xref: /illumos-gate/usr/src/uts/i86pc/os/machdep.c (revision d8849d7dee03b84a3fa281ec65eb9e3d86d3756b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2017, Joyent, Inc.
25  */
26 /*
27  * Copyright (c) 2010, Intel Corporation.
28  * All rights reserved.
29  */
30 
31 #include <sys/types.h>
32 #include <sys/t_lock.h>
33 #include <sys/param.h>
34 #include <sys/segments.h>
35 #include <sys/sysmacros.h>
36 #include <sys/signal.h>
37 #include <sys/systm.h>
38 #include <sys/user.h>
39 #include <sys/mman.h>
40 #include <sys/vm.h>
41 
42 #include <sys/disp.h>
43 #include <sys/class.h>
44 
45 #include <sys/proc.h>
46 #include <sys/buf.h>
47 #include <sys/kmem.h>
48 
49 #include <sys/reboot.h>
50 #include <sys/uadmin.h>
51 #include <sys/callb.h>
52 
53 #include <sys/cred.h>
54 #include <sys/vnode.h>
55 #include <sys/file.h>
56 
57 #include <sys/procfs.h>
58 #include <sys/acct.h>
59 
60 #include <sys/vfs.h>
61 #include <sys/dnlc.h>
62 #include <sys/var.h>
63 #include <sys/cmn_err.h>
64 #include <sys/utsname.h>
65 #include <sys/debug.h>
66 
67 #include <sys/dumphdr.h>
68 #include <sys/bootconf.h>
69 #include <sys/varargs.h>
70 #include <sys/promif.h>
71 #include <sys/modctl.h>
72 
73 #include <sys/consdev.h>
74 #include <sys/frame.h>
75 
76 #include <sys/sunddi.h>
77 #include <sys/ddidmareq.h>
78 #include <sys/psw.h>
79 #include <sys/regset.h>
80 #include <sys/privregs.h>
81 #include <sys/clock.h>
82 #include <sys/tss.h>
83 #include <sys/cpu.h>
84 #include <sys/stack.h>
85 #include <sys/trap.h>
86 #include <sys/pic.h>
87 #include <vm/hat.h>
88 #include <vm/anon.h>
89 #include <vm/as.h>
90 #include <vm/page.h>
91 #include <vm/seg.h>
92 #include <vm/seg_kmem.h>
93 #include <vm/seg_map.h>
94 #include <vm/seg_vn.h>
95 #include <vm/seg_kp.h>
96 #include <vm/hat_i86.h>
97 #include <sys/swap.h>
98 #include <sys/thread.h>
99 #include <sys/sysconf.h>
100 #include <sys/vm_machparam.h>
101 #include <sys/archsystm.h>
102 #include <sys/machsystm.h>
103 #include <sys/machlock.h>
104 #include <sys/x_call.h>
105 #include <sys/instance.h>
106 
107 #include <sys/time.h>
108 #include <sys/smp_impldefs.h>
109 #include <sys/psm_types.h>
110 #include <sys/atomic.h>
111 #include <sys/panic.h>
112 #include <sys/cpuvar.h>
113 #include <sys/dtrace.h>
114 #include <sys/bl.h>
115 #include <sys/nvpair.h>
116 #include <sys/x86_archext.h>
117 #include <sys/pool_pset.h>
118 #include <sys/autoconf.h>
119 #include <sys/mem.h>
120 #include <sys/dumphdr.h>
121 #include <sys/compress.h>
122 #include <sys/cpu_module.h>
123 #if defined(__xpv)
124 #include <sys/hypervisor.h>
125 #include <sys/xpv_panic.h>
126 #endif
127 
128 #include <sys/fastboot.h>
129 #include <sys/machelf.h>
130 #include <sys/kobj.h>
131 #include <sys/multiboot.h>
132 
133 #ifdef	TRAPTRACE
134 #include <sys/traptrace.h>
135 #endif	/* TRAPTRACE */
136 
137 #include <c2/audit.h>
138 #include <sys/clock_impl.h>
139 
140 extern void audit_enterprom(int);
141 extern void audit_exitprom(int);
142 
143 /*
144  * Tunable to enable apix PSM; if set to 0, pcplusmp PSM will be used.
145  */
146 int	apix_enable = 1;
147 
148 int	apic_nvidia_io_max = 0;	/* no. of NVIDIA i/o apics */
149 
150 /*
151  * Occassionally the kernel knows better whether to power-off or reboot.
152  */
153 int force_shutdown_method = AD_UNKNOWN;
154 
155 /*
156  * The panicbuf array is used to record messages and state:
157  */
158 char panicbuf[PANICBUFSIZE];
159 
160 /*
161  * Flags to control Dynamic Reconfiguration features.
162  */
163 uint64_t plat_dr_options;
164 
165 /*
166  * Maximum physical address for memory DR operations.
167  */
168 uint64_t plat_dr_physmax;
169 
170 /*
171  * maxphys - used during physio
172  * klustsize - used for klustering by swapfs and specfs
173  */
174 int maxphys = 56 * 1024;    /* XXX See vm_subr.c - max b_count in physio */
175 int klustsize = 56 * 1024;
176 
177 caddr_t	p0_va;		/* Virtual address for accessing physical page 0 */
178 
179 /*
180  * defined here, though unused on x86,
181  * to make kstat_fr.c happy.
182  */
183 int vac;
184 
185 void debug_enter(char *);
186 
187 extern void pm_cfb_check_and_powerup(void);
188 extern void pm_cfb_rele(void);
189 
190 extern fastboot_info_t newkernel;
191 
192 /*
193  * Machine dependent code to reboot.
194  * "mdep" is interpreted as a character pointer; if non-null, it is a pointer
195  * to a string to be used as the argument string when rebooting.
196  *
197  * "invoke_cb" is a boolean. It is set to true when mdboot() can safely
198  * invoke CB_CL_MDBOOT callbacks before shutting the system down, i.e. when
199  * we are in a normal shutdown sequence (interrupts are not blocked, the
200  * system is not panic'ing or being suspended).
201  */
202 /*ARGSUSED*/
203 void
204 mdboot(int cmd, int fcn, char *mdep, boolean_t invoke_cb)
205 {
206 	processorid_t bootcpuid = 0;
207 	static int is_first_quiesce = 1;
208 	static int is_first_reset = 1;
209 	int reset_status = 0;
210 	static char fallback_str[] = "Falling back to regular reboot.\n";
211 
212 	if (fcn == AD_FASTREBOOT && !newkernel.fi_valid)
213 		fcn = AD_BOOT;
214 
215 	if (!panicstr) {
216 		kpreempt_disable();
217 		if (fcn == AD_FASTREBOOT) {
218 			mutex_enter(&cpu_lock);
219 			if (CPU_ACTIVE(cpu_get(bootcpuid))) {
220 				affinity_set(bootcpuid);
221 			}
222 			mutex_exit(&cpu_lock);
223 		} else {
224 			affinity_set(CPU_CURRENT);
225 		}
226 	}
227 
228 	if (force_shutdown_method != AD_UNKNOWN)
229 		fcn = force_shutdown_method;
230 
231 	/*
232 	 * XXX - rconsvp is set to NULL to ensure that output messages
233 	 * are sent to the underlying "hardware" device using the
234 	 * monitor's printf routine since we are in the process of
235 	 * either rebooting or halting the machine.
236 	 */
237 	rconsvp = NULL;
238 
239 	/*
240 	 * Print the reboot message now, before pausing other cpus.
241 	 * There is a race condition in the printing support that
242 	 * can deadlock multiprocessor machines.
243 	 */
244 	if (!(fcn == AD_HALT || fcn == AD_POWEROFF))
245 		prom_printf("rebooting...\n");
246 
247 	if (IN_XPV_PANIC())
248 		reset();
249 
250 	/*
251 	 * We can't bring up the console from above lock level, so do it now
252 	 */
253 	pm_cfb_check_and_powerup();
254 
255 	/* make sure there are no more changes to the device tree */
256 	devtree_freeze();
257 
258 	if (invoke_cb)
259 		(void) callb_execute_class(CB_CL_MDBOOT, 0);
260 
261 	/*
262 	 * Clear any unresolved UEs from memory.
263 	 */
264 	page_retire_mdboot();
265 
266 #if defined(__xpv)
267 	/*
268 	 * XXPV	Should probably think some more about how we deal
269 	 *	with panicing before it's really safe to panic.
270 	 *	On hypervisors, we reboot very quickly..  Perhaps panic
271 	 *	should only attempt to recover by rebooting if,
272 	 *	say, we were able to mount the root filesystem,
273 	 *	or if we successfully launched init(1m).
274 	 */
275 	if (panicstr && proc_init == NULL)
276 		(void) HYPERVISOR_shutdown(SHUTDOWN_poweroff);
277 #endif
278 	/*
279 	 * stop other cpus and raise our priority.  since there is only
280 	 * one active cpu after this, and our priority will be too high
281 	 * for us to be preempted, we're essentially single threaded
282 	 * from here on out.
283 	 */
284 	(void) spl6();
285 	if (!panicstr) {
286 		mutex_enter(&cpu_lock);
287 		pause_cpus(NULL, NULL);
288 		mutex_exit(&cpu_lock);
289 	}
290 
291 	/*
292 	 * If the system is panicking, the preloaded kernel is valid, and
293 	 * fastreboot_onpanic has been set, and the system has been up for
294 	 * longer than fastreboot_onpanic_uptime (default to 10 minutes),
295 	 * choose Fast Reboot.
296 	 */
297 	if (fcn == AD_BOOT && panicstr && newkernel.fi_valid &&
298 	    fastreboot_onpanic &&
299 	    (panic_lbolt - lbolt_at_boot) > fastreboot_onpanic_uptime) {
300 		fcn = AD_FASTREBOOT;
301 	}
302 
303 	/*
304 	 * Try to quiesce devices.
305 	 */
306 	if (is_first_quiesce) {
307 		/*
308 		 * Clear is_first_quiesce before calling quiesce_devices()
309 		 * so that if quiesce_devices() causes panics, it will not
310 		 * be invoked again.
311 		 */
312 		is_first_quiesce = 0;
313 
314 		quiesce_active = 1;
315 		quiesce_devices(ddi_root_node(), &reset_status);
316 		if (reset_status == -1) {
317 			if (fcn == AD_FASTREBOOT && !force_fastreboot) {
318 				prom_printf("Driver(s) not capable of fast "
319 				    "reboot.\n");
320 				prom_printf(fallback_str);
321 				fastreboot_capable = 0;
322 				fcn = AD_BOOT;
323 			} else if (fcn != AD_FASTREBOOT)
324 				fastreboot_capable = 0;
325 		}
326 		quiesce_active = 0;
327 	}
328 
329 	/*
330 	 * Try to reset devices. reset_leaves() should only be called
331 	 * a) when there are no other threads that could be accessing devices,
332 	 *    and
333 	 * b) on a system that's not capable of fast reboot (fastreboot_capable
334 	 *    being 0), or on a system where quiesce_devices() failed to
335 	 *    complete (quiesce_active being 1).
336 	 */
337 	if (is_first_reset && (!fastreboot_capable || quiesce_active)) {
338 		/*
339 		 * Clear is_first_reset before calling reset_devices()
340 		 * so that if reset_devices() causes panics, it will not
341 		 * be invoked again.
342 		 */
343 		is_first_reset = 0;
344 		reset_leaves();
345 	}
346 
347 	/* Verify newkernel checksum */
348 	if (fastreboot_capable && fcn == AD_FASTREBOOT &&
349 	    fastboot_cksum_verify(&newkernel) != 0) {
350 		fastreboot_capable = 0;
351 		prom_printf("Fast reboot: checksum failed for the new "
352 		    "kernel.\n");
353 		prom_printf(fallback_str);
354 	}
355 
356 	(void) spl8();
357 
358 	if (fastreboot_capable && fcn == AD_FASTREBOOT) {
359 		/*
360 		 * psm_shutdown is called within fast_reboot()
361 		 */
362 		fast_reboot();
363 	} else {
364 		(*psm_shutdownf)(cmd, fcn);
365 
366 		if (fcn == AD_HALT || fcn == AD_POWEROFF)
367 			halt((char *)NULL);
368 		else
369 			prom_reboot("");
370 	}
371 	/*NOTREACHED*/
372 }
373 
374 /* mdpreboot - may be called prior to mdboot while root fs still mounted */
375 /*ARGSUSED*/
376 void
377 mdpreboot(int cmd, int fcn, char *mdep)
378 {
379 	if (fcn == AD_FASTREBOOT && !fastreboot_capable) {
380 		fcn = AD_BOOT;
381 #ifdef	__xpv
382 		cmn_err(CE_WARN, "Fast reboot is not supported on xVM");
383 #else
384 		cmn_err(CE_WARN,
385 		    "Fast reboot is not supported on this platform%s",
386 		    fastreboot_nosup_message());
387 #endif
388 	}
389 
390 	if (fcn == AD_FASTREBOOT) {
391 		fastboot_load_kernel(mdep);
392 		if (!newkernel.fi_valid)
393 			fcn = AD_BOOT;
394 	}
395 
396 	(*psm_preshutdownf)(cmd, fcn);
397 }
398 
399 static void
400 stop_other_cpus(void)
401 {
402 	ulong_t s = clear_int_flag(); /* fast way to keep CPU from changing */
403 	cpuset_t xcset;
404 
405 	CPUSET_ALL_BUT(xcset, CPU->cpu_id);
406 	xc_priority(0, 0, 0, CPUSET2BV(xcset), (xc_func_t)mach_cpu_halt);
407 	restore_int_flag(s);
408 }
409 
410 /*
411  *	Machine dependent abort sequence handling
412  */
413 void
414 abort_sequence_enter(char *msg)
415 {
416 	if (abort_enable == 0) {
417 		if (AU_ZONE_AUDITING(GET_KCTX_GZ))
418 			audit_enterprom(0);
419 		return;
420 	}
421 	if (AU_ZONE_AUDITING(GET_KCTX_GZ))
422 		audit_enterprom(1);
423 	debug_enter(msg);
424 	if (AU_ZONE_AUDITING(GET_KCTX_GZ))
425 		audit_exitprom(1);
426 }
427 
428 /*
429  * Enter debugger.  Called when the user types ctrl-alt-d or whenever
430  * code wants to enter the debugger and possibly resume later.
431  *
432  * msg:	message to print, possibly NULL.
433  */
434 void
435 debug_enter(char *msg)
436 {
437 	if (dtrace_debugger_init != NULL)
438 		(*dtrace_debugger_init)();
439 
440 	if (msg != NULL || (boothowto & RB_DEBUG))
441 		prom_printf("\n");
442 
443 	if (msg != NULL)
444 		prom_printf("%s\n", msg);
445 
446 	if (boothowto & RB_DEBUG)
447 		kmdb_enter();
448 
449 	if (dtrace_debugger_fini != NULL)
450 		(*dtrace_debugger_fini)();
451 }
452 
453 void
454 reset(void)
455 {
456 	extern	void acpi_reset_system();
457 #if !defined(__xpv)
458 	ushort_t *bios_memchk;
459 
460 	/*
461 	 * Can't use psm_map_phys or acpi_reset_system before the hat is
462 	 * initialized.
463 	 */
464 	if (khat_running) {
465 		bios_memchk = (ushort_t *)psm_map_phys(0x472,
466 		    sizeof (ushort_t), PROT_READ | PROT_WRITE);
467 		if (bios_memchk)
468 			*bios_memchk = 0x1234;	/* bios memory check disable */
469 
470 		if (options_dip != NULL &&
471 		    ddi_prop_exists(DDI_DEV_T_ANY, ddi_root_node(), 0,
472 		    "efi-systab")) {
473 			if (bootops == NULL)
474 				acpi_reset_system();
475 			efi_reset();
476 		}
477 
478 		/*
479 		 * The problem with using stubs is that we can call
480 		 * acpi_reset_system only after the kernel is up and running.
481 		 *
482 		 * We should create a global state to keep track of how far
483 		 * up the kernel is but for the time being we will depend on
484 		 * bootops. bootops cleared in startup_end().
485 		 */
486 		if (bootops == NULL)
487 			acpi_reset_system();
488 	}
489 
490 	pc_reset();
491 #else
492 	if (IN_XPV_PANIC()) {
493 		if (khat_running && bootops == NULL) {
494 			acpi_reset_system();
495 		}
496 
497 		pc_reset();
498 	}
499 
500 	(void) HYPERVISOR_shutdown(SHUTDOWN_reboot);
501 	panic("HYPERVISOR_shutdown() failed");
502 #endif
503 	/*NOTREACHED*/
504 }
505 
506 /*
507  * Halt the machine and return to the monitor
508  */
509 void
510 halt(char *s)
511 {
512 	stop_other_cpus();	/* send stop signal to other CPUs */
513 	if (s)
514 		prom_printf("(%s) \n", s);
515 	prom_exit_to_mon();
516 	/*NOTREACHED*/
517 }
518 
519 /*
520  * Initiate interrupt redistribution.
521  */
522 void
523 i_ddi_intr_redist_all_cpus()
524 {
525 }
526 
527 /*
528  * XXX These probably ought to live somewhere else
529  * XXX They are called from mem.c
530  */
531 
532 /*
533  * Convert page frame number to an OBMEM page frame number
534  * (i.e. put in the type bits -- zero for this implementation)
535  */
536 pfn_t
537 impl_obmem_pfnum(pfn_t pf)
538 {
539 	return (pf);
540 }
541 
542 #ifdef	NM_DEBUG
543 int nmi_test = 0;	/* checked in intentry.s during clock int */
544 int nmtest = -1;
545 nmfunc1(int arg, struct regs *rp)
546 {
547 	printf("nmi called with arg = %x, regs = %x\n", arg, rp);
548 	nmtest += 50;
549 	if (arg == nmtest) {
550 		printf("ip = %x\n", rp->r_pc);
551 		return (1);
552 	}
553 	return (0);
554 }
555 
556 #endif
557 
558 #include <sys/bootsvcs.h>
559 
560 /* Hacked up initialization for initial kernel check out is HERE. */
561 /* The basic steps are: */
562 /*	kernel bootfuncs definition/initialization for KADB */
563 /*	kadb bootfuncs pointer initialization */
564 /*	putchar/getchar (interrupts disabled) */
565 
566 /* kadb bootfuncs pointer initialization */
567 
568 int
569 sysp_getchar()
570 {
571 	int i;
572 	ulong_t s;
573 
574 	if (cons_polledio == NULL) {
575 		/* Uh oh */
576 		prom_printf("getchar called with no console\n");
577 		for (;;)
578 			/* LOOP FOREVER */;
579 	}
580 
581 	s = clear_int_flag();
582 	i = cons_polledio->cons_polledio_getchar(
583 	    cons_polledio->cons_polledio_argument);
584 	restore_int_flag(s);
585 	return (i);
586 }
587 
588 void
589 sysp_putchar(int c)
590 {
591 	ulong_t s;
592 
593 	/*
594 	 * We have no alternative but to drop the output on the floor.
595 	 */
596 	if (cons_polledio == NULL ||
597 	    cons_polledio->cons_polledio_putchar == NULL)
598 		return;
599 
600 	s = clear_int_flag();
601 	cons_polledio->cons_polledio_putchar(
602 	    cons_polledio->cons_polledio_argument, c);
603 	restore_int_flag(s);
604 }
605 
606 int
607 sysp_ischar()
608 {
609 	int i;
610 	ulong_t s;
611 
612 	if (cons_polledio == NULL ||
613 	    cons_polledio->cons_polledio_ischar == NULL)
614 		return (0);
615 
616 	s = clear_int_flag();
617 	i = cons_polledio->cons_polledio_ischar(
618 	    cons_polledio->cons_polledio_argument);
619 	restore_int_flag(s);
620 	return (i);
621 }
622 
623 int
624 goany(void)
625 {
626 	prom_printf("Type any key to continue ");
627 	(void) prom_getchar();
628 	prom_printf("\n");
629 	return (1);
630 }
631 
632 static struct boot_syscalls kern_sysp = {
633 	sysp_getchar,	/*	unchar	(*getchar)();	7  */
634 	sysp_putchar,	/*	int	(*putchar)();	8  */
635 	sysp_ischar,	/*	int	(*ischar)();	9  */
636 };
637 
638 #if defined(__xpv)
639 int using_kern_polledio;
640 #endif
641 
642 void
643 kadb_uses_kernel()
644 {
645 	/*
646 	 * This routine is now totally misnamed, since it does not in fact
647 	 * control kadb's I/O; it only controls the kernel's prom_* I/O.
648 	 */
649 	sysp = &kern_sysp;
650 #if defined(__xpv)
651 	using_kern_polledio = 1;
652 #endif
653 }
654 
655 /*
656  *	the interface to the outside world
657  */
658 
659 /*
660  * poll_port -- wait for a register to achieve a
661  *		specific state.  Arguments are a mask of bits we care about,
662  *		and two sub-masks.  To return normally, all the bits in the
663  *		first sub-mask must be ON, all the bits in the second sub-
664  *		mask must be OFF.  If about seconds pass without the register
665  *		achieving the desired bit configuration, we return 1, else
666  *		0.
667  */
668 int
669 poll_port(ushort_t port, ushort_t mask, ushort_t onbits, ushort_t offbits)
670 {
671 	int i;
672 	ushort_t maskval;
673 
674 	for (i = 500000; i; i--) {
675 		maskval = inb(port) & mask;
676 		if (((maskval & onbits) == onbits) &&
677 		    ((maskval & offbits) == 0))
678 			return (0);
679 		drv_usecwait(10);
680 	}
681 	return (1);
682 }
683 
684 /*
685  * set_idle_cpu is called from idle() when a CPU becomes idle.
686  */
687 /*LINTED: static unused */
688 static uint_t last_idle_cpu;
689 
690 /*ARGSUSED*/
691 void
692 set_idle_cpu(int cpun)
693 {
694 	last_idle_cpu = cpun;
695 	(*psm_set_idle_cpuf)(cpun);
696 }
697 
698 /*
699  * unset_idle_cpu is called from idle() when a CPU is no longer idle.
700  */
701 /*ARGSUSED*/
702 void
703 unset_idle_cpu(int cpun)
704 {
705 	(*psm_unset_idle_cpuf)(cpun);
706 }
707 
708 /*
709  * This routine is almost correct now, but not quite.  It still needs the
710  * equivalent concept of "hres_last_tick", just like on the sparc side.
711  * The idea is to take a snapshot of the hi-res timer while doing the
712  * hrestime_adj updates under hres_lock in locore, so that the small
713  * interval between interrupt assertion and interrupt processing is
714  * accounted for correctly.  Once we have this, the code below should
715  * be modified to subtract off hres_last_tick rather than hrtime_base.
716  *
717  * I'd have done this myself, but I don't have source to all of the
718  * vendor-specific hi-res timer routines (grrr...).  The generic hook I
719  * need is something like "gethrtime_unlocked()", which would be just like
720  * gethrtime() but would assume that you're already holding CLOCK_LOCK().
721  * This is what the GET_HRTIME() macro is for on sparc (although it also
722  * serves the function of making time available without a function call
723  * so you don't take a register window overflow while traps are disabled).
724  */
725 void
726 pc_gethrestime(timestruc_t *tp)
727 {
728 	int lock_prev;
729 	timestruc_t now;
730 	int nslt;		/* nsec since last tick */
731 	int adj;		/* amount of adjustment to apply */
732 
733 loop:
734 	lock_prev = hres_lock;
735 	now = hrestime;
736 	nslt = (int)(gethrtime() - hres_last_tick);
737 	if (nslt < 0) {
738 		/*
739 		 * nslt < 0 means a tick came between sampling
740 		 * gethrtime() and hres_last_tick; restart the loop
741 		 */
742 
743 		goto loop;
744 	}
745 	now.tv_nsec += nslt;
746 	if (hrestime_adj != 0) {
747 		if (hrestime_adj > 0) {
748 			adj = (nslt >> ADJ_SHIFT);
749 			if (adj > hrestime_adj)
750 				adj = (int)hrestime_adj;
751 		} else {
752 			adj = -(nslt >> ADJ_SHIFT);
753 			if (adj < hrestime_adj)
754 				adj = (int)hrestime_adj;
755 		}
756 		now.tv_nsec += adj;
757 	}
758 	while ((unsigned long)now.tv_nsec >= NANOSEC) {
759 
760 		/*
761 		 * We might have a large adjustment or have been in the
762 		 * debugger for a long time; take care of (at most) four
763 		 * of those missed seconds (tv_nsec is 32 bits, so
764 		 * anything >4s will be wrapping around).  However,
765 		 * anything more than 2 seconds out of sync will trigger
766 		 * timedelta from clock() to go correct the time anyway,
767 		 * so do what we can, and let the big crowbar do the
768 		 * rest.  A similar correction while loop exists inside
769 		 * hres_tick(); in all cases we'd like tv_nsec to
770 		 * satisfy 0 <= tv_nsec < NANOSEC to avoid confusing
771 		 * user processes, but if tv_sec's a little behind for a
772 		 * little while, that's OK; time still monotonically
773 		 * increases.
774 		 */
775 
776 		now.tv_nsec -= NANOSEC;
777 		now.tv_sec++;
778 	}
779 	if ((hres_lock & ~1) != lock_prev)
780 		goto loop;
781 
782 	*tp = now;
783 }
784 
785 void
786 gethrestime_lasttick(timespec_t *tp)
787 {
788 	int s;
789 
790 	s = hr_clock_lock();
791 	*tp = hrestime;
792 	hr_clock_unlock(s);
793 }
794 
795 time_t
796 gethrestime_sec(void)
797 {
798 	timestruc_t now;
799 
800 	gethrestime(&now);
801 	return (now.tv_sec);
802 }
803 
804 /*
805  * Initialize a kernel thread's stack
806  */
807 
808 caddr_t
809 thread_stk_init(caddr_t stk)
810 {
811 	ASSERT(((uintptr_t)stk & (STACK_ALIGN - 1)) == 0);
812 	return (stk - SA(MINFRAME));
813 }
814 
815 /*
816  * Initialize lwp's kernel stack.
817  */
818 
819 #ifdef TRAPTRACE
820 /*
821  * There's a tricky interdependency here between use of sysenter and
822  * TRAPTRACE which needs recording to avoid future confusion (this is
823  * about the third time I've re-figured this out ..)
824  *
825  * Here's how debugging lcall works with TRAPTRACE.
826  *
827  * 1 We're in userland with a breakpoint on the lcall instruction.
828  * 2 We execute the instruction - the instruction pushes the userland
829  *   %ss, %esp, %efl, %cs, %eip on the stack and zips into the kernel
830  *   via the call gate.
831  * 3 The hardware raises a debug trap in kernel mode, the hardware
832  *   pushes %efl, %cs, %eip and gets to dbgtrap via the idt.
833  * 4 dbgtrap pushes the error code and trapno and calls cmntrap
834  * 5 cmntrap finishes building a trap frame
835  * 6 The TRACE_REGS macros in cmntrap copy a REGSIZE worth chunk
836  *   off the stack into the traptrace buffer.
837  *
838  * This means that the traptrace buffer contains the wrong values in
839  * %esp and %ss, but everything else in there is correct.
840  *
841  * Here's how debugging sysenter works with TRAPTRACE.
842  *
843  * a We're in userland with a breakpoint on the sysenter instruction.
844  * b We execute the instruction - the instruction pushes -nothing-
845  *   on the stack, but sets %cs, %eip, %ss, %esp to prearranged
846  *   values to take us to sys_sysenter, at the top of the lwp's
847  *   stack.
848  * c goto 3
849  *
850  * At this point, because we got into the kernel without the requisite
851  * five pushes on the stack, if we didn't make extra room, we'd
852  * end up with the TRACE_REGS macro fetching the saved %ss and %esp
853  * values from negative (unmapped) stack addresses -- which really bites.
854  * That's why we do the '-= 8' below.
855  *
856  * XXX	Note that reading "up" lwp0's stack works because t0 is declared
857  *	right next to t0stack in locore.s
858  */
859 #endif
860 
861 caddr_t
862 lwp_stk_init(klwp_t *lwp, caddr_t stk)
863 {
864 	caddr_t oldstk;
865 	struct pcb *pcb = &lwp->lwp_pcb;
866 
867 	oldstk = stk;
868 	stk -= SA(sizeof (struct regs) + SA(MINFRAME));
869 #ifdef TRAPTRACE
870 	stk -= 2 * sizeof (greg_t); /* space for phony %ss:%sp (see above) */
871 #endif
872 	stk = (caddr_t)((uintptr_t)stk & ~(STACK_ALIGN - 1ul));
873 	bzero(stk, oldstk - stk);
874 	lwp->lwp_regs = (void *)(stk + SA(MINFRAME));
875 
876 	/*
877 	 * Arrange that the virtualized %fs and %gs GDT descriptors
878 	 * have a well-defined initial state (present, ring 3
879 	 * and of type data).
880 	 */
881 #if defined(__amd64)
882 	if (lwp_getdatamodel(lwp) == DATAMODEL_NATIVE)
883 		pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc;
884 	else
885 		pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_u32desc;
886 #elif defined(__i386)
887 	pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc;
888 #endif	/* __i386 */
889 	lwp_installctx(lwp);
890 	return (stk);
891 }
892 
893 /*
894  * Use this opportunity to free any dynamically allocated fp storage.
895  */
896 void
897 lwp_stk_fini(klwp_t *lwp)
898 {
899 	fp_lwp_cleanup(lwp);
900 }
901 
902 void
903 lwp_fp_init(klwp_t *lwp)
904 {
905 	fp_lwp_init(lwp);
906 }
907 
908 /*
909  * If we're not the panic CPU, we wait in panic_idle for reboot.
910  */
911 void
912 panic_idle(void)
913 {
914 	splx(ipltospl(CLOCK_LEVEL));
915 	(void) setjmp(&curthread->t_pcb);
916 
917 	dumpsys_helper();
918 
919 #ifndef __xpv
920 	for (;;)
921 		i86_halt();
922 #else
923 	for (;;)
924 		;
925 #endif
926 }
927 
928 /*
929  * Stop the other CPUs by cross-calling them and forcing them to enter
930  * the panic_idle() loop above.
931  */
932 /*ARGSUSED*/
933 void
934 panic_stopcpus(cpu_t *cp, kthread_t *t, int spl)
935 {
936 	processorid_t i;
937 	cpuset_t xcset;
938 
939 	/*
940 	 * In the case of a Xen panic, the hypervisor has already stopped
941 	 * all of the CPUs.
942 	 */
943 	if (!IN_XPV_PANIC()) {
944 		(void) splzs();
945 
946 		CPUSET_ALL_BUT(xcset, cp->cpu_id);
947 		xc_priority(0, 0, 0, CPUSET2BV(xcset), (xc_func_t)panic_idle);
948 	}
949 
950 	for (i = 0; i < NCPU; i++) {
951 		if (i != cp->cpu_id && cpu[i] != NULL &&
952 		    (cpu[i]->cpu_flags & CPU_EXISTS))
953 			cpu[i]->cpu_flags |= CPU_QUIESCED;
954 	}
955 }
956 
957 /*
958  * Platform callback following each entry to panicsys().
959  */
960 /*ARGSUSED*/
961 void
962 panic_enter_hw(int spl)
963 {
964 	/* Nothing to do here */
965 }
966 
967 /*
968  * Platform-specific code to execute after panicstr is set: we invoke
969  * the PSM entry point to indicate that a panic has occurred.
970  */
971 /*ARGSUSED*/
972 void
973 panic_quiesce_hw(panic_data_t *pdp)
974 {
975 	psm_notifyf(PSM_PANIC_ENTER);
976 
977 	cmi_panic_callback();
978 
979 #ifdef	TRAPTRACE
980 	/*
981 	 * Turn off TRAPTRACE
982 	 */
983 	TRAPTRACE_FREEZE;
984 #endif	/* TRAPTRACE */
985 }
986 
987 /*
988  * Platform callback prior to writing crash dump.
989  */
990 /*ARGSUSED*/
991 void
992 panic_dump_hw(int spl)
993 {
994 	/* Nothing to do here */
995 }
996 
997 void *
998 plat_traceback(void *fpreg)
999 {
1000 #ifdef __xpv
1001 	if (IN_XPV_PANIC())
1002 		return (xpv_traceback(fpreg));
1003 #endif
1004 	return (fpreg);
1005 }
1006 
1007 /*ARGSUSED*/
1008 void
1009 plat_tod_fault(enum tod_fault_type tod_bad)
1010 {}
1011 
1012 /*ARGSUSED*/
1013 int
1014 blacklist(int cmd, const char *scheme, nvlist_t *fmri, const char *class)
1015 {
1016 	return (ENOTSUP);
1017 }
1018 
1019 /*
1020  * The underlying console output routines are protected by raising IPL in case
1021  * we are still calling into the early boot services.  Once we start calling
1022  * the kernel console emulator, it will disable interrupts completely during
1023  * character rendering (see sysp_putchar, for example).  Refer to the comments
1024  * and code in common/os/console.c for more information on these callbacks.
1025  */
1026 /*ARGSUSED*/
1027 int
1028 console_enter(int busy)
1029 {
1030 	return (splzs());
1031 }
1032 
1033 /*ARGSUSED*/
1034 void
1035 console_exit(int busy, int spl)
1036 {
1037 	splx(spl);
1038 }
1039 
1040 /*
1041  * Allocate a region of virtual address space, unmapped.
1042  * Stubbed out except on sparc, at least for now.
1043  */
1044 /*ARGSUSED*/
1045 void *
1046 boot_virt_alloc(void *addr, size_t size)
1047 {
1048 	return (addr);
1049 }
1050 
1051 volatile unsigned long	tenmicrodata;
1052 
1053 void
1054 tenmicrosec(void)
1055 {
1056 	extern int gethrtime_hires;
1057 
1058 	if (gethrtime_hires) {
1059 		hrtime_t start, end;
1060 		start = end =  gethrtime();
1061 		while ((end - start) < (10 * (NANOSEC / MICROSEC))) {
1062 			SMT_PAUSE();
1063 			end = gethrtime();
1064 		}
1065 	} else {
1066 #if defined(__xpv)
1067 		hrtime_t newtime;
1068 
1069 		newtime = xpv_gethrtime() + 10000; /* now + 10 us */
1070 		while (xpv_gethrtime() < newtime)
1071 			SMT_PAUSE();
1072 #else	/* __xpv */
1073 		int i;
1074 
1075 		/*
1076 		 * Artificial loop to induce delay.
1077 		 */
1078 		for (i = 0; i < microdata; i++)
1079 			tenmicrodata = microdata;
1080 #endif	/* __xpv */
1081 	}
1082 }
1083 
1084 /*
1085  * get_cpu_mstate() is passed an array of timestamps, NCMSTATES
1086  * long, and it fills in the array with the time spent on cpu in
1087  * each of the mstates, where time is returned in nsec.
1088  *
1089  * No guarantee is made that the returned values in times[] will
1090  * monotonically increase on sequential calls, although this will
1091  * be true in the long run. Any such guarantee must be handled by
1092  * the caller, if needed. This can happen if we fail to account
1093  * for elapsed time due to a generation counter conflict, yet we
1094  * did account for it on a prior call (see below).
1095  *
1096  * The complication is that the cpu in question may be updating
1097  * its microstate at the same time that we are reading it.
1098  * Because the microstate is only updated when the CPU's state
1099  * changes, the values in cpu_intracct[] can be indefinitely out
1100  * of date. To determine true current values, it is necessary to
1101  * compare the current time with cpu_mstate_start, and add the
1102  * difference to times[cpu_mstate].
1103  *
1104  * This can be a problem if those values are changing out from
1105  * under us. Because the code path in new_cpu_mstate() is
1106  * performance critical, we have not added a lock to it. Instead,
1107  * we have added a generation counter. Before beginning
1108  * modifications, the counter is set to 0. After modifications,
1109  * it is set to the old value plus one.
1110  *
1111  * get_cpu_mstate() will not consider the values of cpu_mstate
1112  * and cpu_mstate_start to be usable unless the value of
1113  * cpu_mstate_gen is both non-zero and unchanged, both before and
1114  * after reading the mstate information. Note that we must
1115  * protect against out-of-order loads around accesses to the
1116  * generation counter. Also, this is a best effort approach in
1117  * that we do not retry should the counter be found to have
1118  * changed.
1119  *
1120  * cpu_intracct[] is used to identify time spent in each CPU
1121  * mstate while handling interrupts. Such time should be reported
1122  * against system time, and so is subtracted out from its
1123  * corresponding cpu_acct[] time and added to
1124  * cpu_acct[CMS_SYSTEM].
1125  */
1126 
1127 void
1128 get_cpu_mstate(cpu_t *cpu, hrtime_t *times)
1129 {
1130 	int i;
1131 	hrtime_t now, start;
1132 	uint16_t gen;
1133 	uint16_t state;
1134 	hrtime_t intracct[NCMSTATES];
1135 
1136 	/*
1137 	 * Load all volatile state under the protection of membar.
1138 	 * cpu_acct[cpu_mstate] must be loaded to avoid double counting
1139 	 * of (now - cpu_mstate_start) by a change in CPU mstate that
1140 	 * arrives after we make our last check of cpu_mstate_gen.
1141 	 */
1142 
1143 	now = gethrtime_unscaled();
1144 	gen = cpu->cpu_mstate_gen;
1145 
1146 	membar_consumer();	/* guarantee load ordering */
1147 	start = cpu->cpu_mstate_start;
1148 	state = cpu->cpu_mstate;
1149 	for (i = 0; i < NCMSTATES; i++) {
1150 		intracct[i] = cpu->cpu_intracct[i];
1151 		times[i] = cpu->cpu_acct[i];
1152 	}
1153 	membar_consumer();	/* guarantee load ordering */
1154 
1155 	if (gen != 0 && gen == cpu->cpu_mstate_gen && now > start)
1156 		times[state] += now - start;
1157 
1158 	for (i = 0; i < NCMSTATES; i++) {
1159 		if (i == CMS_SYSTEM)
1160 			continue;
1161 		times[i] -= intracct[i];
1162 		if (times[i] < 0) {
1163 			intracct[i] += times[i];
1164 			times[i] = 0;
1165 		}
1166 		times[CMS_SYSTEM] += intracct[i];
1167 		scalehrtime(&times[i]);
1168 	}
1169 	scalehrtime(&times[CMS_SYSTEM]);
1170 }
1171 
1172 /*
1173  * This is a version of the rdmsr instruction that allows
1174  * an error code to be returned in the case of failure.
1175  */
1176 int
1177 checked_rdmsr(uint_t msr, uint64_t *value)
1178 {
1179 	if (!is_x86_feature(x86_featureset, X86FSET_MSR))
1180 		return (ENOTSUP);
1181 	*value = rdmsr(msr);
1182 	return (0);
1183 }
1184 
1185 /*
1186  * This is a version of the wrmsr instruction that allows
1187  * an error code to be returned in the case of failure.
1188  */
1189 int
1190 checked_wrmsr(uint_t msr, uint64_t value)
1191 {
1192 	if (!is_x86_feature(x86_featureset, X86FSET_MSR))
1193 		return (ENOTSUP);
1194 	wrmsr(msr, value);
1195 	return (0);
1196 }
1197 
1198 /*
1199  * The mem driver's usual method of using hat_devload() to establish a
1200  * temporary mapping will not work for foreign pages mapped into this
1201  * domain or for the special hypervisor-provided pages.  For the foreign
1202  * pages, we often don't know which domain owns them, so we can't ask the
1203  * hypervisor to set up a new mapping.  For the other pages, we don't have
1204  * a pfn, so we can't create a new PTE.  For these special cases, we do a
1205  * direct uiomove() from the existing kernel virtual address.
1206  */
1207 /*ARGSUSED*/
1208 int
1209 plat_mem_do_mmio(struct uio *uio, enum uio_rw rw)
1210 {
1211 #if defined(__xpv)
1212 	void *va = (void *)(uintptr_t)uio->uio_loffset;
1213 	off_t pageoff = uio->uio_loffset & PAGEOFFSET;
1214 	size_t nbytes = MIN((size_t)(PAGESIZE - pageoff),
1215 	    (size_t)uio->uio_iov->iov_len);
1216 
1217 	if ((rw == UIO_READ &&
1218 	    (va == HYPERVISOR_shared_info || va == xen_info)) ||
1219 	    (pfn_is_foreign(hat_getpfnum(kas.a_hat, va))))
1220 		return (uiomove(va, nbytes, rw, uio));
1221 #endif
1222 	return (ENOTSUP);
1223 }
1224 
1225 pgcnt_t
1226 num_phys_pages()
1227 {
1228 	pgcnt_t npages = 0;
1229 	struct memlist *mp;
1230 
1231 #if defined(__xpv)
1232 	if (DOMAIN_IS_INITDOMAIN(xen_info))
1233 		return (xpv_nr_phys_pages());
1234 #endif /* __xpv */
1235 
1236 	for (mp = phys_install; mp != NULL; mp = mp->ml_next)
1237 		npages += mp->ml_size >> PAGESHIFT;
1238 
1239 	return (npages);
1240 }
1241 
1242 /* cpu threshold for compressed dumps */
1243 #ifdef _LP64
1244 uint_t dump_plat_mincpu_default = DUMP_PLAT_X86_64_MINCPU;
1245 #else
1246 uint_t dump_plat_mincpu_default = DUMP_PLAT_X86_32_MINCPU;
1247 #endif
1248 
1249 int
1250 dump_plat_addr()
1251 {
1252 #ifdef __xpv
1253 	pfn_t pfn = mmu_btop(xen_info->shared_info) | PFN_IS_FOREIGN_MFN;
1254 	mem_vtop_t mem_vtop;
1255 	int cnt;
1256 
1257 	/*
1258 	 * On the hypervisor, we want to dump the page with shared_info on it.
1259 	 */
1260 	if (!IN_XPV_PANIC()) {
1261 		mem_vtop.m_as = &kas;
1262 		mem_vtop.m_va = HYPERVISOR_shared_info;
1263 		mem_vtop.m_pfn = pfn;
1264 		dumpvp_write(&mem_vtop, sizeof (mem_vtop_t));
1265 		cnt = 1;
1266 	} else {
1267 		cnt = dump_xpv_addr();
1268 	}
1269 	return (cnt);
1270 #else
1271 	return (0);
1272 #endif
1273 }
1274 
1275 void
1276 dump_plat_pfn()
1277 {
1278 #ifdef __xpv
1279 	pfn_t pfn = mmu_btop(xen_info->shared_info) | PFN_IS_FOREIGN_MFN;
1280 
1281 	if (!IN_XPV_PANIC())
1282 		dumpvp_write(&pfn, sizeof (pfn));
1283 	else
1284 		dump_xpv_pfn();
1285 #endif
1286 }
1287 
1288 /*ARGSUSED*/
1289 int
1290 dump_plat_data(void *dump_cbuf)
1291 {
1292 #ifdef __xpv
1293 	uint32_t csize;
1294 	int cnt;
1295 
1296 	if (!IN_XPV_PANIC()) {
1297 		csize = (uint32_t)compress(HYPERVISOR_shared_info, dump_cbuf,
1298 		    PAGESIZE);
1299 		dumpvp_write(&csize, sizeof (uint32_t));
1300 		dumpvp_write(dump_cbuf, csize);
1301 		cnt = 1;
1302 	} else {
1303 		cnt = dump_xpv_data(dump_cbuf);
1304 	}
1305 	return (cnt);
1306 #else
1307 	return (0);
1308 #endif
1309 }
1310 
1311 /*
1312  * Calculates a linear address, given the CS selector and PC values
1313  * by looking up the %cs selector process's LDT or the CPU's GDT.
1314  * proc->p_ldtlock must be held across this call.
1315  */
1316 int
1317 linear_pc(struct regs *rp, proc_t *p, caddr_t *linearp)
1318 {
1319 	user_desc_t	*descrp;
1320 	caddr_t		baseaddr;
1321 	uint16_t	idx = SELTOIDX(rp->r_cs);
1322 
1323 	ASSERT(rp->r_cs <= 0xFFFF);
1324 	ASSERT(MUTEX_HELD(&p->p_ldtlock));
1325 
1326 	if (SELISLDT(rp->r_cs)) {
1327 		/*
1328 		 * Currently 64 bit processes cannot have private LDTs.
1329 		 */
1330 		ASSERT(p->p_model != DATAMODEL_LP64);
1331 
1332 		if (p->p_ldt == NULL)
1333 			return (-1);
1334 
1335 		descrp = &p->p_ldt[idx];
1336 		baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp);
1337 
1338 		/*
1339 		 * Calculate the linear address (wraparound is not only ok,
1340 		 * it's expected behavior).  The cast to uint32_t is because
1341 		 * LDT selectors are only allowed in 32-bit processes.
1342 		 */
1343 		*linearp = (caddr_t)(uintptr_t)(uint32_t)((uintptr_t)baseaddr +
1344 		    rp->r_pc);
1345 	} else {
1346 #ifdef DEBUG
1347 		descrp = &CPU->cpu_gdt[idx];
1348 		baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp);
1349 		/* GDT-based descriptors' base addresses should always be 0 */
1350 		ASSERT(baseaddr == 0);
1351 #endif
1352 		*linearp = (caddr_t)(uintptr_t)rp->r_pc;
1353 	}
1354 
1355 	return (0);
1356 }
1357 
1358 /*
1359  * The implementation of dtrace_linear_pc is similar to the that of
1360  * linear_pc, above, but here we acquire p_ldtlock before accessing
1361  * p_ldt.  This implementation is used by the pid provider; we prefix
1362  * it with "dtrace_" to avoid inducing spurious tracing events.
1363  */
1364 int
1365 dtrace_linear_pc(struct regs *rp, proc_t *p, caddr_t *linearp)
1366 {
1367 	user_desc_t	*descrp;
1368 	caddr_t		baseaddr;
1369 	uint16_t	idx = SELTOIDX(rp->r_cs);
1370 
1371 	ASSERT(rp->r_cs <= 0xFFFF);
1372 
1373 	if (SELISLDT(rp->r_cs)) {
1374 		/*
1375 		 * Currently 64 bit processes cannot have private LDTs.
1376 		 */
1377 		ASSERT(p->p_model != DATAMODEL_LP64);
1378 
1379 		mutex_enter(&p->p_ldtlock);
1380 		if (p->p_ldt == NULL) {
1381 			mutex_exit(&p->p_ldtlock);
1382 			return (-1);
1383 		}
1384 		descrp = &p->p_ldt[idx];
1385 		baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp);
1386 		mutex_exit(&p->p_ldtlock);
1387 
1388 		/*
1389 		 * Calculate the linear address (wraparound is not only ok,
1390 		 * it's expected behavior).  The cast to uint32_t is because
1391 		 * LDT selectors are only allowed in 32-bit processes.
1392 		 */
1393 		*linearp = (caddr_t)(uintptr_t)(uint32_t)((uintptr_t)baseaddr +
1394 		    rp->r_pc);
1395 	} else {
1396 #ifdef DEBUG
1397 		descrp = &CPU->cpu_gdt[idx];
1398 		baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp);
1399 		/* GDT-based descriptors' base addresses should always be 0 */
1400 		ASSERT(baseaddr == 0);
1401 #endif
1402 		*linearp = (caddr_t)(uintptr_t)rp->r_pc;
1403 	}
1404 
1405 	return (0);
1406 }
1407 
1408 /*
1409  * We need to post a soft interrupt to reprogram the lbolt cyclic when
1410  * switching from event to cyclic driven lbolt. The following code adds
1411  * and posts the softint for x86.
1412  */
1413 static ddi_softint_hdl_impl_t lbolt_softint_hdl =
1414 	{0, 0, NULL, NULL, 0, NULL, NULL, NULL};
1415 
1416 void
1417 lbolt_softint_add(void)
1418 {
1419 	(void) add_avsoftintr((void *)&lbolt_softint_hdl, LOCK_LEVEL,
1420 	    (avfunc)lbolt_ev_to_cyclic, "lbolt_ev_to_cyclic", NULL, NULL);
1421 }
1422 
1423 void
1424 lbolt_softint_post(void)
1425 {
1426 	(*setsoftint)(CBE_LOCK_PIL, lbolt_softint_hdl.ih_pending);
1427 }
1428 
1429 boolean_t
1430 plat_dr_check_capability(uint64_t features)
1431 {
1432 	return ((plat_dr_options & features) == features);
1433 }
1434 
1435 boolean_t
1436 plat_dr_support_cpu(void)
1437 {
1438 	return (plat_dr_options & PLAT_DR_FEATURE_CPU);
1439 }
1440 
1441 boolean_t
1442 plat_dr_support_memory(void)
1443 {
1444 	return (plat_dr_options & PLAT_DR_FEATURE_MEMORY);
1445 }
1446 
1447 void
1448 plat_dr_enable_capability(uint64_t features)
1449 {
1450 	atomic_or_64(&plat_dr_options, features);
1451 }
1452 
1453 void
1454 plat_dr_disable_capability(uint64_t features)
1455 {
1456 	atomic_and_64(&plat_dr_options, ~features);
1457 }
1458