1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/types.h> 30 #include <sys/t_lock.h> 31 #include <sys/param.h> 32 #include <sys/sysmacros.h> 33 #include <sys/signal.h> 34 #include <sys/systm.h> 35 #include <sys/user.h> 36 #include <sys/mman.h> 37 #include <sys/vm.h> 38 39 #include <sys/disp.h> 40 #include <sys/class.h> 41 42 #include <sys/proc.h> 43 #include <sys/buf.h> 44 #include <sys/kmem.h> 45 46 #include <sys/reboot.h> 47 #include <sys/uadmin.h> 48 #include <sys/callb.h> 49 50 #include <sys/cred.h> 51 #include <sys/vnode.h> 52 #include <sys/file.h> 53 54 #include <sys/procfs.h> 55 #include <sys/acct.h> 56 57 #include <sys/vfs.h> 58 #include <sys/dnlc.h> 59 #include <sys/var.h> 60 #include <sys/cmn_err.h> 61 #include <sys/utsname.h> 62 #include <sys/debug.h> 63 #include <sys/kdi_impl.h> 64 65 #include <sys/dumphdr.h> 66 #include <sys/bootconf.h> 67 #include <sys/varargs.h> 68 #include <sys/promif.h> 69 #include <sys/modctl.h> 70 71 #include <sys/consdev.h> 72 #include <sys/frame.h> 73 74 #include <sys/sunddi.h> 75 #include <sys/ddidmareq.h> 76 #include <sys/psw.h> 77 #include <sys/regset.h> 78 #include <sys/privregs.h> 79 #include <sys/clock.h> 80 #include <sys/tss.h> 81 #include <sys/cpu.h> 82 #include <sys/stack.h> 83 #include <sys/trap.h> 84 #include <sys/pic.h> 85 #include <sys/mmu.h> 86 #include <vm/hat.h> 87 #include <vm/anon.h> 88 #include <vm/as.h> 89 #include <vm/page.h> 90 #include <vm/seg.h> 91 #include <vm/seg_kmem.h> 92 #include <vm/seg_map.h> 93 #include <vm/seg_vn.h> 94 #include <vm/seg_kp.h> 95 #include <vm/hat_i86.h> 96 #include <sys/swap.h> 97 #include <sys/thread.h> 98 #include <sys/sysconf.h> 99 #include <sys/vm_machparam.h> 100 #include <sys/archsystm.h> 101 #include <sys/machsystm.h> 102 #include <sys/machlock.h> 103 #include <sys/x_call.h> 104 #include <sys/instance.h> 105 106 #include <sys/time.h> 107 #include <sys/smp_impldefs.h> 108 #include <sys/psm_types.h> 109 #include <sys/atomic.h> 110 #include <sys/panic.h> 111 #include <sys/cpuvar.h> 112 #include <sys/dtrace.h> 113 #include <sys/bl.h> 114 #include <sys/nvpair.h> 115 #include <sys/x86_archext.h> 116 #include <sys/pool_pset.h> 117 #include <sys/autoconf.h> 118 #include <sys/kdi.h> 119 120 #ifdef TRAPTRACE 121 #include <sys/traptrace.h> 122 #endif /* TRAPTRACE */ 123 124 #ifdef C2_AUDIT 125 extern void audit_enterprom(int); 126 extern void audit_exitprom(int); 127 #endif 128 129 /* 130 * The panicbuf array is used to record messages and state: 131 */ 132 char panicbuf[PANICBUFSIZE]; 133 134 /* 135 * maxphys - used during physio 136 * klustsize - used for klustering by swapfs and specfs 137 */ 138 int maxphys = 56 * 1024; /* XXX See vm_subr.c - max b_count in physio */ 139 int klustsize = 56 * 1024; 140 141 caddr_t p0_va; /* Virtual address for accessing physical page 0 */ 142 143 /* 144 * defined here, though unused on x86, 145 * to make kstat_fr.c happy. 146 */ 147 int vac; 148 149 void stop_other_cpus(); 150 void debug_enter(char *); 151 152 extern void pm_cfb_check_and_powerup(void); 153 extern void pm_cfb_rele(void); 154 155 /* 156 * Machine dependent code to reboot. 157 * "mdep" is interpreted as a character pointer; if non-null, it is a pointer 158 * to a string to be used as the argument string when rebooting. 159 * 160 * "invoke_cb" is a boolean. It is set to true when mdboot() can safely 161 * invoke CB_CL_MDBOOT callbacks before shutting the system down, i.e. when 162 * we are in a normal shutdown sequence (interrupts are not blocked, the 163 * system is not panic'ing or being suspended). 164 */ 165 /*ARGSUSED*/ 166 void 167 mdboot(int cmd, int fcn, char *mdep, boolean_t invoke_cb) 168 { 169 extern void mtrr_resync(void); 170 171 if (!panicstr) { 172 kpreempt_disable(); 173 affinity_set(CPU_CURRENT); 174 } 175 176 /* 177 * XXX - rconsvp is set to NULL to ensure that output messages 178 * are sent to the underlying "hardware" device using the 179 * monitor's printf routine since we are in the process of 180 * either rebooting or halting the machine. 181 */ 182 rconsvp = NULL; 183 184 /* 185 * Print the reboot message now, before pausing other cpus. 186 * There is a race condition in the printing support that 187 * can deadlock multiprocessor machines. 188 */ 189 if (!(fcn == AD_HALT || fcn == AD_POWEROFF)) 190 prom_printf("rebooting...\n"); 191 192 /* 193 * We can't bring up the console from above lock level, so do it now 194 */ 195 pm_cfb_check_and_powerup(); 196 197 /* make sure there are no more changes to the device tree */ 198 devtree_freeze(); 199 200 if (invoke_cb) 201 (void) callb_execute_class(CB_CL_MDBOOT, NULL); 202 203 page_retire_hunt(page_retire_mdboot_cb); 204 205 /* 206 * stop other cpus and raise our priority. since there is only 207 * one active cpu after this, and our priority will be too high 208 * for us to be preempted, we're essentially single threaded 209 * from here on out. 210 */ 211 (void) spl6(); 212 if (!panicstr) { 213 mutex_enter(&cpu_lock); 214 pause_cpus(NULL); 215 mutex_exit(&cpu_lock); 216 } 217 218 /* 219 * try and reset leaf devices. reset_leaves() should only 220 * be called when there are no other threads that could be 221 * accessing devices 222 */ 223 reset_leaves(); 224 225 (void) spl8(); 226 (*psm_shutdownf)(cmd, fcn); 227 228 mtrr_resync(); 229 230 if (fcn == AD_HALT || fcn == AD_POWEROFF) 231 halt((char *)NULL); 232 else 233 prom_reboot(""); 234 /*NOTREACHED*/ 235 } 236 237 /* mdpreboot - may be called prior to mdboot while root fs still mounted */ 238 /*ARGSUSED*/ 239 void 240 mdpreboot(int cmd, int fcn, char *mdep) 241 { 242 (*psm_preshutdownf)(cmd, fcn); 243 } 244 245 void 246 idle_other_cpus() 247 { 248 int cpuid = CPU->cpu_id; 249 cpuset_t xcset; 250 251 ASSERT(cpuid < NCPU); 252 CPUSET_ALL_BUT(xcset, cpuid); 253 xc_capture_cpus(xcset); 254 } 255 256 void 257 resume_other_cpus() 258 { 259 ASSERT(CPU->cpu_id < NCPU); 260 261 xc_release_cpus(); 262 } 263 264 extern void mp_halt(char *); 265 266 void 267 stop_other_cpus() 268 { 269 int cpuid = CPU->cpu_id; 270 cpuset_t xcset; 271 272 ASSERT(cpuid < NCPU); 273 274 /* 275 * xc_trycall will attempt to make all other CPUs execute mp_halt, 276 * and will return immediately regardless of whether or not it was 277 * able to make them do it. 278 */ 279 CPUSET_ALL_BUT(xcset, cpuid); 280 xc_trycall(NULL, NULL, NULL, xcset, (int (*)())mp_halt); 281 } 282 283 /* 284 * Machine dependent abort sequence handling 285 */ 286 void 287 abort_sequence_enter(char *msg) 288 { 289 if (abort_enable == 0) { 290 #ifdef C2_AUDIT 291 if (audit_active) 292 audit_enterprom(0); 293 #endif /* C2_AUDIT */ 294 return; 295 } 296 #ifdef C2_AUDIT 297 if (audit_active) 298 audit_enterprom(1); 299 #endif /* C2_AUDIT */ 300 debug_enter(msg); 301 #ifdef C2_AUDIT 302 if (audit_active) 303 audit_exitprom(1); 304 #endif /* C2_AUDIT */ 305 } 306 307 /* 308 * Enter debugger. Called when the user types ctrl-alt-d or whenever 309 * code wants to enter the debugger and possibly resume later. 310 */ 311 void 312 debug_enter( 313 char *msg) /* message to print, possibly NULL */ 314 { 315 if (dtrace_debugger_init != NULL) 316 (*dtrace_debugger_init)(); 317 318 if (msg) 319 prom_printf("%s\n", msg); 320 321 if (boothowto & RB_DEBUG) 322 kdi_dvec_enter(); 323 324 if (dtrace_debugger_fini != NULL) 325 (*dtrace_debugger_fini)(); 326 } 327 328 void 329 reset(void) 330 { 331 ushort_t *bios_memchk; 332 333 /* 334 * Can't use psm_map_phys before the hat is initialized. 335 */ 336 if (khat_running) { 337 bios_memchk = (ushort_t *)psm_map_phys(0x472, 338 sizeof (ushort_t), PROT_READ | PROT_WRITE); 339 if (bios_memchk) 340 *bios_memchk = 0x1234; /* bios memory check disable */ 341 } 342 343 pc_reset(); 344 /*NOTREACHED*/ 345 } 346 347 /* 348 * Halt the machine and return to the monitor 349 */ 350 void 351 halt(char *s) 352 { 353 stop_other_cpus(); /* send stop signal to other CPUs */ 354 if (s) 355 prom_printf("(%s) \n", s); 356 prom_exit_to_mon(); 357 /*NOTREACHED*/ 358 } 359 360 /* 361 * Enter monitor. Called via cross-call from stop_other_cpus(). 362 */ 363 void 364 mp_halt(char *msg) 365 { 366 if (msg) 367 prom_printf("%s\n", msg); 368 369 /*CONSTANTCONDITION*/ 370 while (1) 371 ; 372 } 373 374 /* 375 * Initiate interrupt redistribution. 376 */ 377 void 378 i_ddi_intr_redist_all_cpus() 379 { 380 } 381 382 /* 383 * XXX These probably ought to live somewhere else 384 * XXX They are called from mem.c 385 */ 386 387 /* 388 * Convert page frame number to an OBMEM page frame number 389 * (i.e. put in the type bits -- zero for this implementation) 390 */ 391 pfn_t 392 impl_obmem_pfnum(pfn_t pf) 393 { 394 return (pf); 395 } 396 397 #ifdef NM_DEBUG 398 int nmi_test = 0; /* checked in intentry.s during clock int */ 399 int nmtest = -1; 400 nmfunc1(arg, rp) 401 int arg; 402 struct regs *rp; 403 { 404 printf("nmi called with arg = %x, regs = %x\n", arg, rp); 405 nmtest += 50; 406 if (arg == nmtest) { 407 printf("ip = %x\n", rp->r_pc); 408 return (1); 409 } 410 return (0); 411 } 412 413 #endif 414 415 #include <sys/bootsvcs.h> 416 417 /* Hacked up initialization for initial kernel check out is HERE. */ 418 /* The basic steps are: */ 419 /* kernel bootfuncs definition/initialization for KADB */ 420 /* kadb bootfuncs pointer initialization */ 421 /* putchar/getchar (interrupts disabled) */ 422 423 /* kadb bootfuncs pointer initialization */ 424 425 int 426 sysp_getchar() 427 { 428 int i; 429 int s; 430 431 if (cons_polledio == NULL) { 432 /* Uh oh */ 433 prom_printf("getchar called with no console\n"); 434 for (;;) 435 /* LOOP FOREVER */; 436 } 437 438 s = clear_int_flag(); 439 i = cons_polledio->cons_polledio_getchar( 440 cons_polledio->cons_polledio_argument); 441 restore_int_flag(s); 442 return (i); 443 } 444 445 void 446 sysp_putchar(int c) 447 { 448 int s; 449 450 /* 451 * We have no alternative but to drop the output on the floor. 452 */ 453 if (cons_polledio == NULL || 454 cons_polledio->cons_polledio_putchar == NULL) 455 return; 456 457 s = clear_int_flag(); 458 cons_polledio->cons_polledio_putchar( 459 cons_polledio->cons_polledio_argument, c); 460 restore_int_flag(s); 461 } 462 463 int 464 sysp_ischar() 465 { 466 int i; 467 int s; 468 469 if (cons_polledio == NULL || 470 cons_polledio->cons_polledio_ischar == NULL) 471 return (0); 472 473 s = clear_int_flag(); 474 i = cons_polledio->cons_polledio_ischar( 475 cons_polledio->cons_polledio_argument); 476 restore_int_flag(s); 477 return (i); 478 } 479 480 int 481 goany(void) 482 { 483 prom_printf("Type any key to continue "); 484 (void) prom_getchar(); 485 prom_printf("\n"); 486 return (1); 487 } 488 489 static struct boot_syscalls kern_sysp = { 490 sysp_getchar, /* unchar (*getchar)(); 7 */ 491 sysp_putchar, /* int (*putchar)(); 8 */ 492 sysp_ischar, /* int (*ischar)(); 9 */ 493 }; 494 495 void 496 kadb_uses_kernel() 497 { 498 /* 499 * This routine is now totally misnamed, since it does not in fact 500 * control kadb's I/O; it only controls the kernel's prom_* I/O. 501 */ 502 sysp = &kern_sysp; 503 } 504 505 /* 506 * the interface to the outside world 507 */ 508 509 /* 510 * poll_port -- wait for a register to achieve a 511 * specific state. Arguments are a mask of bits we care about, 512 * and two sub-masks. To return normally, all the bits in the 513 * first sub-mask must be ON, all the bits in the second sub- 514 * mask must be OFF. If about seconds pass without the register 515 * achieving the desired bit configuration, we return 1, else 516 * 0. 517 */ 518 int 519 poll_port(ushort_t port, ushort_t mask, ushort_t onbits, ushort_t offbits) 520 { 521 int i; 522 ushort_t maskval; 523 524 for (i = 500000; i; i--) { 525 maskval = inb(port) & mask; 526 if (((maskval & onbits) == onbits) && 527 ((maskval & offbits) == 0)) 528 return (0); 529 drv_usecwait(10); 530 } 531 return (1); 532 } 533 534 /* 535 * set_idle_cpu is called from idle() when a CPU becomes idle. 536 */ 537 /*LINTED: static unused */ 538 static uint_t last_idle_cpu; 539 540 /*ARGSUSED*/ 541 void 542 set_idle_cpu(int cpun) 543 { 544 last_idle_cpu = cpun; 545 (*psm_set_idle_cpuf)(cpun); 546 } 547 548 /* 549 * unset_idle_cpu is called from idle() when a CPU is no longer idle. 550 */ 551 /*ARGSUSED*/ 552 void 553 unset_idle_cpu(int cpun) 554 { 555 (*psm_unset_idle_cpuf)(cpun); 556 } 557 558 /* 559 * This routine is almost correct now, but not quite. It still needs the 560 * equivalent concept of "hres_last_tick", just like on the sparc side. 561 * The idea is to take a snapshot of the hi-res timer while doing the 562 * hrestime_adj updates under hres_lock in locore, so that the small 563 * interval between interrupt assertion and interrupt processing is 564 * accounted for correctly. Once we have this, the code below should 565 * be modified to subtract off hres_last_tick rather than hrtime_base. 566 * 567 * I'd have done this myself, but I don't have source to all of the 568 * vendor-specific hi-res timer routines (grrr...). The generic hook I 569 * need is something like "gethrtime_unlocked()", which would be just like 570 * gethrtime() but would assume that you're already holding CLOCK_LOCK(). 571 * This is what the GET_HRTIME() macro is for on sparc (although it also 572 * serves the function of making time available without a function call 573 * so you don't take a register window overflow while traps are disabled). 574 */ 575 void 576 pc_gethrestime(timestruc_t *tp) 577 { 578 int lock_prev; 579 timestruc_t now; 580 int nslt; /* nsec since last tick */ 581 int adj; /* amount of adjustment to apply */ 582 583 loop: 584 lock_prev = hres_lock; 585 now = hrestime; 586 nslt = (int)(gethrtime() - hres_last_tick); 587 if (nslt < 0) { 588 /* 589 * nslt < 0 means a tick came between sampling 590 * gethrtime() and hres_last_tick; restart the loop 591 */ 592 593 goto loop; 594 } 595 now.tv_nsec += nslt; 596 if (hrestime_adj != 0) { 597 if (hrestime_adj > 0) { 598 adj = (nslt >> ADJ_SHIFT); 599 if (adj > hrestime_adj) 600 adj = (int)hrestime_adj; 601 } else { 602 adj = -(nslt >> ADJ_SHIFT); 603 if (adj < hrestime_adj) 604 adj = (int)hrestime_adj; 605 } 606 now.tv_nsec += adj; 607 } 608 while ((unsigned long)now.tv_nsec >= NANOSEC) { 609 610 /* 611 * We might have a large adjustment or have been in the 612 * debugger for a long time; take care of (at most) four 613 * of those missed seconds (tv_nsec is 32 bits, so 614 * anything >4s will be wrapping around). However, 615 * anything more than 2 seconds out of sync will trigger 616 * timedelta from clock() to go correct the time anyway, 617 * so do what we can, and let the big crowbar do the 618 * rest. A similar correction while loop exists inside 619 * hres_tick(); in all cases we'd like tv_nsec to 620 * satisfy 0 <= tv_nsec < NANOSEC to avoid confusing 621 * user processes, but if tv_sec's a little behind for a 622 * little while, that's OK; time still monotonically 623 * increases. 624 */ 625 626 now.tv_nsec -= NANOSEC; 627 now.tv_sec++; 628 } 629 if ((hres_lock & ~1) != lock_prev) 630 goto loop; 631 632 *tp = now; 633 } 634 635 void 636 gethrestime_lasttick(timespec_t *tp) 637 { 638 int s; 639 640 s = hr_clock_lock(); 641 *tp = hrestime; 642 hr_clock_unlock(s); 643 } 644 645 time_t 646 gethrestime_sec(void) 647 { 648 timestruc_t now; 649 650 gethrestime(&now); 651 return (now.tv_sec); 652 } 653 654 /* 655 * Initialize a kernel thread's stack 656 */ 657 658 caddr_t 659 thread_stk_init(caddr_t stk) 660 { 661 ASSERT(((uintptr_t)stk & (STACK_ALIGN - 1)) == 0); 662 return (stk - SA(MINFRAME)); 663 } 664 665 /* 666 * Initialize lwp's kernel stack. 667 */ 668 669 #ifdef TRAPTRACE 670 /* 671 * There's a tricky interdependency here between use of sysenter and 672 * TRAPTRACE which needs recording to avoid future confusion (this is 673 * about the third time I've re-figured this out ..) 674 * 675 * Here's how debugging lcall works with TRAPTRACE. 676 * 677 * 1 We're in userland with a breakpoint on the lcall instruction. 678 * 2 We execute the instruction - the instruction pushes the userland 679 * %ss, %esp, %efl, %cs, %eip on the stack and zips into the kernel 680 * via the call gate. 681 * 3 The hardware raises a debug trap in kernel mode, the hardware 682 * pushes %efl, %cs, %eip and gets to dbgtrap via the idt. 683 * 4 dbgtrap pushes the error code and trapno and calls cmntrap 684 * 5 cmntrap finishes building a trap frame 685 * 6 The TRACE_REGS macros in cmntrap copy a REGSIZE worth chunk 686 * off the stack into the traptrace buffer. 687 * 688 * This means that the traptrace buffer contains the wrong values in 689 * %esp and %ss, but everything else in there is correct. 690 * 691 * Here's how debugging sysenter works with TRAPTRACE. 692 * 693 * a We're in userland with a breakpoint on the sysenter instruction. 694 * b We execute the instruction - the instruction pushes -nothing- 695 * on the stack, but sets %cs, %eip, %ss, %esp to prearranged 696 * values to take us to sys_sysenter, at the top of the lwp's 697 * stack. 698 * c goto 3 699 * 700 * At this point, because we got into the kernel without the requisite 701 * five pushes on the stack, if we didn't make extra room, we'd 702 * end up with the TRACE_REGS macro fetching the saved %ss and %esp 703 * values from negative (unmapped) stack addresses -- which really bites. 704 * That's why we do the '-= 8' below. 705 * 706 * XXX Note that reading "up" lwp0's stack works because t0 is declared 707 * right next to t0stack in locore.s 708 */ 709 #endif 710 711 caddr_t 712 lwp_stk_init(klwp_t *lwp, caddr_t stk) 713 { 714 caddr_t oldstk; 715 struct pcb *pcb = &lwp->lwp_pcb; 716 717 oldstk = stk; 718 stk -= SA(sizeof (struct regs) + SA(MINFRAME)); 719 #ifdef TRAPTRACE 720 stk -= 2 * sizeof (greg_t); /* space for phony %ss:%sp (see above) */ 721 #endif 722 stk = (caddr_t)((uintptr_t)stk & ~(STACK_ALIGN - 1ul)); 723 bzero(stk, oldstk - stk); 724 lwp->lwp_regs = (void *)(stk + SA(MINFRAME)); 725 726 /* 727 * Arrange that the virtualized %fs and %gs GDT descriptors 728 * have a well-defined initial state (present, ring 3 729 * and of type data). 730 */ 731 #if defined(__amd64) 732 if (lwp_getdatamodel(lwp) == DATAMODEL_NATIVE) 733 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc; 734 else 735 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_u32desc; 736 #elif defined(__i386) 737 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc; 738 #endif /* __i386 */ 739 lwp_installctx(lwp); 740 return (stk); 741 } 742 743 /*ARGSUSED*/ 744 void 745 lwp_stk_fini(klwp_t *lwp) 746 {} 747 748 /* 749 * If we're not the panic CPU, we wait in panic_idle for reboot. 750 */ 751 static void 752 panic_idle(void) 753 { 754 splx(ipltospl(CLOCK_LEVEL)); 755 (void) setjmp(&curthread->t_pcb); 756 757 for (;;); 758 } 759 760 /* 761 * Stop the other CPUs by cross-calling them and forcing them to enter 762 * the panic_idle() loop above. 763 */ 764 /*ARGSUSED*/ 765 void 766 panic_stopcpus(cpu_t *cp, kthread_t *t, int spl) 767 { 768 processorid_t i; 769 cpuset_t xcset; 770 771 (void) splzs(); 772 773 CPUSET_ALL_BUT(xcset, cp->cpu_id); 774 xc_trycall(NULL, NULL, NULL, xcset, (int (*)())panic_idle); 775 776 for (i = 0; i < NCPU; i++) { 777 if (i != cp->cpu_id && cpu[i] != NULL && 778 (cpu[i]->cpu_flags & CPU_EXISTS)) 779 cpu[i]->cpu_flags |= CPU_QUIESCED; 780 } 781 } 782 783 /* 784 * Platform callback following each entry to panicsys(). 785 */ 786 /*ARGSUSED*/ 787 void 788 panic_enter_hw(int spl) 789 { 790 /* Nothing to do here */ 791 } 792 793 /* 794 * Platform-specific code to execute after panicstr is set: we invoke 795 * the PSM entry point to indicate that a panic has occurred. 796 */ 797 /*ARGSUSED*/ 798 void 799 panic_quiesce_hw(panic_data_t *pdp) 800 { 801 psm_notifyf(PSM_PANIC_ENTER); 802 803 #ifdef TRAPTRACE 804 /* 805 * Turn off TRAPTRACE 806 */ 807 TRAPTRACE_FREEZE; 808 #endif /* TRAPTRACE */ 809 } 810 811 /* 812 * Platform callback prior to writing crash dump. 813 */ 814 /*ARGSUSED*/ 815 void 816 panic_dump_hw(int spl) 817 { 818 /* Nothing to do here */ 819 } 820 821 /*ARGSUSED*/ 822 void 823 plat_tod_fault(enum tod_fault_type tod_bad) 824 { 825 } 826 827 /*ARGSUSED*/ 828 int 829 blacklist(int cmd, const char *scheme, nvlist_t *fmri, const char *class) 830 { 831 return (ENOTSUP); 832 } 833 834 /* 835 * The underlying console output routines are protected by raising IPL in case 836 * we are still calling into the early boot services. Once we start calling 837 * the kernel console emulator, it will disable interrupts completely during 838 * character rendering (see sysp_putchar, for example). Refer to the comments 839 * and code in common/os/console.c for more information on these callbacks. 840 */ 841 /*ARGSUSED*/ 842 int 843 console_enter(int busy) 844 { 845 return (splzs()); 846 } 847 848 /*ARGSUSED*/ 849 void 850 console_exit(int busy, int spl) 851 { 852 splx(spl); 853 } 854 855 /* 856 * Allocate a region of virtual address space, unmapped. 857 * Stubbed out except on sparc, at least for now. 858 */ 859 /*ARGSUSED*/ 860 void * 861 boot_virt_alloc(void *addr, size_t size) 862 { 863 return (addr); 864 } 865 866 volatile unsigned long tenmicrodata; 867 868 void 869 tenmicrosec(void) 870 { 871 extern int tsc_gethrtime_initted; 872 int i; 873 874 if (tsc_gethrtime_initted) { 875 hrtime_t start, end; 876 start = end = gethrtime(); 877 while ((end - start) < (10 * (NANOSEC / MICROSEC))) { 878 SMT_PAUSE(); 879 end = gethrtime(); 880 } 881 } else { 882 /* 883 * Artificial loop to induce delay. 884 */ 885 for (i = 0; i < microdata; i++) 886 tenmicrodata = microdata; 887 } 888 } 889 890 /* 891 * get_cpu_mstate() is passed an array of timestamps, NCMSTATES 892 * long, and it fills in the array with the time spent on cpu in 893 * each of the mstates, where time is returned in nsec. 894 * 895 * No guarantee is made that the returned values in times[] will 896 * monotonically increase on sequential calls, although this will 897 * be true in the long run. Any such guarantee must be handled by 898 * the caller, if needed. This can happen if we fail to account 899 * for elapsed time due to a generation counter conflict, yet we 900 * did account for it on a prior call (see below). 901 * 902 * The complication is that the cpu in question may be updating 903 * its microstate at the same time that we are reading it. 904 * Because the microstate is only updated when the CPU's state 905 * changes, the values in cpu_intracct[] can be indefinitely out 906 * of date. To determine true current values, it is necessary to 907 * compare the current time with cpu_mstate_start, and add the 908 * difference to times[cpu_mstate]. 909 * 910 * This can be a problem if those values are changing out from 911 * under us. Because the code path in new_cpu_mstate() is 912 * performance critical, we have not added a lock to it. Instead, 913 * we have added a generation counter. Before beginning 914 * modifications, the counter is set to 0. After modifications, 915 * it is set to the old value plus one. 916 * 917 * get_cpu_mstate() will not consider the values of cpu_mstate 918 * and cpu_mstate_start to be usable unless the value of 919 * cpu_mstate_gen is both non-zero and unchanged, both before and 920 * after reading the mstate information. Note that we must 921 * protect against out-of-order loads around accesses to the 922 * generation counter. Also, this is a best effort approach in 923 * that we do not retry should the counter be found to have 924 * changed. 925 * 926 * cpu_intracct[] is used to identify time spent in each CPU 927 * mstate while handling interrupts. Such time should be reported 928 * against system time, and so is subtracted out from its 929 * corresponding cpu_acct[] time and added to 930 * cpu_acct[CMS_SYSTEM]. 931 */ 932 933 void 934 get_cpu_mstate(cpu_t *cpu, hrtime_t *times) 935 { 936 int i; 937 hrtime_t now, start; 938 uint16_t gen; 939 uint16_t state; 940 hrtime_t intracct[NCMSTATES]; 941 942 /* 943 * Load all volatile state under the protection of membar. 944 * cpu_acct[cpu_mstate] must be loaded to avoid double counting 945 * of (now - cpu_mstate_start) by a change in CPU mstate that 946 * arrives after we make our last check of cpu_mstate_gen. 947 */ 948 949 now = gethrtime_unscaled(); 950 gen = cpu->cpu_mstate_gen; 951 952 membar_consumer(); /* guarantee load ordering */ 953 start = cpu->cpu_mstate_start; 954 state = cpu->cpu_mstate; 955 for (i = 0; i < NCMSTATES; i++) { 956 intracct[i] = cpu->cpu_intracct[i]; 957 times[i] = cpu->cpu_acct[i]; 958 } 959 membar_consumer(); /* guarantee load ordering */ 960 961 if (gen != 0 && gen == cpu->cpu_mstate_gen && now > start) 962 times[state] += now - start; 963 964 for (i = 0; i < NCMSTATES; i++) { 965 if (i == CMS_SYSTEM) 966 continue; 967 times[i] -= intracct[i]; 968 if (times[i] < 0) { 969 intracct[i] += times[i]; 970 times[i] = 0; 971 } 972 times[CMS_SYSTEM] += intracct[i]; 973 scalehrtime(×[i]); 974 } 975 scalehrtime(×[CMS_SYSTEM]); 976 } 977