xref: /illumos-gate/usr/src/uts/i86pc/os/machdep.c (revision 985cc36c07a787e0cb720fcf2fab565aa2a77590)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 /*
26  * Copyright (c) 2010, Intel Corporation.
27  * All rights reserved.
28  */
29 
30 #include <sys/types.h>
31 #include <sys/t_lock.h>
32 #include <sys/param.h>
33 #include <sys/segments.h>
34 #include <sys/sysmacros.h>
35 #include <sys/signal.h>
36 #include <sys/systm.h>
37 #include <sys/user.h>
38 #include <sys/mman.h>
39 #include <sys/vm.h>
40 
41 #include <sys/disp.h>
42 #include <sys/class.h>
43 
44 #include <sys/proc.h>
45 #include <sys/buf.h>
46 #include <sys/kmem.h>
47 
48 #include <sys/reboot.h>
49 #include <sys/uadmin.h>
50 #include <sys/callb.h>
51 
52 #include <sys/cred.h>
53 #include <sys/vnode.h>
54 #include <sys/file.h>
55 
56 #include <sys/procfs.h>
57 #include <sys/acct.h>
58 
59 #include <sys/vfs.h>
60 #include <sys/dnlc.h>
61 #include <sys/var.h>
62 #include <sys/cmn_err.h>
63 #include <sys/utsname.h>
64 #include <sys/debug.h>
65 
66 #include <sys/dumphdr.h>
67 #include <sys/bootconf.h>
68 #include <sys/varargs.h>
69 #include <sys/promif.h>
70 #include <sys/modctl.h>
71 
72 #include <sys/consdev.h>
73 #include <sys/frame.h>
74 
75 #include <sys/sunddi.h>
76 #include <sys/ddidmareq.h>
77 #include <sys/psw.h>
78 #include <sys/regset.h>
79 #include <sys/privregs.h>
80 #include <sys/clock.h>
81 #include <sys/tss.h>
82 #include <sys/cpu.h>
83 #include <sys/stack.h>
84 #include <sys/trap.h>
85 #include <sys/pic.h>
86 #include <vm/hat.h>
87 #include <vm/anon.h>
88 #include <vm/as.h>
89 #include <vm/page.h>
90 #include <vm/seg.h>
91 #include <vm/seg_kmem.h>
92 #include <vm/seg_map.h>
93 #include <vm/seg_vn.h>
94 #include <vm/seg_kp.h>
95 #include <vm/hat_i86.h>
96 #include <sys/swap.h>
97 #include <sys/thread.h>
98 #include <sys/sysconf.h>
99 #include <sys/vm_machparam.h>
100 #include <sys/archsystm.h>
101 #include <sys/machsystm.h>
102 #include <sys/machlock.h>
103 #include <sys/x_call.h>
104 #include <sys/instance.h>
105 
106 #include <sys/time.h>
107 #include <sys/smp_impldefs.h>
108 #include <sys/psm_types.h>
109 #include <sys/atomic.h>
110 #include <sys/panic.h>
111 #include <sys/cpuvar.h>
112 #include <sys/dtrace.h>
113 #include <sys/bl.h>
114 #include <sys/nvpair.h>
115 #include <sys/x86_archext.h>
116 #include <sys/pool_pset.h>
117 #include <sys/autoconf.h>
118 #include <sys/mem.h>
119 #include <sys/dumphdr.h>
120 #include <sys/compress.h>
121 #include <sys/cpu_module.h>
122 #if defined(__xpv)
123 #include <sys/hypervisor.h>
124 #include <sys/xpv_panic.h>
125 #endif
126 
127 #include <sys/fastboot.h>
128 #include <sys/machelf.h>
129 #include <sys/kobj.h>
130 #include <sys/multiboot.h>
131 
132 #ifdef	TRAPTRACE
133 #include <sys/traptrace.h>
134 #endif	/* TRAPTRACE */
135 
136 #include <c2/audit.h>
137 #include <sys/clock_impl.h>
138 
139 extern void audit_enterprom(int);
140 extern void audit_exitprom(int);
141 
142 /*
143  * Tunable to enable apix PSM; if set to 0, pcplusmp PSM will be used.
144  */
145 int	apix_enable = 1;
146 
147 int	apic_nvidia_io_max = 0;	/* no. of NVIDIA i/o apics */
148 
149 /*
150  * Occassionally the kernel knows better whether to power-off or reboot.
151  */
152 int force_shutdown_method = AD_UNKNOWN;
153 
154 /*
155  * The panicbuf array is used to record messages and state:
156  */
157 char panicbuf[PANICBUFSIZE];
158 
159 /*
160  * Flags to control Dynamic Reconfiguration features.
161  */
162 uint64_t plat_dr_options;
163 
164 /*
165  * Maximum physical address for memory DR operations.
166  */
167 uint64_t plat_dr_physmax;
168 
169 /*
170  * maxphys - used during physio
171  * klustsize - used for klustering by swapfs and specfs
172  */
173 int maxphys = 56 * 1024;    /* XXX See vm_subr.c - max b_count in physio */
174 int klustsize = 56 * 1024;
175 
176 caddr_t	p0_va;		/* Virtual address for accessing physical page 0 */
177 
178 /*
179  * defined here, though unused on x86,
180  * to make kstat_fr.c happy.
181  */
182 int vac;
183 
184 void debug_enter(char *);
185 
186 extern void pm_cfb_check_and_powerup(void);
187 extern void pm_cfb_rele(void);
188 
189 extern fastboot_info_t newkernel;
190 
191 /*
192  * Machine dependent code to reboot.
193  * "mdep" is interpreted as a character pointer; if non-null, it is a pointer
194  * to a string to be used as the argument string when rebooting.
195  *
196  * "invoke_cb" is a boolean. It is set to true when mdboot() can safely
197  * invoke CB_CL_MDBOOT callbacks before shutting the system down, i.e. when
198  * we are in a normal shutdown sequence (interrupts are not blocked, the
199  * system is not panic'ing or being suspended).
200  */
201 /*ARGSUSED*/
202 void
203 mdboot(int cmd, int fcn, char *mdep, boolean_t invoke_cb)
204 {
205 	processorid_t bootcpuid = 0;
206 	static int is_first_quiesce = 1;
207 	static int is_first_reset = 1;
208 	int reset_status = 0;
209 	static char fallback_str[] = "Falling back to regular reboot.\n";
210 
211 	if (fcn == AD_FASTREBOOT && !newkernel.fi_valid)
212 		fcn = AD_BOOT;
213 
214 	if (!panicstr) {
215 		kpreempt_disable();
216 		if (fcn == AD_FASTREBOOT) {
217 			mutex_enter(&cpu_lock);
218 			if (CPU_ACTIVE(cpu_get(bootcpuid))) {
219 				affinity_set(bootcpuid);
220 			}
221 			mutex_exit(&cpu_lock);
222 		} else {
223 			affinity_set(CPU_CURRENT);
224 		}
225 	}
226 
227 	if (force_shutdown_method != AD_UNKNOWN)
228 		fcn = force_shutdown_method;
229 
230 	/*
231 	 * XXX - rconsvp is set to NULL to ensure that output messages
232 	 * are sent to the underlying "hardware" device using the
233 	 * monitor's printf routine since we are in the process of
234 	 * either rebooting or halting the machine.
235 	 */
236 	rconsvp = NULL;
237 
238 	/*
239 	 * Print the reboot message now, before pausing other cpus.
240 	 * There is a race condition in the printing support that
241 	 * can deadlock multiprocessor machines.
242 	 */
243 	if (!(fcn == AD_HALT || fcn == AD_POWEROFF))
244 		prom_printf("rebooting...\n");
245 
246 	if (IN_XPV_PANIC())
247 		reset();
248 
249 	/*
250 	 * We can't bring up the console from above lock level, so do it now
251 	 */
252 	pm_cfb_check_and_powerup();
253 
254 	/* make sure there are no more changes to the device tree */
255 	devtree_freeze();
256 
257 	if (invoke_cb)
258 		(void) callb_execute_class(CB_CL_MDBOOT, NULL);
259 
260 	/*
261 	 * Clear any unresolved UEs from memory.
262 	 */
263 	page_retire_mdboot();
264 
265 #if defined(__xpv)
266 	/*
267 	 * XXPV	Should probably think some more about how we deal
268 	 *	with panicing before it's really safe to panic.
269 	 *	On hypervisors, we reboot very quickly..  Perhaps panic
270 	 *	should only attempt to recover by rebooting if,
271 	 *	say, we were able to mount the root filesystem,
272 	 *	or if we successfully launched init(1m).
273 	 */
274 	if (panicstr && proc_init == NULL)
275 		(void) HYPERVISOR_shutdown(SHUTDOWN_poweroff);
276 #endif
277 	/*
278 	 * stop other cpus and raise our priority.  since there is only
279 	 * one active cpu after this, and our priority will be too high
280 	 * for us to be preempted, we're essentially single threaded
281 	 * from here on out.
282 	 */
283 	(void) spl6();
284 	if (!panicstr) {
285 		mutex_enter(&cpu_lock);
286 		pause_cpus(NULL, NULL);
287 		mutex_exit(&cpu_lock);
288 	}
289 
290 	/*
291 	 * If the system is panicking, the preloaded kernel is valid, and
292 	 * fastreboot_onpanic has been set, and the system has been up for
293 	 * longer than fastreboot_onpanic_uptime (default to 10 minutes),
294 	 * choose Fast Reboot.
295 	 */
296 	if (fcn == AD_BOOT && panicstr && newkernel.fi_valid &&
297 	    fastreboot_onpanic &&
298 	    (panic_lbolt - lbolt_at_boot) > fastreboot_onpanic_uptime) {
299 		fcn = AD_FASTREBOOT;
300 	}
301 
302 	/*
303 	 * Try to quiesce devices.
304 	 */
305 	if (is_first_quiesce) {
306 		/*
307 		 * Clear is_first_quiesce before calling quiesce_devices()
308 		 * so that if quiesce_devices() causes panics, it will not
309 		 * be invoked again.
310 		 */
311 		is_first_quiesce = 0;
312 
313 		quiesce_active = 1;
314 		quiesce_devices(ddi_root_node(), &reset_status);
315 		if (reset_status == -1) {
316 			if (fcn == AD_FASTREBOOT && !force_fastreboot) {
317 				prom_printf("Driver(s) not capable of fast "
318 				    "reboot.\n");
319 				prom_printf(fallback_str);
320 				fastreboot_capable = 0;
321 				fcn = AD_BOOT;
322 			} else if (fcn != AD_FASTREBOOT)
323 				fastreboot_capable = 0;
324 		}
325 		quiesce_active = 0;
326 	}
327 
328 	/*
329 	 * Try to reset devices. reset_leaves() should only be called
330 	 * a) when there are no other threads that could be accessing devices,
331 	 *    and
332 	 * b) on a system that's not capable of fast reboot (fastreboot_capable
333 	 *    being 0), or on a system where quiesce_devices() failed to
334 	 *    complete (quiesce_active being 1).
335 	 */
336 	if (is_first_reset && (!fastreboot_capable || quiesce_active)) {
337 		/*
338 		 * Clear is_first_reset before calling reset_devices()
339 		 * so that if reset_devices() causes panics, it will not
340 		 * be invoked again.
341 		 */
342 		is_first_reset = 0;
343 		reset_leaves();
344 	}
345 
346 	/* Verify newkernel checksum */
347 	if (fastreboot_capable && fcn == AD_FASTREBOOT &&
348 	    fastboot_cksum_verify(&newkernel) != 0) {
349 		fastreboot_capable = 0;
350 		prom_printf("Fast reboot: checksum failed for the new "
351 		    "kernel.\n");
352 		prom_printf(fallback_str);
353 	}
354 
355 	(void) spl8();
356 
357 	if (fastreboot_capable && fcn == AD_FASTREBOOT) {
358 		/*
359 		 * psm_shutdown is called within fast_reboot()
360 		 */
361 		fast_reboot();
362 	} else {
363 		(*psm_shutdownf)(cmd, fcn);
364 
365 		if (fcn == AD_HALT || fcn == AD_POWEROFF)
366 			halt((char *)NULL);
367 		else
368 			prom_reboot("");
369 	}
370 	/*NOTREACHED*/
371 }
372 
373 /* mdpreboot - may be called prior to mdboot while root fs still mounted */
374 /*ARGSUSED*/
375 void
376 mdpreboot(int cmd, int fcn, char *mdep)
377 {
378 	if (fcn == AD_FASTREBOOT && !fastreboot_capable) {
379 		fcn = AD_BOOT;
380 #ifdef	__xpv
381 		cmn_err(CE_WARN, "Fast reboot is not supported on xVM");
382 #else
383 		cmn_err(CE_WARN,
384 		    "Fast reboot is not supported on this platform%s",
385 		    fastreboot_nosup_message());
386 #endif
387 	}
388 
389 	if (fcn == AD_FASTREBOOT) {
390 		fastboot_load_kernel(mdep);
391 		if (!newkernel.fi_valid)
392 			fcn = AD_BOOT;
393 	}
394 
395 	(*psm_preshutdownf)(cmd, fcn);
396 }
397 
398 static void
399 stop_other_cpus(void)
400 {
401 	ulong_t s = clear_int_flag(); /* fast way to keep CPU from changing */
402 	cpuset_t xcset;
403 
404 	CPUSET_ALL_BUT(xcset, CPU->cpu_id);
405 	xc_priority(0, 0, 0, CPUSET2BV(xcset), (xc_func_t)mach_cpu_halt);
406 	restore_int_flag(s);
407 }
408 
409 /*
410  *	Machine dependent abort sequence handling
411  */
412 void
413 abort_sequence_enter(char *msg)
414 {
415 	if (abort_enable == 0) {
416 		if (AU_ZONE_AUDITING(GET_KCTX_GZ))
417 			audit_enterprom(0);
418 		return;
419 	}
420 	if (AU_ZONE_AUDITING(GET_KCTX_GZ))
421 		audit_enterprom(1);
422 	debug_enter(msg);
423 	if (AU_ZONE_AUDITING(GET_KCTX_GZ))
424 		audit_exitprom(1);
425 }
426 
427 /*
428  * Enter debugger.  Called when the user types ctrl-alt-d or whenever
429  * code wants to enter the debugger and possibly resume later.
430  *
431  * msg:	message to print, possibly NULL.
432  */
433 void
434 debug_enter(char *msg)
435 {
436 	if (dtrace_debugger_init != NULL)
437 		(*dtrace_debugger_init)();
438 
439 	if (msg != NULL || (boothowto & RB_DEBUG))
440 		prom_printf("\n");
441 
442 	if (msg != NULL)
443 		prom_printf("%s\n", msg);
444 
445 	if (boothowto & RB_DEBUG)
446 		kmdb_enter();
447 
448 	if (dtrace_debugger_fini != NULL)
449 		(*dtrace_debugger_fini)();
450 }
451 
452 void
453 reset(void)
454 {
455 	extern	void acpi_reset_system();
456 #if !defined(__xpv)
457 	ushort_t *bios_memchk;
458 
459 	/*
460 	 * Can't use psm_map_phys or acpi_reset_system before the hat is
461 	 * initialized.
462 	 */
463 	if (khat_running) {
464 		bios_memchk = (ushort_t *)psm_map_phys(0x472,
465 		    sizeof (ushort_t), PROT_READ | PROT_WRITE);
466 		if (bios_memchk)
467 			*bios_memchk = 0x1234;	/* bios memory check disable */
468 
469 		if (options_dip != NULL &&
470 		    ddi_prop_exists(DDI_DEV_T_ANY, ddi_root_node(), 0,
471 		    "efi-systab")) {
472 			if (bootops == NULL)
473 				acpi_reset_system();
474 			efi_reset();
475 		}
476 
477 		/*
478 		 * The problem with using stubs is that we can call
479 		 * acpi_reset_system only after the kernel is up and running.
480 		 *
481 		 * We should create a global state to keep track of how far
482 		 * up the kernel is but for the time being we will depend on
483 		 * bootops. bootops cleared in startup_end().
484 		 */
485 		if (bootops == NULL)
486 			acpi_reset_system();
487 	}
488 
489 	pc_reset();
490 #else
491 	if (IN_XPV_PANIC()) {
492 		if (khat_running && bootops == NULL) {
493 			acpi_reset_system();
494 		}
495 
496 		pc_reset();
497 	}
498 
499 	(void) HYPERVISOR_shutdown(SHUTDOWN_reboot);
500 	panic("HYPERVISOR_shutdown() failed");
501 #endif
502 	/*NOTREACHED*/
503 }
504 
505 /*
506  * Halt the machine and return to the monitor
507  */
508 void
509 halt(char *s)
510 {
511 	stop_other_cpus();	/* send stop signal to other CPUs */
512 	if (s)
513 		prom_printf("(%s) \n", s);
514 	prom_exit_to_mon();
515 	/*NOTREACHED*/
516 }
517 
518 /*
519  * Initiate interrupt redistribution.
520  */
521 void
522 i_ddi_intr_redist_all_cpus()
523 {
524 }
525 
526 /*
527  * XXX These probably ought to live somewhere else
528  * XXX They are called from mem.c
529  */
530 
531 /*
532  * Convert page frame number to an OBMEM page frame number
533  * (i.e. put in the type bits -- zero for this implementation)
534  */
535 pfn_t
536 impl_obmem_pfnum(pfn_t pf)
537 {
538 	return (pf);
539 }
540 
541 #ifdef	NM_DEBUG
542 int nmi_test = 0;	/* checked in intentry.s during clock int */
543 int nmtest = -1;
544 nmfunc1(int arg, struct regs *rp)
545 {
546 	printf("nmi called with arg = %x, regs = %x\n", arg, rp);
547 	nmtest += 50;
548 	if (arg == nmtest) {
549 		printf("ip = %x\n", rp->r_pc);
550 		return (1);
551 	}
552 	return (0);
553 }
554 
555 #endif
556 
557 #include <sys/bootsvcs.h>
558 
559 /* Hacked up initialization for initial kernel check out is HERE. */
560 /* The basic steps are: */
561 /*	kernel bootfuncs definition/initialization for KADB */
562 /*	kadb bootfuncs pointer initialization */
563 /*	putchar/getchar (interrupts disabled) */
564 
565 /* kadb bootfuncs pointer initialization */
566 
567 int
568 sysp_getchar()
569 {
570 	int i;
571 	ulong_t s;
572 
573 	if (cons_polledio == NULL) {
574 		/* Uh oh */
575 		prom_printf("getchar called with no console\n");
576 		for (;;)
577 			/* LOOP FOREVER */;
578 	}
579 
580 	s = clear_int_flag();
581 	i = cons_polledio->cons_polledio_getchar(
582 	    cons_polledio->cons_polledio_argument);
583 	restore_int_flag(s);
584 	return (i);
585 }
586 
587 void
588 sysp_putchar(int c)
589 {
590 	ulong_t s;
591 
592 	/*
593 	 * We have no alternative but to drop the output on the floor.
594 	 */
595 	if (cons_polledio == NULL ||
596 	    cons_polledio->cons_polledio_putchar == NULL)
597 		return;
598 
599 	s = clear_int_flag();
600 	cons_polledio->cons_polledio_putchar(
601 	    cons_polledio->cons_polledio_argument, c);
602 	restore_int_flag(s);
603 }
604 
605 int
606 sysp_ischar()
607 {
608 	int i;
609 	ulong_t s;
610 
611 	if (cons_polledio == NULL ||
612 	    cons_polledio->cons_polledio_ischar == NULL)
613 		return (0);
614 
615 	s = clear_int_flag();
616 	i = cons_polledio->cons_polledio_ischar(
617 	    cons_polledio->cons_polledio_argument);
618 	restore_int_flag(s);
619 	return (i);
620 }
621 
622 int
623 goany(void)
624 {
625 	prom_printf("Type any key to continue ");
626 	(void) prom_getchar();
627 	prom_printf("\n");
628 	return (1);
629 }
630 
631 static struct boot_syscalls kern_sysp = {
632 	sysp_getchar,	/*	unchar	(*getchar)();	7  */
633 	sysp_putchar,	/*	int	(*putchar)();	8  */
634 	sysp_ischar,	/*	int	(*ischar)();	9  */
635 };
636 
637 #if defined(__xpv)
638 int using_kern_polledio;
639 #endif
640 
641 void
642 kadb_uses_kernel()
643 {
644 	/*
645 	 * This routine is now totally misnamed, since it does not in fact
646 	 * control kadb's I/O; it only controls the kernel's prom_* I/O.
647 	 */
648 	sysp = &kern_sysp;
649 #if defined(__xpv)
650 	using_kern_polledio = 1;
651 #endif
652 }
653 
654 /*
655  *	the interface to the outside world
656  */
657 
658 /*
659  * poll_port -- wait for a register to achieve a
660  *		specific state.  Arguments are a mask of bits we care about,
661  *		and two sub-masks.  To return normally, all the bits in the
662  *		first sub-mask must be ON, all the bits in the second sub-
663  *		mask must be OFF.  If about seconds pass without the register
664  *		achieving the desired bit configuration, we return 1, else
665  *		0.
666  */
667 int
668 poll_port(ushort_t port, ushort_t mask, ushort_t onbits, ushort_t offbits)
669 {
670 	int i;
671 	ushort_t maskval;
672 
673 	for (i = 500000; i; i--) {
674 		maskval = inb(port) & mask;
675 		if (((maskval & onbits) == onbits) &&
676 		    ((maskval & offbits) == 0))
677 			return (0);
678 		drv_usecwait(10);
679 	}
680 	return (1);
681 }
682 
683 /*
684  * set_idle_cpu is called from idle() when a CPU becomes idle.
685  */
686 /*LINTED: static unused */
687 static uint_t last_idle_cpu;
688 
689 /*ARGSUSED*/
690 void
691 set_idle_cpu(int cpun)
692 {
693 	last_idle_cpu = cpun;
694 	(*psm_set_idle_cpuf)(cpun);
695 }
696 
697 /*
698  * unset_idle_cpu is called from idle() when a CPU is no longer idle.
699  */
700 /*ARGSUSED*/
701 void
702 unset_idle_cpu(int cpun)
703 {
704 	(*psm_unset_idle_cpuf)(cpun);
705 }
706 
707 /*
708  * This routine is almost correct now, but not quite.  It still needs the
709  * equivalent concept of "hres_last_tick", just like on the sparc side.
710  * The idea is to take a snapshot of the hi-res timer while doing the
711  * hrestime_adj updates under hres_lock in locore, so that the small
712  * interval between interrupt assertion and interrupt processing is
713  * accounted for correctly.  Once we have this, the code below should
714  * be modified to subtract off hres_last_tick rather than hrtime_base.
715  *
716  * I'd have done this myself, but I don't have source to all of the
717  * vendor-specific hi-res timer routines (grrr...).  The generic hook I
718  * need is something like "gethrtime_unlocked()", which would be just like
719  * gethrtime() but would assume that you're already holding CLOCK_LOCK().
720  * This is what the GET_HRTIME() macro is for on sparc (although it also
721  * serves the function of making time available without a function call
722  * so you don't take a register window overflow while traps are disabled).
723  */
724 void
725 pc_gethrestime(timestruc_t *tp)
726 {
727 	int lock_prev;
728 	timestruc_t now;
729 	int nslt;		/* nsec since last tick */
730 	int adj;		/* amount of adjustment to apply */
731 
732 loop:
733 	lock_prev = hres_lock;
734 	now = hrestime;
735 	nslt = (int)(gethrtime() - hres_last_tick);
736 	if (nslt < 0) {
737 		/*
738 		 * nslt < 0 means a tick came between sampling
739 		 * gethrtime() and hres_last_tick; restart the loop
740 		 */
741 
742 		goto loop;
743 	}
744 	now.tv_nsec += nslt;
745 	if (hrestime_adj != 0) {
746 		if (hrestime_adj > 0) {
747 			adj = (nslt >> ADJ_SHIFT);
748 			if (adj > hrestime_adj)
749 				adj = (int)hrestime_adj;
750 		} else {
751 			adj = -(nslt >> ADJ_SHIFT);
752 			if (adj < hrestime_adj)
753 				adj = (int)hrestime_adj;
754 		}
755 		now.tv_nsec += adj;
756 	}
757 	while ((unsigned long)now.tv_nsec >= NANOSEC) {
758 
759 		/*
760 		 * We might have a large adjustment or have been in the
761 		 * debugger for a long time; take care of (at most) four
762 		 * of those missed seconds (tv_nsec is 32 bits, so
763 		 * anything >4s will be wrapping around).  However,
764 		 * anything more than 2 seconds out of sync will trigger
765 		 * timedelta from clock() to go correct the time anyway,
766 		 * so do what we can, and let the big crowbar do the
767 		 * rest.  A similar correction while loop exists inside
768 		 * hres_tick(); in all cases we'd like tv_nsec to
769 		 * satisfy 0 <= tv_nsec < NANOSEC to avoid confusing
770 		 * user processes, but if tv_sec's a little behind for a
771 		 * little while, that's OK; time still monotonically
772 		 * increases.
773 		 */
774 
775 		now.tv_nsec -= NANOSEC;
776 		now.tv_sec++;
777 	}
778 	if ((hres_lock & ~1) != lock_prev)
779 		goto loop;
780 
781 	*tp = now;
782 }
783 
784 void
785 gethrestime_lasttick(timespec_t *tp)
786 {
787 	int s;
788 
789 	s = hr_clock_lock();
790 	*tp = hrestime;
791 	hr_clock_unlock(s);
792 }
793 
794 time_t
795 gethrestime_sec(void)
796 {
797 	timestruc_t now;
798 
799 	gethrestime(&now);
800 	return (now.tv_sec);
801 }
802 
803 /*
804  * Initialize a kernel thread's stack
805  */
806 
807 caddr_t
808 thread_stk_init(caddr_t stk)
809 {
810 	ASSERT(((uintptr_t)stk & (STACK_ALIGN - 1)) == 0);
811 	return (stk - SA(MINFRAME));
812 }
813 
814 /*
815  * Initialize lwp's kernel stack.
816  */
817 
818 #ifdef TRAPTRACE
819 /*
820  * There's a tricky interdependency here between use of sysenter and
821  * TRAPTRACE which needs recording to avoid future confusion (this is
822  * about the third time I've re-figured this out ..)
823  *
824  * Here's how debugging lcall works with TRAPTRACE.
825  *
826  * 1 We're in userland with a breakpoint on the lcall instruction.
827  * 2 We execute the instruction - the instruction pushes the userland
828  *   %ss, %esp, %efl, %cs, %eip on the stack and zips into the kernel
829  *   via the call gate.
830  * 3 The hardware raises a debug trap in kernel mode, the hardware
831  *   pushes %efl, %cs, %eip and gets to dbgtrap via the idt.
832  * 4 dbgtrap pushes the error code and trapno and calls cmntrap
833  * 5 cmntrap finishes building a trap frame
834  * 6 The TRACE_REGS macros in cmntrap copy a REGSIZE worth chunk
835  *   off the stack into the traptrace buffer.
836  *
837  * This means that the traptrace buffer contains the wrong values in
838  * %esp and %ss, but everything else in there is correct.
839  *
840  * Here's how debugging sysenter works with TRAPTRACE.
841  *
842  * a We're in userland with a breakpoint on the sysenter instruction.
843  * b We execute the instruction - the instruction pushes -nothing-
844  *   on the stack, but sets %cs, %eip, %ss, %esp to prearranged
845  *   values to take us to sys_sysenter, at the top of the lwp's
846  *   stack.
847  * c goto 3
848  *
849  * At this point, because we got into the kernel without the requisite
850  * five pushes on the stack, if we didn't make extra room, we'd
851  * end up with the TRACE_REGS macro fetching the saved %ss and %esp
852  * values from negative (unmapped) stack addresses -- which really bites.
853  * That's why we do the '-= 8' below.
854  *
855  * XXX	Note that reading "up" lwp0's stack works because t0 is declared
856  *	right next to t0stack in locore.s
857  */
858 #endif
859 
860 caddr_t
861 lwp_stk_init(klwp_t *lwp, caddr_t stk)
862 {
863 	caddr_t oldstk;
864 	struct pcb *pcb = &lwp->lwp_pcb;
865 
866 	oldstk = stk;
867 	stk -= SA(sizeof (struct regs) + SA(MINFRAME));
868 #ifdef TRAPTRACE
869 	stk -= 2 * sizeof (greg_t); /* space for phony %ss:%sp (see above) */
870 #endif
871 	stk = (caddr_t)((uintptr_t)stk & ~(STACK_ALIGN - 1ul));
872 	bzero(stk, oldstk - stk);
873 	lwp->lwp_regs = (void *)(stk + SA(MINFRAME));
874 
875 	/*
876 	 * Arrange that the virtualized %fs and %gs GDT descriptors
877 	 * have a well-defined initial state (present, ring 3
878 	 * and of type data).
879 	 */
880 #if defined(__amd64)
881 	if (lwp_getdatamodel(lwp) == DATAMODEL_NATIVE)
882 		pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc;
883 	else
884 		pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_u32desc;
885 #elif defined(__i386)
886 	pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc;
887 #endif	/* __i386 */
888 	lwp_installctx(lwp);
889 	return (stk);
890 }
891 
892 /*ARGSUSED*/
893 void
894 lwp_stk_fini(klwp_t *lwp)
895 {}
896 
897 /*
898  * If we're not the panic CPU, we wait in panic_idle for reboot.
899  */
900 void
901 panic_idle(void)
902 {
903 	splx(ipltospl(CLOCK_LEVEL));
904 	(void) setjmp(&curthread->t_pcb);
905 
906 	dumpsys_helper();
907 
908 #ifndef __xpv
909 	for (;;)
910 		i86_halt();
911 #else
912 	for (;;)
913 		;
914 #endif
915 }
916 
917 /*
918  * Stop the other CPUs by cross-calling them and forcing them to enter
919  * the panic_idle() loop above.
920  */
921 /*ARGSUSED*/
922 void
923 panic_stopcpus(cpu_t *cp, kthread_t *t, int spl)
924 {
925 	processorid_t i;
926 	cpuset_t xcset;
927 
928 	/*
929 	 * In the case of a Xen panic, the hypervisor has already stopped
930 	 * all of the CPUs.
931 	 */
932 	if (!IN_XPV_PANIC()) {
933 		(void) splzs();
934 
935 		CPUSET_ALL_BUT(xcset, cp->cpu_id);
936 		xc_priority(0, 0, 0, CPUSET2BV(xcset), (xc_func_t)panic_idle);
937 	}
938 
939 	for (i = 0; i < NCPU; i++) {
940 		if (i != cp->cpu_id && cpu[i] != NULL &&
941 		    (cpu[i]->cpu_flags & CPU_EXISTS))
942 			cpu[i]->cpu_flags |= CPU_QUIESCED;
943 	}
944 }
945 
946 /*
947  * Platform callback following each entry to panicsys().
948  */
949 /*ARGSUSED*/
950 void
951 panic_enter_hw(int spl)
952 {
953 	/* Nothing to do here */
954 }
955 
956 /*
957  * Platform-specific code to execute after panicstr is set: we invoke
958  * the PSM entry point to indicate that a panic has occurred.
959  */
960 /*ARGSUSED*/
961 void
962 panic_quiesce_hw(panic_data_t *pdp)
963 {
964 	psm_notifyf(PSM_PANIC_ENTER);
965 
966 	cmi_panic_callback();
967 
968 #ifdef	TRAPTRACE
969 	/*
970 	 * Turn off TRAPTRACE
971 	 */
972 	TRAPTRACE_FREEZE;
973 #endif	/* TRAPTRACE */
974 }
975 
976 /*
977  * Platform callback prior to writing crash dump.
978  */
979 /*ARGSUSED*/
980 void
981 panic_dump_hw(int spl)
982 {
983 	/* Nothing to do here */
984 }
985 
986 void *
987 plat_traceback(void *fpreg)
988 {
989 #ifdef __xpv
990 	if (IN_XPV_PANIC())
991 		return (xpv_traceback(fpreg));
992 #endif
993 	return (fpreg);
994 }
995 
996 /*ARGSUSED*/
997 void
998 plat_tod_fault(enum tod_fault_type tod_bad)
999 {}
1000 
1001 /*ARGSUSED*/
1002 int
1003 blacklist(int cmd, const char *scheme, nvlist_t *fmri, const char *class)
1004 {
1005 	return (ENOTSUP);
1006 }
1007 
1008 /*
1009  * The underlying console output routines are protected by raising IPL in case
1010  * we are still calling into the early boot services.  Once we start calling
1011  * the kernel console emulator, it will disable interrupts completely during
1012  * character rendering (see sysp_putchar, for example).  Refer to the comments
1013  * and code in common/os/console.c for more information on these callbacks.
1014  */
1015 /*ARGSUSED*/
1016 int
1017 console_enter(int busy)
1018 {
1019 	return (splzs());
1020 }
1021 
1022 /*ARGSUSED*/
1023 void
1024 console_exit(int busy, int spl)
1025 {
1026 	splx(spl);
1027 }
1028 
1029 /*
1030  * Allocate a region of virtual address space, unmapped.
1031  * Stubbed out except on sparc, at least for now.
1032  */
1033 /*ARGSUSED*/
1034 void *
1035 boot_virt_alloc(void *addr, size_t size)
1036 {
1037 	return (addr);
1038 }
1039 
1040 volatile unsigned long	tenmicrodata;
1041 
1042 void
1043 tenmicrosec(void)
1044 {
1045 	extern int gethrtime_hires;
1046 
1047 	if (gethrtime_hires) {
1048 		hrtime_t start, end;
1049 		start = end =  gethrtime();
1050 		while ((end - start) < (10 * (NANOSEC / MICROSEC))) {
1051 			SMT_PAUSE();
1052 			end = gethrtime();
1053 		}
1054 	} else {
1055 #if defined(__xpv)
1056 		hrtime_t newtime;
1057 
1058 		newtime = xpv_gethrtime() + 10000; /* now + 10 us */
1059 		while (xpv_gethrtime() < newtime)
1060 			SMT_PAUSE();
1061 #else	/* __xpv */
1062 		int i;
1063 
1064 		/*
1065 		 * Artificial loop to induce delay.
1066 		 */
1067 		for (i = 0; i < microdata; i++)
1068 			tenmicrodata = microdata;
1069 #endif	/* __xpv */
1070 	}
1071 }
1072 
1073 /*
1074  * get_cpu_mstate() is passed an array of timestamps, NCMSTATES
1075  * long, and it fills in the array with the time spent on cpu in
1076  * each of the mstates, where time is returned in nsec.
1077  *
1078  * No guarantee is made that the returned values in times[] will
1079  * monotonically increase on sequential calls, although this will
1080  * be true in the long run. Any such guarantee must be handled by
1081  * the caller, if needed. This can happen if we fail to account
1082  * for elapsed time due to a generation counter conflict, yet we
1083  * did account for it on a prior call (see below).
1084  *
1085  * The complication is that the cpu in question may be updating
1086  * its microstate at the same time that we are reading it.
1087  * Because the microstate is only updated when the CPU's state
1088  * changes, the values in cpu_intracct[] can be indefinitely out
1089  * of date. To determine true current values, it is necessary to
1090  * compare the current time with cpu_mstate_start, and add the
1091  * difference to times[cpu_mstate].
1092  *
1093  * This can be a problem if those values are changing out from
1094  * under us. Because the code path in new_cpu_mstate() is
1095  * performance critical, we have not added a lock to it. Instead,
1096  * we have added a generation counter. Before beginning
1097  * modifications, the counter is set to 0. After modifications,
1098  * it is set to the old value plus one.
1099  *
1100  * get_cpu_mstate() will not consider the values of cpu_mstate
1101  * and cpu_mstate_start to be usable unless the value of
1102  * cpu_mstate_gen is both non-zero and unchanged, both before and
1103  * after reading the mstate information. Note that we must
1104  * protect against out-of-order loads around accesses to the
1105  * generation counter. Also, this is a best effort approach in
1106  * that we do not retry should the counter be found to have
1107  * changed.
1108  *
1109  * cpu_intracct[] is used to identify time spent in each CPU
1110  * mstate while handling interrupts. Such time should be reported
1111  * against system time, and so is subtracted out from its
1112  * corresponding cpu_acct[] time and added to
1113  * cpu_acct[CMS_SYSTEM].
1114  */
1115 
1116 void
1117 get_cpu_mstate(cpu_t *cpu, hrtime_t *times)
1118 {
1119 	int i;
1120 	hrtime_t now, start;
1121 	uint16_t gen;
1122 	uint16_t state;
1123 	hrtime_t intracct[NCMSTATES];
1124 
1125 	/*
1126 	 * Load all volatile state under the protection of membar.
1127 	 * cpu_acct[cpu_mstate] must be loaded to avoid double counting
1128 	 * of (now - cpu_mstate_start) by a change in CPU mstate that
1129 	 * arrives after we make our last check of cpu_mstate_gen.
1130 	 */
1131 
1132 	now = gethrtime_unscaled();
1133 	gen = cpu->cpu_mstate_gen;
1134 
1135 	membar_consumer();	/* guarantee load ordering */
1136 	start = cpu->cpu_mstate_start;
1137 	state = cpu->cpu_mstate;
1138 	for (i = 0; i < NCMSTATES; i++) {
1139 		intracct[i] = cpu->cpu_intracct[i];
1140 		times[i] = cpu->cpu_acct[i];
1141 	}
1142 	membar_consumer();	/* guarantee load ordering */
1143 
1144 	if (gen != 0 && gen == cpu->cpu_mstate_gen && now > start)
1145 		times[state] += now - start;
1146 
1147 	for (i = 0; i < NCMSTATES; i++) {
1148 		if (i == CMS_SYSTEM)
1149 			continue;
1150 		times[i] -= intracct[i];
1151 		if (times[i] < 0) {
1152 			intracct[i] += times[i];
1153 			times[i] = 0;
1154 		}
1155 		times[CMS_SYSTEM] += intracct[i];
1156 		scalehrtime(&times[i]);
1157 	}
1158 	scalehrtime(&times[CMS_SYSTEM]);
1159 }
1160 
1161 /*
1162  * This is a version of the rdmsr instruction that allows
1163  * an error code to be returned in the case of failure.
1164  */
1165 int
1166 checked_rdmsr(uint_t msr, uint64_t *value)
1167 {
1168 	if (!is_x86_feature(x86_featureset, X86FSET_MSR))
1169 		return (ENOTSUP);
1170 	*value = rdmsr(msr);
1171 	return (0);
1172 }
1173 
1174 /*
1175  * This is a version of the wrmsr instruction that allows
1176  * an error code to be returned in the case of failure.
1177  */
1178 int
1179 checked_wrmsr(uint_t msr, uint64_t value)
1180 {
1181 	if (!is_x86_feature(x86_featureset, X86FSET_MSR))
1182 		return (ENOTSUP);
1183 	wrmsr(msr, value);
1184 	return (0);
1185 }
1186 
1187 /*
1188  * The mem driver's usual method of using hat_devload() to establish a
1189  * temporary mapping will not work for foreign pages mapped into this
1190  * domain or for the special hypervisor-provided pages.  For the foreign
1191  * pages, we often don't know which domain owns them, so we can't ask the
1192  * hypervisor to set up a new mapping.  For the other pages, we don't have
1193  * a pfn, so we can't create a new PTE.  For these special cases, we do a
1194  * direct uiomove() from the existing kernel virtual address.
1195  */
1196 /*ARGSUSED*/
1197 int
1198 plat_mem_do_mmio(struct uio *uio, enum uio_rw rw)
1199 {
1200 #if defined(__xpv)
1201 	void *va = (void *)(uintptr_t)uio->uio_loffset;
1202 	off_t pageoff = uio->uio_loffset & PAGEOFFSET;
1203 	size_t nbytes = MIN((size_t)(PAGESIZE - pageoff),
1204 	    (size_t)uio->uio_iov->iov_len);
1205 
1206 	if ((rw == UIO_READ &&
1207 	    (va == HYPERVISOR_shared_info || va == xen_info)) ||
1208 	    (pfn_is_foreign(hat_getpfnum(kas.a_hat, va))))
1209 		return (uiomove(va, nbytes, rw, uio));
1210 #endif
1211 	return (ENOTSUP);
1212 }
1213 
1214 pgcnt_t
1215 num_phys_pages()
1216 {
1217 	pgcnt_t npages = 0;
1218 	struct memlist *mp;
1219 
1220 #if defined(__xpv)
1221 	if (DOMAIN_IS_INITDOMAIN(xen_info))
1222 		return (xpv_nr_phys_pages());
1223 #endif /* __xpv */
1224 
1225 	for (mp = phys_install; mp != NULL; mp = mp->ml_next)
1226 		npages += mp->ml_size >> PAGESHIFT;
1227 
1228 	return (npages);
1229 }
1230 
1231 /* cpu threshold for compressed dumps */
1232 #ifdef _LP64
1233 uint_t dump_plat_mincpu_default = DUMP_PLAT_X86_64_MINCPU;
1234 #else
1235 uint_t dump_plat_mincpu_default = DUMP_PLAT_X86_32_MINCPU;
1236 #endif
1237 
1238 int
1239 dump_plat_addr()
1240 {
1241 #ifdef __xpv
1242 	pfn_t pfn = mmu_btop(xen_info->shared_info) | PFN_IS_FOREIGN_MFN;
1243 	mem_vtop_t mem_vtop;
1244 	int cnt;
1245 
1246 	/*
1247 	 * On the hypervisor, we want to dump the page with shared_info on it.
1248 	 */
1249 	if (!IN_XPV_PANIC()) {
1250 		mem_vtop.m_as = &kas;
1251 		mem_vtop.m_va = HYPERVISOR_shared_info;
1252 		mem_vtop.m_pfn = pfn;
1253 		dumpvp_write(&mem_vtop, sizeof (mem_vtop_t));
1254 		cnt = 1;
1255 	} else {
1256 		cnt = dump_xpv_addr();
1257 	}
1258 	return (cnt);
1259 #else
1260 	return (0);
1261 #endif
1262 }
1263 
1264 void
1265 dump_plat_pfn()
1266 {
1267 #ifdef __xpv
1268 	pfn_t pfn = mmu_btop(xen_info->shared_info) | PFN_IS_FOREIGN_MFN;
1269 
1270 	if (!IN_XPV_PANIC())
1271 		dumpvp_write(&pfn, sizeof (pfn));
1272 	else
1273 		dump_xpv_pfn();
1274 #endif
1275 }
1276 
1277 /*ARGSUSED*/
1278 int
1279 dump_plat_data(void *dump_cbuf)
1280 {
1281 #ifdef __xpv
1282 	uint32_t csize;
1283 	int cnt;
1284 
1285 	if (!IN_XPV_PANIC()) {
1286 		csize = (uint32_t)compress(HYPERVISOR_shared_info, dump_cbuf,
1287 		    PAGESIZE);
1288 		dumpvp_write(&csize, sizeof (uint32_t));
1289 		dumpvp_write(dump_cbuf, csize);
1290 		cnt = 1;
1291 	} else {
1292 		cnt = dump_xpv_data(dump_cbuf);
1293 	}
1294 	return (cnt);
1295 #else
1296 	return (0);
1297 #endif
1298 }
1299 
1300 /*
1301  * Calculates a linear address, given the CS selector and PC values
1302  * by looking up the %cs selector process's LDT or the CPU's GDT.
1303  * proc->p_ldtlock must be held across this call.
1304  */
1305 int
1306 linear_pc(struct regs *rp, proc_t *p, caddr_t *linearp)
1307 {
1308 	user_desc_t	*descrp;
1309 	caddr_t		baseaddr;
1310 	uint16_t	idx = SELTOIDX(rp->r_cs);
1311 
1312 	ASSERT(rp->r_cs <= 0xFFFF);
1313 	ASSERT(MUTEX_HELD(&p->p_ldtlock));
1314 
1315 	if (SELISLDT(rp->r_cs)) {
1316 		/*
1317 		 * Currently 64 bit processes cannot have private LDTs.
1318 		 */
1319 		ASSERT(p->p_model != DATAMODEL_LP64);
1320 
1321 		if (p->p_ldt == NULL)
1322 			return (-1);
1323 
1324 		descrp = &p->p_ldt[idx];
1325 		baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp);
1326 
1327 		/*
1328 		 * Calculate the linear address (wraparound is not only ok,
1329 		 * it's expected behavior).  The cast to uint32_t is because
1330 		 * LDT selectors are only allowed in 32-bit processes.
1331 		 */
1332 		*linearp = (caddr_t)(uintptr_t)(uint32_t)((uintptr_t)baseaddr +
1333 		    rp->r_pc);
1334 	} else {
1335 #ifdef DEBUG
1336 		descrp = &CPU->cpu_gdt[idx];
1337 		baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp);
1338 		/* GDT-based descriptors' base addresses should always be 0 */
1339 		ASSERT(baseaddr == 0);
1340 #endif
1341 		*linearp = (caddr_t)(uintptr_t)rp->r_pc;
1342 	}
1343 
1344 	return (0);
1345 }
1346 
1347 /*
1348  * The implementation of dtrace_linear_pc is similar to the that of
1349  * linear_pc, above, but here we acquire p_ldtlock before accessing
1350  * p_ldt.  This implementation is used by the pid provider; we prefix
1351  * it with "dtrace_" to avoid inducing spurious tracing events.
1352  */
1353 int
1354 dtrace_linear_pc(struct regs *rp, proc_t *p, caddr_t *linearp)
1355 {
1356 	user_desc_t	*descrp;
1357 	caddr_t		baseaddr;
1358 	uint16_t	idx = SELTOIDX(rp->r_cs);
1359 
1360 	ASSERT(rp->r_cs <= 0xFFFF);
1361 
1362 	if (SELISLDT(rp->r_cs)) {
1363 		/*
1364 		 * Currently 64 bit processes cannot have private LDTs.
1365 		 */
1366 		ASSERT(p->p_model != DATAMODEL_LP64);
1367 
1368 		mutex_enter(&p->p_ldtlock);
1369 		if (p->p_ldt == NULL) {
1370 			mutex_exit(&p->p_ldtlock);
1371 			return (-1);
1372 		}
1373 		descrp = &p->p_ldt[idx];
1374 		baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp);
1375 		mutex_exit(&p->p_ldtlock);
1376 
1377 		/*
1378 		 * Calculate the linear address (wraparound is not only ok,
1379 		 * it's expected behavior).  The cast to uint32_t is because
1380 		 * LDT selectors are only allowed in 32-bit processes.
1381 		 */
1382 		*linearp = (caddr_t)(uintptr_t)(uint32_t)((uintptr_t)baseaddr +
1383 		    rp->r_pc);
1384 	} else {
1385 #ifdef DEBUG
1386 		descrp = &CPU->cpu_gdt[idx];
1387 		baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp);
1388 		/* GDT-based descriptors' base addresses should always be 0 */
1389 		ASSERT(baseaddr == 0);
1390 #endif
1391 		*linearp = (caddr_t)(uintptr_t)rp->r_pc;
1392 	}
1393 
1394 	return (0);
1395 }
1396 
1397 /*
1398  * We need to post a soft interrupt to reprogram the lbolt cyclic when
1399  * switching from event to cyclic driven lbolt. The following code adds
1400  * and posts the softint for x86.
1401  */
1402 static ddi_softint_hdl_impl_t lbolt_softint_hdl =
1403 	{0, NULL, NULL, NULL, 0, NULL, NULL, NULL};
1404 
1405 void
1406 lbolt_softint_add(void)
1407 {
1408 	(void) add_avsoftintr((void *)&lbolt_softint_hdl, LOCK_LEVEL,
1409 	    (avfunc)lbolt_ev_to_cyclic, "lbolt_ev_to_cyclic", NULL, NULL);
1410 }
1411 
1412 void
1413 lbolt_softint_post(void)
1414 {
1415 	(*setsoftint)(CBE_LOCK_PIL, lbolt_softint_hdl.ih_pending);
1416 }
1417 
1418 boolean_t
1419 plat_dr_check_capability(uint64_t features)
1420 {
1421 	return ((plat_dr_options & features) == features);
1422 }
1423 
1424 boolean_t
1425 plat_dr_support_cpu(void)
1426 {
1427 	return (plat_dr_options & PLAT_DR_FEATURE_CPU);
1428 }
1429 
1430 boolean_t
1431 plat_dr_support_memory(void)
1432 {
1433 	return (plat_dr_options & PLAT_DR_FEATURE_MEMORY);
1434 }
1435 
1436 void
1437 plat_dr_enable_capability(uint64_t features)
1438 {
1439 	atomic_or_64(&plat_dr_options, features);
1440 }
1441 
1442 void
1443 plat_dr_disable_capability(uint64_t features)
1444 {
1445 	atomic_and_64(&plat_dr_options, ~features);
1446 }
1447