74 mnodeset_t newmask, oldmask; 75 76 /* 77 * DR will pass us the first pfn that is allocatable. 78 * We need to round down to get the real start of 79 * the slice. 80 */ 81 if (mem_node_physalign) { 82 start &= ~(btop(mem_node_physalign) - 1); 83 end = roundup(end, btop(mem_node_physalign)) - 1; 84 } 85 86 mnode = PFN_2_MEM_NODE(start); 87 ASSERT(mnode >= 0 && mnode < max_mem_nodes); 88 89 if (atomic_cas_32((uint32_t *)&mem_node_config[mnode].exists, 0, 1)) { 90 /* 91 * Add slice to existing node. 92 */ 93 if (start < mem_node_config[mnode].physbase) 94 mem_node_config[mnode].physbase = start; 95 if (end > mem_node_config[mnode].physmax) 96 mem_node_config[mnode].physmax = end; 97 } else { 98 mem_node_config[mnode].physbase = start; 99 mem_node_config[mnode].physmax = end; 100 atomic_inc_16(&num_memnodes); 101 do { 102 oldmask = memnodes_mask; 103 newmask = memnodes_mask | (1ull << mnode); 104 } while (atomic_cas_64(&memnodes_mask, oldmask, newmask) != 105 oldmask); 106 } 107 108 /* 109 * Inform the common lgrp framework about the new memory 110 */ 111 lgrp_config(LGRP_CONFIG_MEM_ADD, mnode, MEM_NODE_2_LGRPHAND(mnode)); 112 } 113 114 /* 115 * Remove a PFN range from a memnode. On some platforms, 116 * the memnode will be created with physbase at the first 117 * allocatable PFN, but later deleted with the MC slice 118 * base address converted to a PFN, in which case we need 119 * to assume physbase and up. 120 */ 121 void 122 mem_node_del_slice(pfn_t start, pfn_t end) 123 { 124 int mnode; 125 pgcnt_t delta_pgcnt, node_size; 126 mnodeset_t omask, nmask; 127 128 if (mem_node_physalign) { 129 start &= ~(btop(mem_node_physalign) - 1); 130 end = roundup(end, btop(mem_node_physalign)) - 1; 131 } 132 mnode = PFN_2_MEM_NODE(start); 133 134 ASSERT(mnode >= 0 && mnode < max_mem_nodes); 135 ASSERT(mem_node_config[mnode].exists == 1); 136 137 delta_pgcnt = end - start; 138 node_size = mem_node_config[mnode].physmax - 139 mem_node_config[mnode].physbase; 140 141 if (node_size > delta_pgcnt) { 142 /* 143 * Subtract the slice from the memnode. 144 */ 145 if (start <= mem_node_config[mnode].physbase) 146 mem_node_config[mnode].physbase = end + 1; 147 ASSERT(end <= mem_node_config[mnode].physmax); 148 if (end == mem_node_config[mnode].physmax) 149 mem_node_config[mnode].physmax = start - 1; 150 } else { 151 /* 152 * Let the common lgrp framework know this mnode is 153 * leaving 154 */ 155 lgrp_config(LGRP_CONFIG_MEM_DEL, 156 mnode, MEM_NODE_2_LGRPHAND(mnode)); 157 158 /* 159 * Delete the whole node. 160 */ 161 ASSERT(MNODE_PGCNT(mnode) == 0); 162 do { 163 omask = memnodes_mask; 164 nmask = omask & ~(1ull << mnode); 165 } while (atomic_cas_64(&memnodes_mask, omask, nmask) != omask); 166 atomic_dec_16(&num_memnodes); 167 mem_node_config[mnode].exists = 0; 168 } 169 } 170 171 void 172 mem_node_add_range(pfn_t start, pfn_t end) 173 { 174 if (&plat_slice_add) 175 plat_slice_add(start, end); 176 else 177 mem_node_add_slice(start, end); 178 } 179 180 void 181 mem_node_del_range(pfn_t start, pfn_t end) 182 { 183 if (&plat_slice_del) 184 plat_slice_del(start, end); 185 else 186 mem_node_del_slice(start, end); 187 } 188 189 void 190 startup_build_mem_nodes(struct memlist *list) 191 { 192 pfn_t start, end; 193 194 /* LINTED: ASSERT will always true or false */ 195 ASSERT(NBBY * sizeof (mnodeset_t) >= max_mem_nodes); 196 197 if (&plat_build_mem_nodes) { 198 plat_build_mem_nodes(list); 199 } else { 200 /* 201 * Boot install lists are arranged <addr, len>, ... 202 */ 203 while (list) { 204 start = list->ml_address >> PAGESHIFT; 205 if (start > physmax) 206 continue; 207 end = 208 (list->ml_address + list->ml_size - 1) >> PAGESHIFT; 209 if (end > physmax) 210 end = physmax; 211 mem_node_add_range(start, end); 212 list = list->ml_next; 213 } 214 mem_node_physalign = 0; 215 mem_node_pfn_shift = 0; 216 } 217 } 218 219 /* 220 * Allocate an unassigned memnode. 221 */ 222 int 223 mem_node_alloc() 224 { 225 int mnode; 226 mnodeset_t newmask, oldmask; 227 228 /* 229 * Find an unused memnode. Update it atomically to prevent 230 * a first time memnode creation race. 231 */ 232 for (mnode = 0; mnode < max_mem_nodes; mnode++) 233 if (atomic_cas_32((uint32_t *)&mem_node_config[mnode].exists, 234 0, 1) == 0) 235 break; 236 237 if (mnode >= max_mem_nodes) 238 panic("Out of free memnodes\n"); 239 240 mem_node_config[mnode].physbase = (pfn_t)-1l; 241 mem_node_config[mnode].physmax = 0; 242 atomic_inc_16(&num_memnodes); 243 do { 244 oldmask = memnodes_mask; 245 newmask = memnodes_mask | (1ull << mnode); 246 } while (atomic_cas_64(&memnodes_mask, oldmask, newmask) != oldmask); 247 248 return (mnode); 249 } 250 251 /* 252 * Find the intersection between a memnode and a memlist 253 * and returns the number of pages that overlap. 254 * 255 * Assumes the list is protected from DR operations by 256 * the memlist lock. 257 */ 258 pgcnt_t 259 mem_node_memlist_pages(int mnode, struct memlist *mlist) 260 { 261 pfn_t base, end; 262 pfn_t cur_base, cur_end; 263 pgcnt_t npgs; 264 struct memlist *pmem; 265 266 base = mem_node_config[mnode].physbase; 267 end = mem_node_config[mnode].physmax; 268 npgs = 0; 269 270 memlist_read_lock(); 271 272 for (pmem = mlist; pmem; pmem = pmem->ml_next) { 273 cur_base = btop(pmem->ml_address); 274 cur_end = cur_base + btop(pmem->ml_size) - 1; 275 if (end < cur_base || base > cur_end) 276 continue; 277 npgs = npgs + (MIN(cur_end, end) - 278 MAX(cur_base, base)) + 1; 279 } 280 281 memlist_read_unlock(); 282 283 return (npgs); 284 } 285