1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/types.h> 30 #include <sys/t_lock.h> 31 #include <sys/param.h> 32 #include <sys/segments.h> 33 #include <sys/sysmacros.h> 34 #include <sys/signal.h> 35 #include <sys/systm.h> 36 #include <sys/user.h> 37 #include <sys/mman.h> 38 #include <sys/vm.h> 39 40 #include <sys/disp.h> 41 #include <sys/class.h> 42 43 #include <sys/proc.h> 44 #include <sys/buf.h> 45 #include <sys/kmem.h> 46 47 #include <sys/reboot.h> 48 #include <sys/uadmin.h> 49 #include <sys/callb.h> 50 51 #include <sys/cred.h> 52 #include <sys/vnode.h> 53 #include <sys/file.h> 54 55 #include <sys/procfs.h> 56 #include <sys/acct.h> 57 58 #include <sys/vfs.h> 59 #include <sys/dnlc.h> 60 #include <sys/var.h> 61 #include <sys/cmn_err.h> 62 #include <sys/utsname.h> 63 #include <sys/debug.h> 64 65 #include <sys/dumphdr.h> 66 #include <sys/bootconf.h> 67 #include <sys/varargs.h> 68 #include <sys/promif.h> 69 #include <sys/modctl.h> 70 71 #include <sys/consdev.h> 72 #include <sys/frame.h> 73 74 #include <sys/sunddi.h> 75 #include <sys/ddidmareq.h> 76 #include <sys/psw.h> 77 #include <sys/regset.h> 78 #include <sys/privregs.h> 79 #include <sys/clock.h> 80 #include <sys/tss.h> 81 #include <sys/cpu.h> 82 #include <sys/stack.h> 83 #include <sys/trap.h> 84 #include <sys/pic.h> 85 #include <vm/hat.h> 86 #include <vm/anon.h> 87 #include <vm/as.h> 88 #include <vm/page.h> 89 #include <vm/seg.h> 90 #include <vm/seg_kmem.h> 91 #include <vm/seg_map.h> 92 #include <vm/seg_vn.h> 93 #include <vm/seg_kp.h> 94 #include <vm/hat_i86.h> 95 #include <sys/swap.h> 96 #include <sys/thread.h> 97 #include <sys/sysconf.h> 98 #include <sys/vm_machparam.h> 99 #include <sys/archsystm.h> 100 #include <sys/machsystm.h> 101 #include <sys/machlock.h> 102 #include <sys/x_call.h> 103 #include <sys/instance.h> 104 105 #include <sys/time.h> 106 #include <sys/smp_impldefs.h> 107 #include <sys/psm_types.h> 108 #include <sys/atomic.h> 109 #include <sys/panic.h> 110 #include <sys/cpuvar.h> 111 #include <sys/dtrace.h> 112 #include <sys/bl.h> 113 #include <sys/nvpair.h> 114 #include <sys/x86_archext.h> 115 #include <sys/pool_pset.h> 116 #include <sys/autoconf.h> 117 #include <sys/mem.h> 118 #include <sys/dumphdr.h> 119 #include <sys/compress.h> 120 #if defined(__xpv) 121 #include <sys/hypervisor.h> 122 #include <sys/xpv_panic.h> 123 #endif 124 125 #ifdef TRAPTRACE 126 #include <sys/traptrace.h> 127 #endif /* TRAPTRACE */ 128 129 extern void audit_enterprom(int); 130 extern void audit_exitprom(int); 131 132 /* 133 * The panicbuf array is used to record messages and state: 134 */ 135 char panicbuf[PANICBUFSIZE]; 136 137 /* 138 * maxphys - used during physio 139 * klustsize - used for klustering by swapfs and specfs 140 */ 141 int maxphys = 56 * 1024; /* XXX See vm_subr.c - max b_count in physio */ 142 int klustsize = 56 * 1024; 143 144 caddr_t p0_va; /* Virtual address for accessing physical page 0 */ 145 146 /* 147 * defined here, though unused on x86, 148 * to make kstat_fr.c happy. 149 */ 150 int vac; 151 152 void stop_other_cpus(); 153 void debug_enter(char *); 154 155 extern void pm_cfb_check_and_powerup(void); 156 extern void pm_cfb_rele(void); 157 158 /* 159 * Machine dependent code to reboot. 160 * "mdep" is interpreted as a character pointer; if non-null, it is a pointer 161 * to a string to be used as the argument string when rebooting. 162 * 163 * "invoke_cb" is a boolean. It is set to true when mdboot() can safely 164 * invoke CB_CL_MDBOOT callbacks before shutting the system down, i.e. when 165 * we are in a normal shutdown sequence (interrupts are not blocked, the 166 * system is not panic'ing or being suspended). 167 */ 168 /*ARGSUSED*/ 169 void 170 mdboot(int cmd, int fcn, char *mdep, boolean_t invoke_cb) 171 { 172 if (!panicstr) { 173 kpreempt_disable(); 174 affinity_set(CPU_CURRENT); 175 } 176 177 /* 178 * XXX - rconsvp is set to NULL to ensure that output messages 179 * are sent to the underlying "hardware" device using the 180 * monitor's printf routine since we are in the process of 181 * either rebooting or halting the machine. 182 */ 183 rconsvp = NULL; 184 185 /* 186 * Print the reboot message now, before pausing other cpus. 187 * There is a race condition in the printing support that 188 * can deadlock multiprocessor machines. 189 */ 190 if (!(fcn == AD_HALT || fcn == AD_POWEROFF)) 191 prom_printf("rebooting...\n"); 192 193 if (IN_XPV_PANIC()) 194 reset(); 195 196 /* 197 * We can't bring up the console from above lock level, so do it now 198 */ 199 pm_cfb_check_and_powerup(); 200 201 /* make sure there are no more changes to the device tree */ 202 devtree_freeze(); 203 204 if (invoke_cb) 205 (void) callb_execute_class(CB_CL_MDBOOT, NULL); 206 207 /* 208 * Clear any unresolved UEs from memory. 209 */ 210 page_retire_mdboot(); 211 212 #if defined(__xpv) 213 /* 214 * XXPV Should probably think some more about how we deal 215 * with panicing before it's really safe to panic. 216 * On hypervisors, we reboot very quickly.. Perhaps panic 217 * should only attempt to recover by rebooting if, 218 * say, we were able to mount the root filesystem, 219 * or if we successfully launched init(1m). 220 */ 221 if (panicstr && proc_init == NULL) 222 (void) HYPERVISOR_shutdown(SHUTDOWN_poweroff); 223 #endif 224 225 /* 226 * stop other cpus and raise our priority. since there is only 227 * one active cpu after this, and our priority will be too high 228 * for us to be preempted, we're essentially single threaded 229 * from here on out. 230 */ 231 (void) spl6(); 232 if (!panicstr) { 233 mutex_enter(&cpu_lock); 234 pause_cpus(NULL); 235 mutex_exit(&cpu_lock); 236 } 237 238 /* 239 * try and reset leaf devices. reset_leaves() should only 240 * be called when there are no other threads that could be 241 * accessing devices 242 */ 243 reset_leaves(); 244 245 (void) spl8(); 246 (*psm_shutdownf)(cmd, fcn); 247 248 if (fcn == AD_HALT || fcn == AD_POWEROFF) 249 halt((char *)NULL); 250 else 251 prom_reboot(""); 252 /*NOTREACHED*/ 253 } 254 255 /* mdpreboot - may be called prior to mdboot while root fs still mounted */ 256 /*ARGSUSED*/ 257 void 258 mdpreboot(int cmd, int fcn, char *mdep) 259 { 260 (*psm_preshutdownf)(cmd, fcn); 261 } 262 263 void 264 idle_other_cpus() 265 { 266 int cpuid = CPU->cpu_id; 267 cpuset_t xcset; 268 269 ASSERT(cpuid < NCPU); 270 CPUSET_ALL_BUT(xcset, cpuid); 271 xc_capture_cpus(xcset); 272 } 273 274 void 275 resume_other_cpus() 276 { 277 ASSERT(CPU->cpu_id < NCPU); 278 279 xc_release_cpus(); 280 } 281 282 void 283 stop_other_cpus() 284 { 285 int cpuid = CPU->cpu_id; 286 cpuset_t xcset; 287 288 ASSERT(cpuid < NCPU); 289 290 /* 291 * xc_trycall will attempt to make all other CPUs execute mach_cpu_halt, 292 * and will return immediately regardless of whether or not it was 293 * able to make them do it. 294 */ 295 CPUSET_ALL_BUT(xcset, cpuid); 296 xc_trycall(NULL, NULL, NULL, xcset, (int (*)())mach_cpu_halt); 297 } 298 299 /* 300 * Machine dependent abort sequence handling 301 */ 302 void 303 abort_sequence_enter(char *msg) 304 { 305 if (abort_enable == 0) { 306 if (audit_active) 307 audit_enterprom(0); 308 return; 309 } 310 if (audit_active) 311 audit_enterprom(1); 312 debug_enter(msg); 313 if (audit_active) 314 audit_exitprom(1); 315 } 316 317 /* 318 * Enter debugger. Called when the user types ctrl-alt-d or whenever 319 * code wants to enter the debugger and possibly resume later. 320 */ 321 void 322 debug_enter( 323 char *msg) /* message to print, possibly NULL */ 324 { 325 if (dtrace_debugger_init != NULL) 326 (*dtrace_debugger_init)(); 327 328 if (msg) 329 prom_printf("%s\n", msg); 330 331 if (boothowto & RB_DEBUG) 332 kmdb_enter(); 333 334 if (dtrace_debugger_fini != NULL) 335 (*dtrace_debugger_fini)(); 336 } 337 338 void 339 reset(void) 340 { 341 #if !defined(__xpv) 342 ushort_t *bios_memchk; 343 344 /* 345 * Can't use psm_map_phys before the hat is initialized. 346 */ 347 if (khat_running) { 348 bios_memchk = (ushort_t *)psm_map_phys(0x472, 349 sizeof (ushort_t), PROT_READ | PROT_WRITE); 350 if (bios_memchk) 351 *bios_memchk = 0x1234; /* bios memory check disable */ 352 } 353 354 if (ddi_prop_exists(DDI_DEV_T_ANY, ddi_root_node(), 0, "efi-systab")) 355 efi_reset(); 356 pc_reset(); 357 #else 358 if (IN_XPV_PANIC()) 359 pc_reset(); 360 (void) HYPERVISOR_shutdown(SHUTDOWN_reboot); 361 panic("HYPERVISOR_shutdown() failed"); 362 #endif 363 /*NOTREACHED*/ 364 } 365 366 /* 367 * Halt the machine and return to the monitor 368 */ 369 void 370 halt(char *s) 371 { 372 stop_other_cpus(); /* send stop signal to other CPUs */ 373 if (s) 374 prom_printf("(%s) \n", s); 375 prom_exit_to_mon(); 376 /*NOTREACHED*/ 377 } 378 379 /* 380 * Initiate interrupt redistribution. 381 */ 382 void 383 i_ddi_intr_redist_all_cpus() 384 { 385 } 386 387 /* 388 * XXX These probably ought to live somewhere else 389 * XXX They are called from mem.c 390 */ 391 392 /* 393 * Convert page frame number to an OBMEM page frame number 394 * (i.e. put in the type bits -- zero for this implementation) 395 */ 396 pfn_t 397 impl_obmem_pfnum(pfn_t pf) 398 { 399 return (pf); 400 } 401 402 #ifdef NM_DEBUG 403 int nmi_test = 0; /* checked in intentry.s during clock int */ 404 int nmtest = -1; 405 nmfunc1(arg, rp) 406 int arg; 407 struct regs *rp; 408 { 409 printf("nmi called with arg = %x, regs = %x\n", arg, rp); 410 nmtest += 50; 411 if (arg == nmtest) { 412 printf("ip = %x\n", rp->r_pc); 413 return (1); 414 } 415 return (0); 416 } 417 418 #endif 419 420 #include <sys/bootsvcs.h> 421 422 /* Hacked up initialization for initial kernel check out is HERE. */ 423 /* The basic steps are: */ 424 /* kernel bootfuncs definition/initialization for KADB */ 425 /* kadb bootfuncs pointer initialization */ 426 /* putchar/getchar (interrupts disabled) */ 427 428 /* kadb bootfuncs pointer initialization */ 429 430 int 431 sysp_getchar() 432 { 433 int i; 434 ulong_t s; 435 436 if (cons_polledio == NULL) { 437 /* Uh oh */ 438 prom_printf("getchar called with no console\n"); 439 for (;;) 440 /* LOOP FOREVER */; 441 } 442 443 s = clear_int_flag(); 444 i = cons_polledio->cons_polledio_getchar( 445 cons_polledio->cons_polledio_argument); 446 restore_int_flag(s); 447 return (i); 448 } 449 450 void 451 sysp_putchar(int c) 452 { 453 ulong_t s; 454 455 /* 456 * We have no alternative but to drop the output on the floor. 457 */ 458 if (cons_polledio == NULL || 459 cons_polledio->cons_polledio_putchar == NULL) 460 return; 461 462 s = clear_int_flag(); 463 cons_polledio->cons_polledio_putchar( 464 cons_polledio->cons_polledio_argument, c); 465 restore_int_flag(s); 466 } 467 468 int 469 sysp_ischar() 470 { 471 int i; 472 ulong_t s; 473 474 if (cons_polledio == NULL || 475 cons_polledio->cons_polledio_ischar == NULL) 476 return (0); 477 478 s = clear_int_flag(); 479 i = cons_polledio->cons_polledio_ischar( 480 cons_polledio->cons_polledio_argument); 481 restore_int_flag(s); 482 return (i); 483 } 484 485 int 486 goany(void) 487 { 488 prom_printf("Type any key to continue "); 489 (void) prom_getchar(); 490 prom_printf("\n"); 491 return (1); 492 } 493 494 static struct boot_syscalls kern_sysp = { 495 sysp_getchar, /* unchar (*getchar)(); 7 */ 496 sysp_putchar, /* int (*putchar)(); 8 */ 497 sysp_ischar, /* int (*ischar)(); 9 */ 498 }; 499 500 #if defined(__xpv) 501 int using_kern_polledio; 502 #endif 503 504 void 505 kadb_uses_kernel() 506 { 507 /* 508 * This routine is now totally misnamed, since it does not in fact 509 * control kadb's I/O; it only controls the kernel's prom_* I/O. 510 */ 511 sysp = &kern_sysp; 512 #if defined(__xpv) 513 using_kern_polledio = 1; 514 #endif 515 } 516 517 /* 518 * the interface to the outside world 519 */ 520 521 /* 522 * poll_port -- wait for a register to achieve a 523 * specific state. Arguments are a mask of bits we care about, 524 * and two sub-masks. To return normally, all the bits in the 525 * first sub-mask must be ON, all the bits in the second sub- 526 * mask must be OFF. If about seconds pass without the register 527 * achieving the desired bit configuration, we return 1, else 528 * 0. 529 */ 530 int 531 poll_port(ushort_t port, ushort_t mask, ushort_t onbits, ushort_t offbits) 532 { 533 int i; 534 ushort_t maskval; 535 536 for (i = 500000; i; i--) { 537 maskval = inb(port) & mask; 538 if (((maskval & onbits) == onbits) && 539 ((maskval & offbits) == 0)) 540 return (0); 541 drv_usecwait(10); 542 } 543 return (1); 544 } 545 546 /* 547 * set_idle_cpu is called from idle() when a CPU becomes idle. 548 */ 549 /*LINTED: static unused */ 550 static uint_t last_idle_cpu; 551 552 /*ARGSUSED*/ 553 void 554 set_idle_cpu(int cpun) 555 { 556 last_idle_cpu = cpun; 557 (*psm_set_idle_cpuf)(cpun); 558 } 559 560 /* 561 * unset_idle_cpu is called from idle() when a CPU is no longer idle. 562 */ 563 /*ARGSUSED*/ 564 void 565 unset_idle_cpu(int cpun) 566 { 567 (*psm_unset_idle_cpuf)(cpun); 568 } 569 570 /* 571 * This routine is almost correct now, but not quite. It still needs the 572 * equivalent concept of "hres_last_tick", just like on the sparc side. 573 * The idea is to take a snapshot of the hi-res timer while doing the 574 * hrestime_adj updates under hres_lock in locore, so that the small 575 * interval between interrupt assertion and interrupt processing is 576 * accounted for correctly. Once we have this, the code below should 577 * be modified to subtract off hres_last_tick rather than hrtime_base. 578 * 579 * I'd have done this myself, but I don't have source to all of the 580 * vendor-specific hi-res timer routines (grrr...). The generic hook I 581 * need is something like "gethrtime_unlocked()", which would be just like 582 * gethrtime() but would assume that you're already holding CLOCK_LOCK(). 583 * This is what the GET_HRTIME() macro is for on sparc (although it also 584 * serves the function of making time available without a function call 585 * so you don't take a register window overflow while traps are disabled). 586 */ 587 void 588 pc_gethrestime(timestruc_t *tp) 589 { 590 int lock_prev; 591 timestruc_t now; 592 int nslt; /* nsec since last tick */ 593 int adj; /* amount of adjustment to apply */ 594 595 loop: 596 lock_prev = hres_lock; 597 now = hrestime; 598 nslt = (int)(gethrtime() - hres_last_tick); 599 if (nslt < 0) { 600 /* 601 * nslt < 0 means a tick came between sampling 602 * gethrtime() and hres_last_tick; restart the loop 603 */ 604 605 goto loop; 606 } 607 now.tv_nsec += nslt; 608 if (hrestime_adj != 0) { 609 if (hrestime_adj > 0) { 610 adj = (nslt >> ADJ_SHIFT); 611 if (adj > hrestime_adj) 612 adj = (int)hrestime_adj; 613 } else { 614 adj = -(nslt >> ADJ_SHIFT); 615 if (adj < hrestime_adj) 616 adj = (int)hrestime_adj; 617 } 618 now.tv_nsec += adj; 619 } 620 while ((unsigned long)now.tv_nsec >= NANOSEC) { 621 622 /* 623 * We might have a large adjustment or have been in the 624 * debugger for a long time; take care of (at most) four 625 * of those missed seconds (tv_nsec is 32 bits, so 626 * anything >4s will be wrapping around). However, 627 * anything more than 2 seconds out of sync will trigger 628 * timedelta from clock() to go correct the time anyway, 629 * so do what we can, and let the big crowbar do the 630 * rest. A similar correction while loop exists inside 631 * hres_tick(); in all cases we'd like tv_nsec to 632 * satisfy 0 <= tv_nsec < NANOSEC to avoid confusing 633 * user processes, but if tv_sec's a little behind for a 634 * little while, that's OK; time still monotonically 635 * increases. 636 */ 637 638 now.tv_nsec -= NANOSEC; 639 now.tv_sec++; 640 } 641 if ((hres_lock & ~1) != lock_prev) 642 goto loop; 643 644 *tp = now; 645 } 646 647 void 648 gethrestime_lasttick(timespec_t *tp) 649 { 650 int s; 651 652 s = hr_clock_lock(); 653 *tp = hrestime; 654 hr_clock_unlock(s); 655 } 656 657 time_t 658 gethrestime_sec(void) 659 { 660 timestruc_t now; 661 662 gethrestime(&now); 663 return (now.tv_sec); 664 } 665 666 /* 667 * Initialize a kernel thread's stack 668 */ 669 670 caddr_t 671 thread_stk_init(caddr_t stk) 672 { 673 ASSERT(((uintptr_t)stk & (STACK_ALIGN - 1)) == 0); 674 return (stk - SA(MINFRAME)); 675 } 676 677 /* 678 * Initialize lwp's kernel stack. 679 */ 680 681 #ifdef TRAPTRACE 682 /* 683 * There's a tricky interdependency here between use of sysenter and 684 * TRAPTRACE which needs recording to avoid future confusion (this is 685 * about the third time I've re-figured this out ..) 686 * 687 * Here's how debugging lcall works with TRAPTRACE. 688 * 689 * 1 We're in userland with a breakpoint on the lcall instruction. 690 * 2 We execute the instruction - the instruction pushes the userland 691 * %ss, %esp, %efl, %cs, %eip on the stack and zips into the kernel 692 * via the call gate. 693 * 3 The hardware raises a debug trap in kernel mode, the hardware 694 * pushes %efl, %cs, %eip and gets to dbgtrap via the idt. 695 * 4 dbgtrap pushes the error code and trapno and calls cmntrap 696 * 5 cmntrap finishes building a trap frame 697 * 6 The TRACE_REGS macros in cmntrap copy a REGSIZE worth chunk 698 * off the stack into the traptrace buffer. 699 * 700 * This means that the traptrace buffer contains the wrong values in 701 * %esp and %ss, but everything else in there is correct. 702 * 703 * Here's how debugging sysenter works with TRAPTRACE. 704 * 705 * a We're in userland with a breakpoint on the sysenter instruction. 706 * b We execute the instruction - the instruction pushes -nothing- 707 * on the stack, but sets %cs, %eip, %ss, %esp to prearranged 708 * values to take us to sys_sysenter, at the top of the lwp's 709 * stack. 710 * c goto 3 711 * 712 * At this point, because we got into the kernel without the requisite 713 * five pushes on the stack, if we didn't make extra room, we'd 714 * end up with the TRACE_REGS macro fetching the saved %ss and %esp 715 * values from negative (unmapped) stack addresses -- which really bites. 716 * That's why we do the '-= 8' below. 717 * 718 * XXX Note that reading "up" lwp0's stack works because t0 is declared 719 * right next to t0stack in locore.s 720 */ 721 #endif 722 723 caddr_t 724 lwp_stk_init(klwp_t *lwp, caddr_t stk) 725 { 726 caddr_t oldstk; 727 struct pcb *pcb = &lwp->lwp_pcb; 728 729 oldstk = stk; 730 stk -= SA(sizeof (struct regs) + SA(MINFRAME)); 731 #ifdef TRAPTRACE 732 stk -= 2 * sizeof (greg_t); /* space for phony %ss:%sp (see above) */ 733 #endif 734 stk = (caddr_t)((uintptr_t)stk & ~(STACK_ALIGN - 1ul)); 735 bzero(stk, oldstk - stk); 736 lwp->lwp_regs = (void *)(stk + SA(MINFRAME)); 737 738 /* 739 * Arrange that the virtualized %fs and %gs GDT descriptors 740 * have a well-defined initial state (present, ring 3 741 * and of type data). 742 */ 743 #if defined(__amd64) 744 if (lwp_getdatamodel(lwp) == DATAMODEL_NATIVE) 745 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc; 746 else 747 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_u32desc; 748 #elif defined(__i386) 749 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc; 750 #endif /* __i386 */ 751 lwp_installctx(lwp); 752 return (stk); 753 } 754 755 /*ARGSUSED*/ 756 void 757 lwp_stk_fini(klwp_t *lwp) 758 {} 759 760 /* 761 * If we're not the panic CPU, we wait in panic_idle for reboot. 762 */ 763 static void 764 panic_idle(void) 765 { 766 splx(ipltospl(CLOCK_LEVEL)); 767 (void) setjmp(&curthread->t_pcb); 768 769 for (;;) 770 ; 771 } 772 773 /* 774 * Stop the other CPUs by cross-calling them and forcing them to enter 775 * the panic_idle() loop above. 776 */ 777 /*ARGSUSED*/ 778 void 779 panic_stopcpus(cpu_t *cp, kthread_t *t, int spl) 780 { 781 processorid_t i; 782 cpuset_t xcset; 783 784 /* 785 * In the case of a Xen panic, the hypervisor has already stopped 786 * all of the CPUs. 787 */ 788 if (!IN_XPV_PANIC()) { 789 (void) splzs(); 790 791 CPUSET_ALL_BUT(xcset, cp->cpu_id); 792 xc_trycall(NULL, NULL, NULL, xcset, (int (*)())panic_idle); 793 } 794 795 for (i = 0; i < NCPU; i++) { 796 if (i != cp->cpu_id && cpu[i] != NULL && 797 (cpu[i]->cpu_flags & CPU_EXISTS)) 798 cpu[i]->cpu_flags |= CPU_QUIESCED; 799 } 800 } 801 802 /* 803 * Platform callback following each entry to panicsys(). 804 */ 805 /*ARGSUSED*/ 806 void 807 panic_enter_hw(int spl) 808 { 809 /* Nothing to do here */ 810 } 811 812 /* 813 * Platform-specific code to execute after panicstr is set: we invoke 814 * the PSM entry point to indicate that a panic has occurred. 815 */ 816 /*ARGSUSED*/ 817 void 818 panic_quiesce_hw(panic_data_t *pdp) 819 { 820 psm_notifyf(PSM_PANIC_ENTER); 821 822 #ifdef TRAPTRACE 823 /* 824 * Turn off TRAPTRACE 825 */ 826 TRAPTRACE_FREEZE; 827 #endif /* TRAPTRACE */ 828 } 829 830 /* 831 * Platform callback prior to writing crash dump. 832 */ 833 /*ARGSUSED*/ 834 void 835 panic_dump_hw(int spl) 836 { 837 /* Nothing to do here */ 838 } 839 840 void * 841 plat_traceback(void *fpreg) 842 { 843 #ifdef __xpv 844 if (IN_XPV_PANIC()) 845 return (xpv_traceback(fpreg)); 846 #endif 847 return (fpreg); 848 } 849 850 /*ARGSUSED*/ 851 void 852 plat_tod_fault(enum tod_fault_type tod_bad) 853 {} 854 855 /*ARGSUSED*/ 856 int 857 blacklist(int cmd, const char *scheme, nvlist_t *fmri, const char *class) 858 { 859 return (ENOTSUP); 860 } 861 862 /* 863 * The underlying console output routines are protected by raising IPL in case 864 * we are still calling into the early boot services. Once we start calling 865 * the kernel console emulator, it will disable interrupts completely during 866 * character rendering (see sysp_putchar, for example). Refer to the comments 867 * and code in common/os/console.c for more information on these callbacks. 868 */ 869 /*ARGSUSED*/ 870 int 871 console_enter(int busy) 872 { 873 return (splzs()); 874 } 875 876 /*ARGSUSED*/ 877 void 878 console_exit(int busy, int spl) 879 { 880 splx(spl); 881 } 882 883 /* 884 * Allocate a region of virtual address space, unmapped. 885 * Stubbed out except on sparc, at least for now. 886 */ 887 /*ARGSUSED*/ 888 void * 889 boot_virt_alloc(void *addr, size_t size) 890 { 891 return (addr); 892 } 893 894 volatile unsigned long tenmicrodata; 895 896 void 897 tenmicrosec(void) 898 { 899 extern int gethrtime_hires; 900 901 if (gethrtime_hires) { 902 hrtime_t start, end; 903 start = end = gethrtime(); 904 while ((end - start) < (10 * (NANOSEC / MICROSEC))) { 905 SMT_PAUSE(); 906 end = gethrtime(); 907 } 908 } else { 909 #if defined(__xpv) 910 hrtime_t newtime; 911 912 newtime = xpv_gethrtime() + 10000; /* now + 10 us */ 913 while (xpv_gethrtime() < newtime) 914 SMT_PAUSE(); 915 #else /* __xpv */ 916 int i; 917 918 /* 919 * Artificial loop to induce delay. 920 */ 921 for (i = 0; i < microdata; i++) 922 tenmicrodata = microdata; 923 #endif /* __xpv */ 924 } 925 } 926 927 /* 928 * get_cpu_mstate() is passed an array of timestamps, NCMSTATES 929 * long, and it fills in the array with the time spent on cpu in 930 * each of the mstates, where time is returned in nsec. 931 * 932 * No guarantee is made that the returned values in times[] will 933 * monotonically increase on sequential calls, although this will 934 * be true in the long run. Any such guarantee must be handled by 935 * the caller, if needed. This can happen if we fail to account 936 * for elapsed time due to a generation counter conflict, yet we 937 * did account for it on a prior call (see below). 938 * 939 * The complication is that the cpu in question may be updating 940 * its microstate at the same time that we are reading it. 941 * Because the microstate is only updated when the CPU's state 942 * changes, the values in cpu_intracct[] can be indefinitely out 943 * of date. To determine true current values, it is necessary to 944 * compare the current time with cpu_mstate_start, and add the 945 * difference to times[cpu_mstate]. 946 * 947 * This can be a problem if those values are changing out from 948 * under us. Because the code path in new_cpu_mstate() is 949 * performance critical, we have not added a lock to it. Instead, 950 * we have added a generation counter. Before beginning 951 * modifications, the counter is set to 0. After modifications, 952 * it is set to the old value plus one. 953 * 954 * get_cpu_mstate() will not consider the values of cpu_mstate 955 * and cpu_mstate_start to be usable unless the value of 956 * cpu_mstate_gen is both non-zero and unchanged, both before and 957 * after reading the mstate information. Note that we must 958 * protect against out-of-order loads around accesses to the 959 * generation counter. Also, this is a best effort approach in 960 * that we do not retry should the counter be found to have 961 * changed. 962 * 963 * cpu_intracct[] is used to identify time spent in each CPU 964 * mstate while handling interrupts. Such time should be reported 965 * against system time, and so is subtracted out from its 966 * corresponding cpu_acct[] time and added to 967 * cpu_acct[CMS_SYSTEM]. 968 */ 969 970 void 971 get_cpu_mstate(cpu_t *cpu, hrtime_t *times) 972 { 973 int i; 974 hrtime_t now, start; 975 uint16_t gen; 976 uint16_t state; 977 hrtime_t intracct[NCMSTATES]; 978 979 /* 980 * Load all volatile state under the protection of membar. 981 * cpu_acct[cpu_mstate] must be loaded to avoid double counting 982 * of (now - cpu_mstate_start) by a change in CPU mstate that 983 * arrives after we make our last check of cpu_mstate_gen. 984 */ 985 986 now = gethrtime_unscaled(); 987 gen = cpu->cpu_mstate_gen; 988 989 membar_consumer(); /* guarantee load ordering */ 990 start = cpu->cpu_mstate_start; 991 state = cpu->cpu_mstate; 992 for (i = 0; i < NCMSTATES; i++) { 993 intracct[i] = cpu->cpu_intracct[i]; 994 times[i] = cpu->cpu_acct[i]; 995 } 996 membar_consumer(); /* guarantee load ordering */ 997 998 if (gen != 0 && gen == cpu->cpu_mstate_gen && now > start) 999 times[state] += now - start; 1000 1001 for (i = 0; i < NCMSTATES; i++) { 1002 if (i == CMS_SYSTEM) 1003 continue; 1004 times[i] -= intracct[i]; 1005 if (times[i] < 0) { 1006 intracct[i] += times[i]; 1007 times[i] = 0; 1008 } 1009 times[CMS_SYSTEM] += intracct[i]; 1010 scalehrtime(×[i]); 1011 } 1012 scalehrtime(×[CMS_SYSTEM]); 1013 } 1014 1015 1016 /* 1017 * This is a version of the rdmsr instruction that allows 1018 * an error code to be returned in the case of failure. 1019 */ 1020 int 1021 checked_rdmsr(uint_t msr, uint64_t *value) 1022 { 1023 if ((x86_feature & X86_MSR) == 0) 1024 return (ENOTSUP); 1025 *value = rdmsr(msr); 1026 return (0); 1027 } 1028 1029 /* 1030 * This is a version of the wrmsr instruction that allows 1031 * an error code to be returned in the case of failure. 1032 */ 1033 int 1034 checked_wrmsr(uint_t msr, uint64_t value) 1035 { 1036 if ((x86_feature & X86_MSR) == 0) 1037 return (ENOTSUP); 1038 wrmsr(msr, value); 1039 return (0); 1040 } 1041 1042 /* 1043 * The mem driver's usual method of using hat_devload() to establish a 1044 * temporary mapping will not work for foreign pages mapped into this 1045 * domain or for the special hypervisor-provided pages. For the foreign 1046 * pages, we often don't know which domain owns them, so we can't ask the 1047 * hypervisor to set up a new mapping. For the other pages, we don't have 1048 * a pfn, so we can't create a new PTE. For these special cases, we do a 1049 * direct uiomove() from the existing kernel virtual address. 1050 */ 1051 /*ARGSUSED*/ 1052 int 1053 plat_mem_do_mmio(struct uio *uio, enum uio_rw rw) 1054 { 1055 #if defined(__xpv) 1056 void *va = (void *)(uintptr_t)uio->uio_loffset; 1057 off_t pageoff = uio->uio_loffset & PAGEOFFSET; 1058 size_t nbytes = MIN((size_t)(PAGESIZE - pageoff), 1059 (size_t)uio->uio_iov->iov_len); 1060 1061 if ((rw == UIO_READ && 1062 (va == HYPERVISOR_shared_info || va == xen_info)) || 1063 (pfn_is_foreign(hat_getpfnum(kas.a_hat, va)))) 1064 return (uiomove(va, nbytes, rw, uio)); 1065 #endif 1066 return (ENOTSUP); 1067 } 1068 1069 pgcnt_t 1070 num_phys_pages() 1071 { 1072 pgcnt_t npages = 0; 1073 struct memlist *mp; 1074 1075 #if defined(__xpv) 1076 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 1077 xen_sysctl_t op; 1078 1079 op.cmd = XEN_SYSCTL_physinfo; 1080 op.interface_version = XEN_SYSCTL_INTERFACE_VERSION; 1081 if (HYPERVISOR_sysctl(&op) != 0) 1082 panic("physinfo op refused"); 1083 1084 return ((pgcnt_t)op.u.physinfo.total_pages); 1085 } 1086 #endif /* __xpv */ 1087 1088 for (mp = phys_install; mp != NULL; mp = mp->next) 1089 npages += mp->size >> PAGESHIFT; 1090 1091 return (npages); 1092 } 1093 1094 int 1095 dump_plat_addr() 1096 { 1097 #ifdef __xpv 1098 pfn_t pfn = mmu_btop(xen_info->shared_info) | PFN_IS_FOREIGN_MFN; 1099 mem_vtop_t mem_vtop; 1100 int cnt; 1101 1102 /* 1103 * On the hypervisor, we want to dump the page with shared_info on it. 1104 */ 1105 if (!IN_XPV_PANIC()) { 1106 mem_vtop.m_as = &kas; 1107 mem_vtop.m_va = HYPERVISOR_shared_info; 1108 mem_vtop.m_pfn = pfn; 1109 dumpvp_write(&mem_vtop, sizeof (mem_vtop_t)); 1110 cnt = 1; 1111 } else { 1112 cnt = dump_xpv_addr(); 1113 } 1114 return (cnt); 1115 #else 1116 return (0); 1117 #endif 1118 } 1119 1120 void 1121 dump_plat_pfn() 1122 { 1123 #ifdef __xpv 1124 pfn_t pfn = mmu_btop(xen_info->shared_info) | PFN_IS_FOREIGN_MFN; 1125 1126 if (!IN_XPV_PANIC()) 1127 dumpvp_write(&pfn, sizeof (pfn)); 1128 else 1129 dump_xpv_pfn(); 1130 #endif 1131 } 1132 1133 /*ARGSUSED*/ 1134 int 1135 dump_plat_data(void *dump_cbuf) 1136 { 1137 #ifdef __xpv 1138 uint32_t csize; 1139 int cnt; 1140 1141 if (!IN_XPV_PANIC()) { 1142 csize = (uint32_t)compress(HYPERVISOR_shared_info, dump_cbuf, 1143 PAGESIZE); 1144 dumpvp_write(&csize, sizeof (uint32_t)); 1145 dumpvp_write(dump_cbuf, csize); 1146 cnt = 1; 1147 } else { 1148 cnt = dump_xpv_data(dump_cbuf); 1149 } 1150 return (cnt); 1151 #else 1152 return (0); 1153 #endif 1154 } 1155 1156 /* 1157 * Calculates a linear address, given the CS selector and PC values 1158 * by looking up the %cs selector process's LDT or the CPU's GDT. 1159 * proc->p_ldtlock must be held across this call. 1160 */ 1161 int 1162 linear_pc(struct regs *rp, proc_t *p, caddr_t *linearp) 1163 { 1164 user_desc_t *descrp; 1165 caddr_t baseaddr; 1166 uint16_t idx = SELTOIDX(rp->r_cs); 1167 1168 ASSERT(rp->r_cs <= 0xFFFF); 1169 ASSERT(MUTEX_HELD(&p->p_ldtlock)); 1170 1171 if (SELISLDT(rp->r_cs)) { 1172 /* 1173 * Currently 64 bit processes cannot have private LDTs. 1174 */ 1175 ASSERT(p->p_model != DATAMODEL_LP64); 1176 1177 if (p->p_ldt == NULL) 1178 return (-1); 1179 1180 descrp = &p->p_ldt[idx]; 1181 baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp); 1182 1183 /* 1184 * Calculate the linear address (wraparound is not only ok, 1185 * it's expected behavior). The cast to uint32_t is because 1186 * LDT selectors are only allowed in 32-bit processes. 1187 */ 1188 *linearp = (caddr_t)(uintptr_t)(uint32_t)((uintptr_t)baseaddr + 1189 rp->r_pc); 1190 } else { 1191 #ifdef DEBUG 1192 descrp = &CPU->cpu_gdt[idx]; 1193 baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp); 1194 /* GDT-based descriptors' base addresses should always be 0 */ 1195 ASSERT(baseaddr == 0); 1196 #endif 1197 *linearp = (caddr_t)(uintptr_t)rp->r_pc; 1198 } 1199 1200 return (0); 1201 } 1202 1203 /* 1204 * The implementation of dtrace_linear_pc is similar to the that of 1205 * linear_pc, above, but here we acquire p_ldtlock before accessing 1206 * p_ldt. This implementation is used by the pid provider; we prefix 1207 * it with "dtrace_" to avoid inducing spurious tracing events. 1208 */ 1209 int 1210 dtrace_linear_pc(struct regs *rp, proc_t *p, caddr_t *linearp) 1211 { 1212 user_desc_t *descrp; 1213 caddr_t baseaddr; 1214 uint16_t idx = SELTOIDX(rp->r_cs); 1215 1216 ASSERT(rp->r_cs <= 0xFFFF); 1217 1218 if (SELISLDT(rp->r_cs)) { 1219 /* 1220 * Currently 64 bit processes cannot have private LDTs. 1221 */ 1222 ASSERT(p->p_model != DATAMODEL_LP64); 1223 1224 mutex_enter(&p->p_ldtlock); 1225 if (p->p_ldt == NULL) { 1226 mutex_exit(&p->p_ldtlock); 1227 return (-1); 1228 } 1229 descrp = &p->p_ldt[idx]; 1230 baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp); 1231 mutex_exit(&p->p_ldtlock); 1232 1233 /* 1234 * Calculate the linear address (wraparound is not only ok, 1235 * it's expected behavior). The cast to uint32_t is because 1236 * LDT selectors are only allowed in 32-bit processes. 1237 */ 1238 *linearp = (caddr_t)(uintptr_t)(uint32_t)((uintptr_t)baseaddr + 1239 rp->r_pc); 1240 } else { 1241 #ifdef DEBUG 1242 descrp = &CPU->cpu_gdt[idx]; 1243 baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp); 1244 /* GDT-based descriptors' base addresses should always be 0 */ 1245 ASSERT(baseaddr == 0); 1246 #endif 1247 *linearp = (caddr_t)(uintptr_t)rp->r_pc; 1248 } 1249 1250 return (0); 1251 } 1252