1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/types.h> 30 #include <sys/t_lock.h> 31 #include <sys/param.h> 32 #include <sys/sysmacros.h> 33 #include <sys/signal.h> 34 #include <sys/systm.h> 35 #include <sys/user.h> 36 #include <sys/mman.h> 37 #include <sys/vm.h> 38 39 #include <sys/disp.h> 40 #include <sys/class.h> 41 42 #include <sys/proc.h> 43 #include <sys/buf.h> 44 #include <sys/kmem.h> 45 46 #include <sys/reboot.h> 47 #include <sys/uadmin.h> 48 #include <sys/callb.h> 49 50 #include <sys/cred.h> 51 #include <sys/vnode.h> 52 #include <sys/file.h> 53 54 #include <sys/procfs.h> 55 #include <sys/acct.h> 56 57 #include <sys/vfs.h> 58 #include <sys/dnlc.h> 59 #include <sys/var.h> 60 #include <sys/cmn_err.h> 61 #include <sys/utsname.h> 62 #include <sys/debug.h> 63 #include <sys/kdi_impl.h> 64 65 #include <sys/dumphdr.h> 66 #include <sys/bootconf.h> 67 #include <sys/varargs.h> 68 #include <sys/promif.h> 69 #include <sys/modctl.h> 70 71 #include <sys/consdev.h> 72 #include <sys/frame.h> 73 74 #include <sys/sunddi.h> 75 #include <sys/ddidmareq.h> 76 #include <sys/psw.h> 77 #include <sys/regset.h> 78 #include <sys/privregs.h> 79 #include <sys/clock.h> 80 #include <sys/tss.h> 81 #include <sys/cpu.h> 82 #include <sys/stack.h> 83 #include <sys/trap.h> 84 #include <sys/pic.h> 85 #include <sys/mmu.h> 86 #include <vm/hat.h> 87 #include <vm/anon.h> 88 #include <vm/as.h> 89 #include <vm/page.h> 90 #include <vm/seg.h> 91 #include <vm/seg_kmem.h> 92 #include <vm/seg_map.h> 93 #include <vm/seg_vn.h> 94 #include <vm/seg_kp.h> 95 #include <vm/hat_i86.h> 96 #include <sys/swap.h> 97 #include <sys/thread.h> 98 #include <sys/sysconf.h> 99 #include <sys/vm_machparam.h> 100 #include <sys/archsystm.h> 101 #include <sys/machsystm.h> 102 #include <sys/machlock.h> 103 #include <sys/x_call.h> 104 #include <sys/instance.h> 105 106 #include <sys/time.h> 107 #include <sys/smp_impldefs.h> 108 #include <sys/psm_types.h> 109 #include <sys/atomic.h> 110 #include <sys/panic.h> 111 #include <sys/cpuvar.h> 112 #include <sys/dtrace.h> 113 #include <sys/bl.h> 114 #include <sys/nvpair.h> 115 #include <sys/x86_archext.h> 116 #include <sys/pool_pset.h> 117 #include <sys/autoconf.h> 118 #include <sys/kdi.h> 119 120 #ifdef TRAPTRACE 121 #include <sys/traptrace.h> 122 #endif /* TRAPTRACE */ 123 124 #ifdef C2_AUDIT 125 extern void audit_enterprom(int); 126 extern void audit_exitprom(int); 127 #endif 128 129 /* 130 * The panicbuf array is used to record messages and state: 131 */ 132 char panicbuf[PANICBUFSIZE]; 133 134 /* 135 * maxphys - used during physio 136 * klustsize - used for klustering by swapfs and specfs 137 */ 138 int maxphys = 56 * 1024; /* XXX See vm_subr.c - max b_count in physio */ 139 int klustsize = 56 * 1024; 140 141 caddr_t p0_va; /* Virtual address for accessing physical page 0 */ 142 143 /* 144 * defined here, though unused on x86, 145 * to make kstat_fr.c happy. 146 */ 147 int vac; 148 149 void stop_other_cpus(); 150 void debug_enter(char *); 151 152 int procset = 1; 153 154 /* 155 * Flags set by mdboot if we're panicking and we invoke mdboot on a CPU which 156 * is not the boot CPU. When set, panic_idle() on the boot CPU will invoke 157 * mdboot with the corresponding arguments. 158 */ 159 160 #define BOOT_WAIT -1 /* Flag indicating we should idle */ 161 162 volatile int cpu_boot_cmd = BOOT_WAIT; 163 volatile int cpu_boot_fcn = BOOT_WAIT; 164 165 extern void pm_cfb_check_and_powerup(void); 166 extern void pm_cfb_rele(void); 167 168 /* 169 * Machine dependent code to reboot. 170 * "mdep" is interpreted as a character pointer; if non-null, it is a pointer 171 * to a string to be used as the argument string when rebooting. 172 * 173 * "invoke_cb" is a boolean. It is set to true when mdboot() can safely 174 * invoke CB_CL_MDBOOT callbacks before shutting the system down, i.e. when 175 * we are in a normal shutdown sequence (interrupts are not blocked, the 176 * system is not panic'ing or being suspended). 177 */ 178 /*ARGSUSED*/ 179 void 180 mdboot(int cmd, int fcn, char *mdep, boolean_t invoke_cb) 181 { 182 extern void mtrr_resync(void); 183 184 /* 185 * The PSMI guarantees the implementor of psm_shutdown that it will 186 * only be called on the boot CPU. This was needed by Corollary 187 * because the hardware does not allow other CPUs to reset the 188 * boot CPU. So before rebooting, we switch over to the boot CPU. 189 * If we are panicking, the other CPUs are at high spl spinning in 190 * panic_idle(), so we set the cpu_boot_* variables and wait for 191 * the boot CPU to re-invoke mdboot() for us. 192 */ 193 if (!panicstr) { 194 kpreempt_disable(); 195 affinity_set(getbootcpuid()); 196 } else if (CPU->cpu_id != getbootcpuid()) { 197 cpu_boot_cmd = cmd; 198 cpu_boot_fcn = fcn; 199 for (;;); 200 } 201 202 /* 203 * XXX - rconsvp is set to NULL to ensure that output messages 204 * are sent to the underlying "hardware" device using the 205 * monitor's printf routine since we are in the process of 206 * either rebooting or halting the machine. 207 */ 208 rconsvp = NULL; 209 210 /* 211 * Print the reboot message now, before pausing other cpus. 212 * There is a race condition in the printing support that 213 * can deadlock multiprocessor machines. 214 */ 215 if (!(fcn == AD_HALT || fcn == AD_POWEROFF)) 216 prom_printf("rebooting...\n"); 217 218 /* 219 * We can't bring up the console from above lock level, so do it now 220 */ 221 pm_cfb_check_and_powerup(); 222 223 /* make sure there are no more changes to the device tree */ 224 devtree_freeze(); 225 226 if (invoke_cb) 227 (void) callb_execute_class(CB_CL_MDBOOT, NULL); 228 229 page_retire_hunt(page_retire_mdboot_cb); 230 231 /* 232 * stop other cpus and raise our priority. since there is only 233 * one active cpu after this, and our priority will be too high 234 * for us to be preempted, we're essentially single threaded 235 * from here on out. 236 */ 237 (void) spl6(); 238 if (!panicstr) { 239 mutex_enter(&cpu_lock); 240 pause_cpus(NULL); 241 mutex_exit(&cpu_lock); 242 } 243 244 /* 245 * try and reset leaf devices. reset_leaves() should only 246 * be called when there are no other threads that could be 247 * accessing devices 248 */ 249 reset_leaves(); 250 251 (void) spl8(); 252 (*psm_shutdownf)(cmd, fcn); 253 254 mtrr_resync(); 255 256 if (fcn == AD_HALT || fcn == AD_POWEROFF) 257 halt((char *)NULL); 258 else 259 prom_reboot(""); 260 /*NOTREACHED*/ 261 } 262 263 /* mdpreboot - may be called prior to mdboot while root fs still mounted */ 264 /*ARGSUSED*/ 265 void 266 mdpreboot(int cmd, int fcn, char *mdep) 267 { 268 (*psm_preshutdownf)(cmd, fcn); 269 } 270 271 void 272 idle_other_cpus() 273 { 274 int cpuid = CPU->cpu_id; 275 cpuset_t xcset; 276 277 ASSERT(cpuid < NCPU); 278 CPUSET_ALL_BUT(xcset, cpuid); 279 xc_capture_cpus(xcset); 280 } 281 282 void 283 resume_other_cpus() 284 { 285 ASSERT(CPU->cpu_id < NCPU); 286 287 xc_release_cpus(); 288 } 289 290 extern void mp_halt(char *); 291 292 void 293 stop_other_cpus() 294 { 295 int cpuid = CPU->cpu_id; 296 cpuset_t xcset; 297 298 ASSERT(cpuid < NCPU); 299 300 /* 301 * xc_trycall will attempt to make all other CPUs execute mp_halt, 302 * and will return immediately regardless of whether or not it was 303 * able to make them do it. 304 */ 305 CPUSET_ALL_BUT(xcset, cpuid); 306 xc_trycall(NULL, NULL, NULL, xcset, (int (*)())mp_halt); 307 } 308 309 /* 310 * Machine dependent abort sequence handling 311 */ 312 void 313 abort_sequence_enter(char *msg) 314 { 315 if (abort_enable == 0) { 316 #ifdef C2_AUDIT 317 if (audit_active) 318 audit_enterprom(0); 319 #endif /* C2_AUDIT */ 320 return; 321 } 322 #ifdef C2_AUDIT 323 if (audit_active) 324 audit_enterprom(1); 325 #endif /* C2_AUDIT */ 326 debug_enter(msg); 327 #ifdef C2_AUDIT 328 if (audit_active) 329 audit_exitprom(1); 330 #endif /* C2_AUDIT */ 331 } 332 333 /* 334 * Enter debugger. Called when the user types ctrl-alt-d or whenever 335 * code wants to enter the debugger and possibly resume later. 336 */ 337 void 338 debug_enter( 339 char *msg) /* message to print, possibly NULL */ 340 { 341 if (dtrace_debugger_init != NULL) 342 (*dtrace_debugger_init)(); 343 344 if (msg) 345 prom_printf("%s\n", msg); 346 347 if (boothowto & RB_DEBUG) 348 kdi_dvec_enter(); 349 350 if (dtrace_debugger_fini != NULL) 351 (*dtrace_debugger_fini)(); 352 } 353 354 void 355 reset(void) 356 { 357 ushort_t *bios_memchk; 358 359 /* 360 * Can't use psm_map_phys before the hat is initialized. 361 */ 362 if (khat_running) { 363 bios_memchk = (ushort_t *)psm_map_phys(0x472, 364 sizeof (ushort_t), PROT_READ | PROT_WRITE); 365 if (bios_memchk) 366 *bios_memchk = 0x1234; /* bios memory check disable */ 367 } 368 369 pc_reset(); 370 /*NOTREACHED*/ 371 } 372 373 /* 374 * Halt the machine and return to the monitor 375 */ 376 void 377 halt(char *s) 378 { 379 stop_other_cpus(); /* send stop signal to other CPUs */ 380 if (s) 381 prom_printf("(%s) \n", s); 382 prom_exit_to_mon(); 383 /*NOTREACHED*/ 384 } 385 386 /* 387 * Enter monitor. Called via cross-call from stop_other_cpus(). 388 */ 389 void 390 mp_halt(char *msg) 391 { 392 if (msg) 393 prom_printf("%s\n", msg); 394 395 /*CONSTANTCONDITION*/ 396 while (1) 397 ; 398 } 399 400 /* 401 * Initiate interrupt redistribution. 402 */ 403 void 404 i_ddi_intr_redist_all_cpus() 405 { 406 } 407 408 /* 409 * XXX These probably ought to live somewhere else 410 * XXX They are called from mem.c 411 */ 412 413 /* 414 * Convert page frame number to an OBMEM page frame number 415 * (i.e. put in the type bits -- zero for this implementation) 416 */ 417 pfn_t 418 impl_obmem_pfnum(pfn_t pf) 419 { 420 return (pf); 421 } 422 423 #ifdef NM_DEBUG 424 int nmi_test = 0; /* checked in intentry.s during clock int */ 425 int nmtest = -1; 426 nmfunc1(arg, rp) 427 int arg; 428 struct regs *rp; 429 { 430 printf("nmi called with arg = %x, regs = %x\n", arg, rp); 431 nmtest += 50; 432 if (arg == nmtest) { 433 printf("ip = %x\n", rp->r_pc); 434 return (1); 435 } 436 return (0); 437 } 438 439 #endif 440 441 #include <sys/bootsvcs.h> 442 443 /* Hacked up initialization for initial kernel check out is HERE. */ 444 /* The basic steps are: */ 445 /* kernel bootfuncs definition/initialization for KADB */ 446 /* kadb bootfuncs pointer initialization */ 447 /* putchar/getchar (interrupts disabled) */ 448 449 /* kadb bootfuncs pointer initialization */ 450 451 int 452 sysp_getchar() 453 { 454 int i; 455 int s; 456 457 if (cons_polledio == NULL) { 458 /* Uh oh */ 459 prom_printf("getchar called with no console\n"); 460 for (;;) 461 /* LOOP FOREVER */; 462 } 463 464 s = clear_int_flag(); 465 i = cons_polledio->cons_polledio_getchar( 466 cons_polledio->cons_polledio_argument); 467 restore_int_flag(s); 468 return (i); 469 } 470 471 void 472 sysp_putchar(int c) 473 { 474 int s; 475 476 /* 477 * We have no alternative but to drop the output on the floor. 478 */ 479 if (cons_polledio == NULL || 480 cons_polledio->cons_polledio_putchar == NULL) 481 return; 482 483 s = clear_int_flag(); 484 cons_polledio->cons_polledio_putchar( 485 cons_polledio->cons_polledio_argument, c); 486 restore_int_flag(s); 487 } 488 489 int 490 sysp_ischar() 491 { 492 int i; 493 int s; 494 495 if (cons_polledio == NULL || 496 cons_polledio->cons_polledio_ischar == NULL) 497 return (0); 498 499 s = clear_int_flag(); 500 i = cons_polledio->cons_polledio_ischar( 501 cons_polledio->cons_polledio_argument); 502 restore_int_flag(s); 503 return (i); 504 } 505 506 int 507 goany(void) 508 { 509 prom_printf("Type any key to continue "); 510 (void) prom_getchar(); 511 prom_printf("\n"); 512 return (1); 513 } 514 515 static struct boot_syscalls kern_sysp = { 516 sysp_getchar, /* unchar (*getchar)(); 7 */ 517 sysp_putchar, /* int (*putchar)(); 8 */ 518 sysp_ischar, /* int (*ischar)(); 9 */ 519 }; 520 521 void 522 kadb_uses_kernel() 523 { 524 /* 525 * This routine is now totally misnamed, since it does not in fact 526 * control kadb's I/O; it only controls the kernel's prom_* I/O. 527 */ 528 sysp = &kern_sysp; 529 } 530 531 /* 532 * the interface to the outside world 533 */ 534 535 /* 536 * poll_port -- wait for a register to achieve a 537 * specific state. Arguments are a mask of bits we care about, 538 * and two sub-masks. To return normally, all the bits in the 539 * first sub-mask must be ON, all the bits in the second sub- 540 * mask must be OFF. If about seconds pass without the register 541 * achieving the desired bit configuration, we return 1, else 542 * 0. 543 */ 544 int 545 poll_port(ushort_t port, ushort_t mask, ushort_t onbits, ushort_t offbits) 546 { 547 int i; 548 ushort_t maskval; 549 550 for (i = 500000; i; i--) { 551 maskval = inb(port) & mask; 552 if (((maskval & onbits) == onbits) && 553 ((maskval & offbits) == 0)) 554 return (0); 555 drv_usecwait(10); 556 } 557 return (1); 558 } 559 560 /* 561 * set_idle_cpu is called from idle() when a CPU becomes idle. 562 */ 563 /*LINTED: static unused */ 564 static uint_t last_idle_cpu; 565 566 /*ARGSUSED*/ 567 void 568 set_idle_cpu(int cpun) 569 { 570 last_idle_cpu = cpun; 571 (*psm_set_idle_cpuf)(cpun); 572 } 573 574 /* 575 * unset_idle_cpu is called from idle() when a CPU is no longer idle. 576 */ 577 /*ARGSUSED*/ 578 void 579 unset_idle_cpu(int cpun) 580 { 581 (*psm_unset_idle_cpuf)(cpun); 582 } 583 584 /* 585 * This routine is almost correct now, but not quite. It still needs the 586 * equivalent concept of "hres_last_tick", just like on the sparc side. 587 * The idea is to take a snapshot of the hi-res timer while doing the 588 * hrestime_adj updates under hres_lock in locore, so that the small 589 * interval between interrupt assertion and interrupt processing is 590 * accounted for correctly. Once we have this, the code below should 591 * be modified to subtract off hres_last_tick rather than hrtime_base. 592 * 593 * I'd have done this myself, but I don't have source to all of the 594 * vendor-specific hi-res timer routines (grrr...). The generic hook I 595 * need is something like "gethrtime_unlocked()", which would be just like 596 * gethrtime() but would assume that you're already holding CLOCK_LOCK(). 597 * This is what the GET_HRTIME() macro is for on sparc (although it also 598 * serves the function of making time available without a function call 599 * so you don't take a register window overflow while traps are disabled). 600 */ 601 void 602 pc_gethrestime(timestruc_t *tp) 603 { 604 int lock_prev; 605 timestruc_t now; 606 int nslt; /* nsec since last tick */ 607 int adj; /* amount of adjustment to apply */ 608 609 loop: 610 lock_prev = hres_lock; 611 now = hrestime; 612 nslt = (int)(gethrtime() - hres_last_tick); 613 if (nslt < 0) { 614 /* 615 * nslt < 0 means a tick came between sampling 616 * gethrtime() and hres_last_tick; restart the loop 617 */ 618 619 goto loop; 620 } 621 now.tv_nsec += nslt; 622 if (hrestime_adj != 0) { 623 if (hrestime_adj > 0) { 624 adj = (nslt >> ADJ_SHIFT); 625 if (adj > hrestime_adj) 626 adj = (int)hrestime_adj; 627 } else { 628 adj = -(nslt >> ADJ_SHIFT); 629 if (adj < hrestime_adj) 630 adj = (int)hrestime_adj; 631 } 632 now.tv_nsec += adj; 633 } 634 while ((unsigned long)now.tv_nsec >= NANOSEC) { 635 636 /* 637 * We might have a large adjustment or have been in the 638 * debugger for a long time; take care of (at most) four 639 * of those missed seconds (tv_nsec is 32 bits, so 640 * anything >4s will be wrapping around). However, 641 * anything more than 2 seconds out of sync will trigger 642 * timedelta from clock() to go correct the time anyway, 643 * so do what we can, and let the big crowbar do the 644 * rest. A similar correction while loop exists inside 645 * hres_tick(); in all cases we'd like tv_nsec to 646 * satisfy 0 <= tv_nsec < NANOSEC to avoid confusing 647 * user processes, but if tv_sec's a little behind for a 648 * little while, that's OK; time still monotonically 649 * increases. 650 */ 651 652 now.tv_nsec -= NANOSEC; 653 now.tv_sec++; 654 } 655 if ((hres_lock & ~1) != lock_prev) 656 goto loop; 657 658 *tp = now; 659 } 660 661 void 662 gethrestime_lasttick(timespec_t *tp) 663 { 664 int s; 665 666 s = hr_clock_lock(); 667 *tp = hrestime; 668 hr_clock_unlock(s); 669 } 670 671 time_t 672 gethrestime_sec(void) 673 { 674 timestruc_t now; 675 676 gethrestime(&now); 677 return (now.tv_sec); 678 } 679 680 /* 681 * Initialize a kernel thread's stack 682 */ 683 684 caddr_t 685 thread_stk_init(caddr_t stk) 686 { 687 ASSERT(((uintptr_t)stk & (STACK_ALIGN - 1)) == 0); 688 return (stk - SA(MINFRAME)); 689 } 690 691 /* 692 * Initialize lwp's kernel stack. 693 */ 694 695 #ifdef TRAPTRACE 696 /* 697 * There's a tricky interdependency here between use of sysenter and 698 * TRAPTRACE which needs recording to avoid future confusion (this is 699 * about the third time I've re-figured this out ..) 700 * 701 * Here's how debugging lcall works with TRAPTRACE. 702 * 703 * 1 We're in userland with a breakpoint on the lcall instruction. 704 * 2 We execute the instruction - the instruction pushes the userland 705 * %ss, %esp, %efl, %cs, %eip on the stack and zips into the kernel 706 * via the call gate. 707 * 3 The hardware raises a debug trap in kernel mode, the hardware 708 * pushes %efl, %cs, %eip and gets to dbgtrap via the idt. 709 * 4 dbgtrap pushes the error code and trapno and calls cmntrap 710 * 5 cmntrap finishes building a trap frame 711 * 6 The TRACE_REGS macros in cmntrap copy a REGSIZE worth chunk 712 * off the stack into the traptrace buffer. 713 * 714 * This means that the traptrace buffer contains the wrong values in 715 * %esp and %ss, but everything else in there is correct. 716 * 717 * Here's how debugging sysenter works with TRAPTRACE. 718 * 719 * a We're in userland with a breakpoint on the sysenter instruction. 720 * b We execute the instruction - the instruction pushes -nothing- 721 * on the stack, but sets %cs, %eip, %ss, %esp to prearranged 722 * values to take us to sys_sysenter, at the top of the lwp's 723 * stack. 724 * c goto 3 725 * 726 * At this point, because we got into the kernel without the requisite 727 * five pushes on the stack, if we didn't make extra room, we'd 728 * end up with the TRACE_REGS macro fetching the saved %ss and %esp 729 * values from negative (unmapped) stack addresses -- which really bites. 730 * That's why we do the '-= 8' below. 731 * 732 * XXX Note that reading "up" lwp0's stack works because t0 is declared 733 * right next to t0stack in locore.s 734 */ 735 #endif 736 737 caddr_t 738 lwp_stk_init(klwp_t *lwp, caddr_t stk) 739 { 740 caddr_t oldstk; 741 struct pcb *pcb = &lwp->lwp_pcb; 742 743 oldstk = stk; 744 stk -= SA(sizeof (struct regs) + SA(MINFRAME)); 745 #ifdef TRAPTRACE 746 stk -= 2 * sizeof (greg_t); /* space for phony %ss:%sp (see above) */ 747 #endif 748 stk = (caddr_t)((uintptr_t)stk & ~(STACK_ALIGN - 1ul)); 749 bzero(stk, oldstk - stk); 750 lwp->lwp_regs = (void *)(stk + SA(MINFRAME)); 751 752 /* 753 * Arrange that the virtualized %fs and %gs GDT descriptors 754 * have a well-defined initial state (present, ring 3 755 * and of type data). 756 */ 757 #if defined(__amd64) 758 if (lwp_getdatamodel(lwp) == DATAMODEL_NATIVE) 759 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc; 760 else 761 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_u32desc; 762 #elif defined(__i386) 763 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc; 764 #endif /* __i386 */ 765 lwp_installctx(lwp); 766 return (stk); 767 } 768 769 /*ARGSUSED*/ 770 void 771 lwp_stk_fini(klwp_t *lwp) 772 {} 773 774 /* 775 * If we're not the panic CPU, we wait in panic_idle for reboot. If we're 776 * the boot CPU, then we are responsible for actually doing the reboot, so 777 * we watch for cpu_boot_cmd to be set. 778 */ 779 static void 780 panic_idle(void) 781 { 782 splx(ipltospl(CLOCK_LEVEL)); 783 (void) setjmp(&curthread->t_pcb); 784 785 if (CPU->cpu_id == getbootcpuid()) { 786 while (cpu_boot_cmd == BOOT_WAIT || cpu_boot_fcn == BOOT_WAIT) 787 drv_usecwait(10); 788 789 mdboot(cpu_boot_cmd, cpu_boot_fcn, NULL, B_FALSE); 790 } 791 792 for (;;); 793 } 794 795 /* 796 * Stop the other CPUs by cross-calling them and forcing them to enter 797 * the panic_idle() loop above. 798 */ 799 /*ARGSUSED*/ 800 void 801 panic_stopcpus(cpu_t *cp, kthread_t *t, int spl) 802 { 803 processorid_t i; 804 cpuset_t xcset; 805 806 (void) splzs(); 807 808 CPUSET_ALL_BUT(xcset, cp->cpu_id); 809 xc_trycall(NULL, NULL, NULL, xcset, (int (*)())panic_idle); 810 811 for (i = 0; i < NCPU; i++) { 812 if (i != cp->cpu_id && cpu[i] != NULL && 813 (cpu[i]->cpu_flags & CPU_EXISTS)) 814 cpu[i]->cpu_flags |= CPU_QUIESCED; 815 } 816 } 817 818 /* 819 * Platform callback following each entry to panicsys(). 820 */ 821 /*ARGSUSED*/ 822 void 823 panic_enter_hw(int spl) 824 { 825 /* Nothing to do here */ 826 } 827 828 /* 829 * Platform-specific code to execute after panicstr is set: we invoke 830 * the PSM entry point to indicate that a panic has occurred. 831 */ 832 /*ARGSUSED*/ 833 void 834 panic_quiesce_hw(panic_data_t *pdp) 835 { 836 psm_notifyf(PSM_PANIC_ENTER); 837 838 #ifdef TRAPTRACE 839 /* 840 * Turn off TRAPTRACE 841 */ 842 TRAPTRACE_FREEZE; 843 #endif /* TRAPTRACE */ 844 } 845 846 /* 847 * Platform callback prior to writing crash dump. 848 */ 849 /*ARGSUSED*/ 850 void 851 panic_dump_hw(int spl) 852 { 853 /* Nothing to do here */ 854 } 855 856 /*ARGSUSED*/ 857 void 858 plat_tod_fault(enum tod_fault_type tod_bad) 859 { 860 } 861 862 /*ARGSUSED*/ 863 int 864 blacklist(int cmd, const char *scheme, nvlist_t *fmri, const char *class) 865 { 866 return (ENOTSUP); 867 } 868 869 /* 870 * The underlying console output routines are protected by raising IPL in case 871 * we are still calling into the early boot services. Once we start calling 872 * the kernel console emulator, it will disable interrupts completely during 873 * character rendering (see sysp_putchar, for example). Refer to the comments 874 * and code in common/os/console.c for more information on these callbacks. 875 */ 876 /*ARGSUSED*/ 877 int 878 console_enter(int busy) 879 { 880 return (splzs()); 881 } 882 883 /*ARGSUSED*/ 884 void 885 console_exit(int busy, int spl) 886 { 887 splx(spl); 888 } 889 890 /* 891 * Allocate a region of virtual address space, unmapped. 892 * Stubbed out except on sparc, at least for now. 893 */ 894 /*ARGSUSED*/ 895 void * 896 boot_virt_alloc(void *addr, size_t size) 897 { 898 return (addr); 899 } 900 901 volatile unsigned long tenmicrodata; 902 903 void 904 tenmicrosec(void) 905 { 906 extern int tsc_gethrtime_initted; 907 int i; 908 909 if (tsc_gethrtime_initted) { 910 hrtime_t start, end; 911 start = end = gethrtime(); 912 while ((end - start) < (10 * (NANOSEC / MICROSEC))) { 913 SMT_PAUSE(); 914 end = gethrtime(); 915 } 916 } else { 917 /* 918 * Artificial loop to induce delay. 919 */ 920 for (i = 0; i < microdata; i++) 921 tenmicrodata = microdata; 922 } 923 } 924 925 /* 926 * get_cpu_mstate() is passed an array of timestamps, NCMSTATES 927 * long, and it fills in the array with the time spent on cpu in 928 * each of the mstates, where time is returned in nsec. 929 * 930 * No guarantee is made that the returned values in times[] will 931 * monotonically increase on sequential calls, although this will 932 * be true in the long run. Any such guarantee must be handled by 933 * the caller, if needed. This can happen if we fail to account 934 * for elapsed time due to a generation counter conflict, yet we 935 * did account for it on a prior call (see below). 936 * 937 * The complication is that the cpu in question may be updating 938 * its microstate at the same time that we are reading it. 939 * Because the microstate is only updated when the CPU's state 940 * changes, the values in cpu_intracct[] can be indefinitely out 941 * of date. To determine true current values, it is necessary to 942 * compare the current time with cpu_mstate_start, and add the 943 * difference to times[cpu_mstate]. 944 * 945 * This can be a problem if those values are changing out from 946 * under us. Because the code path in new_cpu_mstate() is 947 * performance critical, we have not added a lock to it. Instead, 948 * we have added a generation counter. Before beginning 949 * modifications, the counter is set to 0. After modifications, 950 * it is set to the old value plus one. 951 * 952 * get_cpu_mstate() will not consider the values of cpu_mstate 953 * and cpu_mstate_start to be usable unless the value of 954 * cpu_mstate_gen is both non-zero and unchanged, both before and 955 * after reading the mstate information. Note that we must 956 * protect against out-of-order loads around accesses to the 957 * generation counter. Also, this is a best effort approach in 958 * that we do not retry should the counter be found to have 959 * changed. 960 * 961 * cpu_intracct[] is used to identify time spent in each CPU 962 * mstate while handling interrupts. Such time should be reported 963 * against system time, and so is subtracted out from its 964 * corresponding cpu_acct[] time and added to 965 * cpu_acct[CMS_SYSTEM]. 966 */ 967 968 void 969 get_cpu_mstate(cpu_t *cpu, hrtime_t *times) 970 { 971 int i; 972 hrtime_t now, start; 973 uint16_t gen; 974 uint16_t state; 975 hrtime_t intracct[NCMSTATES]; 976 977 /* 978 * Load all volatile state under the protection of membar. 979 * cpu_acct[cpu_mstate] must be loaded to avoid double counting 980 * of (now - cpu_mstate_start) by a change in CPU mstate that 981 * arrives after we make our last check of cpu_mstate_gen. 982 */ 983 984 now = gethrtime_unscaled(); 985 gen = cpu->cpu_mstate_gen; 986 987 membar_consumer(); /* guarantee load ordering */ 988 start = cpu->cpu_mstate_start; 989 state = cpu->cpu_mstate; 990 for (i = 0; i < NCMSTATES; i++) { 991 intracct[i] = cpu->cpu_intracct[i]; 992 times[i] = cpu->cpu_acct[i]; 993 } 994 membar_consumer(); /* guarantee load ordering */ 995 996 if (gen != 0 && gen == cpu->cpu_mstate_gen && now > start) 997 times[state] += now - start; 998 999 for (i = 0; i < NCMSTATES; i++) { 1000 if (i == CMS_SYSTEM) 1001 continue; 1002 times[i] -= intracct[i]; 1003 if (times[i] < 0) { 1004 intracct[i] += times[i]; 1005 times[i] = 0; 1006 } 1007 times[CMS_SYSTEM] += intracct[i]; 1008 scalehrtime(×[i]); 1009 } 1010 scalehrtime(×[CMS_SYSTEM]); 1011 } 1012