1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2020 Joyent, Inc. 25 * Copyright 2025 Oxide Computer Company 26 */ 27 /* 28 * Copyright (c) 2010, Intel Corporation. 29 * All rights reserved. 30 */ 31 32 #include <sys/types.h> 33 #include <sys/t_lock.h> 34 #include <sys/param.h> 35 #include <sys/segments.h> 36 #include <sys/sysmacros.h> 37 #include <sys/signal.h> 38 #include <sys/systm.h> 39 #include <sys/user.h> 40 #include <sys/mman.h> 41 #include <sys/vm.h> 42 43 #include <sys/disp.h> 44 #include <sys/class.h> 45 46 #include <sys/proc.h> 47 #include <sys/buf.h> 48 #include <sys/kmem.h> 49 50 #include <sys/reboot.h> 51 #include <sys/uadmin.h> 52 #include <sys/callb.h> 53 54 #include <sys/cred.h> 55 #include <sys/vnode.h> 56 #include <sys/file.h> 57 58 #include <sys/procfs.h> 59 #include <sys/acct.h> 60 61 #include <sys/vfs.h> 62 #include <sys/dnlc.h> 63 #include <sys/var.h> 64 #include <sys/cmn_err.h> 65 #include <sys/utsname.h> 66 #include <sys/debug.h> 67 68 #include <sys/dumphdr.h> 69 #include <sys/bootconf.h> 70 #include <sys/varargs.h> 71 #include <sys/promif.h> 72 #include <sys/modctl.h> 73 74 #include <sys/consdev.h> 75 #include <sys/frame.h> 76 77 #include <sys/sunddi.h> 78 #include <sys/ddidmareq.h> 79 #include <sys/psw.h> 80 #include <sys/regset.h> 81 #include <sys/privregs.h> 82 #include <sys/clock.h> 83 #include <sys/tss.h> 84 #include <sys/cpu.h> 85 #include <sys/stack.h> 86 #include <sys/trap.h> 87 #include <sys/pic.h> 88 #include <vm/hat.h> 89 #include <vm/anon.h> 90 #include <vm/as.h> 91 #include <vm/page.h> 92 #include <vm/seg.h> 93 #include <vm/seg_kmem.h> 94 #include <vm/seg_map.h> 95 #include <vm/seg_vn.h> 96 #include <vm/seg_kp.h> 97 #include <vm/hat_i86.h> 98 #include <sys/swap.h> 99 #include <sys/thread.h> 100 #include <sys/sysconf.h> 101 #include <sys/vm_machparam.h> 102 #include <sys/archsystm.h> 103 #include <sys/machsystm.h> 104 #include <sys/machlock.h> 105 #include <sys/x_call.h> 106 #include <sys/instance.h> 107 108 #include <sys/time.h> 109 #include <sys/smp_impldefs.h> 110 #include <sys/psm_types.h> 111 #include <sys/atomic.h> 112 #include <sys/panic.h> 113 #include <sys/cpuvar.h> 114 #include <sys/dtrace.h> 115 #include <sys/bl.h> 116 #include <sys/nvpair.h> 117 #include <sys/x86_archext.h> 118 #include <sys/pool_pset.h> 119 #include <sys/autoconf.h> 120 #include <sys/mem.h> 121 #include <sys/dumphdr.h> 122 #include <sys/compress.h> 123 #include <sys/cpu_module.h> 124 #if defined(__xpv) 125 #include <sys/hypervisor.h> 126 #include <sys/xpv_panic.h> 127 #endif 128 129 #include <sys/fastboot.h> 130 #include <sys/machelf.h> 131 #include <sys/kobj.h> 132 #include <sys/multiboot.h> 133 134 #ifdef TRAPTRACE 135 #include <sys/traptrace.h> 136 #endif /* TRAPTRACE */ 137 138 #include <c2/audit.h> 139 #include <sys/clock_impl.h> 140 141 extern void audit_enterprom(int); 142 extern void audit_exitprom(int); 143 144 /* 145 * Tunable to enable apix PSM; if set to 0, pcplusmp PSM will be used. 146 */ 147 int apix_enable = 1; 148 149 int apic_nvidia_io_max = 0; /* no. of NVIDIA i/o apics */ 150 151 /* 152 * Occassionally the kernel knows better whether to power-off or reboot. 153 */ 154 int force_shutdown_method = AD_UNKNOWN; 155 156 /* 157 * The panicbuf array is used to record messages and state: 158 */ 159 char panicbuf[PANICBUFSIZE]; 160 161 /* 162 * Flags to control Dynamic Reconfiguration features. 163 */ 164 uint64_t plat_dr_options; 165 166 /* 167 * Maximum physical address for memory DR operations. 168 */ 169 uint64_t plat_dr_physmax; 170 171 /* 172 * maxphys - used during physio 173 * klustsize - used for klustering by swapfs and specfs 174 */ 175 int maxphys = 56 * 1024; /* XXX See vm_subr.c - max b_count in physio */ 176 int klustsize = 56 * 1024; 177 178 caddr_t p0_va; /* Virtual address for accessing physical page 0 */ 179 180 /* 181 * defined here, though unused on x86, 182 * to make kstat_fr.c happy. 183 */ 184 int vac; 185 186 void debug_enter(char *); 187 188 extern void pm_cfb_check_and_powerup(void); 189 extern void pm_cfb_rele(void); 190 191 extern fastboot_info_t newkernel; 192 193 /* 194 * Instructions to enable or disable SMAP, respectively. 195 */ 196 static const uint8_t clac_instr[3] = { 0x0f, 0x01, 0xca }; 197 static const uint8_t stac_instr[3] = { 0x0f, 0x01, 0xcb }; 198 199 /* 200 * Machine dependent code to reboot. 201 * "mdep" is interpreted as a character pointer; if non-null, it is a pointer 202 * to a string to be used as the argument string when rebooting. 203 * 204 * "invoke_cb" is a boolean. It is set to true when mdboot() can safely 205 * invoke CB_CL_MDBOOT callbacks before shutting the system down, i.e. when 206 * we are in a normal shutdown sequence (interrupts are not blocked, the 207 * system is not panic'ing or being suspended). 208 */ 209 /*ARGSUSED*/ 210 void 211 mdboot(int cmd, int fcn, char *mdep, boolean_t invoke_cb) 212 { 213 processorid_t bootcpuid = 0; 214 static int is_first_quiesce = 1; 215 static int is_first_reset = 1; 216 int reset_status = 0; 217 static char fallback_str[] = "Falling back to regular reboot.\n"; 218 219 if (fcn == AD_FASTREBOOT && !newkernel.fi_valid) 220 fcn = AD_BOOT; 221 222 if (!panicstr) { 223 kpreempt_disable(); 224 if (fcn == AD_FASTREBOOT) { 225 mutex_enter(&cpu_lock); 226 if (CPU_ACTIVE(cpu_get(bootcpuid))) { 227 affinity_set(bootcpuid); 228 } 229 mutex_exit(&cpu_lock); 230 } else { 231 affinity_set(CPU_CURRENT); 232 } 233 } 234 235 if (force_shutdown_method != AD_UNKNOWN) 236 fcn = force_shutdown_method; 237 238 /* 239 * XXX - rconsvp is set to NULL to ensure that output messages 240 * are sent to the underlying "hardware" device using the 241 * monitor's printf routine since we are in the process of 242 * either rebooting or halting the machine. 243 */ 244 rconsvp = NULL; 245 246 /* 247 * Print the reboot message now, before pausing other cpus. 248 * There is a race condition in the printing support that 249 * can deadlock multiprocessor machines. 250 */ 251 if (!(fcn == AD_HALT || fcn == AD_POWEROFF)) 252 prom_printf("rebooting...\n"); 253 254 if (IN_XPV_PANIC()) 255 reset(); 256 257 /* 258 * We can't bring up the console from above lock level, so do it now 259 */ 260 pm_cfb_check_and_powerup(); 261 262 /* make sure there are no more changes to the device tree */ 263 devtree_freeze(); 264 265 if (invoke_cb) 266 (void) callb_execute_class(CB_CL_MDBOOT, 0); 267 268 /* 269 * Clear any unresolved UEs from memory. 270 */ 271 page_retire_mdboot(); 272 273 #if defined(__xpv) 274 /* 275 * XXPV Should probably think some more about how we deal 276 * with panicing before it's really safe to panic. 277 * On hypervisors, we reboot very quickly.. Perhaps panic 278 * should only attempt to recover by rebooting if, 279 * say, we were able to mount the root filesystem, 280 * or if we successfully launched init(8). 281 */ 282 if (panicstr && proc_init == NULL) 283 (void) HYPERVISOR_shutdown(SHUTDOWN_poweroff); 284 #endif 285 /* 286 * stop other cpus and raise our priority. since there is only 287 * one active cpu after this, and our priority will be too high 288 * for us to be preempted, we're essentially single threaded 289 * from here on out. 290 */ 291 (void) spl6(); 292 if (!panicstr) { 293 mutex_enter(&cpu_lock); 294 pause_cpus(NULL, NULL); 295 mutex_exit(&cpu_lock); 296 } 297 298 /* 299 * If the system is panicking, the preloaded kernel is valid, and 300 * fastreboot_onpanic has been set, and the system has been up for 301 * longer than fastreboot_onpanic_uptime (default to 10 minutes), 302 * choose Fast Reboot. 303 */ 304 if (fcn == AD_BOOT && panicstr && newkernel.fi_valid && 305 fastreboot_onpanic && 306 (panic_lbolt - lbolt_at_boot) > fastreboot_onpanic_uptime) { 307 fcn = AD_FASTREBOOT; 308 } 309 310 /* 311 * Try to quiesce devices. 312 */ 313 if (is_first_quiesce) { 314 /* 315 * Clear is_first_quiesce before calling quiesce_devices() 316 * so that if quiesce_devices() causes panics, it will not 317 * be invoked again. 318 */ 319 is_first_quiesce = 0; 320 321 quiesce_active = 1; 322 quiesce_devices(ddi_root_node(), &reset_status); 323 if (reset_status == -1) { 324 if (fcn == AD_FASTREBOOT && !force_fastreboot) { 325 prom_printf("Driver(s) not capable of fast " 326 "reboot.\n"); 327 prom_printf(fallback_str); 328 fastreboot_capable = 0; 329 fcn = AD_BOOT; 330 } else if (fcn != AD_FASTREBOOT) 331 fastreboot_capable = 0; 332 } 333 quiesce_active = 0; 334 } 335 336 /* 337 * Try to reset devices. reset_leaves() should only be called 338 * a) when there are no other threads that could be accessing devices, 339 * and 340 * b) on a system that's not capable of fast reboot (fastreboot_capable 341 * being 0), or on a system where quiesce_devices() failed to 342 * complete (quiesce_active being 1). 343 */ 344 if (is_first_reset && (!fastreboot_capable || quiesce_active)) { 345 /* 346 * Clear is_first_reset before calling reset_devices() 347 * so that if reset_devices() causes panics, it will not 348 * be invoked again. 349 */ 350 is_first_reset = 0; 351 reset_leaves(); 352 } 353 354 /* Verify newkernel checksum */ 355 if (fastreboot_capable && fcn == AD_FASTREBOOT && 356 fastboot_cksum_verify(&newkernel) != 0) { 357 fastreboot_capable = 0; 358 prom_printf("Fast reboot: checksum failed for the new " 359 "kernel.\n"); 360 prom_printf(fallback_str); 361 } 362 363 (void) spl8(); 364 365 if (fastreboot_capable && fcn == AD_FASTREBOOT) { 366 /* 367 * psm_shutdown is called within fast_reboot() 368 */ 369 fast_reboot(); 370 } else { 371 (*psm_shutdownf)(cmd, fcn); 372 373 if (fcn == AD_HALT || fcn == AD_POWEROFF) 374 halt((char *)NULL); 375 else 376 prom_reboot(""); 377 } 378 /*NOTREACHED*/ 379 } 380 381 /* mdpreboot - may be called prior to mdboot while root fs still mounted */ 382 /*ARGSUSED*/ 383 void 384 mdpreboot(int cmd, int fcn, char *mdep) 385 { 386 if (fcn == AD_FASTREBOOT && !fastreboot_capable) { 387 fcn = AD_BOOT; 388 #ifdef __xpv 389 cmn_err(CE_WARN, "Fast reboot is not supported on xVM"); 390 #else 391 cmn_err(CE_WARN, 392 "Fast reboot is not supported on this platform%s", 393 fastreboot_nosup_message()); 394 #endif 395 } 396 397 if (fcn == AD_FASTREBOOT) { 398 fastboot_load_kernel(mdep); 399 if (!newkernel.fi_valid) 400 fcn = AD_BOOT; 401 } 402 403 (*psm_preshutdownf)(cmd, fcn); 404 } 405 406 static void 407 stop_other_cpus(void) 408 { 409 ulong_t s = clear_int_flag(); /* fast way to keep CPU from changing */ 410 cpuset_t xcset; 411 412 CPUSET_ALL_BUT(xcset, CPU->cpu_id); 413 xc_priority(0, 0, 0, CPUSET2BV(xcset), mach_cpu_halt); 414 restore_int_flag(s); 415 } 416 417 /* 418 * Machine dependent abort sequence handling 419 */ 420 void 421 abort_sequence_enter(char *msg) 422 { 423 if (abort_enable == 0) { 424 if (AU_ZONE_AUDITING(GET_KCTX_GZ)) 425 audit_enterprom(0); 426 return; 427 } 428 if (AU_ZONE_AUDITING(GET_KCTX_GZ)) 429 audit_enterprom(1); 430 debug_enter(msg); 431 if (AU_ZONE_AUDITING(GET_KCTX_GZ)) 432 audit_exitprom(1); 433 } 434 435 /* 436 * Enter debugger. Called when the user types ctrl-alt-d or whenever 437 * code wants to enter the debugger and possibly resume later. 438 * 439 * msg: message to print, possibly NULL. 440 */ 441 void 442 debug_enter(char *msg) 443 { 444 if (dtrace_debugger_init != NULL) 445 (*dtrace_debugger_init)(); 446 447 if (msg != NULL || (boothowto & RB_DEBUG)) 448 prom_printf("\n"); 449 450 if (msg != NULL) 451 prom_printf("%s\n", msg); 452 453 if (boothowto & RB_DEBUG) 454 kmdb_enter(); 455 456 if (dtrace_debugger_fini != NULL) 457 (*dtrace_debugger_fini)(); 458 } 459 460 void 461 reset(void) 462 { 463 extern void acpi_reset_system(); 464 #if !defined(__xpv) 465 ushort_t *bios_memchk; 466 467 /* 468 * Can't use psm_map_phys or acpi_reset_system before the hat is 469 * initialized. 470 */ 471 if (khat_running) { 472 bios_memchk = (ushort_t *)psm_map_phys(0x472, 473 sizeof (ushort_t), PROT_READ | PROT_WRITE); 474 if (bios_memchk) 475 *bios_memchk = 0x1234; /* bios memory check disable */ 476 477 if (options_dip != NULL && 478 ddi_prop_exists(DDI_DEV_T_ANY, ddi_root_node(), 0, 479 "efi-systab")) { 480 if (bootops == NULL) 481 acpi_reset_system(); 482 efi_reset(); 483 } 484 485 /* 486 * The problem with using stubs is that we can call 487 * acpi_reset_system only after the kernel is up and running. 488 * 489 * We should create a global state to keep track of how far 490 * up the kernel is but for the time being we will depend on 491 * bootops. bootops cleared in startup_end(). 492 */ 493 if (bootops == NULL) 494 acpi_reset_system(); 495 } 496 497 pc_reset(); 498 #else 499 if (IN_XPV_PANIC()) { 500 if (khat_running && bootops == NULL) { 501 acpi_reset_system(); 502 } 503 504 pc_reset(); 505 } 506 507 (void) HYPERVISOR_shutdown(SHUTDOWN_reboot); 508 panic("HYPERVISOR_shutdown() failed"); 509 #endif 510 /*NOTREACHED*/ 511 } 512 513 /* 514 * Halt the machine and return to the monitor 515 */ 516 void 517 halt(char *s) 518 { 519 stop_other_cpus(); /* send stop signal to other CPUs */ 520 if (s) 521 prom_printf("(%s) \n", s); 522 prom_exit_to_mon(); 523 /*NOTREACHED*/ 524 } 525 526 /* 527 * Initiate interrupt redistribution. 528 */ 529 void 530 i_ddi_intr_redist_all_cpus() 531 { 532 } 533 534 /* 535 * XXX These probably ought to live somewhere else 536 * XXX They are called from mem.c 537 */ 538 539 /* 540 * Convert page frame number to an OBMEM page frame number 541 * (i.e. put in the type bits -- zero for this implementation) 542 */ 543 pfn_t 544 impl_obmem_pfnum(pfn_t pf) 545 { 546 return (pf); 547 } 548 549 #ifdef NM_DEBUG 550 int nmi_test = 0; /* checked in intentry.s during clock int */ 551 int nmtest = -1; 552 nmfunc1(int arg, struct regs *rp) 553 { 554 printf("nmi called with arg = %x, regs = %x\n", arg, rp); 555 nmtest += 50; 556 if (arg == nmtest) { 557 printf("ip = %x\n", rp->r_pc); 558 return (1); 559 } 560 return (0); 561 } 562 563 #endif 564 565 #include <sys/bootsvcs.h> 566 567 /* Hacked up initialization for initial kernel check out is HERE. */ 568 /* The basic steps are: */ 569 /* kernel bootfuncs definition/initialization for KADB */ 570 /* kadb bootfuncs pointer initialization */ 571 /* putchar/getchar (interrupts disabled) */ 572 573 /* kadb bootfuncs pointer initialization */ 574 575 int 576 sysp_getchar() 577 { 578 int i; 579 ulong_t s; 580 581 if (cons_polledio == NULL) { 582 /* Uh oh */ 583 prom_printf("getchar called with no console\n"); 584 for (;;) 585 /* LOOP FOREVER */; 586 } 587 588 s = clear_int_flag(); 589 i = cons_polledio->cons_polledio_getchar( 590 cons_polledio->cons_polledio_argument); 591 restore_int_flag(s); 592 return (i); 593 } 594 595 void 596 sysp_putchar(int c) 597 { 598 ulong_t s; 599 600 /* 601 * We have no alternative but to drop the output on the floor. 602 */ 603 if (cons_polledio == NULL || 604 cons_polledio->cons_polledio_putchar == NULL) 605 return; 606 607 s = clear_int_flag(); 608 cons_polledio->cons_polledio_putchar( 609 cons_polledio->cons_polledio_argument, c); 610 restore_int_flag(s); 611 } 612 613 int 614 sysp_ischar() 615 { 616 int i; 617 ulong_t s; 618 619 if (cons_polledio == NULL || 620 cons_polledio->cons_polledio_ischar == NULL) 621 return (0); 622 623 s = clear_int_flag(); 624 i = cons_polledio->cons_polledio_ischar( 625 cons_polledio->cons_polledio_argument); 626 restore_int_flag(s); 627 return (i); 628 } 629 630 int 631 goany(void) 632 { 633 prom_printf("Type any key to continue "); 634 (void) prom_getchar(); 635 prom_printf("\n"); 636 return (1); 637 } 638 639 static struct boot_syscalls kern_sysp = { 640 sysp_getchar, /* unchar (*getchar)(); 7 */ 641 sysp_putchar, /* int (*putchar)(); 8 */ 642 sysp_ischar, /* int (*ischar)(); 9 */ 643 }; 644 645 #if defined(__xpv) 646 int using_kern_polledio; 647 #endif 648 649 void 650 kadb_uses_kernel() 651 { 652 /* 653 * This routine is now totally misnamed, since it does not in fact 654 * control kadb's I/O; it only controls the kernel's prom_* I/O. 655 */ 656 sysp = &kern_sysp; 657 #if defined(__xpv) 658 using_kern_polledio = 1; 659 #endif 660 } 661 662 /* 663 * the interface to the outside world 664 */ 665 666 /* 667 * poll_port -- wait for a register to achieve a 668 * specific state. Arguments are a mask of bits we care about, 669 * and two sub-masks. To return normally, all the bits in the 670 * first sub-mask must be ON, all the bits in the second sub- 671 * mask must be OFF. If about seconds pass without the register 672 * achieving the desired bit configuration, we return 1, else 673 * 0. 674 */ 675 int 676 poll_port(ushort_t port, ushort_t mask, ushort_t onbits, ushort_t offbits) 677 { 678 int i; 679 ushort_t maskval; 680 681 for (i = 500000; i; i--) { 682 maskval = inb(port) & mask; 683 if (((maskval & onbits) == onbits) && 684 ((maskval & offbits) == 0)) 685 return (0); 686 drv_usecwait(10); 687 } 688 return (1); 689 } 690 691 /* 692 * set_idle_cpu is called from idle() when a CPU becomes idle. 693 */ 694 /*LINTED: static unused */ 695 static uint_t last_idle_cpu; 696 697 /*ARGSUSED*/ 698 void 699 set_idle_cpu(int cpun) 700 { 701 last_idle_cpu = cpun; 702 (*psm_set_idle_cpuf)(cpun); 703 } 704 705 /* 706 * unset_idle_cpu is called from idle() when a CPU is no longer idle. 707 */ 708 /*ARGSUSED*/ 709 void 710 unset_idle_cpu(int cpun) 711 { 712 (*psm_unset_idle_cpuf)(cpun); 713 } 714 715 /* 716 * This routine is almost correct now, but not quite. It still needs the 717 * equivalent concept of "hres_last_tick", just like on the sparc side. 718 * The idea is to take a snapshot of the hi-res timer while doing the 719 * hrestime_adj updates under hres_lock in locore, so that the small 720 * interval between interrupt assertion and interrupt processing is 721 * accounted for correctly. Once we have this, the code below should 722 * be modified to subtract off hres_last_tick rather than hrtime_base. 723 * 724 * I'd have done this myself, but I don't have source to all of the 725 * vendor-specific hi-res timer routines (grrr...). The generic hook I 726 * need is something like "gethrtime_unlocked()", which would be just like 727 * gethrtime() but would assume that you're already holding CLOCK_LOCK(). 728 * This is what the GET_HRTIME() macro is for on sparc (although it also 729 * serves the function of making time available without a function call 730 * so you don't take a register window overflow while traps are disabled). 731 */ 732 void 733 pc_gethrestime(timestruc_t *tp) 734 { 735 int lock_prev; 736 timestruc_t now; 737 int nslt; /* nsec since last tick */ 738 int adj; /* amount of adjustment to apply */ 739 740 loop: 741 lock_prev = hres_lock; 742 now = hrestime; 743 nslt = (int)(gethrtime() - hres_last_tick); 744 if (nslt < 0) { 745 /* 746 * nslt < 0 means a tick came between sampling 747 * gethrtime() and hres_last_tick; restart the loop 748 */ 749 750 goto loop; 751 } 752 now.tv_nsec += nslt; 753 if (hrestime_adj != 0) { 754 if (hrestime_adj > 0) { 755 adj = (nslt >> ADJ_SHIFT); 756 if (adj > hrestime_adj) 757 adj = (int)hrestime_adj; 758 } else { 759 adj = -(nslt >> ADJ_SHIFT); 760 if (adj < hrestime_adj) 761 adj = (int)hrestime_adj; 762 } 763 now.tv_nsec += adj; 764 } 765 while ((unsigned long)now.tv_nsec >= NANOSEC) { 766 767 /* 768 * We might have a large adjustment or have been in the 769 * debugger for a long time; take care of (at most) four 770 * of those missed seconds (tv_nsec is 32 bits, so 771 * anything >4s will be wrapping around). However, 772 * anything more than 2 seconds out of sync will trigger 773 * timedelta from clock() to go correct the time anyway, 774 * so do what we can, and let the big crowbar do the 775 * rest. A similar correction while loop exists inside 776 * hres_tick(); in all cases we'd like tv_nsec to 777 * satisfy 0 <= tv_nsec < NANOSEC to avoid confusing 778 * user processes, but if tv_sec's a little behind for a 779 * little while, that's OK; time still monotonically 780 * increases. 781 */ 782 783 now.tv_nsec -= NANOSEC; 784 now.tv_sec++; 785 } 786 if ((hres_lock & ~1) != lock_prev) 787 goto loop; 788 789 *tp = now; 790 } 791 792 void 793 gethrestime_lasttick(timespec_t *tp) 794 { 795 int s; 796 797 s = hr_clock_lock(); 798 *tp = hrestime; 799 hr_clock_unlock(s); 800 } 801 802 time_t 803 gethrestime_sec(void) 804 { 805 timestruc_t now; 806 807 gethrestime(&now); 808 return (now.tv_sec); 809 } 810 811 /* 812 * Initialize a kernel thread's stack 813 */ 814 815 caddr_t 816 thread_stk_init(caddr_t stk) 817 { 818 ASSERT(((uintptr_t)stk & (STACK_ALIGN - 1)) == 0); 819 return (stk - SA(MINFRAME)); 820 } 821 822 /* 823 * Initialize lwp's kernel stack. 824 */ 825 826 #ifdef TRAPTRACE 827 /* 828 * There's a tricky interdependency here between use of sysenter and 829 * TRAPTRACE which needs recording to avoid future confusion (this is 830 * about the third time I've re-figured this out ..) 831 * 832 * Here's how debugging lcall works with TRAPTRACE. 833 * 834 * 1 We're in userland with a breakpoint on the lcall instruction. 835 * 2 We execute the instruction - the instruction pushes the userland 836 * %ss, %esp, %efl, %cs, %eip on the stack and zips into the kernel 837 * via the call gate. 838 * 3 The hardware raises a debug trap in kernel mode, the hardware 839 * pushes %efl, %cs, %eip and gets to dbgtrap via the idt. 840 * 4 dbgtrap pushes the error code and trapno and calls cmntrap 841 * 5 cmntrap finishes building a trap frame 842 * 6 The TRACE_REGS macros in cmntrap copy a REGSIZE worth chunk 843 * off the stack into the traptrace buffer. 844 * 845 * This means that the traptrace buffer contains the wrong values in 846 * %esp and %ss, but everything else in there is correct. 847 * 848 * Here's how debugging sysenter works with TRAPTRACE. 849 * 850 * a We're in userland with a breakpoint on the sysenter instruction. 851 * b We execute the instruction - the instruction pushes -nothing- 852 * on the stack, but sets %cs, %eip, %ss, %esp to prearranged 853 * values to take us to sys_sysenter, at the top of the lwp's 854 * stack. 855 * c goto 3 856 * 857 * At this point, because we got into the kernel without the requisite 858 * five pushes on the stack, if we didn't make extra room, we'd 859 * end up with the TRACE_REGS macro fetching the saved %ss and %esp 860 * values from negative (unmapped) stack addresses -- which really bites. 861 * That's why we do the '-= 8' below. 862 * 863 * XXX Note that reading "up" lwp0's stack works because t0 is declared 864 * right next to t0stack in locore.s 865 */ 866 #endif 867 868 caddr_t 869 lwp_stk_init(klwp_t *lwp, caddr_t stk) 870 { 871 caddr_t oldstk; 872 struct pcb *pcb = &lwp->lwp_pcb; 873 874 oldstk = stk; 875 stk -= SA(sizeof (struct regs) + SA(MINFRAME)); 876 #ifdef TRAPTRACE 877 stk -= 2 * sizeof (greg_t); /* space for phony %ss:%sp (see above) */ 878 #endif 879 stk = (caddr_t)((uintptr_t)stk & ~(STACK_ALIGN - 1ul)); 880 bzero(stk, oldstk - stk); 881 lwp->lwp_regs = (void *)(stk + SA(MINFRAME)); 882 883 /* 884 * Arrange that the virtualized %fs and %gs GDT descriptors 885 * have a well-defined initial state (present, ring 3 886 * and of type data). 887 */ 888 if (lwp_getdatamodel(lwp) == DATAMODEL_NATIVE) 889 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_udesc; 890 else 891 pcb->pcb_fsdesc = pcb->pcb_gsdesc = zero_u32desc; 892 lwp_installctx(lwp); 893 return (stk); 894 } 895 896 /* 897 * Use this opportunity to free any dynamically allocated fp storage. 898 */ 899 void 900 lwp_stk_fini(klwp_t *lwp) 901 { 902 fp_lwp_cleanup(lwp); 903 } 904 905 void 906 lwp_fp_init(klwp_t *lwp) 907 { 908 fp_lwp_init(lwp); 909 } 910 911 /* 912 * If we're not the panic CPU, we wait in panic_idle for reboot. 913 */ 914 void 915 panic_idle(void) 916 { 917 splx(ipltospl(CLOCK_LEVEL)); 918 (void) setjmp(&curthread->t_pcb); 919 920 dumpsys_helper(); 921 922 #ifndef __xpv 923 for (;;) 924 i86_halt(); 925 #else 926 for (;;) 927 ; 928 #endif 929 } 930 931 /* 932 * Stop the other CPUs by cross-calling them and forcing them to enter 933 * the panic_idle() loop above. 934 */ 935 /*ARGSUSED*/ 936 void 937 panic_stopcpus(cpu_t *cp, kthread_t *t, int spl) 938 { 939 processorid_t i; 940 cpuset_t xcset; 941 942 /* 943 * In the case of a Xen panic, the hypervisor has already stopped 944 * all of the CPUs. 945 */ 946 if (!IN_XPV_PANIC()) { 947 (void) splzs(); 948 949 CPUSET_ALL_BUT(xcset, cp->cpu_id); 950 xc_priority(0, 0, 0, CPUSET2BV(xcset), (xc_func_t)panic_idle); 951 } 952 953 for (i = 0; i < NCPU; i++) { 954 if (i != cp->cpu_id && cpu[i] != NULL && 955 (cpu[i]->cpu_flags & CPU_EXISTS)) 956 cpu[i]->cpu_flags |= CPU_QUIESCED; 957 } 958 } 959 960 /* 961 * Platform callback following each entry to panicsys(). 962 */ 963 /*ARGSUSED*/ 964 void 965 panic_enter_hw(int spl) 966 { 967 /* Nothing to do here */ 968 } 969 970 /* 971 * Platform-specific code to execute after panicstr is set: we invoke 972 * the PSM entry point to indicate that a panic has occurred. 973 */ 974 /*ARGSUSED*/ 975 void 976 panic_quiesce_hw(panic_data_t *pdp) 977 { 978 psm_notifyf(PSM_PANIC_ENTER); 979 980 cmi_panic_callback(); 981 982 #ifdef TRAPTRACE 983 /* 984 * Turn off TRAPTRACE 985 */ 986 TRAPTRACE_FREEZE; 987 #endif /* TRAPTRACE */ 988 } 989 990 /* 991 * Platform callback prior to writing crash dump. 992 */ 993 /*ARGSUSED*/ 994 void 995 panic_dump_hw(int spl) 996 { 997 /* Nothing to do here */ 998 } 999 1000 void * 1001 plat_traceback(void *fpreg) 1002 { 1003 #ifdef __xpv 1004 if (IN_XPV_PANIC()) 1005 return (xpv_traceback(fpreg)); 1006 #endif 1007 return (fpreg); 1008 } 1009 1010 /*ARGSUSED*/ 1011 void 1012 plat_tod_fault(enum tod_fault_type tod_bad) 1013 {} 1014 1015 /*ARGSUSED*/ 1016 int 1017 blacklist(int cmd, const char *scheme, nvlist_t *fmri, const char *class) 1018 { 1019 return (ENOTSUP); 1020 } 1021 1022 /* 1023 * The underlying console output routines are protected by raising IPL in case 1024 * we are still calling into the early boot services. Once we start calling 1025 * the kernel console emulator, it will disable interrupts completely during 1026 * character rendering (see sysp_putchar, for example). Refer to the comments 1027 * and code in common/os/console.c for more information on these callbacks. 1028 */ 1029 /*ARGSUSED*/ 1030 int 1031 console_enter(int busy) 1032 { 1033 return (splzs()); 1034 } 1035 1036 /*ARGSUSED*/ 1037 void 1038 console_exit(int busy, int spl) 1039 { 1040 splx(spl); 1041 } 1042 1043 /* 1044 * Allocate a region of virtual address space, unmapped. 1045 * Stubbed out except on sparc, at least for now. 1046 */ 1047 /*ARGSUSED*/ 1048 void * 1049 boot_virt_alloc(void *addr, size_t size) 1050 { 1051 return (addr); 1052 } 1053 1054 void 1055 tenmicrosec(void) 1056 { 1057 extern int gethrtime_hires; 1058 1059 if (gethrtime_hires) { 1060 hrtime_t start, end; 1061 start = end = gethrtime(); 1062 while ((end - start) < (10 * (NANOSEC / MICROSEC))) { 1063 SMT_PAUSE(); 1064 end = gethrtime(); 1065 } 1066 } else { 1067 #if defined(__xpv) 1068 hrtime_t newtime; 1069 1070 newtime = xpv_gethrtime() + 10000; /* now + 10 us */ 1071 while (xpv_gethrtime() < newtime) 1072 SMT_PAUSE(); 1073 #else /* __xpv */ 1074 panic("TSC was not calibrated!"); 1075 #endif /* __xpv */ 1076 } 1077 } 1078 1079 /* 1080 * get_cpu_mstate() is passed an array of timestamps, NCMSTATES 1081 * long, and it fills in the array with the time spent on cpu in 1082 * each of the mstates, where time is returned in nsec. 1083 * 1084 * No guarantee is made that the returned values in times[] will 1085 * monotonically increase on sequential calls, although this will 1086 * be true in the long run. Any such guarantee must be handled by 1087 * the caller, if needed. This can happen if we fail to account 1088 * for elapsed time due to a generation counter conflict, yet we 1089 * did account for it on a prior call (see below). 1090 * 1091 * The complication is that the cpu in question may be updating 1092 * its microstate at the same time that we are reading it. 1093 * Because the microstate is only updated when the CPU's state 1094 * changes, the values in cpu_intracct[] can be indefinitely out 1095 * of date. To determine true current values, it is necessary to 1096 * compare the current time with cpu_mstate_start, and add the 1097 * difference to times[cpu_mstate]. 1098 * 1099 * This can be a problem if those values are changing out from 1100 * under us. Because the code path in new_cpu_mstate() is 1101 * performance critical, we have not added a lock to it. Instead, 1102 * we have added a generation counter. Before beginning 1103 * modifications, the counter is set to 0. After modifications, 1104 * it is set to the old value plus one. 1105 * 1106 * get_cpu_mstate() will not consider the values of cpu_mstate 1107 * and cpu_mstate_start to be usable unless the value of 1108 * cpu_mstate_gen is both non-zero and unchanged, both before and 1109 * after reading the mstate information. Note that we must 1110 * protect against out-of-order loads around accesses to the 1111 * generation counter. Also, this is a best effort approach in 1112 * that we do not retry should the counter be found to have 1113 * changed. 1114 * 1115 * cpu_intracct[] is used to identify time spent in each CPU 1116 * mstate while handling interrupts. Such time should be reported 1117 * against system time, and so is subtracted out from its 1118 * corresponding cpu_acct[] time and added to 1119 * cpu_acct[CMS_SYSTEM]. 1120 */ 1121 1122 void 1123 get_cpu_mstate(cpu_t *cpu, hrtime_t *times) 1124 { 1125 int i; 1126 hrtime_t now, start; 1127 uint16_t gen; 1128 uint16_t state; 1129 hrtime_t intracct[NCMSTATES]; 1130 1131 /* 1132 * Load all volatile state under the protection of membar. 1133 * cpu_acct[cpu_mstate] must be loaded to avoid double counting 1134 * of (now - cpu_mstate_start) by a change in CPU mstate that 1135 * arrives after we make our last check of cpu_mstate_gen. 1136 */ 1137 1138 now = gethrtime_unscaled(); 1139 gen = cpu->cpu_mstate_gen; 1140 1141 membar_consumer(); /* guarantee load ordering */ 1142 start = cpu->cpu_mstate_start; 1143 state = cpu->cpu_mstate; 1144 for (i = 0; i < NCMSTATES; i++) { 1145 intracct[i] = cpu->cpu_intracct[i]; 1146 times[i] = cpu->cpu_acct[i]; 1147 } 1148 membar_consumer(); /* guarantee load ordering */ 1149 1150 if (gen != 0 && gen == cpu->cpu_mstate_gen && now > start) 1151 times[state] += now - start; 1152 1153 for (i = 0; i < NCMSTATES; i++) { 1154 if (i == CMS_SYSTEM) 1155 continue; 1156 times[i] -= intracct[i]; 1157 if (times[i] < 0) { 1158 intracct[i] += times[i]; 1159 times[i] = 0; 1160 } 1161 times[CMS_SYSTEM] += intracct[i]; 1162 scalehrtime(×[i]); 1163 } 1164 scalehrtime(×[CMS_SYSTEM]); 1165 } 1166 1167 /* 1168 * This is a version of the rdmsr instruction that allows 1169 * an error code to be returned in the case of failure. 1170 */ 1171 int 1172 checked_rdmsr(uint_t msr, uint64_t *value) 1173 { 1174 if (!is_x86_feature(x86_featureset, X86FSET_MSR)) 1175 return (ENOTSUP); 1176 *value = rdmsr(msr); 1177 return (0); 1178 } 1179 1180 /* 1181 * This is a version of the wrmsr instruction that allows 1182 * an error code to be returned in the case of failure. 1183 */ 1184 int 1185 checked_wrmsr(uint_t msr, uint64_t value) 1186 { 1187 if (!is_x86_feature(x86_featureset, X86FSET_MSR)) 1188 return (ENOTSUP); 1189 wrmsr(msr, value); 1190 return (0); 1191 } 1192 1193 void 1194 wrmsr_and_test(uint_t msr, const uint64_t v) 1195 { 1196 wrmsr(msr, v); 1197 1198 #ifdef DEBUG 1199 uint64_t rv = rdmsr(msr); 1200 1201 if (rv != v) { 1202 cmn_err(CE_PANIC, "MSR 0x%x written with value 0x%lx " 1203 "has value 0x%lx\n", msr, v, rv); 1204 } 1205 #endif 1206 } 1207 1208 /* 1209 * The mem driver's usual method of using hat_devload() to establish a 1210 * temporary mapping will not work for foreign pages mapped into this 1211 * domain or for the special hypervisor-provided pages. For the foreign 1212 * pages, we often don't know which domain owns them, so we can't ask the 1213 * hypervisor to set up a new mapping. For the other pages, we don't have 1214 * a pfn, so we can't create a new PTE. For these special cases, we do a 1215 * direct uiomove() from the existing kernel virtual address. 1216 */ 1217 /*ARGSUSED*/ 1218 int 1219 plat_mem_do_mmio(struct uio *uio, enum uio_rw rw) 1220 { 1221 #if defined(__xpv) 1222 void *va = (void *)(uintptr_t)uio->uio_loffset; 1223 off_t pageoff = uio->uio_loffset & PAGEOFFSET; 1224 size_t nbytes = MIN((size_t)(PAGESIZE - pageoff), 1225 (size_t)uio->uio_iov->iov_len); 1226 1227 if ((rw == UIO_READ && 1228 (va == HYPERVISOR_shared_info || va == xen_info)) || 1229 (pfn_is_foreign(hat_getpfnum(kas.a_hat, va)))) 1230 return (uiomove(va, nbytes, rw, uio)); 1231 #endif 1232 return (ENOTSUP); 1233 } 1234 1235 pgcnt_t 1236 num_phys_pages() 1237 { 1238 pgcnt_t npages = 0; 1239 struct memlist *mp; 1240 1241 #if defined(__xpv) 1242 if (DOMAIN_IS_INITDOMAIN(xen_info)) 1243 return (xpv_nr_phys_pages()); 1244 #endif /* __xpv */ 1245 1246 for (mp = phys_install; mp != NULL; mp = mp->ml_next) 1247 npages += mp->ml_size >> PAGESHIFT; 1248 1249 return (npages); 1250 } 1251 1252 /* cpu threshold for compressed dumps */ 1253 #ifdef _LP64 1254 uint_t dump_plat_mincpu_default = DUMP_PLAT_X86_64_MINCPU; 1255 #else 1256 uint_t dump_plat_mincpu_default = DUMP_PLAT_X86_32_MINCPU; 1257 #endif 1258 1259 int 1260 dump_plat_addr() 1261 { 1262 #ifdef __xpv 1263 pfn_t pfn = mmu_btop(xen_info->shared_info) | PFN_IS_FOREIGN_MFN; 1264 mem_vtop_t mem_vtop; 1265 int cnt; 1266 1267 /* 1268 * On the hypervisor, we want to dump the page with shared_info on it. 1269 */ 1270 if (!IN_XPV_PANIC()) { 1271 mem_vtop.m_as = &kas; 1272 mem_vtop.m_va = HYPERVISOR_shared_info; 1273 mem_vtop.m_pfn = pfn; 1274 dumpvp_write(&mem_vtop, sizeof (mem_vtop_t)); 1275 cnt = 1; 1276 } else { 1277 cnt = dump_xpv_addr(); 1278 } 1279 return (cnt); 1280 #else 1281 return (0); 1282 #endif 1283 } 1284 1285 void 1286 dump_plat_pfn() 1287 { 1288 #ifdef __xpv 1289 pfn_t pfn = mmu_btop(xen_info->shared_info) | PFN_IS_FOREIGN_MFN; 1290 1291 if (!IN_XPV_PANIC()) 1292 dumpvp_write(&pfn, sizeof (pfn)); 1293 else 1294 dump_xpv_pfn(); 1295 #endif 1296 } 1297 1298 /*ARGSUSED*/ 1299 int 1300 dump_plat_data(void *dump_cbuf) 1301 { 1302 #ifdef __xpv 1303 uint32_t csize; 1304 int cnt; 1305 1306 if (!IN_XPV_PANIC()) { 1307 csize = (uint32_t)compress(HYPERVISOR_shared_info, dump_cbuf, 1308 PAGESIZE); 1309 dumpvp_write(&csize, sizeof (uint32_t)); 1310 dumpvp_write(dump_cbuf, csize); 1311 cnt = 1; 1312 } else { 1313 cnt = dump_xpv_data(dump_cbuf); 1314 } 1315 return (cnt); 1316 #else 1317 return (0); 1318 #endif 1319 } 1320 1321 /* 1322 * Calculates a linear address, given the CS selector and PC values 1323 * by looking up the %cs selector process's LDT or the CPU's GDT. 1324 * proc->p_ldtlock must be held across this call. 1325 */ 1326 int 1327 linear_pc(struct regs *rp, proc_t *p, caddr_t *linearp) 1328 { 1329 user_desc_t *descrp; 1330 caddr_t baseaddr; 1331 uint16_t idx = SELTOIDX(rp->r_cs); 1332 1333 ASSERT(rp->r_cs <= 0xFFFF); 1334 ASSERT(MUTEX_HELD(&p->p_ldtlock)); 1335 1336 if (SELISLDT(rp->r_cs)) { 1337 /* 1338 * Currently 64 bit processes cannot have private LDTs. 1339 */ 1340 ASSERT(p->p_model != DATAMODEL_LP64); 1341 1342 if (p->p_ldt == NULL) 1343 return (-1); 1344 1345 descrp = &p->p_ldt[idx]; 1346 baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp); 1347 1348 /* 1349 * Calculate the linear address (wraparound is not only ok, 1350 * it's expected behavior). The cast to uint32_t is because 1351 * LDT selectors are only allowed in 32-bit processes. 1352 */ 1353 *linearp = (caddr_t)(uintptr_t)(uint32_t)((uintptr_t)baseaddr + 1354 rp->r_pc); 1355 } else { 1356 #ifdef DEBUG 1357 descrp = &CPU->cpu_gdt[idx]; 1358 baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp); 1359 /* GDT-based descriptors' base addresses should always be 0 */ 1360 ASSERT(baseaddr == 0); 1361 #endif 1362 *linearp = (caddr_t)(uintptr_t)rp->r_pc; 1363 } 1364 1365 return (0); 1366 } 1367 1368 /* 1369 * The implementation of dtrace_linear_pc is similar to the that of 1370 * linear_pc, above, but here we acquire p_ldtlock before accessing 1371 * p_ldt. This implementation is used by the pid provider; we prefix 1372 * it with "dtrace_" to avoid inducing spurious tracing events. 1373 */ 1374 int 1375 dtrace_linear_pc(struct regs *rp, proc_t *p, caddr_t *linearp) 1376 { 1377 user_desc_t *descrp; 1378 caddr_t baseaddr; 1379 uint16_t idx = SELTOIDX(rp->r_cs); 1380 1381 ASSERT(rp->r_cs <= 0xFFFF); 1382 1383 if (SELISLDT(rp->r_cs)) { 1384 /* 1385 * Currently 64 bit processes cannot have private LDTs. 1386 */ 1387 ASSERT(p->p_model != DATAMODEL_LP64); 1388 1389 mutex_enter(&p->p_ldtlock); 1390 if (p->p_ldt == NULL) { 1391 mutex_exit(&p->p_ldtlock); 1392 return (-1); 1393 } 1394 descrp = &p->p_ldt[idx]; 1395 baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp); 1396 mutex_exit(&p->p_ldtlock); 1397 1398 /* 1399 * Calculate the linear address (wraparound is not only ok, 1400 * it's expected behavior). The cast to uint32_t is because 1401 * LDT selectors are only allowed in 32-bit processes. 1402 */ 1403 *linearp = (caddr_t)(uintptr_t)(uint32_t)((uintptr_t)baseaddr + 1404 rp->r_pc); 1405 } else { 1406 #ifdef DEBUG 1407 descrp = &CPU->cpu_gdt[idx]; 1408 baseaddr = (caddr_t)(uintptr_t)USEGD_GETBASE(descrp); 1409 /* GDT-based descriptors' base addresses should always be 0 */ 1410 ASSERT(baseaddr == 0); 1411 #endif 1412 *linearp = (caddr_t)(uintptr_t)rp->r_pc; 1413 } 1414 1415 return (0); 1416 } 1417 1418 /* 1419 * We need to post a soft interrupt to reprogram the lbolt cyclic when 1420 * switching from event to cyclic driven lbolt. The following code adds 1421 * and posts the softint for x86. 1422 */ 1423 static ddi_softint_hdl_impl_t lbolt_softint_hdl = 1424 {0, 0, NULL, NULL, 0, NULL, NULL, NULL}; 1425 1426 void 1427 lbolt_softint_add(void) 1428 { 1429 (void) add_avsoftintr((void *)&lbolt_softint_hdl, LOCK_LEVEL, 1430 (avfunc)lbolt_ev_to_cyclic, "lbolt_ev_to_cyclic", NULL, NULL); 1431 } 1432 1433 void 1434 lbolt_softint_post(void) 1435 { 1436 (*setsoftint)(CBE_LOCK_PIL, lbolt_softint_hdl.ih_pending); 1437 } 1438 1439 boolean_t 1440 plat_dr_check_capability(uint64_t features) 1441 { 1442 return ((plat_dr_options & features) == features); 1443 } 1444 1445 boolean_t 1446 plat_dr_support_cpu(void) 1447 { 1448 return (plat_dr_options & PLAT_DR_FEATURE_CPU); 1449 } 1450 1451 boolean_t 1452 plat_dr_support_memory(void) 1453 { 1454 return (plat_dr_options & PLAT_DR_FEATURE_MEMORY); 1455 } 1456 1457 void 1458 plat_dr_enable_capability(uint64_t features) 1459 { 1460 atomic_or_64(&plat_dr_options, features); 1461 } 1462 1463 void 1464 plat_dr_disable_capability(uint64_t features) 1465 { 1466 atomic_and_64(&plat_dr_options, ~features); 1467 } 1468 1469 /* 1470 * If SMAP is supported, look through hi_calls and inline 1471 * calls to smap_enable() to clac and smap_disable() to stac. 1472 */ 1473 void 1474 hotinline_smap(hotinline_desc_t *hid) 1475 { 1476 if (is_x86_feature(x86_featureset, X86FSET_SMAP) == B_FALSE) 1477 return; 1478 1479 if (strcmp(hid->hid_symname, "smap_enable") == 0) { 1480 bcopy(clac_instr, (void *)hid->hid_instr_offset, 1481 sizeof (clac_instr)); 1482 } else if (strcmp(hid->hid_symname, "smap_disable") == 0) { 1483 bcopy(stac_instr, (void *)hid->hid_instr_offset, 1484 sizeof (stac_instr)); 1485 } 1486 } 1487 1488 /* 1489 * Loop through hi_calls and hand off the inlining to 1490 * the appropriate calls. 1491 */ 1492 void 1493 do_hotinlines(struct module *mp) 1494 { 1495 for (hotinline_desc_t *hid = mp->hi_calls; hid != NULL; 1496 hid = hid->hid_next) { 1497 #if !defined(__xpv) 1498 hotinline_smap(hid); 1499 #endif /* __xpv */ 1500 } 1501 } 1502