1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2004, 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 /* 26 * Copyright (c) 2010, Intel Corporation. 27 * All rights reserved. 28 */ 29 30 /* 31 * LOCALITY GROUP (LGROUP) PLATFORM SUPPORT FOR X86/AMD64 PLATFORMS 32 * ================================================================ 33 * Multiprocessor AMD and Intel systems may have Non Uniform Memory Access 34 * (NUMA). A NUMA machine consists of one or more "nodes" that each consist of 35 * one or more CPUs and some local memory. The CPUs in each node can access 36 * the memory in the other nodes but at a higher latency than accessing their 37 * local memory. Typically, a system with only one node has Uniform Memory 38 * Access (UMA), but it may be possible to have a one node system that has 39 * some global memory outside of the node which is higher latency. 40 * 41 * Module Description 42 * ------------------ 43 * This module provides a platform interface for determining which CPUs and 44 * which memory (and how much) are in a NUMA node and how far each node is from 45 * each other. The interface is used by the Virtual Memory (VM) system and the 46 * common lgroup framework. The VM system uses the plat_*() routines to fill 47 * in its memory node (memnode) array with the physical address range spanned 48 * by each NUMA node to know which memory belongs to which node, so it can 49 * build and manage a physical page free list for each NUMA node and allocate 50 * local memory from each node as needed. The common lgroup framework uses the 51 * exported lgrp_plat_*() routines to figure out which CPUs and memory belong 52 * to each node (leaf lgroup) and how far each node is from each other, so it 53 * can build the latency (lgroup) topology for the machine in order to optimize 54 * for locality. Also, an lgroup platform handle instead of lgroups are used 55 * in the interface with this module, so this module shouldn't need to know 56 * anything about lgroups. Instead, it just needs to know which CPUs, memory, 57 * etc. are in each NUMA node, how far each node is from each other, and to use 58 * a unique lgroup platform handle to refer to each node through the interface. 59 * 60 * Determining NUMA Configuration 61 * ------------------------------ 62 * By default, this module will try to determine the NUMA configuration of the 63 * machine by reading the ACPI System Resource Affinity Table (SRAT) and System 64 * Locality Information Table (SLIT). The SRAT contains info to tell which 65 * CPUs and memory are local to a given proximity domain (NUMA node). The SLIT 66 * is a matrix that gives the distance between each system locality (which is 67 * a NUMA node and should correspond to proximity domains in the SRAT). For 68 * more details on the SRAT and SLIT, please refer to an ACPI 3.0 or newer 69 * specification. 70 * 71 * If the SRAT doesn't exist on a system with AMD Opteron processors, we 72 * examine registers in PCI configuration space to determine how many nodes are 73 * in the system and which CPUs and memory are in each node. 74 * do while booting the kernel. 75 * 76 * NOTE: Using these PCI configuration space registers to determine this 77 * locality info is not guaranteed to work or be compatible across all 78 * Opteron processor families. 79 * 80 * If the SLIT does not exist or look right, the kernel will probe to determine 81 * the distance between nodes as long as the NUMA CPU and memory configuration 82 * has been determined (see lgrp_plat_probe() for details). 83 * 84 * Data Structures 85 * --------------- 86 * The main data structures used by this code are the following: 87 * 88 * - lgrp_plat_cpu_node[] CPU to node ID mapping table indexed by 89 * CPU ID (only used for SRAT) 90 * 91 * - lgrp_plat_lat_stats.latencies[][] Table of latencies between same and 92 * different nodes indexed by node ID 93 * 94 * - lgrp_plat_node_cnt Number of NUMA nodes in system for 95 * non-DR-capable systems, 96 * maximum possible number of NUMA nodes 97 * in system for DR capable systems. 98 * 99 * - lgrp_plat_node_domain[] Node ID to proximity domain ID mapping 100 * table indexed by node ID (only used 101 * for SRAT) 102 * 103 * - lgrp_plat_memnode_info[] Table with physical address range for 104 * each memory node indexed by memory node 105 * ID 106 * 107 * The code is implemented to make the following always be true: 108 * 109 * lgroup platform handle == node ID == memnode ID 110 * 111 * Moreover, it allows for the proximity domain ID to be equal to all of the 112 * above as long as the proximity domains IDs are numbered from 0 to <number of 113 * nodes - 1>. This is done by hashing each proximity domain ID into the range 114 * from 0 to <number of nodes - 1>. Then proximity ID N will hash into node ID 115 * N and proximity domain ID N will be entered into lgrp_plat_node_domain[N] 116 * and be assigned node ID N. If the proximity domain IDs aren't numbered 117 * from 0 to <number of nodes - 1>, then hashing the proximity domain IDs into 118 * lgrp_plat_node_domain[] will still work for assigning proximity domain IDs 119 * to node IDs. However, the proximity domain IDs may not map to the 120 * equivalent node ID since we want to keep the node IDs numbered from 0 to 121 * <number of nodes - 1> to minimize cost of searching and potentially space. 122 * 123 * With the introduction of support of memory DR operations on x86 platforms, 124 * things get a little complicated. The addresses of hot-added memory may not 125 * be continuous with other memory connected to the same lgrp node. In other 126 * words, memory addresses may get interleaved among lgrp nodes after memory 127 * DR operations. To work around this limitation, we have extended the 128 * relationship between lgrp node and memory node from 1:1 map to 1:N map, 129 * that means there may be multiple memory nodes associated with a lgrp node 130 * after memory DR operations. 131 * 132 * To minimize the code changes to support memory DR operations, the 133 * following policies have been adopted. 134 * 1) On non-DR-capable systems, the relationship among lgroup platform handle, 135 * node ID and memnode ID is still kept as: 136 * lgroup platform handle == node ID == memnode ID 137 * 2) For memory present at boot time on DR capable platforms, the relationship 138 * is still kept as is. 139 * lgroup platform handle == node ID == memnode ID 140 * 3) For hot-added memory, the relationship between lgrp ID and memnode ID have 141 * been changed from 1:1 map to 1:N map. Memnode IDs [0 - lgrp_plat_node_cnt) 142 * are reserved for memory present at boot time, and memnode IDs 143 * [lgrp_plat_node_cnt, max_mem_nodes) are used to dynamically allocate 144 * memnode ID for hot-added memory. 145 * 4) All boot code having the assumption "node ID == memnode ID" can live as 146 * is, that's because node ID is always equal to memnode ID at boot time. 147 * 5) The lgrp_plat_memnode_info_update(), plat_pfn_to_mem_node() and 148 * lgrp_plat_mem_size() related logics have been enhanced to deal with 149 * the 1:N map relationship. 150 * 6) The latency probing related logics, which have the assumption 151 * "node ID == memnode ID" and may be called at run time, is disabled if 152 * memory DR operation is enabled. 153 */ 154 155 156 #include <sys/archsystm.h> /* for {in,out}{b,w,l}() */ 157 #include <sys/atomic.h> 158 #include <sys/bootconf.h> 159 #include <sys/cmn_err.h> 160 #include <sys/controlregs.h> 161 #include <sys/cpupart.h> 162 #include <sys/cpuvar.h> 163 #include <sys/lgrp.h> 164 #include <sys/machsystm.h> 165 #include <sys/memlist.h> 166 #include <sys/memnode.h> 167 #include <sys/mman.h> 168 #include <sys/note.h> 169 #include <sys/pci_cfgspace.h> 170 #include <sys/pci_impl.h> 171 #include <sys/param.h> 172 #include <sys/pghw.h> 173 #include <sys/promif.h> /* for prom_printf() */ 174 #include <sys/sysmacros.h> 175 #include <sys/systm.h> 176 #include <sys/thread.h> 177 #include <sys/types.h> 178 #include <sys/var.h> 179 #include <sys/x86_archext.h> 180 #include <vm/hat_i86.h> 181 #include <vm/seg_kmem.h> 182 #include <vm/vm_dep.h> 183 184 #include <sys/acpidev.h> 185 #include <sys/acpi/acpi.h> /* for SRAT, SLIT and MSCT */ 186 187 /* from fakebop.c */ 188 extern ACPI_TABLE_SRAT *srat_ptr; 189 extern ACPI_TABLE_SLIT *slit_ptr; 190 extern ACPI_TABLE_MSCT *msct_ptr; 191 192 #define MAX_NODES 8 193 #define NLGRP (MAX_NODES * (MAX_NODES - 1) + 1) 194 195 /* 196 * Constants for configuring probing 197 */ 198 #define LGRP_PLAT_PROBE_NROUNDS 64 /* default laps for probing */ 199 #define LGRP_PLAT_PROBE_NSAMPLES 1 /* default samples to take */ 200 #define LGRP_PLAT_PROBE_NREADS 256 /* number of vendor ID reads */ 201 202 /* 203 * Flags for probing 204 */ 205 #define LGRP_PLAT_PROBE_ENABLE 0x1 /* enable probing */ 206 #define LGRP_PLAT_PROBE_PGCPY 0x2 /* probe using page copy */ 207 #define LGRP_PLAT_PROBE_VENDOR 0x4 /* probe vendor ID register */ 208 209 /* 210 * Hash proximity domain ID into node to domain mapping table "mod" number of 211 * nodes to minimize span of entries used and try to have lowest numbered 212 * proximity domain be node 0 213 */ 214 #define NODE_DOMAIN_HASH(domain, node_cnt) \ 215 ((lgrp_plat_prox_domain_min == UINT32_MAX) ? (domain) % node_cnt : \ 216 ((domain) - lgrp_plat_prox_domain_min) % node_cnt) 217 218 /* 219 * CPU to node ID mapping structure (only used with SRAT) 220 */ 221 typedef struct cpu_node_map { 222 int exists; 223 uint_t node; 224 uint32_t apicid; 225 uint32_t prox_domain; 226 } cpu_node_map_t; 227 228 /* 229 * Latency statistics 230 */ 231 typedef struct lgrp_plat_latency_stats { 232 hrtime_t latencies[MAX_NODES][MAX_NODES]; 233 hrtime_t latency_max; 234 hrtime_t latency_min; 235 } lgrp_plat_latency_stats_t; 236 237 /* 238 * Memory configuration for probing 239 */ 240 typedef struct lgrp_plat_probe_mem_config { 241 size_t probe_memsize; /* how much memory to probe per node */ 242 caddr_t probe_va[MAX_NODES]; /* where memory mapped for probing */ 243 pfn_t probe_pfn[MAX_NODES]; /* physical pages to map for probing */ 244 } lgrp_plat_probe_mem_config_t; 245 246 /* 247 * Statistics kept for probing 248 */ 249 typedef struct lgrp_plat_probe_stats { 250 hrtime_t flush_cost; 251 hrtime_t probe_cost; 252 hrtime_t probe_cost_total; 253 hrtime_t probe_error_code; 254 hrtime_t probe_errors[MAX_NODES][MAX_NODES]; 255 int probe_suspect[MAX_NODES][MAX_NODES]; 256 hrtime_t probe_max[MAX_NODES][MAX_NODES]; 257 hrtime_t probe_min[MAX_NODES][MAX_NODES]; 258 } lgrp_plat_probe_stats_t; 259 260 /* 261 * Node to proximity domain ID mapping structure (only used with SRAT) 262 */ 263 typedef struct node_domain_map { 264 int exists; 265 uint32_t prox_domain; 266 } node_domain_map_t; 267 268 /* 269 * Node ID and starting and ending page for physical memory in memory node 270 */ 271 typedef struct memnode_phys_addr_map { 272 pfn_t start; 273 pfn_t end; 274 int exists; 275 uint32_t prox_domain; 276 uint32_t device_id; 277 uint_t lgrphand; 278 } memnode_phys_addr_map_t; 279 280 /* 281 * Number of CPUs for which we got APIC IDs 282 */ 283 static int lgrp_plat_apic_ncpus = 0; 284 285 /* 286 * CPU to node ID mapping table (only used for SRAT) and its max number of 287 * entries 288 */ 289 static cpu_node_map_t *lgrp_plat_cpu_node = NULL; 290 static uint_t lgrp_plat_cpu_node_nentries = 0; 291 292 /* 293 * Latency statistics 294 */ 295 lgrp_plat_latency_stats_t lgrp_plat_lat_stats; 296 297 /* 298 * Whether memory is interleaved across nodes causing MPO to be disabled 299 */ 300 static int lgrp_plat_mem_intrlv = 0; 301 302 /* 303 * Node ID to proximity domain ID mapping table (only used for SRAT) 304 */ 305 static node_domain_map_t lgrp_plat_node_domain[MAX_NODES]; 306 307 /* 308 * Physical address range for memory in each node 309 */ 310 static memnode_phys_addr_map_t lgrp_plat_memnode_info[MAX_MEM_NODES]; 311 312 /* 313 * Statistics gotten from probing 314 */ 315 static lgrp_plat_probe_stats_t lgrp_plat_probe_stats; 316 317 /* 318 * Memory configuration for probing 319 */ 320 static lgrp_plat_probe_mem_config_t lgrp_plat_probe_mem_config; 321 322 /* 323 * Lowest proximity domain ID seen in ACPI SRAT 324 */ 325 static uint32_t lgrp_plat_prox_domain_min = UINT32_MAX; 326 327 /* 328 * Error code from processing ACPI SRAT 329 */ 330 static int lgrp_plat_srat_error = 0; 331 332 /* 333 * Error code from processing ACPI SLIT 334 */ 335 static int lgrp_plat_slit_error = 0; 336 337 /* 338 * Whether lgrp topology has been flattened to 2 levels. 339 */ 340 static int lgrp_plat_topo_flatten = 0; 341 342 343 /* 344 * Maximum memory node ID in use. 345 */ 346 static uint_t lgrp_plat_max_mem_node; 347 348 /* 349 * Allocate lgroup array statically 350 */ 351 static lgrp_t lgrp_space[NLGRP]; 352 static int nlgrps_alloc; 353 354 355 /* 356 * Enable finding and using minimum proximity domain ID when hashing 357 */ 358 int lgrp_plat_domain_min_enable = 1; 359 360 /* 361 * Maximum possible number of nodes in system 362 */ 363 uint_t lgrp_plat_node_cnt = 1; 364 365 /* 366 * Enable sorting nodes in ascending order by starting physical address 367 */ 368 int lgrp_plat_node_sort_enable = 1; 369 370 /* 371 * Configuration Parameters for Probing 372 * - lgrp_plat_probe_flags Flags to specify enabling probing, probe 373 * operation, etc. 374 * - lgrp_plat_probe_nrounds How many rounds of probing to do 375 * - lgrp_plat_probe_nsamples Number of samples to take when probing each 376 * node 377 * - lgrp_plat_probe_nreads Number of times to read vendor ID from 378 * Northbridge for each probe 379 */ 380 uint_t lgrp_plat_probe_flags = 0; 381 int lgrp_plat_probe_nrounds = LGRP_PLAT_PROBE_NROUNDS; 382 int lgrp_plat_probe_nsamples = LGRP_PLAT_PROBE_NSAMPLES; 383 int lgrp_plat_probe_nreads = LGRP_PLAT_PROBE_NREADS; 384 385 /* 386 * Enable use of ACPI System Resource Affinity Table (SRAT), System 387 * Locality Information Table (SLIT) and Maximum System Capability Table (MSCT) 388 */ 389 int lgrp_plat_srat_enable = 1; 390 int lgrp_plat_slit_enable = 1; 391 int lgrp_plat_msct_enable = 1; 392 393 /* 394 * mnode_xwa: set to non-zero value to initiate workaround if large pages are 395 * found to be crossing memory node boundaries. The workaround will eliminate 396 * a base size page at the end of each memory node boundary to ensure that 397 * a large page with constituent pages that span more than 1 memory node 398 * can never be formed. 399 * 400 */ 401 int mnode_xwa = 1; 402 403 /* 404 * Static array to hold lgroup statistics 405 */ 406 struct lgrp_stats lgrp_stats[NLGRP]; 407 408 409 /* 410 * Forward declarations of platform interface routines 411 */ 412 void plat_build_mem_nodes(struct memlist *list); 413 414 int plat_mnode_xcheck(pfn_t pfncnt); 415 416 lgrp_handle_t plat_mem_node_to_lgrphand(int mnode); 417 418 int plat_pfn_to_mem_node(pfn_t pfn); 419 420 /* 421 * Forward declarations of lgroup platform interface routines 422 */ 423 lgrp_t *lgrp_plat_alloc(lgrp_id_t lgrpid); 424 425 void lgrp_plat_config(lgrp_config_flag_t flag, uintptr_t arg); 426 427 lgrp_handle_t lgrp_plat_cpu_to_hand(processorid_t id); 428 429 void lgrp_plat_init(lgrp_init_stages_t stage); 430 431 int lgrp_plat_latency(lgrp_handle_t from, lgrp_handle_t to); 432 433 int lgrp_plat_max_lgrps(void); 434 435 pgcnt_t lgrp_plat_mem_size(lgrp_handle_t plathand, 436 lgrp_mem_query_t query); 437 438 lgrp_handle_t lgrp_plat_pfn_to_hand(pfn_t pfn); 439 440 void lgrp_plat_probe(void); 441 442 lgrp_handle_t lgrp_plat_root_hand(void); 443 444 445 /* 446 * Forward declarations of local routines 447 */ 448 static int is_opteron(void); 449 450 static int lgrp_plat_cpu_node_update(node_domain_map_t *node_domain, 451 int node_cnt, cpu_node_map_t *cpu_node, int nentries, uint32_t apicid, 452 uint32_t domain); 453 454 static int lgrp_plat_cpu_to_node(cpu_t *cp, cpu_node_map_t *cpu_node, 455 int cpu_node_nentries); 456 457 static int lgrp_plat_domain_to_node(node_domain_map_t *node_domain, 458 int node_cnt, uint32_t domain); 459 460 static void lgrp_plat_get_numa_config(void); 461 462 static void lgrp_plat_latency_adjust(memnode_phys_addr_map_t *memnode_info, 463 lgrp_plat_latency_stats_t *lat_stats, 464 lgrp_plat_probe_stats_t *probe_stats); 465 466 static int lgrp_plat_latency_verify(memnode_phys_addr_map_t *memnode_info, 467 lgrp_plat_latency_stats_t *lat_stats); 468 469 static void lgrp_plat_main_init(void); 470 471 static pgcnt_t lgrp_plat_mem_size_default(lgrp_handle_t, lgrp_mem_query_t); 472 473 static int lgrp_plat_node_domain_update(node_domain_map_t *node_domain, 474 int node_cnt, uint32_t domain); 475 476 static int lgrp_plat_memnode_info_update(node_domain_map_t *node_domain, 477 int node_cnt, memnode_phys_addr_map_t *memnode_info, int memnode_cnt, 478 uint64_t start, uint64_t end, uint32_t domain, uint32_t device_id); 479 480 static void lgrp_plat_node_sort(node_domain_map_t *node_domain, 481 int node_cnt, cpu_node_map_t *cpu_node, int cpu_count, 482 memnode_phys_addr_map_t *memnode_info); 483 484 static hrtime_t lgrp_plat_probe_time(int to, cpu_node_map_t *cpu_node, 485 int cpu_node_nentries, lgrp_plat_probe_mem_config_t *probe_mem_config, 486 lgrp_plat_latency_stats_t *lat_stats, lgrp_plat_probe_stats_t *probe_stats); 487 488 static int lgrp_plat_process_cpu_apicids(cpu_node_map_t *cpu_node); 489 490 static int lgrp_plat_process_slit(ACPI_TABLE_SLIT *tp, 491 node_domain_map_t *node_domain, uint_t node_cnt, 492 memnode_phys_addr_map_t *memnode_info, 493 lgrp_plat_latency_stats_t *lat_stats); 494 495 static int lgrp_plat_process_sli(uint32_t domain, uchar_t *sli_info, 496 uint32_t sli_cnt, node_domain_map_t *node_domain, uint_t node_cnt, 497 lgrp_plat_latency_stats_t *lat_stats); 498 499 static int lgrp_plat_process_srat(ACPI_TABLE_SRAT *tp, ACPI_TABLE_MSCT *mp, 500 uint32_t *prox_domain_min, node_domain_map_t *node_domain, 501 cpu_node_map_t *cpu_node, int cpu_count, 502 memnode_phys_addr_map_t *memnode_info); 503 504 static void lgrp_plat_release_bootstrap(void); 505 506 static int lgrp_plat_srat_domains(ACPI_TABLE_SRAT *tp, 507 uint32_t *prox_domain_min); 508 509 static int lgrp_plat_msct_domains(ACPI_TABLE_MSCT *tp, 510 uint32_t *prox_domain_min); 511 512 static void lgrp_plat_2level_setup(lgrp_plat_latency_stats_t *lat_stats); 513 514 static void opt_get_numa_config(uint_t *node_cnt, int *mem_intrlv, 515 memnode_phys_addr_map_t *memnode_info); 516 517 static hrtime_t opt_probe_vendor(int dest_node, int nreads); 518 519 520 /* 521 * PLATFORM INTERFACE ROUTINES 522 */ 523 524 /* 525 * Configure memory nodes for machines with more than one node (ie NUMA) 526 */ 527 void 528 plat_build_mem_nodes(struct memlist *list) 529 { 530 pfn_t cur_start; /* start addr of subrange */ 531 pfn_t cur_end; /* end addr of subrange */ 532 pfn_t start; /* start addr of whole range */ 533 pfn_t end; /* end addr of whole range */ 534 pgcnt_t endcnt; /* pages to sacrifice */ 535 536 /* 537 * Boot install lists are arranged <addr, len>, ... 538 */ 539 while (list) { 540 int node; 541 542 start = list->ml_address >> PAGESHIFT; 543 end = (list->ml_address + list->ml_size - 1) >> PAGESHIFT; 544 545 if (start > physmax) { 546 list = list->ml_next; 547 continue; 548 } 549 if (end > physmax) 550 end = physmax; 551 552 /* 553 * When there is only one memnode, just add memory to memnode 554 */ 555 if (max_mem_nodes == 1) { 556 mem_node_add_slice(start, end); 557 list = list->ml_next; 558 continue; 559 } 560 561 /* 562 * mem_node_add_slice() expects to get a memory range that 563 * is within one memnode, so need to split any memory range 564 * that spans multiple memnodes into subranges that are each 565 * contained within one memnode when feeding them to 566 * mem_node_add_slice() 567 */ 568 cur_start = start; 569 do { 570 node = plat_pfn_to_mem_node(cur_start); 571 572 /* 573 * Panic if DRAM address map registers or SRAT say 574 * memory in node doesn't exist or address from 575 * boot installed memory list entry isn't in this node. 576 * This shouldn't happen and rest of code can't deal 577 * with this if it does. 578 */ 579 if (node < 0 || node >= lgrp_plat_max_mem_node || 580 !lgrp_plat_memnode_info[node].exists || 581 cur_start < lgrp_plat_memnode_info[node].start || 582 cur_start > lgrp_plat_memnode_info[node].end) { 583 cmn_err(CE_PANIC, "Don't know which memnode " 584 "to add installed memory address 0x%lx\n", 585 cur_start); 586 } 587 588 /* 589 * End of current subrange should not span memnodes 590 */ 591 cur_end = end; 592 endcnt = 0; 593 if (lgrp_plat_memnode_info[node].exists && 594 cur_end > lgrp_plat_memnode_info[node].end) { 595 cur_end = lgrp_plat_memnode_info[node].end; 596 if (mnode_xwa > 1) { 597 /* 598 * sacrifice the last page in each 599 * node to eliminate large pages 600 * that span more than 1 memory node. 601 */ 602 endcnt = 1; 603 physinstalled--; 604 } 605 } 606 607 mem_node_add_slice(cur_start, cur_end - endcnt); 608 609 /* 610 * Next subrange starts after end of current one 611 */ 612 cur_start = cur_end + 1; 613 } while (cur_end < end); 614 615 list = list->ml_next; 616 } 617 mem_node_physalign = 0; 618 mem_node_pfn_shift = 0; 619 } 620 621 622 /* 623 * plat_mnode_xcheck: checks the node memory ranges to see if there is a pfncnt 624 * range of pages aligned on pfncnt that crosses an node boundary. Returns 1 if 625 * a crossing is found and returns 0 otherwise. 626 */ 627 int 628 plat_mnode_xcheck(pfn_t pfncnt) 629 { 630 int node, prevnode = -1, basenode; 631 pfn_t ea, sa; 632 633 for (node = 0; node < lgrp_plat_max_mem_node; node++) { 634 635 if (lgrp_plat_memnode_info[node].exists == 0) 636 continue; 637 638 if (prevnode == -1) { 639 prevnode = node; 640 basenode = node; 641 continue; 642 } 643 644 /* assume x86 node pfn ranges are in increasing order */ 645 ASSERT(lgrp_plat_memnode_info[node].start > 646 lgrp_plat_memnode_info[prevnode].end); 647 648 /* 649 * continue if the starting address of node is not contiguous 650 * with the previous node. 651 */ 652 653 if (lgrp_plat_memnode_info[node].start != 654 (lgrp_plat_memnode_info[prevnode].end + 1)) { 655 basenode = node; 656 prevnode = node; 657 continue; 658 } 659 660 /* check if the starting address of node is pfncnt aligned */ 661 if ((lgrp_plat_memnode_info[node].start & (pfncnt - 1)) != 0) { 662 663 /* 664 * at this point, node starts at an unaligned boundary 665 * and is contiguous with the previous node(s) to 666 * basenode. Check if there is an aligned contiguous 667 * range of length pfncnt that crosses this boundary. 668 */ 669 670 sa = P2ALIGN(lgrp_plat_memnode_info[prevnode].end, 671 pfncnt); 672 ea = P2ROUNDUP((lgrp_plat_memnode_info[node].start), 673 pfncnt); 674 675 ASSERT((ea - sa) == pfncnt); 676 if (sa >= lgrp_plat_memnode_info[basenode].start && 677 ea <= (lgrp_plat_memnode_info[node].end + 1)) { 678 /* 679 * large page found to cross mnode boundary. 680 * Return Failure if workaround not enabled. 681 */ 682 if (mnode_xwa == 0) 683 return (1); 684 mnode_xwa++; 685 } 686 } 687 prevnode = node; 688 } 689 return (0); 690 } 691 692 693 lgrp_handle_t 694 plat_mem_node_to_lgrphand(int mnode) 695 { 696 if (max_mem_nodes == 1) 697 return (LGRP_DEFAULT_HANDLE); 698 699 ASSERT(0 <= mnode && mnode < lgrp_plat_max_mem_node); 700 701 return ((lgrp_handle_t)(lgrp_plat_memnode_info[mnode].lgrphand)); 702 } 703 704 int 705 plat_pfn_to_mem_node(pfn_t pfn) 706 { 707 int node; 708 709 if (max_mem_nodes == 1) 710 return (0); 711 712 for (node = 0; node < lgrp_plat_max_mem_node; node++) { 713 /* 714 * Skip nodes with no memory 715 */ 716 if (!lgrp_plat_memnode_info[node].exists) 717 continue; 718 719 membar_consumer(); 720 if (pfn >= lgrp_plat_memnode_info[node].start && 721 pfn <= lgrp_plat_memnode_info[node].end) 722 return (node); 723 } 724 725 /* 726 * Didn't find memnode where this PFN lives which should never happen 727 */ 728 ASSERT(node < lgrp_plat_max_mem_node); 729 return (-1); 730 } 731 732 733 /* 734 * LGROUP PLATFORM INTERFACE ROUTINES 735 */ 736 737 /* 738 * Allocate additional space for an lgroup. 739 */ 740 lgrp_t * 741 lgrp_plat_alloc(lgrp_id_t lgrpid) 742 { 743 lgrp_t *lgrp; 744 745 lgrp = &lgrp_space[nlgrps_alloc++]; 746 if (lgrpid >= NLGRP || nlgrps_alloc > NLGRP) 747 return (NULL); 748 return (lgrp); 749 } 750 751 752 /* 753 * Platform handling for (re)configuration changes 754 * 755 * Mechanism to protect lgrp_plat_cpu_node[] at CPU hotplug: 756 * 1) Use cpu_lock to synchronize between lgrp_plat_config() and 757 * lgrp_plat_cpu_to_hand(). 758 * 2) Disable latency probing logic by making sure that the flag 759 * LGRP_PLAT_PROBE_ENABLE is cleared. 760 * 761 * Mechanism to protect lgrp_plat_memnode_info[] at memory hotplug: 762 * 1) Only inserts into lgrp_plat_memnode_info at memory hotplug, no removal. 763 * 2) Only expansion to existing entries, no shrinking. 764 * 3) On writing side, DR framework ensures that lgrp_plat_config() is called 765 * in single-threaded context. And membar_producer() is used to ensure that 766 * all changes are visible to other CPUs before setting the "exists" flag. 767 * 4) On reading side, membar_consumer() after checking the "exists" flag 768 * ensures that right values are retrieved. 769 * 770 * Mechanism to protect lgrp_plat_node_domain[] at hotplug: 771 * 1) Only insertion into lgrp_plat_node_domain at hotplug, no removal. 772 * 2) On writing side, it's single-threaded and membar_producer() is used to 773 * ensure all changes are visible to other CPUs before setting the "exists" 774 * flag. 775 * 3) On reading side, membar_consumer() after checking the "exists" flag 776 * ensures that right values are retrieved. 777 */ 778 void 779 lgrp_plat_config(lgrp_config_flag_t flag, uintptr_t arg) 780 { 781 #ifdef __xpv 782 _NOTE(ARGUNUSED(flag, arg)); 783 #else 784 int rc, node; 785 cpu_t *cp; 786 void *hdl = NULL; 787 uchar_t *sliptr = NULL; 788 uint32_t domain, apicid, slicnt = 0; 789 update_membounds_t *mp; 790 791 extern int acpidev_dr_get_cpu_numa_info(cpu_t *, void **, uint32_t *, 792 uint32_t *, uint32_t *, uchar_t **); 793 extern void acpidev_dr_free_cpu_numa_info(void *); 794 795 /* 796 * This interface is used to support CPU/memory DR operations. 797 * Don't bother here if it's still during boot or only one lgrp node 798 * is supported. 799 */ 800 if (!lgrp_topo_initialized || lgrp_plat_node_cnt == 1) 801 return; 802 803 switch (flag) { 804 case LGRP_CONFIG_CPU_ADD: 805 cp = (cpu_t *)arg; 806 ASSERT(cp != NULL); 807 ASSERT(MUTEX_HELD(&cpu_lock)); 808 809 /* Check whether CPU already exists. */ 810 ASSERT(!lgrp_plat_cpu_node[cp->cpu_id].exists); 811 if (lgrp_plat_cpu_node[cp->cpu_id].exists) { 812 cmn_err(CE_WARN, 813 "!lgrp: CPU(%d) already exists in cpu_node map.", 814 cp->cpu_id); 815 break; 816 } 817 818 /* Query CPU lgrp information. */ 819 rc = acpidev_dr_get_cpu_numa_info(cp, &hdl, &apicid, &domain, 820 &slicnt, &sliptr); 821 ASSERT(rc == 0); 822 if (rc != 0) { 823 cmn_err(CE_WARN, 824 "!lgrp: failed to query lgrp info for CPU(%d).", 825 cp->cpu_id); 826 break; 827 } 828 829 /* Update node to proximity domain mapping */ 830 node = lgrp_plat_domain_to_node(lgrp_plat_node_domain, 831 lgrp_plat_node_cnt, domain); 832 if (node == -1) { 833 node = lgrp_plat_node_domain_update( 834 lgrp_plat_node_domain, lgrp_plat_node_cnt, domain); 835 ASSERT(node != -1); 836 if (node == -1) { 837 acpidev_dr_free_cpu_numa_info(hdl); 838 cmn_err(CE_WARN, "!lgrp: failed to update " 839 "node_domain map for domain(%u).", domain); 840 break; 841 } 842 } 843 844 /* Update latency information among lgrps. */ 845 if (slicnt != 0 && sliptr != NULL) { 846 if (lgrp_plat_process_sli(domain, sliptr, slicnt, 847 lgrp_plat_node_domain, lgrp_plat_node_cnt, 848 &lgrp_plat_lat_stats) != 0) { 849 cmn_err(CE_WARN, "!lgrp: failed to update " 850 "latency information for domain (%u).", 851 domain); 852 } 853 } 854 855 /* Update CPU to node mapping. */ 856 lgrp_plat_cpu_node[cp->cpu_id].prox_domain = domain; 857 lgrp_plat_cpu_node[cp->cpu_id].node = node; 858 lgrp_plat_cpu_node[cp->cpu_id].apicid = apicid; 859 lgrp_plat_cpu_node[cp->cpu_id].exists = 1; 860 lgrp_plat_apic_ncpus++; 861 862 acpidev_dr_free_cpu_numa_info(hdl); 863 break; 864 865 case LGRP_CONFIG_CPU_DEL: 866 cp = (cpu_t *)arg; 867 ASSERT(cp != NULL); 868 ASSERT(MUTEX_HELD(&cpu_lock)); 869 870 /* Check whether CPU exists. */ 871 ASSERT(lgrp_plat_cpu_node[cp->cpu_id].exists); 872 if (!lgrp_plat_cpu_node[cp->cpu_id].exists) { 873 cmn_err(CE_WARN, 874 "!lgrp: CPU(%d) doesn't exist in cpu_node map.", 875 cp->cpu_id); 876 break; 877 } 878 879 /* Query CPU lgrp information. */ 880 rc = acpidev_dr_get_cpu_numa_info(cp, &hdl, &apicid, &domain, 881 NULL, NULL); 882 ASSERT(rc == 0); 883 if (rc != 0) { 884 cmn_err(CE_WARN, 885 "!lgrp: failed to query lgrp info for CPU(%d).", 886 cp->cpu_id); 887 break; 888 } 889 890 /* Update map. */ 891 ASSERT(lgrp_plat_cpu_node[cp->cpu_id].apicid == apicid); 892 ASSERT(lgrp_plat_cpu_node[cp->cpu_id].prox_domain == domain); 893 lgrp_plat_cpu_node[cp->cpu_id].exists = 0; 894 lgrp_plat_cpu_node[cp->cpu_id].apicid = UINT32_MAX; 895 lgrp_plat_cpu_node[cp->cpu_id].prox_domain = UINT32_MAX; 896 lgrp_plat_cpu_node[cp->cpu_id].node = UINT_MAX; 897 lgrp_plat_apic_ncpus--; 898 899 acpidev_dr_free_cpu_numa_info(hdl); 900 break; 901 902 case LGRP_CONFIG_MEM_ADD: 903 mp = (update_membounds_t *)arg; 904 ASSERT(mp != NULL); 905 906 /* Update latency information among lgrps. */ 907 if (mp->u_sli_cnt != 0 && mp->u_sli_ptr != NULL) { 908 if (lgrp_plat_process_sli(mp->u_domain, 909 mp->u_sli_ptr, mp->u_sli_cnt, 910 lgrp_plat_node_domain, lgrp_plat_node_cnt, 911 &lgrp_plat_lat_stats) != 0) { 912 cmn_err(CE_WARN, "!lgrp: failed to update " 913 "latency information for domain (%u).", 914 domain); 915 } 916 } 917 918 if (lgrp_plat_memnode_info_update(lgrp_plat_node_domain, 919 lgrp_plat_node_cnt, lgrp_plat_memnode_info, max_mem_nodes, 920 mp->u_base, mp->u_base + mp->u_length, 921 mp->u_domain, mp->u_device_id) < 0) { 922 cmn_err(CE_WARN, 923 "!lgrp: failed to update latency information for " 924 "memory (0x%" PRIx64 " - 0x%" PRIx64 ").", 925 mp->u_base, mp->u_base + mp->u_length); 926 } 927 break; 928 929 default: 930 break; 931 } 932 #endif /* __xpv */ 933 } 934 935 936 /* 937 * Return the platform handle for the lgroup containing the given CPU 938 */ 939 lgrp_handle_t 940 lgrp_plat_cpu_to_hand(processorid_t id) 941 { 942 lgrp_handle_t hand; 943 944 ASSERT(!lgrp_initialized || MUTEX_HELD(&cpu_lock)); 945 946 if (lgrp_plat_node_cnt == 1) 947 return (LGRP_DEFAULT_HANDLE); 948 949 hand = (lgrp_handle_t)lgrp_plat_cpu_to_node(cpu[id], 950 lgrp_plat_cpu_node, lgrp_plat_cpu_node_nentries); 951 952 ASSERT(hand != (lgrp_handle_t)-1); 953 if (hand == (lgrp_handle_t)-1) 954 return (LGRP_NULL_HANDLE); 955 956 return (hand); 957 } 958 959 960 /* 961 * Platform-specific initialization of lgroups 962 */ 963 void 964 lgrp_plat_init(lgrp_init_stages_t stage) 965 { 966 #if defined(__xpv) 967 #else /* __xpv */ 968 u_longlong_t value; 969 #endif /* __xpv */ 970 971 switch (stage) { 972 case LGRP_INIT_STAGE1: 973 #if defined(__xpv) 974 /* 975 * XXPV For now, the hypervisor treats all memory equally. 976 */ 977 lgrp_plat_node_cnt = max_mem_nodes = 1; 978 #else /* __xpv */ 979 980 /* 981 * Get boot property for lgroup topology height limit 982 */ 983 if (bootprop_getval(BP_LGRP_TOPO_LEVELS, &value) == 0) 984 (void) lgrp_topo_ht_limit_set((int)value); 985 986 /* 987 * Get boot property for enabling/disabling SRAT 988 */ 989 if (bootprop_getval(BP_LGRP_SRAT_ENABLE, &value) == 0) 990 lgrp_plat_srat_enable = (int)value; 991 992 /* 993 * Get boot property for enabling/disabling SLIT 994 */ 995 if (bootprop_getval(BP_LGRP_SLIT_ENABLE, &value) == 0) 996 lgrp_plat_slit_enable = (int)value; 997 998 /* 999 * Get boot property for enabling/disabling MSCT 1000 */ 1001 if (bootprop_getval(BP_LGRP_MSCT_ENABLE, &value) == 0) 1002 lgrp_plat_msct_enable = (int)value; 1003 1004 /* 1005 * Initialize as a UMA machine 1006 */ 1007 if (lgrp_topo_ht_limit() == 1) { 1008 lgrp_plat_node_cnt = max_mem_nodes = 1; 1009 lgrp_plat_max_mem_node = 1; 1010 return; 1011 } 1012 1013 lgrp_plat_get_numa_config(); 1014 1015 /* 1016 * Each lgrp node needs MAX_MEM_NODES_PER_LGROUP memnodes 1017 * to support memory DR operations if memory DR is enabled. 1018 */ 1019 lgrp_plat_max_mem_node = lgrp_plat_node_cnt; 1020 if (plat_dr_support_memory() && lgrp_plat_node_cnt != 1) { 1021 max_mem_nodes = MAX_MEM_NODES_PER_LGROUP * 1022 lgrp_plat_node_cnt; 1023 ASSERT(max_mem_nodes <= MAX_MEM_NODES); 1024 } 1025 #endif /* __xpv */ 1026 break; 1027 1028 case LGRP_INIT_STAGE3: 1029 lgrp_plat_probe(); 1030 lgrp_plat_release_bootstrap(); 1031 break; 1032 1033 case LGRP_INIT_STAGE4: 1034 lgrp_plat_main_init(); 1035 break; 1036 1037 default: 1038 break; 1039 } 1040 } 1041 1042 1043 /* 1044 * Return latency between "from" and "to" lgroups 1045 * 1046 * This latency number can only be used for relative comparison 1047 * between lgroups on the running system, cannot be used across platforms, 1048 * and may not reflect the actual latency. It is platform and implementation 1049 * specific, so platform gets to decide its value. It would be nice if the 1050 * number was at least proportional to make comparisons more meaningful though. 1051 */ 1052 int 1053 lgrp_plat_latency(lgrp_handle_t from, lgrp_handle_t to) 1054 { 1055 lgrp_handle_t src, dest; 1056 int node; 1057 1058 if (max_mem_nodes == 1) 1059 return (0); 1060 1061 /* 1062 * Return max latency for root lgroup 1063 */ 1064 if (from == LGRP_DEFAULT_HANDLE || to == LGRP_DEFAULT_HANDLE) 1065 return (lgrp_plat_lat_stats.latency_max); 1066 1067 src = from; 1068 dest = to; 1069 1070 /* 1071 * Return 0 for nodes (lgroup platform handles) out of range 1072 */ 1073 if (src >= MAX_NODES || dest >= MAX_NODES) 1074 return (0); 1075 1076 /* 1077 * Probe from current CPU if its lgroup latencies haven't been set yet 1078 * and we are trying to get latency from current CPU to some node. 1079 * Avoid probing if CPU/memory DR is enabled. 1080 */ 1081 if (lgrp_plat_lat_stats.latencies[src][src] == 0) { 1082 /* 1083 * Latency information should be updated by lgrp_plat_config() 1084 * for DR operations. Something is wrong if reaches here. 1085 * For safety, flatten lgrp topology to two levels. 1086 */ 1087 if (plat_dr_support_cpu() || plat_dr_support_memory()) { 1088 ASSERT(lgrp_plat_lat_stats.latencies[src][src]); 1089 cmn_err(CE_WARN, 1090 "lgrp: failed to get latency information, " 1091 "fall back to two-level topology."); 1092 lgrp_plat_2level_setup(&lgrp_plat_lat_stats); 1093 } else { 1094 node = lgrp_plat_cpu_to_node(CPU, lgrp_plat_cpu_node, 1095 lgrp_plat_cpu_node_nentries); 1096 ASSERT(node >= 0 && node < lgrp_plat_node_cnt); 1097 if (node == src) 1098 lgrp_plat_probe(); 1099 } 1100 } 1101 1102 return (lgrp_plat_lat_stats.latencies[src][dest]); 1103 } 1104 1105 1106 /* 1107 * Return the maximum number of lgrps supported by the platform. 1108 * Before lgrp topology is known it returns an estimate based on the number of 1109 * nodes. Once topology is known it returns: 1110 * 1) the actual maximim number of lgrps created if CPU/memory DR operations 1111 * are not suppported. 1112 * 2) the maximum possible number of lgrps if CPU/memory DR operations are 1113 * supported. 1114 */ 1115 int 1116 lgrp_plat_max_lgrps(void) 1117 { 1118 if (!lgrp_topo_initialized || plat_dr_support_cpu() || 1119 plat_dr_support_memory()) { 1120 return (lgrp_plat_node_cnt * (lgrp_plat_node_cnt - 1) + 1); 1121 } else { 1122 return (lgrp_alloc_max + 1); 1123 } 1124 } 1125 1126 1127 /* 1128 * Count number of memory pages (_t) based on mnode id (_n) and query type (_t). 1129 */ 1130 #define _LGRP_PLAT_MEM_SIZE(_n, _q, _t) \ 1131 if (mem_node_config[_n].exists) { \ 1132 switch (_q) { \ 1133 case LGRP_MEM_SIZE_FREE: \ 1134 _t += MNODE_PGCNT(_n); \ 1135 break; \ 1136 case LGRP_MEM_SIZE_AVAIL: \ 1137 _t += mem_node_memlist_pages(_n, phys_avail); \ 1138 break; \ 1139 case LGRP_MEM_SIZE_INSTALL: \ 1140 _t += mem_node_memlist_pages(_n, phys_install); \ 1141 break; \ 1142 default: \ 1143 break; \ 1144 } \ 1145 } 1146 1147 /* 1148 * Return the number of free pages in an lgroup. 1149 * 1150 * For query of LGRP_MEM_SIZE_FREE, return the number of base pagesize 1151 * pages on freelists. For query of LGRP_MEM_SIZE_AVAIL, return the 1152 * number of allocatable base pagesize pages corresponding to the 1153 * lgroup (e.g. do not include page_t's, BOP_ALLOC()'ed memory, ..) 1154 * For query of LGRP_MEM_SIZE_INSTALL, return the amount of physical 1155 * memory installed, regardless of whether or not it's usable. 1156 */ 1157 pgcnt_t 1158 lgrp_plat_mem_size(lgrp_handle_t plathand, lgrp_mem_query_t query) 1159 { 1160 int mnode; 1161 pgcnt_t npgs = (pgcnt_t)0; 1162 extern struct memlist *phys_avail; 1163 extern struct memlist *phys_install; 1164 1165 1166 if (plathand == LGRP_DEFAULT_HANDLE) 1167 return (lgrp_plat_mem_size_default(plathand, query)); 1168 1169 if (plathand != LGRP_NULL_HANDLE) { 1170 /* Count memory node present at boot. */ 1171 mnode = (int)plathand; 1172 ASSERT(mnode < lgrp_plat_node_cnt); 1173 _LGRP_PLAT_MEM_SIZE(mnode, query, npgs); 1174 1175 /* Count possible hot-added memory nodes. */ 1176 for (mnode = lgrp_plat_node_cnt; 1177 mnode < lgrp_plat_max_mem_node; mnode++) { 1178 if (lgrp_plat_memnode_info[mnode].lgrphand == plathand) 1179 _LGRP_PLAT_MEM_SIZE(mnode, query, npgs); 1180 } 1181 } 1182 1183 return (npgs); 1184 } 1185 1186 1187 /* 1188 * Return the platform handle of the lgroup that contains the physical memory 1189 * corresponding to the given page frame number 1190 */ 1191 lgrp_handle_t 1192 lgrp_plat_pfn_to_hand(pfn_t pfn) 1193 { 1194 int mnode; 1195 1196 if (max_mem_nodes == 1) 1197 return (LGRP_DEFAULT_HANDLE); 1198 1199 if (pfn > physmax) 1200 return (LGRP_NULL_HANDLE); 1201 1202 mnode = plat_pfn_to_mem_node(pfn); 1203 if (mnode < 0) 1204 return (LGRP_NULL_HANDLE); 1205 1206 return (MEM_NODE_2_LGRPHAND(mnode)); 1207 } 1208 1209 1210 /* 1211 * Probe memory in each node from current CPU to determine latency topology 1212 * 1213 * The probing code will probe the vendor ID register on the Northbridge of 1214 * Opteron processors and probe memory for other processors by default. 1215 * 1216 * Since probing is inherently error prone, the code takes laps across all the 1217 * nodes probing from each node to each of the other nodes some number of 1218 * times. Furthermore, each node is probed some number of times before moving 1219 * onto the next one during each lap. The minimum latency gotten between nodes 1220 * is kept as the latency between the nodes. 1221 * 1222 * After all that, the probe times are adjusted by normalizing values that are 1223 * close to each other and local latencies are made the same. Lastly, the 1224 * latencies are verified to make sure that certain conditions are met (eg. 1225 * local < remote, latency(a, b) == latency(b, a), etc.). 1226 * 1227 * If any of the conditions aren't met, the code will export a NUMA 1228 * configuration with the local CPUs and memory given by the SRAT or PCI config 1229 * space registers and one remote memory latency since it can't tell exactly 1230 * how far each node is from each other. 1231 */ 1232 void 1233 lgrp_plat_probe(void) 1234 { 1235 int from; 1236 int i; 1237 lgrp_plat_latency_stats_t *lat_stats; 1238 boolean_t probed; 1239 hrtime_t probe_time; 1240 int to; 1241 1242 if (!(lgrp_plat_probe_flags & LGRP_PLAT_PROBE_ENABLE) || 1243 max_mem_nodes == 1 || lgrp_topo_ht_limit() <= 2) 1244 return; 1245 1246 /* SRAT and SLIT should be enabled if DR operations are enabled. */ 1247 if (plat_dr_support_cpu() || plat_dr_support_memory()) 1248 return; 1249 1250 /* 1251 * Determine ID of node containing current CPU 1252 */ 1253 from = lgrp_plat_cpu_to_node(CPU, lgrp_plat_cpu_node, 1254 lgrp_plat_cpu_node_nentries); 1255 ASSERT(from >= 0 && from < lgrp_plat_node_cnt); 1256 if (srat_ptr && lgrp_plat_srat_enable && !lgrp_plat_srat_error) 1257 ASSERT(lgrp_plat_node_domain[from].exists); 1258 1259 /* 1260 * Don't need to probe if got times already 1261 */ 1262 lat_stats = &lgrp_plat_lat_stats; 1263 if (lat_stats->latencies[from][from] != 0) 1264 return; 1265 1266 /* 1267 * Read vendor ID in Northbridge or read and write page(s) 1268 * in each node from current CPU and remember how long it takes, 1269 * so we can build latency topology of machine later. 1270 * This should approximate the memory latency between each node. 1271 */ 1272 probed = B_FALSE; 1273 for (i = 0; i < lgrp_plat_probe_nrounds; i++) { 1274 for (to = 0; to < lgrp_plat_node_cnt; to++) { 1275 /* 1276 * Get probe time and skip over any nodes that can't be 1277 * probed yet or don't have memory 1278 */ 1279 probe_time = lgrp_plat_probe_time(to, 1280 lgrp_plat_cpu_node, lgrp_plat_cpu_node_nentries, 1281 &lgrp_plat_probe_mem_config, &lgrp_plat_lat_stats, 1282 &lgrp_plat_probe_stats); 1283 if (probe_time == 0) 1284 continue; 1285 1286 probed = B_TRUE; 1287 1288 /* 1289 * Keep lowest probe time as latency between nodes 1290 */ 1291 if (lat_stats->latencies[from][to] == 0 || 1292 probe_time < lat_stats->latencies[from][to]) 1293 lat_stats->latencies[from][to] = probe_time; 1294 1295 /* 1296 * Update overall minimum and maximum probe times 1297 * across all nodes 1298 */ 1299 if (probe_time < lat_stats->latency_min || 1300 lat_stats->latency_min == -1) 1301 lat_stats->latency_min = probe_time; 1302 if (probe_time > lat_stats->latency_max) 1303 lat_stats->latency_max = probe_time; 1304 } 1305 } 1306 1307 /* 1308 * Bail out if weren't able to probe any nodes from current CPU 1309 */ 1310 if (probed == B_FALSE) 1311 return; 1312 1313 /* 1314 * - Fix up latencies such that local latencies are same, 1315 * latency(i, j) == latency(j, i), etc. (if possible) 1316 * 1317 * - Verify that latencies look ok 1318 * 1319 * - Fallback to just optimizing for local and remote if 1320 * latencies didn't look right 1321 */ 1322 lgrp_plat_latency_adjust(lgrp_plat_memnode_info, &lgrp_plat_lat_stats, 1323 &lgrp_plat_probe_stats); 1324 lgrp_plat_probe_stats.probe_error_code = 1325 lgrp_plat_latency_verify(lgrp_plat_memnode_info, 1326 &lgrp_plat_lat_stats); 1327 if (lgrp_plat_probe_stats.probe_error_code) 1328 lgrp_plat_2level_setup(&lgrp_plat_lat_stats); 1329 } 1330 1331 1332 /* 1333 * Return platform handle for root lgroup 1334 */ 1335 lgrp_handle_t 1336 lgrp_plat_root_hand(void) 1337 { 1338 return (LGRP_DEFAULT_HANDLE); 1339 } 1340 1341 1342 /* 1343 * INTERNAL ROUTINES 1344 */ 1345 1346 1347 /* 1348 * Update CPU to node mapping for given CPU and proximity domain. 1349 * Return values: 1350 * - zero for success 1351 * - positive numbers for warnings 1352 * - negative numbers for errors 1353 */ 1354 static int 1355 lgrp_plat_cpu_node_update(node_domain_map_t *node_domain, int node_cnt, 1356 cpu_node_map_t *cpu_node, int nentries, uint32_t apicid, uint32_t domain) 1357 { 1358 uint_t i; 1359 int node; 1360 1361 /* 1362 * Get node number for proximity domain 1363 */ 1364 node = lgrp_plat_domain_to_node(node_domain, node_cnt, domain); 1365 if (node == -1) { 1366 node = lgrp_plat_node_domain_update(node_domain, node_cnt, 1367 domain); 1368 if (node == -1) 1369 return (-1); 1370 } 1371 1372 /* 1373 * Search for entry with given APIC ID and fill in its node and 1374 * proximity domain IDs (if they haven't been set already) 1375 */ 1376 for (i = 0; i < nentries; i++) { 1377 /* 1378 * Skip nonexistent entries and ones without matching APIC ID 1379 */ 1380 if (!cpu_node[i].exists || cpu_node[i].apicid != apicid) 1381 continue; 1382 1383 /* 1384 * Just return if entry completely and correctly filled in 1385 * already 1386 */ 1387 if (cpu_node[i].prox_domain == domain && 1388 cpu_node[i].node == node) 1389 return (1); 1390 1391 /* 1392 * It's invalid to have more than one entry with the same 1393 * local APIC ID in SRAT table. 1394 */ 1395 if (cpu_node[i].node != UINT_MAX) 1396 return (-2); 1397 1398 /* 1399 * Fill in node and proximity domain IDs 1400 */ 1401 cpu_node[i].prox_domain = domain; 1402 cpu_node[i].node = node; 1403 1404 return (0); 1405 } 1406 1407 /* 1408 * It's possible that an apicid doesn't exist in the cpu_node map due 1409 * to user limits number of CPUs powered on at boot by specifying the 1410 * boot_ncpus kernel option. 1411 */ 1412 return (2); 1413 } 1414 1415 1416 /* 1417 * Get node ID for given CPU 1418 */ 1419 static int 1420 lgrp_plat_cpu_to_node(cpu_t *cp, cpu_node_map_t *cpu_node, 1421 int cpu_node_nentries) 1422 { 1423 processorid_t cpuid; 1424 1425 if (cp == NULL) 1426 return (-1); 1427 1428 cpuid = cp->cpu_id; 1429 if (cpuid < 0 || cpuid >= max_ncpus) 1430 return (-1); 1431 1432 /* 1433 * SRAT doesn't exist, isn't enabled, or there was an error processing 1434 * it, so return node ID for Opteron and -1 otherwise. 1435 */ 1436 if (srat_ptr == NULL || !lgrp_plat_srat_enable || 1437 lgrp_plat_srat_error) { 1438 if (is_opteron()) 1439 return (pg_plat_hw_instance_id(cp, PGHW_PROCNODE)); 1440 return (-1); 1441 } 1442 1443 /* 1444 * Return -1 when CPU to node ID mapping entry doesn't exist for given 1445 * CPU 1446 */ 1447 if (cpuid >= cpu_node_nentries || !cpu_node[cpuid].exists) 1448 return (-1); 1449 1450 return (cpu_node[cpuid].node); 1451 } 1452 1453 1454 /* 1455 * Return node number for given proximity domain/system locality 1456 */ 1457 static int 1458 lgrp_plat_domain_to_node(node_domain_map_t *node_domain, int node_cnt, 1459 uint32_t domain) 1460 { 1461 uint_t node; 1462 uint_t start; 1463 1464 /* 1465 * Hash proximity domain ID into node to domain mapping table (array), 1466 * search for entry with matching proximity domain ID, and return index 1467 * of matching entry as node ID. 1468 */ 1469 node = start = NODE_DOMAIN_HASH(domain, node_cnt); 1470 do { 1471 if (node_domain[node].exists) { 1472 membar_consumer(); 1473 if (node_domain[node].prox_domain == domain) 1474 return (node); 1475 } 1476 node = (node + 1) % node_cnt; 1477 } while (node != start); 1478 return (-1); 1479 } 1480 1481 1482 /* 1483 * Get NUMA configuration of machine 1484 */ 1485 static void 1486 lgrp_plat_get_numa_config(void) 1487 { 1488 uint_t probe_op; 1489 1490 /* 1491 * Read boot property with CPU to APIC ID mapping table/array to 1492 * determine number of CPUs 1493 */ 1494 lgrp_plat_apic_ncpus = lgrp_plat_process_cpu_apicids(NULL); 1495 1496 /* 1497 * Determine which CPUs and memory are local to each other and number 1498 * of NUMA nodes by reading ACPI System Resource Affinity Table (SRAT) 1499 */ 1500 if (lgrp_plat_apic_ncpus > 0) { 1501 int retval; 1502 1503 /* Reserve enough resources if CPU DR is enabled. */ 1504 if (plat_dr_support_cpu() && max_ncpus > lgrp_plat_apic_ncpus) 1505 lgrp_plat_cpu_node_nentries = max_ncpus; 1506 else 1507 lgrp_plat_cpu_node_nentries = lgrp_plat_apic_ncpus; 1508 1509 /* 1510 * Temporarily allocate boot memory to use for CPU to node 1511 * mapping since kernel memory allocator isn't alive yet 1512 */ 1513 lgrp_plat_cpu_node = (cpu_node_map_t *)BOP_ALLOC(bootops, 1514 NULL, lgrp_plat_cpu_node_nentries * sizeof (cpu_node_map_t), 1515 sizeof (int)); 1516 1517 ASSERT(lgrp_plat_cpu_node != NULL); 1518 if (lgrp_plat_cpu_node) { 1519 bzero(lgrp_plat_cpu_node, lgrp_plat_cpu_node_nentries * 1520 sizeof (cpu_node_map_t)); 1521 } else { 1522 lgrp_plat_cpu_node_nentries = 0; 1523 } 1524 1525 /* 1526 * Fill in CPU to node ID mapping table with APIC ID for each 1527 * CPU 1528 */ 1529 (void) lgrp_plat_process_cpu_apicids(lgrp_plat_cpu_node); 1530 1531 retval = lgrp_plat_process_srat(srat_ptr, msct_ptr, 1532 &lgrp_plat_prox_domain_min, 1533 lgrp_plat_node_domain, lgrp_plat_cpu_node, 1534 lgrp_plat_apic_ncpus, lgrp_plat_memnode_info); 1535 if (retval <= 0) { 1536 lgrp_plat_srat_error = retval; 1537 lgrp_plat_node_cnt = 1; 1538 } else { 1539 lgrp_plat_srat_error = 0; 1540 lgrp_plat_node_cnt = retval; 1541 } 1542 } 1543 1544 /* 1545 * Try to use PCI config space registers on Opteron if there's an error 1546 * processing CPU to APIC ID mapping or SRAT 1547 */ 1548 if ((lgrp_plat_apic_ncpus <= 0 || lgrp_plat_srat_error != 0) && 1549 is_opteron()) 1550 opt_get_numa_config(&lgrp_plat_node_cnt, &lgrp_plat_mem_intrlv, 1551 lgrp_plat_memnode_info); 1552 1553 /* 1554 * Don't bother to setup system for multiple lgroups and only use one 1555 * memory node when memory is interleaved between any nodes or there is 1556 * only one NUMA node 1557 */ 1558 if (lgrp_plat_mem_intrlv || lgrp_plat_node_cnt == 1) { 1559 lgrp_plat_node_cnt = max_mem_nodes = 1; 1560 (void) lgrp_topo_ht_limit_set(1); 1561 return; 1562 } 1563 1564 /* 1565 * Leaf lgroups on x86/x64 architectures contain one physical 1566 * processor chip. Tune lgrp_expand_proc_thresh and 1567 * lgrp_expand_proc_diff so that lgrp_choose() will spread 1568 * things out aggressively. 1569 */ 1570 lgrp_expand_proc_thresh = LGRP_LOADAVG_THREAD_MAX / 2; 1571 lgrp_expand_proc_diff = 0; 1572 1573 /* 1574 * There should be one memnode (physical page free list(s)) for 1575 * each node if memory DR is disabled. 1576 */ 1577 max_mem_nodes = lgrp_plat_node_cnt; 1578 1579 /* 1580 * Initialize min and max latency before reading SLIT or probing 1581 */ 1582 lgrp_plat_lat_stats.latency_min = -1; 1583 lgrp_plat_lat_stats.latency_max = 0; 1584 1585 /* 1586 * Determine how far each NUMA node is from each other by 1587 * reading ACPI System Locality Information Table (SLIT) if it 1588 * exists 1589 */ 1590 lgrp_plat_slit_error = lgrp_plat_process_slit(slit_ptr, 1591 lgrp_plat_node_domain, lgrp_plat_node_cnt, lgrp_plat_memnode_info, 1592 &lgrp_plat_lat_stats); 1593 1594 /* 1595 * Disable support of CPU/memory DR operations if multiple locality 1596 * domains exist in system and either of following is true. 1597 * 1) Failed to process SLIT table. 1598 * 2) Latency probing is enabled by user. 1599 */ 1600 if (lgrp_plat_node_cnt > 1 && 1601 (plat_dr_support_cpu() || plat_dr_support_memory())) { 1602 if (!lgrp_plat_slit_enable || lgrp_plat_slit_error != 0 || 1603 !lgrp_plat_srat_enable || lgrp_plat_srat_error != 0 || 1604 lgrp_plat_apic_ncpus <= 0) { 1605 cmn_err(CE_CONT, 1606 "?lgrp: failed to process ACPI SRAT/SLIT table, " 1607 "disable support of CPU/memory DR operations."); 1608 plat_dr_disable_cpu(); 1609 plat_dr_disable_memory(); 1610 } else if (lgrp_plat_probe_flags & LGRP_PLAT_PROBE_ENABLE) { 1611 cmn_err(CE_CONT, 1612 "?lgrp: latency probing enabled by user, " 1613 "disable support of CPU/memory DR operations."); 1614 plat_dr_disable_cpu(); 1615 plat_dr_disable_memory(); 1616 } 1617 } 1618 1619 /* Done if succeeded to process SLIT table. */ 1620 if (lgrp_plat_slit_error == 0) 1621 return; 1622 1623 /* 1624 * Probe to determine latency between NUMA nodes when SLIT 1625 * doesn't exist or make sense 1626 */ 1627 lgrp_plat_probe_flags |= LGRP_PLAT_PROBE_ENABLE; 1628 1629 /* 1630 * Specify whether to probe using vendor ID register or page copy 1631 * if hasn't been specified already or is overspecified 1632 */ 1633 probe_op = lgrp_plat_probe_flags & 1634 (LGRP_PLAT_PROBE_PGCPY|LGRP_PLAT_PROBE_VENDOR); 1635 1636 if (probe_op == 0 || 1637 probe_op == (LGRP_PLAT_PROBE_PGCPY|LGRP_PLAT_PROBE_VENDOR)) { 1638 lgrp_plat_probe_flags &= 1639 ~(LGRP_PLAT_PROBE_PGCPY|LGRP_PLAT_PROBE_VENDOR); 1640 if (is_opteron()) 1641 lgrp_plat_probe_flags |= 1642 LGRP_PLAT_PROBE_VENDOR; 1643 else 1644 lgrp_plat_probe_flags |= LGRP_PLAT_PROBE_PGCPY; 1645 } 1646 1647 /* 1648 * Probing errors can mess up the lgroup topology and 1649 * force us fall back to a 2 level lgroup topology. 1650 * Here we bound how tall the lgroup topology can grow 1651 * in hopes of avoiding any anamolies in probing from 1652 * messing up the lgroup topology by limiting the 1653 * accuracy of the latency topology. 1654 * 1655 * Assume that nodes will at least be configured in a 1656 * ring, so limit height of lgroup topology to be less 1657 * than number of nodes on a system with 4 or more 1658 * nodes 1659 */ 1660 if (lgrp_plat_node_cnt >= 4 && lgrp_topo_ht_limit() == 1661 lgrp_topo_ht_limit_default()) 1662 (void) lgrp_topo_ht_limit_set(lgrp_plat_node_cnt - 1); 1663 } 1664 1665 1666 /* 1667 * Latencies must be within 1/(2**LGRP_LAT_TOLERANCE_SHIFT) of each other to 1668 * be considered same 1669 */ 1670 #define LGRP_LAT_TOLERANCE_SHIFT 4 1671 1672 int lgrp_plat_probe_lt_shift = LGRP_LAT_TOLERANCE_SHIFT; 1673 1674 1675 /* 1676 * Adjust latencies between nodes to be symmetric, normalize latencies between 1677 * any nodes that are within some tolerance to be same, and make local 1678 * latencies be same 1679 */ 1680 static void 1681 lgrp_plat_latency_adjust(memnode_phys_addr_map_t *memnode_info, 1682 lgrp_plat_latency_stats_t *lat_stats, lgrp_plat_probe_stats_t *probe_stats) 1683 { 1684 int i; 1685 int j; 1686 int k; 1687 int l; 1688 u_longlong_t max; 1689 u_longlong_t min; 1690 u_longlong_t t; 1691 u_longlong_t t1; 1692 u_longlong_t t2; 1693 const lgrp_config_flag_t cflag = LGRP_CONFIG_LAT_CHANGE_ALL; 1694 int lat_corrected[MAX_NODES][MAX_NODES]; 1695 1696 t = 0; 1697 /* 1698 * Nothing to do when this is an UMA machine or don't have args needed 1699 */ 1700 if (max_mem_nodes == 1) 1701 return; 1702 1703 ASSERT(memnode_info != NULL && lat_stats != NULL && 1704 probe_stats != NULL); 1705 1706 /* 1707 * Make sure that latencies are symmetric between any two nodes 1708 * (ie. latency(node0, node1) == latency(node1, node0)) 1709 */ 1710 for (i = 0; i < lgrp_plat_node_cnt; i++) { 1711 if (!memnode_info[i].exists) 1712 continue; 1713 1714 for (j = 0; j < lgrp_plat_node_cnt; j++) { 1715 if (!memnode_info[j].exists) 1716 continue; 1717 1718 t1 = lat_stats->latencies[i][j]; 1719 t2 = lat_stats->latencies[j][i]; 1720 1721 if (t1 == 0 || t2 == 0 || t1 == t2) 1722 continue; 1723 1724 /* 1725 * Latencies should be same 1726 * - Use minimum of two latencies which should be same 1727 * - Track suspect probe times not within tolerance of 1728 * min value 1729 * - Remember how much values are corrected by 1730 */ 1731 if (t1 > t2) { 1732 t = t2; 1733 probe_stats->probe_errors[i][j] += t1 - t2; 1734 if (t1 - t2 > t2 >> lgrp_plat_probe_lt_shift) { 1735 probe_stats->probe_suspect[i][j]++; 1736 probe_stats->probe_suspect[j][i]++; 1737 } 1738 } else if (t2 > t1) { 1739 t = t1; 1740 probe_stats->probe_errors[j][i] += t2 - t1; 1741 if (t2 - t1 > t1 >> lgrp_plat_probe_lt_shift) { 1742 probe_stats->probe_suspect[i][j]++; 1743 probe_stats->probe_suspect[j][i]++; 1744 } 1745 } 1746 1747 lat_stats->latencies[i][j] = 1748 lat_stats->latencies[j][i] = t; 1749 lgrp_config(cflag, t1, t); 1750 lgrp_config(cflag, t2, t); 1751 } 1752 } 1753 1754 /* 1755 * Keep track of which latencies get corrected 1756 */ 1757 for (i = 0; i < MAX_NODES; i++) 1758 for (j = 0; j < MAX_NODES; j++) 1759 lat_corrected[i][j] = 0; 1760 1761 /* 1762 * For every two nodes, see whether there is another pair of nodes which 1763 * are about the same distance apart and make the latencies be the same 1764 * if they are close enough together 1765 */ 1766 for (i = 0; i < lgrp_plat_node_cnt; i++) { 1767 for (j = 0; j < lgrp_plat_node_cnt; j++) { 1768 if (!memnode_info[j].exists) 1769 continue; 1770 /* 1771 * Pick one pair of nodes (i, j) 1772 * and get latency between them 1773 */ 1774 t1 = lat_stats->latencies[i][j]; 1775 1776 /* 1777 * Skip this pair of nodes if there isn't a latency 1778 * for it yet 1779 */ 1780 if (t1 == 0) 1781 continue; 1782 1783 for (k = 0; k < lgrp_plat_node_cnt; k++) { 1784 for (l = 0; l < lgrp_plat_node_cnt; l++) { 1785 if (!memnode_info[l].exists) 1786 continue; 1787 /* 1788 * Pick another pair of nodes (k, l) 1789 * not same as (i, j) and get latency 1790 * between them 1791 */ 1792 if (k == i && l == j) 1793 continue; 1794 1795 t2 = lat_stats->latencies[k][l]; 1796 1797 /* 1798 * Skip this pair of nodes if there 1799 * isn't a latency for it yet 1800 */ 1801 1802 if (t2 == 0) 1803 continue; 1804 1805 /* 1806 * Skip nodes (k, l) if they already 1807 * have same latency as (i, j) or 1808 * their latency isn't close enough to 1809 * be considered/made the same 1810 */ 1811 if (t1 == t2 || (t1 > t2 && t1 - t2 > 1812 t1 >> lgrp_plat_probe_lt_shift) || 1813 (t2 > t1 && t2 - t1 > 1814 t2 >> lgrp_plat_probe_lt_shift)) 1815 continue; 1816 1817 /* 1818 * Make latency(i, j) same as 1819 * latency(k, l), try to use latency 1820 * that has been adjusted already to get 1821 * more consistency (if possible), and 1822 * remember which latencies were 1823 * adjusted for next time 1824 */ 1825 if (lat_corrected[i][j]) { 1826 t = t1; 1827 lgrp_config(cflag, t2, t); 1828 t2 = t; 1829 } else if (lat_corrected[k][l]) { 1830 t = t2; 1831 lgrp_config(cflag, t1, t); 1832 t1 = t; 1833 } else { 1834 if (t1 > t2) 1835 t = t2; 1836 else 1837 t = t1; 1838 lgrp_config(cflag, t1, t); 1839 lgrp_config(cflag, t2, t); 1840 t1 = t2 = t; 1841 } 1842 1843 lat_stats->latencies[i][j] = 1844 lat_stats->latencies[k][l] = t; 1845 1846 lat_corrected[i][j] = 1847 lat_corrected[k][l] = 1; 1848 } 1849 } 1850 } 1851 } 1852 1853 /* 1854 * Local latencies should be same 1855 * - Find min and max local latencies 1856 * - Make all local latencies be minimum 1857 */ 1858 min = -1; 1859 max = 0; 1860 for (i = 0; i < lgrp_plat_node_cnt; i++) { 1861 if (!memnode_info[i].exists) 1862 continue; 1863 t = lat_stats->latencies[i][i]; 1864 if (t == 0) 1865 continue; 1866 if (min == -1 || t < min) 1867 min = t; 1868 if (t > max) 1869 max = t; 1870 } 1871 if (min != max) { 1872 for (i = 0; i < lgrp_plat_node_cnt; i++) { 1873 int local; 1874 1875 if (!memnode_info[i].exists) 1876 continue; 1877 1878 local = lat_stats->latencies[i][i]; 1879 if (local == 0) 1880 continue; 1881 1882 /* 1883 * Track suspect probe times that aren't within 1884 * tolerance of minimum local latency and how much 1885 * probe times are corrected by 1886 */ 1887 if (local - min > min >> lgrp_plat_probe_lt_shift) 1888 probe_stats->probe_suspect[i][i]++; 1889 1890 probe_stats->probe_errors[i][i] += local - min; 1891 1892 /* 1893 * Make local latencies be minimum 1894 */ 1895 lgrp_config(LGRP_CONFIG_LAT_CHANGE, i, min); 1896 lat_stats->latencies[i][i] = min; 1897 } 1898 } 1899 1900 /* 1901 * Determine max probe time again since just adjusted latencies 1902 */ 1903 lat_stats->latency_max = 0; 1904 for (i = 0; i < lgrp_plat_node_cnt; i++) { 1905 for (j = 0; j < lgrp_plat_node_cnt; j++) { 1906 if (!memnode_info[j].exists) 1907 continue; 1908 t = lat_stats->latencies[i][j]; 1909 if (t > lat_stats->latency_max) 1910 lat_stats->latency_max = t; 1911 } 1912 } 1913 } 1914 1915 1916 /* 1917 * Verify following about latencies between nodes: 1918 * 1919 * - Latencies should be symmetric (ie. latency(a, b) == latency(b, a)) 1920 * - Local latencies same 1921 * - Local < remote 1922 * - Number of latencies seen is reasonable 1923 * - Number of occurrences of a given latency should be more than 1 1924 * 1925 * Returns: 1926 * 0 Success 1927 * -1 Not symmetric 1928 * -2 Local latencies not same 1929 * -3 Local >= remote 1930 */ 1931 static int 1932 lgrp_plat_latency_verify(memnode_phys_addr_map_t *memnode_info, 1933 lgrp_plat_latency_stats_t *lat_stats) 1934 { 1935 int i; 1936 int j; 1937 u_longlong_t t1; 1938 u_longlong_t t2; 1939 1940 ASSERT(memnode_info != NULL && lat_stats != NULL); 1941 1942 /* 1943 * Nothing to do when this is an UMA machine, lgroup topology is 1944 * limited to 2 levels, or there aren't any probe times yet 1945 */ 1946 if (max_mem_nodes == 1 || lgrp_topo_levels < 2 || 1947 lat_stats->latencies[0][0] == 0) 1948 return (0); 1949 1950 /* 1951 * Make sure that latencies are symmetric between any two nodes 1952 * (ie. latency(node0, node1) == latency(node1, node0)) 1953 */ 1954 for (i = 0; i < lgrp_plat_node_cnt; i++) { 1955 if (!memnode_info[i].exists) 1956 continue; 1957 for (j = 0; j < lgrp_plat_node_cnt; j++) { 1958 if (!memnode_info[j].exists) 1959 continue; 1960 t1 = lat_stats->latencies[i][j]; 1961 t2 = lat_stats->latencies[j][i]; 1962 1963 if (t1 == 0 || t2 == 0 || t1 == t2) 1964 continue; 1965 1966 return (-1); 1967 } 1968 } 1969 1970 /* 1971 * Local latencies should be same 1972 */ 1973 t1 = lat_stats->latencies[0][0]; 1974 for (i = 1; i < lgrp_plat_node_cnt; i++) { 1975 if (!memnode_info[i].exists) 1976 continue; 1977 1978 t2 = lat_stats->latencies[i][i]; 1979 if (t2 == 0) 1980 continue; 1981 1982 if (t1 == 0) { 1983 t1 = t2; 1984 continue; 1985 } 1986 1987 if (t1 != t2) 1988 return (-2); 1989 } 1990 1991 /* 1992 * Local latencies should be less than remote 1993 */ 1994 if (t1) { 1995 for (i = 0; i < lgrp_plat_node_cnt; i++) { 1996 for (j = 0; j < lgrp_plat_node_cnt; j++) { 1997 if (!memnode_info[j].exists) 1998 continue; 1999 t2 = lat_stats->latencies[i][j]; 2000 if (i == j || t2 == 0) 2001 continue; 2002 2003 if (t1 >= t2) 2004 return (-3); 2005 } 2006 } 2007 } 2008 2009 return (0); 2010 } 2011 2012 2013 /* 2014 * Platform-specific initialization 2015 */ 2016 static void 2017 lgrp_plat_main_init(void) 2018 { 2019 int curnode; 2020 int ht_limit; 2021 int i; 2022 2023 /* 2024 * Print a notice that MPO is disabled when memory is interleaved 2025 * across nodes....Would do this when it is discovered, but can't 2026 * because it happens way too early during boot.... 2027 */ 2028 if (lgrp_plat_mem_intrlv) 2029 cmn_err(CE_NOTE, 2030 "MPO disabled because memory is interleaved\n"); 2031 2032 /* 2033 * Don't bother to do any probing if it is disabled, there is only one 2034 * node, or the height of the lgroup topology less than or equal to 2 2035 */ 2036 ht_limit = lgrp_topo_ht_limit(); 2037 if (!(lgrp_plat_probe_flags & LGRP_PLAT_PROBE_ENABLE) || 2038 max_mem_nodes == 1 || ht_limit <= 2) { 2039 /* 2040 * Setup lgroup latencies for 2 level lgroup topology 2041 * (ie. local and remote only) if they haven't been set yet 2042 */ 2043 if (ht_limit == 2 && lgrp_plat_lat_stats.latency_min == -1 && 2044 lgrp_plat_lat_stats.latency_max == 0) 2045 lgrp_plat_2level_setup(&lgrp_plat_lat_stats); 2046 return; 2047 } 2048 2049 if (lgrp_plat_probe_flags & LGRP_PLAT_PROBE_VENDOR) { 2050 /* 2051 * Should have been able to probe from CPU 0 when it was added 2052 * to lgroup hierarchy, but may not have been able to then 2053 * because it happens so early in boot that gethrtime() hasn't 2054 * been initialized. (:-( 2055 */ 2056 curnode = lgrp_plat_cpu_to_node(CPU, lgrp_plat_cpu_node, 2057 lgrp_plat_cpu_node_nentries); 2058 ASSERT(curnode >= 0 && curnode < lgrp_plat_node_cnt); 2059 if (lgrp_plat_lat_stats.latencies[curnode][curnode] == 0) 2060 lgrp_plat_probe(); 2061 2062 return; 2063 } 2064 2065 /* 2066 * When probing memory, use one page for every sample to determine 2067 * lgroup topology and taking multiple samples 2068 */ 2069 if (lgrp_plat_probe_mem_config.probe_memsize == 0) 2070 lgrp_plat_probe_mem_config.probe_memsize = PAGESIZE * 2071 lgrp_plat_probe_nsamples; 2072 2073 /* 2074 * Map memory in each node needed for probing to determine latency 2075 * topology 2076 */ 2077 for (i = 0; i < lgrp_plat_node_cnt; i++) { 2078 int mnode; 2079 2080 /* 2081 * Skip this node and leave its probe page NULL 2082 * if it doesn't have any memory 2083 */ 2084 mnode = i; 2085 if (!mem_node_config[mnode].exists) { 2086 lgrp_plat_probe_mem_config.probe_va[i] = NULL; 2087 continue; 2088 } 2089 2090 /* 2091 * Allocate one kernel virtual page 2092 */ 2093 lgrp_plat_probe_mem_config.probe_va[i] = vmem_alloc(heap_arena, 2094 lgrp_plat_probe_mem_config.probe_memsize, VM_NOSLEEP); 2095 if (lgrp_plat_probe_mem_config.probe_va[i] == NULL) { 2096 cmn_err(CE_WARN, 2097 "lgrp_plat_main_init: couldn't allocate memory"); 2098 return; 2099 } 2100 2101 /* 2102 * Get PFN for first page in each node 2103 */ 2104 lgrp_plat_probe_mem_config.probe_pfn[i] = 2105 mem_node_config[mnode].physbase; 2106 2107 /* 2108 * Map virtual page to first page in node 2109 */ 2110 hat_devload(kas.a_hat, lgrp_plat_probe_mem_config.probe_va[i], 2111 lgrp_plat_probe_mem_config.probe_memsize, 2112 lgrp_plat_probe_mem_config.probe_pfn[i], 2113 PROT_READ | PROT_WRITE | HAT_PLAT_NOCACHE, 2114 HAT_LOAD_NOCONSIST); 2115 } 2116 2117 /* 2118 * Probe from current CPU 2119 */ 2120 lgrp_plat_probe(); 2121 } 2122 2123 2124 /* 2125 * Return the number of free, allocatable, or installed 2126 * pages in an lgroup 2127 * This is a copy of the MAX_MEM_NODES == 1 version of the routine 2128 * used when MPO is disabled (i.e. single lgroup) or this is the root lgroup 2129 */ 2130 static pgcnt_t 2131 lgrp_plat_mem_size_default(lgrp_handle_t lgrphand, lgrp_mem_query_t query) 2132 { 2133 _NOTE(ARGUNUSED(lgrphand)); 2134 2135 struct memlist *mlist; 2136 pgcnt_t npgs = 0; 2137 extern struct memlist *phys_avail; 2138 extern struct memlist *phys_install; 2139 2140 switch (query) { 2141 case LGRP_MEM_SIZE_FREE: 2142 return ((pgcnt_t)freemem); 2143 case LGRP_MEM_SIZE_AVAIL: 2144 memlist_read_lock(); 2145 for (mlist = phys_avail; mlist; mlist = mlist->ml_next) 2146 npgs += btop(mlist->ml_size); 2147 memlist_read_unlock(); 2148 return (npgs); 2149 case LGRP_MEM_SIZE_INSTALL: 2150 memlist_read_lock(); 2151 for (mlist = phys_install; mlist; mlist = mlist->ml_next) 2152 npgs += btop(mlist->ml_size); 2153 memlist_read_unlock(); 2154 return (npgs); 2155 default: 2156 return ((pgcnt_t)0); 2157 } 2158 } 2159 2160 2161 /* 2162 * Update node to proximity domain mappings for given domain and return node ID 2163 */ 2164 static int 2165 lgrp_plat_node_domain_update(node_domain_map_t *node_domain, int node_cnt, 2166 uint32_t domain) 2167 { 2168 uint_t node; 2169 uint_t start; 2170 2171 /* 2172 * Hash proximity domain ID into node to domain mapping table (array) 2173 * and add entry for it into first non-existent or matching entry found 2174 */ 2175 node = start = NODE_DOMAIN_HASH(domain, node_cnt); 2176 do { 2177 /* 2178 * Entry doesn't exist yet, so create one for this proximity 2179 * domain and return node ID which is index into mapping table. 2180 */ 2181 if (!node_domain[node].exists) { 2182 node_domain[node].prox_domain = domain; 2183 membar_producer(); 2184 node_domain[node].exists = 1; 2185 return (node); 2186 } 2187 2188 /* 2189 * Entry exists for this proximity domain already, so just 2190 * return node ID (index into table). 2191 */ 2192 if (node_domain[node].prox_domain == domain) 2193 return (node); 2194 node = NODE_DOMAIN_HASH(node + 1, node_cnt); 2195 } while (node != start); 2196 2197 /* 2198 * Ran out of supported number of entries which shouldn't happen.... 2199 */ 2200 ASSERT(node != start); 2201 return (-1); 2202 } 2203 2204 /* 2205 * Update node memory information for given proximity domain with specified 2206 * starting and ending physical address range (and return positive numbers for 2207 * success and negative ones for errors) 2208 */ 2209 static int 2210 lgrp_plat_memnode_info_update(node_domain_map_t *node_domain, int node_cnt, 2211 memnode_phys_addr_map_t *memnode_info, int memnode_cnt, uint64_t start, 2212 uint64_t end, uint32_t domain, uint32_t device_id) 2213 { 2214 int node, mnode; 2215 2216 /* 2217 * Get node number for proximity domain 2218 */ 2219 node = lgrp_plat_domain_to_node(node_domain, node_cnt, domain); 2220 if (node == -1) { 2221 node = lgrp_plat_node_domain_update(node_domain, node_cnt, 2222 domain); 2223 if (node == -1) 2224 return (-1); 2225 } 2226 2227 /* 2228 * This function is called during boot if device_id is 2229 * ACPI_MEMNODE_DEVID_BOOT, otherwise it's called at runtime for 2230 * memory DR operations. 2231 */ 2232 if (device_id != ACPI_MEMNODE_DEVID_BOOT) { 2233 ASSERT(lgrp_plat_max_mem_node <= memnode_cnt); 2234 2235 for (mnode = lgrp_plat_node_cnt; 2236 mnode < lgrp_plat_max_mem_node; mnode++) { 2237 if (memnode_info[mnode].exists && 2238 memnode_info[mnode].prox_domain == domain && 2239 memnode_info[mnode].device_id == device_id) { 2240 if (btop(start) < memnode_info[mnode].start) 2241 memnode_info[mnode].start = btop(start); 2242 if (btop(end) > memnode_info[mnode].end) 2243 memnode_info[mnode].end = btop(end); 2244 return (1); 2245 } 2246 } 2247 2248 if (lgrp_plat_max_mem_node >= memnode_cnt) { 2249 return (-3); 2250 } else { 2251 lgrp_plat_max_mem_node++; 2252 memnode_info[mnode].start = btop(start); 2253 memnode_info[mnode].end = btop(end); 2254 memnode_info[mnode].prox_domain = domain; 2255 memnode_info[mnode].device_id = device_id; 2256 memnode_info[mnode].lgrphand = node; 2257 membar_producer(); 2258 memnode_info[mnode].exists = 1; 2259 return (0); 2260 } 2261 } 2262 2263 /* 2264 * Create entry in table for node if it doesn't exist 2265 */ 2266 ASSERT(node < memnode_cnt); 2267 if (!memnode_info[node].exists) { 2268 memnode_info[node].start = btop(start); 2269 memnode_info[node].end = btop(end); 2270 memnode_info[node].prox_domain = domain; 2271 memnode_info[node].device_id = device_id; 2272 memnode_info[node].lgrphand = node; 2273 membar_producer(); 2274 memnode_info[node].exists = 1; 2275 return (0); 2276 } 2277 2278 /* 2279 * Entry already exists for this proximity domain 2280 * 2281 * There may be more than one SRAT memory entry for a domain, so we may 2282 * need to update existing start or end address for the node. 2283 */ 2284 if (memnode_info[node].prox_domain == domain) { 2285 if (btop(start) < memnode_info[node].start) 2286 memnode_info[node].start = btop(start); 2287 if (btop(end) > memnode_info[node].end) 2288 memnode_info[node].end = btop(end); 2289 return (1); 2290 } 2291 return (-2); 2292 } 2293 2294 2295 /* 2296 * Have to sort nodes by starting physical address because plat_mnode_xcheck() 2297 * assumes and expects memnodes to be sorted in ascending order by physical 2298 * address. 2299 */ 2300 static void 2301 lgrp_plat_node_sort(node_domain_map_t *node_domain, int node_cnt, 2302 cpu_node_map_t *cpu_node, int cpu_count, 2303 memnode_phys_addr_map_t *memnode_info) 2304 { 2305 boolean_t found; 2306 int i; 2307 int j; 2308 int n; 2309 boolean_t sorted; 2310 boolean_t swapped; 2311 2312 if (!lgrp_plat_node_sort_enable || node_cnt <= 1 || 2313 node_domain == NULL || memnode_info == NULL) 2314 return; 2315 2316 /* 2317 * Sorted already? 2318 */ 2319 sorted = B_TRUE; 2320 for (i = 0; i < node_cnt - 1; i++) { 2321 /* 2322 * Skip entries that don't exist 2323 */ 2324 if (!memnode_info[i].exists) 2325 continue; 2326 2327 /* 2328 * Try to find next existing entry to compare against 2329 */ 2330 found = B_FALSE; 2331 for (j = i + 1; j < node_cnt; j++) { 2332 if (memnode_info[j].exists) { 2333 found = B_TRUE; 2334 break; 2335 } 2336 } 2337 2338 /* 2339 * Done if no more existing entries to compare against 2340 */ 2341 if (found == B_FALSE) 2342 break; 2343 2344 /* 2345 * Not sorted if starting address of current entry is bigger 2346 * than starting address of next existing entry 2347 */ 2348 if (memnode_info[i].start > memnode_info[j].start) { 2349 sorted = B_FALSE; 2350 break; 2351 } 2352 } 2353 2354 /* 2355 * Don't need to sort if sorted already 2356 */ 2357 if (sorted == B_TRUE) 2358 return; 2359 2360 /* 2361 * Just use bubble sort since number of nodes is small 2362 */ 2363 n = node_cnt; 2364 do { 2365 swapped = B_FALSE; 2366 n--; 2367 for (i = 0; i < n; i++) { 2368 /* 2369 * Skip entries that don't exist 2370 */ 2371 if (!memnode_info[i].exists) 2372 continue; 2373 2374 /* 2375 * Try to find next existing entry to compare against 2376 */ 2377 found = B_FALSE; 2378 for (j = i + 1; j <= n; j++) { 2379 if (memnode_info[j].exists) { 2380 found = B_TRUE; 2381 break; 2382 } 2383 } 2384 2385 /* 2386 * Done if no more existing entries to compare against 2387 */ 2388 if (found == B_FALSE) 2389 break; 2390 2391 if (memnode_info[i].start > memnode_info[j].start) { 2392 memnode_phys_addr_map_t save_addr; 2393 node_domain_map_t save_node; 2394 2395 /* 2396 * Swap node to proxmity domain ID assignments 2397 */ 2398 bcopy(&node_domain[i], &save_node, 2399 sizeof (node_domain_map_t)); 2400 bcopy(&node_domain[j], &node_domain[i], 2401 sizeof (node_domain_map_t)); 2402 bcopy(&save_node, &node_domain[j], 2403 sizeof (node_domain_map_t)); 2404 2405 /* 2406 * Swap node to physical memory assignments 2407 */ 2408 bcopy(&memnode_info[i], &save_addr, 2409 sizeof (memnode_phys_addr_map_t)); 2410 bcopy(&memnode_info[j], &memnode_info[i], 2411 sizeof (memnode_phys_addr_map_t)); 2412 bcopy(&save_addr, &memnode_info[j], 2413 sizeof (memnode_phys_addr_map_t)); 2414 swapped = B_TRUE; 2415 } 2416 } 2417 } while (swapped == B_TRUE); 2418 2419 /* 2420 * Check to make sure that CPUs assigned to correct node IDs now since 2421 * node to proximity domain ID assignments may have been changed above 2422 */ 2423 if (n == node_cnt - 1 || cpu_node == NULL || cpu_count < 1) 2424 return; 2425 for (i = 0; i < cpu_count; i++) { 2426 int node; 2427 2428 node = lgrp_plat_domain_to_node(node_domain, node_cnt, 2429 cpu_node[i].prox_domain); 2430 if (cpu_node[i].node != node) 2431 cpu_node[i].node = node; 2432 } 2433 2434 } 2435 2436 2437 /* 2438 * Return time needed to probe from current CPU to memory in given node 2439 */ 2440 static hrtime_t 2441 lgrp_plat_probe_time(int to, cpu_node_map_t *cpu_node, int cpu_node_nentries, 2442 lgrp_plat_probe_mem_config_t *probe_mem_config, 2443 lgrp_plat_latency_stats_t *lat_stats, lgrp_plat_probe_stats_t *probe_stats) 2444 { 2445 caddr_t buf; 2446 hrtime_t elapsed; 2447 hrtime_t end; 2448 int from; 2449 int i; 2450 int ipl; 2451 hrtime_t max; 2452 hrtime_t min; 2453 hrtime_t start; 2454 extern int use_sse_pagecopy; 2455 2456 /* 2457 * Determine ID of node containing current CPU 2458 */ 2459 from = lgrp_plat_cpu_to_node(CPU, cpu_node, cpu_node_nentries); 2460 ASSERT(from >= 0 && from < lgrp_plat_node_cnt); 2461 2462 /* 2463 * Do common work for probing main memory 2464 */ 2465 if (lgrp_plat_probe_flags & LGRP_PLAT_PROBE_PGCPY) { 2466 /* 2467 * Skip probing any nodes without memory and 2468 * set probe time to 0 2469 */ 2470 if (probe_mem_config->probe_va[to] == NULL) { 2471 lat_stats->latencies[from][to] = 0; 2472 return (0); 2473 } 2474 2475 /* 2476 * Invalidate caches once instead of once every sample 2477 * which should cut cost of probing by a lot 2478 */ 2479 probe_stats->flush_cost = gethrtime(); 2480 invalidate_cache(); 2481 probe_stats->flush_cost = gethrtime() - 2482 probe_stats->flush_cost; 2483 probe_stats->probe_cost_total += probe_stats->flush_cost; 2484 } 2485 2486 /* 2487 * Probe from current CPU to given memory using specified operation 2488 * and take specified number of samples 2489 */ 2490 max = 0; 2491 min = -1; 2492 for (i = 0; i < lgrp_plat_probe_nsamples; i++) { 2493 probe_stats->probe_cost = gethrtime(); 2494 2495 /* 2496 * Can't measure probe time if gethrtime() isn't working yet 2497 */ 2498 if (probe_stats->probe_cost == 0 && gethrtime() == 0) 2499 return (0); 2500 2501 if (lgrp_plat_probe_flags & LGRP_PLAT_PROBE_VENDOR) { 2502 /* 2503 * Measure how long it takes to read vendor ID from 2504 * Northbridge 2505 */ 2506 elapsed = opt_probe_vendor(to, lgrp_plat_probe_nreads); 2507 } else { 2508 /* 2509 * Measure how long it takes to copy page 2510 * on top of itself 2511 */ 2512 buf = probe_mem_config->probe_va[to] + (i * PAGESIZE); 2513 2514 kpreempt_disable(); 2515 ipl = splhigh(); 2516 start = gethrtime(); 2517 if (use_sse_pagecopy) 2518 hwblkpagecopy(buf, buf); 2519 else 2520 bcopy(buf, buf, PAGESIZE); 2521 end = gethrtime(); 2522 elapsed = end - start; 2523 splx(ipl); 2524 kpreempt_enable(); 2525 } 2526 2527 probe_stats->probe_cost = gethrtime() - 2528 probe_stats->probe_cost; 2529 probe_stats->probe_cost_total += probe_stats->probe_cost; 2530 2531 if (min == -1 || elapsed < min) 2532 min = elapsed; 2533 if (elapsed > max) 2534 max = elapsed; 2535 } 2536 2537 /* 2538 * Update minimum and maximum probe times between 2539 * these two nodes 2540 */ 2541 if (min < probe_stats->probe_min[from][to] || 2542 probe_stats->probe_min[from][to] == 0) 2543 probe_stats->probe_min[from][to] = min; 2544 2545 if (max > probe_stats->probe_max[from][to]) 2546 probe_stats->probe_max[from][to] = max; 2547 2548 return (min); 2549 } 2550 2551 2552 /* 2553 * Read boot property with CPU to APIC ID array, fill in CPU to node ID 2554 * mapping table with APIC ID for each CPU (if pointer to table isn't NULL), 2555 * and return number of CPU APIC IDs. 2556 * 2557 * NOTE: This code assumes that CPU IDs are assigned in order that they appear 2558 * in in cpu_apicid_array boot property which is based on and follows 2559 * same ordering as processor list in ACPI MADT. If the code in 2560 * usr/src/uts/i86pc/io/pcplusmp/apic.c that reads MADT and assigns 2561 * CPU IDs ever changes, then this code will need to change too.... 2562 */ 2563 static int 2564 lgrp_plat_process_cpu_apicids(cpu_node_map_t *cpu_node) 2565 { 2566 int boot_prop_len; 2567 char *boot_prop_name = BP_CPU_APICID_ARRAY; 2568 uint32_t *cpu_apicid_array; 2569 int i; 2570 int n; 2571 2572 /* 2573 * Check length of property value 2574 */ 2575 boot_prop_len = BOP_GETPROPLEN(bootops, boot_prop_name); 2576 if (boot_prop_len <= 0) 2577 return (-1); 2578 2579 /* 2580 * Calculate number of entries in array and return when the system is 2581 * not very interesting for NUMA. It's not interesting for NUMA if 2582 * system has only one CPU and doesn't support CPU hotplug. 2583 */ 2584 n = boot_prop_len / sizeof (*cpu_apicid_array); 2585 if (n == 1 && !plat_dr_support_cpu()) 2586 return (-2); 2587 2588 cpu_apicid_array = (uint32_t *)BOP_ALLOC(bootops, NULL, boot_prop_len, 2589 sizeof (*cpu_apicid_array)); 2590 /* 2591 * Get CPU to APIC ID property value 2592 */ 2593 if (cpu_apicid_array == NULL || 2594 BOP_GETPROP(bootops, boot_prop_name, cpu_apicid_array) < 0) 2595 return (-3); 2596 2597 /* 2598 * Just return number of CPU APIC IDs if CPU to node mapping table is 2599 * NULL 2600 */ 2601 if (cpu_node == NULL) { 2602 if (plat_dr_support_cpu() && n >= boot_ncpus) { 2603 return (boot_ncpus); 2604 } else { 2605 return (n); 2606 } 2607 } 2608 2609 /* 2610 * Fill in CPU to node ID mapping table with APIC ID for each CPU 2611 */ 2612 for (i = 0; i < n; i++) { 2613 /* Only add boot CPUs into the map if CPU DR is enabled. */ 2614 if (plat_dr_support_cpu() && i >= boot_ncpus) 2615 break; 2616 cpu_node[i].exists = 1; 2617 cpu_node[i].apicid = cpu_apicid_array[i]; 2618 cpu_node[i].prox_domain = UINT32_MAX; 2619 cpu_node[i].node = UINT_MAX; 2620 } 2621 2622 /* 2623 * Return number of CPUs based on number of APIC IDs 2624 */ 2625 return (i); 2626 } 2627 2628 2629 /* 2630 * Read ACPI System Locality Information Table (SLIT) to determine how far each 2631 * NUMA node is from each other 2632 */ 2633 static int 2634 lgrp_plat_process_slit(ACPI_TABLE_SLIT *tp, 2635 node_domain_map_t *node_domain, uint_t node_cnt, 2636 memnode_phys_addr_map_t *memnode_info, lgrp_plat_latency_stats_t *lat_stats) 2637 { 2638 int i; 2639 int j; 2640 int src; 2641 int dst; 2642 int localities; 2643 hrtime_t max; 2644 hrtime_t min; 2645 int retval; 2646 uint8_t *slit_entries; 2647 2648 if (tp == NULL || !lgrp_plat_slit_enable) 2649 return (1); 2650 2651 if (lat_stats == NULL) 2652 return (2); 2653 2654 localities = tp->LocalityCount; 2655 2656 min = lat_stats->latency_min; 2657 max = lat_stats->latency_max; 2658 2659 /* 2660 * Fill in latency matrix based on SLIT entries 2661 */ 2662 slit_entries = tp->Entry; 2663 for (i = 0; i < localities; i++) { 2664 src = lgrp_plat_domain_to_node(node_domain, 2665 node_cnt, i); 2666 if (src == -1) 2667 continue; 2668 2669 for (j = 0; j < localities; j++) { 2670 uint8_t latency; 2671 2672 dst = lgrp_plat_domain_to_node(node_domain, 2673 node_cnt, j); 2674 if (dst == -1) 2675 continue; 2676 2677 latency = slit_entries[(i * localities) + j]; 2678 lat_stats->latencies[src][dst] = latency; 2679 if (latency < min || min == -1) 2680 min = latency; 2681 if (latency > max) 2682 max = latency; 2683 } 2684 } 2685 2686 /* 2687 * Verify that latencies/distances given in SLIT look reasonable 2688 */ 2689 retval = lgrp_plat_latency_verify(memnode_info, lat_stats); 2690 2691 if (retval) { 2692 /* 2693 * Reinitialize (zero) latency table since SLIT doesn't look 2694 * right 2695 */ 2696 for (i = 0; i < localities; i++) { 2697 for (j = 0; j < localities; j++) 2698 lat_stats->latencies[i][j] = 0; 2699 } 2700 } else { 2701 /* 2702 * Update min and max latencies seen since SLIT looks valid 2703 */ 2704 lat_stats->latency_min = min; 2705 lat_stats->latency_max = max; 2706 } 2707 2708 return (retval); 2709 } 2710 2711 2712 /* 2713 * Update lgrp latencies according to information returned by ACPI _SLI method. 2714 */ 2715 static int 2716 lgrp_plat_process_sli(uint32_t domain_id, uchar_t *sli_info, 2717 uint32_t sli_cnt, node_domain_map_t *node_domain, uint_t node_cnt, 2718 lgrp_plat_latency_stats_t *lat_stats) 2719 { 2720 int i; 2721 int src, dst; 2722 uint8_t latency; 2723 hrtime_t max, min; 2724 2725 if (lat_stats == NULL || sli_info == NULL || 2726 sli_cnt == 0 || domain_id >= sli_cnt) 2727 return (-1); 2728 2729 src = lgrp_plat_domain_to_node(node_domain, node_cnt, domain_id); 2730 if (src == -1) { 2731 src = lgrp_plat_node_domain_update(node_domain, node_cnt, 2732 domain_id); 2733 if (src == -1) 2734 return (-1); 2735 } 2736 2737 /* 2738 * Don't update latency info if topology has been flattened to 2 levels. 2739 */ 2740 if (lgrp_plat_topo_flatten != 0) { 2741 return (0); 2742 } 2743 2744 /* 2745 * Latency information for proximity domain is ready. 2746 * TODO: support adjusting latency information at runtime. 2747 */ 2748 if (lat_stats->latencies[src][src] != 0) { 2749 return (0); 2750 } 2751 2752 /* Validate latency information. */ 2753 for (i = 0; i < sli_cnt; i++) { 2754 if (i == domain_id) { 2755 if (sli_info[i] != ACPI_SLIT_SELF_LATENCY || 2756 sli_info[sli_cnt + i] != ACPI_SLIT_SELF_LATENCY) { 2757 return (-1); 2758 } 2759 } else { 2760 if (sli_info[i] <= ACPI_SLIT_SELF_LATENCY || 2761 sli_info[sli_cnt + i] <= ACPI_SLIT_SELF_LATENCY || 2762 sli_info[i] != sli_info[sli_cnt + i]) { 2763 return (-1); 2764 } 2765 } 2766 } 2767 2768 min = lat_stats->latency_min; 2769 max = lat_stats->latency_max; 2770 for (i = 0; i < sli_cnt; i++) { 2771 dst = lgrp_plat_domain_to_node(node_domain, node_cnt, i); 2772 if (dst == -1) 2773 continue; 2774 2775 ASSERT(sli_info[i] == sli_info[sli_cnt + i]); 2776 2777 /* Update row in latencies matrix. */ 2778 latency = sli_info[i]; 2779 lat_stats->latencies[src][dst] = latency; 2780 if (latency < min || min == -1) 2781 min = latency; 2782 if (latency > max) 2783 max = latency; 2784 2785 /* Update column in latencies matrix. */ 2786 latency = sli_info[sli_cnt + i]; 2787 lat_stats->latencies[dst][src] = latency; 2788 if (latency < min || min == -1) 2789 min = latency; 2790 if (latency > max) 2791 max = latency; 2792 } 2793 lat_stats->latency_min = min; 2794 lat_stats->latency_max = max; 2795 2796 return (0); 2797 } 2798 2799 2800 /* 2801 * Read ACPI System Resource Affinity Table (SRAT) to determine which CPUs 2802 * and memory are local to each other in the same NUMA node and return number 2803 * of nodes 2804 */ 2805 static int 2806 lgrp_plat_process_srat(ACPI_TABLE_SRAT *tp, ACPI_TABLE_MSCT *mp, 2807 uint32_t *prox_domain_min, node_domain_map_t *node_domain, 2808 cpu_node_map_t *cpu_node, int cpu_count, 2809 memnode_phys_addr_map_t *memnode_info) 2810 { 2811 ACPI_SUBTABLE_HEADER *item, *srat_end; 2812 int i; 2813 int node_cnt; 2814 int proc_entry_count; 2815 int rc; 2816 2817 /* 2818 * Nothing to do when no SRAT or disabled 2819 */ 2820 if (tp == NULL || !lgrp_plat_srat_enable) 2821 return (-1); 2822 2823 /* 2824 * Try to get domain information from MSCT table. 2825 * ACPI4.0: OSPM will use information provided by the MSCT only 2826 * when the System Resource Affinity Table (SRAT) exists. 2827 */ 2828 node_cnt = lgrp_plat_msct_domains(mp, prox_domain_min); 2829 if (node_cnt <= 0) { 2830 /* 2831 * Determine number of nodes by counting number of proximity 2832 * domains in SRAT. 2833 */ 2834 node_cnt = lgrp_plat_srat_domains(tp, prox_domain_min); 2835 } 2836 /* 2837 * Return if number of nodes is 1 or less since don't need to read SRAT. 2838 */ 2839 if (node_cnt == 1) 2840 return (1); 2841 else if (node_cnt <= 0) 2842 return (-2); 2843 2844 /* 2845 * Walk through SRAT, examining each CPU and memory entry to determine 2846 * which CPUs and memory belong to which node. 2847 */ 2848 item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)tp + sizeof (*tp)); 2849 srat_end = (ACPI_SUBTABLE_HEADER *)(tp->Header.Length + (uintptr_t)tp); 2850 proc_entry_count = 0; 2851 while (item < srat_end) { 2852 uint32_t apic_id; 2853 uint32_t domain; 2854 uint64_t end; 2855 uint64_t length; 2856 uint64_t start; 2857 2858 switch (item->Type) { 2859 case ACPI_SRAT_TYPE_CPU_AFFINITY: { /* CPU entry */ 2860 ACPI_SRAT_CPU_AFFINITY *cpu = 2861 (ACPI_SRAT_CPU_AFFINITY *) item; 2862 2863 if (!(cpu->Flags & ACPI_SRAT_CPU_ENABLED) || 2864 cpu_node == NULL) 2865 break; 2866 2867 /* 2868 * Calculate domain (node) ID and fill in APIC ID to 2869 * domain/node mapping table 2870 */ 2871 domain = cpu->ProximityDomainLo; 2872 for (i = 0; i < 3; i++) { 2873 domain += cpu->ProximityDomainHi[i] << 2874 ((i + 1) * 8); 2875 } 2876 apic_id = cpu->ApicId; 2877 2878 rc = lgrp_plat_cpu_node_update(node_domain, node_cnt, 2879 cpu_node, cpu_count, apic_id, domain); 2880 if (rc < 0) 2881 return (-3); 2882 else if (rc == 0) 2883 proc_entry_count++; 2884 break; 2885 } 2886 case ACPI_SRAT_TYPE_MEMORY_AFFINITY: { /* memory entry */ 2887 ACPI_SRAT_MEM_AFFINITY *mem = 2888 (ACPI_SRAT_MEM_AFFINITY *)item; 2889 2890 if (!(mem->Flags & ACPI_SRAT_MEM_ENABLED) || 2891 memnode_info == NULL) 2892 break; 2893 2894 /* 2895 * Get domain (node) ID and fill in domain/node 2896 * to memory mapping table 2897 */ 2898 domain = mem->ProximityDomain; 2899 start = mem->BaseAddress; 2900 length = mem->Length; 2901 end = start + length - 1; 2902 2903 /* 2904 * According to ACPI 4.0, both ENABLE and HOTPLUG flags 2905 * may be set for memory address range entries in SRAT 2906 * table which are reserved for memory hot plug. 2907 * We intersect memory address ranges in SRAT table 2908 * with memory ranges in physinstalled to filter out 2909 * memory address ranges reserved for hot plug. 2910 */ 2911 if (mem->Flags & ACPI_SRAT_MEM_HOT_PLUGGABLE) { 2912 uint64_t rstart = UINT64_MAX; 2913 uint64_t rend = 0; 2914 struct memlist *ml; 2915 extern struct bootops *bootops; 2916 2917 memlist_read_lock(); 2918 for (ml = bootops->boot_mem->physinstalled; 2919 ml; ml = ml->ml_next) { 2920 uint64_t tstart = ml->ml_address; 2921 uint64_t tend; 2922 2923 tend = ml->ml_address + ml->ml_size; 2924 if (tstart > end || tend < start) 2925 continue; 2926 if (start > tstart) 2927 tstart = start; 2928 if (rstart > tstart) 2929 rstart = tstart; 2930 if (end < tend) 2931 tend = end; 2932 if (rend < tend) 2933 rend = tend; 2934 } 2935 memlist_read_unlock(); 2936 start = rstart; 2937 end = rend; 2938 /* Skip this entry if no memory installed. */ 2939 if (start > end) 2940 break; 2941 } 2942 2943 if (lgrp_plat_memnode_info_update(node_domain, 2944 node_cnt, memnode_info, node_cnt, 2945 start, end, domain, ACPI_MEMNODE_DEVID_BOOT) < 0) 2946 return (-4); 2947 break; 2948 } 2949 case ACPI_SRAT_TYPE_X2APIC_CPU_AFFINITY: { /* x2apic CPU */ 2950 ACPI_SRAT_X2APIC_CPU_AFFINITY *x2cpu = 2951 (ACPI_SRAT_X2APIC_CPU_AFFINITY *) item; 2952 2953 if (!(x2cpu->Flags & ACPI_SRAT_CPU_ENABLED) || 2954 cpu_node == NULL) 2955 break; 2956 2957 /* 2958 * Calculate domain (node) ID and fill in APIC ID to 2959 * domain/node mapping table 2960 */ 2961 domain = x2cpu->ProximityDomain; 2962 apic_id = x2cpu->ApicId; 2963 2964 rc = lgrp_plat_cpu_node_update(node_domain, node_cnt, 2965 cpu_node, cpu_count, apic_id, domain); 2966 if (rc < 0) 2967 return (-3); 2968 else if (rc == 0) 2969 proc_entry_count++; 2970 break; 2971 } 2972 default: 2973 break; 2974 } 2975 2976 item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)item + item->Length); 2977 } 2978 2979 /* 2980 * Should have seen at least as many SRAT processor entries as CPUs 2981 */ 2982 if (proc_entry_count < cpu_count) 2983 return (-5); 2984 2985 /* 2986 * Need to sort nodes by starting physical address since VM system 2987 * assumes and expects memnodes to be sorted in ascending order by 2988 * physical address 2989 */ 2990 lgrp_plat_node_sort(node_domain, node_cnt, cpu_node, cpu_count, 2991 memnode_info); 2992 2993 return (node_cnt); 2994 } 2995 2996 2997 /* 2998 * Allocate permanent memory for any temporary memory that we needed to 2999 * allocate using BOP_ALLOC() before kmem_alloc() and VM system were 3000 * initialized and copy everything from temporary to permanent memory since 3001 * temporary boot memory will eventually be released during boot 3002 */ 3003 static void 3004 lgrp_plat_release_bootstrap(void) 3005 { 3006 void *buf; 3007 size_t size; 3008 3009 if (lgrp_plat_cpu_node_nentries > 0) { 3010 size = lgrp_plat_cpu_node_nentries * sizeof (cpu_node_map_t); 3011 buf = kmem_alloc(size, KM_SLEEP); 3012 bcopy(lgrp_plat_cpu_node, buf, size); 3013 lgrp_plat_cpu_node = buf; 3014 } 3015 } 3016 3017 3018 /* 3019 * Return number of proximity domains given in ACPI SRAT 3020 */ 3021 static int 3022 lgrp_plat_srat_domains(ACPI_TABLE_SRAT *tp, uint32_t *prox_domain_min) 3023 { 3024 int domain_cnt; 3025 uint32_t domain_min; 3026 ACPI_SUBTABLE_HEADER *item, *end; 3027 int i; 3028 node_domain_map_t node_domain[MAX_NODES]; 3029 3030 3031 if (tp == NULL || !lgrp_plat_srat_enable) 3032 return (1); 3033 3034 /* 3035 * Walk through SRAT to find minimum proximity domain ID 3036 */ 3037 domain_min = UINT32_MAX; 3038 item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)tp + sizeof (*tp)); 3039 end = (ACPI_SUBTABLE_HEADER *)(tp->Header.Length + (uintptr_t)tp); 3040 while (item < end) { 3041 uint32_t domain; 3042 3043 switch (item->Type) { 3044 case ACPI_SRAT_TYPE_CPU_AFFINITY: { /* CPU entry */ 3045 ACPI_SRAT_CPU_AFFINITY *cpu = 3046 (ACPI_SRAT_CPU_AFFINITY *) item; 3047 3048 if (!(cpu->Flags & ACPI_SRAT_CPU_ENABLED)) { 3049 item = (ACPI_SUBTABLE_HEADER *) 3050 ((uintptr_t)item + item->Length); 3051 continue; 3052 } 3053 domain = cpu->ProximityDomainLo; 3054 for (i = 0; i < 3; i++) { 3055 domain += cpu->ProximityDomainHi[i] << 3056 ((i + 1) * 8); 3057 } 3058 break; 3059 } 3060 case ACPI_SRAT_TYPE_MEMORY_AFFINITY: { /* memory entry */ 3061 ACPI_SRAT_MEM_AFFINITY *mem = 3062 (ACPI_SRAT_MEM_AFFINITY *)item; 3063 3064 if (!(mem->Flags & ACPI_SRAT_MEM_ENABLED)) { 3065 item = (ACPI_SUBTABLE_HEADER *) 3066 ((uintptr_t)item + item->Length); 3067 continue; 3068 } 3069 domain = mem->ProximityDomain; 3070 break; 3071 } 3072 case ACPI_SRAT_TYPE_X2APIC_CPU_AFFINITY: { /* x2apic CPU */ 3073 ACPI_SRAT_X2APIC_CPU_AFFINITY *x2cpu = 3074 (ACPI_SRAT_X2APIC_CPU_AFFINITY *) item; 3075 3076 if (!(x2cpu->Flags & ACPI_SRAT_CPU_ENABLED)) { 3077 item = (ACPI_SUBTABLE_HEADER *) 3078 ((uintptr_t)item + item->Length); 3079 continue; 3080 } 3081 domain = x2cpu->ProximityDomain; 3082 break; 3083 } 3084 default: 3085 item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)item + 3086 item->Length); 3087 continue; 3088 } 3089 3090 /* 3091 * Keep track of minimum proximity domain ID 3092 */ 3093 if (domain < domain_min) 3094 domain_min = domain; 3095 3096 item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)item + item->Length); 3097 } 3098 if (lgrp_plat_domain_min_enable && prox_domain_min != NULL) 3099 *prox_domain_min = domain_min; 3100 3101 /* 3102 * Walk through SRAT, examining each CPU and memory entry to determine 3103 * proximity domain ID for each. 3104 */ 3105 domain_cnt = 0; 3106 item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)tp + sizeof (*tp)); 3107 end = (ACPI_SUBTABLE_HEADER *)(tp->Header.Length + (uintptr_t)tp); 3108 bzero(node_domain, MAX_NODES * sizeof (node_domain_map_t)); 3109 while (item < end) { 3110 uint32_t domain; 3111 boolean_t overflow; 3112 uint_t start; 3113 3114 switch (item->Type) { 3115 case ACPI_SRAT_TYPE_CPU_AFFINITY: { /* CPU entry */ 3116 ACPI_SRAT_CPU_AFFINITY *cpu = 3117 (ACPI_SRAT_CPU_AFFINITY *) item; 3118 3119 if (!(cpu->Flags & ACPI_SRAT_CPU_ENABLED)) { 3120 item = (ACPI_SUBTABLE_HEADER *) 3121 ((uintptr_t)item + item->Length); 3122 continue; 3123 } 3124 domain = cpu->ProximityDomainLo; 3125 for (i = 0; i < 3; i++) { 3126 domain += cpu->ProximityDomainHi[i] << 3127 ((i + 1) * 8); 3128 } 3129 break; 3130 } 3131 case ACPI_SRAT_TYPE_MEMORY_AFFINITY: { /* memory entry */ 3132 ACPI_SRAT_MEM_AFFINITY *mem = 3133 (ACPI_SRAT_MEM_AFFINITY *)item; 3134 3135 if (!(mem->Flags & ACPI_SRAT_MEM_ENABLED)) { 3136 item = (ACPI_SUBTABLE_HEADER *) 3137 ((uintptr_t)item + item->Length); 3138 continue; 3139 } 3140 domain = mem->ProximityDomain; 3141 break; 3142 } 3143 case ACPI_SRAT_TYPE_X2APIC_CPU_AFFINITY: { /* x2apic CPU */ 3144 ACPI_SRAT_X2APIC_CPU_AFFINITY *x2cpu = 3145 (ACPI_SRAT_X2APIC_CPU_AFFINITY *) item; 3146 3147 if (!(x2cpu->Flags & ACPI_SRAT_CPU_ENABLED)) { 3148 item = (ACPI_SUBTABLE_HEADER *) 3149 ((uintptr_t)item + item->Length); 3150 continue; 3151 } 3152 domain = x2cpu->ProximityDomain; 3153 break; 3154 } 3155 default: 3156 item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)item + 3157 item->Length); 3158 continue; 3159 } 3160 3161 /* 3162 * Count and keep track of which proximity domain IDs seen 3163 */ 3164 start = i = domain % MAX_NODES; 3165 overflow = B_TRUE; 3166 do { 3167 /* 3168 * Create entry for proximity domain and increment 3169 * count when no entry exists where proximity domain 3170 * hashed 3171 */ 3172 if (!node_domain[i].exists) { 3173 node_domain[i].exists = 1; 3174 node_domain[i].prox_domain = domain; 3175 domain_cnt++; 3176 overflow = B_FALSE; 3177 break; 3178 } 3179 3180 /* 3181 * Nothing to do when proximity domain seen already 3182 * and its entry exists 3183 */ 3184 if (node_domain[i].prox_domain == domain) { 3185 overflow = B_FALSE; 3186 break; 3187 } 3188 3189 /* 3190 * Entry exists where proximity domain hashed, but for 3191 * different proximity domain so keep search for empty 3192 * slot to put it or matching entry whichever comes 3193 * first. 3194 */ 3195 i = (i + 1) % MAX_NODES; 3196 } while (i != start); 3197 3198 /* 3199 * Didn't find empty or matching entry which means have more 3200 * proximity domains than supported nodes (:-( 3201 */ 3202 ASSERT(overflow != B_TRUE); 3203 if (overflow == B_TRUE) 3204 return (-1); 3205 3206 item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)item + item->Length); 3207 } 3208 return (domain_cnt); 3209 } 3210 3211 3212 /* 3213 * Parse domain information in ACPI Maximum System Capability Table (MSCT). 3214 * MSCT table has been verified in function process_msct() in fakebop.c. 3215 */ 3216 static int 3217 lgrp_plat_msct_domains(ACPI_TABLE_MSCT *tp, uint32_t *prox_domain_min) 3218 { 3219 int last_seen = 0; 3220 uint32_t proxmin = UINT32_MAX; 3221 ACPI_MSCT_PROXIMITY *item, *end; 3222 3223 if (tp == NULL || lgrp_plat_msct_enable == 0) 3224 return (-1); 3225 3226 if (tp->MaxProximityDomains >= MAX_NODES) { 3227 cmn_err(CE_CONT, 3228 "?lgrp: too many proximity domains (%d), max %d supported, " 3229 "disable support of CPU/memory DR operations.", 3230 tp->MaxProximityDomains + 1, MAX_NODES); 3231 plat_dr_disable_cpu(); 3232 plat_dr_disable_memory(); 3233 return (-1); 3234 } 3235 3236 if (prox_domain_min != NULL) { 3237 end = (void *)(tp->Header.Length + (uintptr_t)tp); 3238 for (item = (void *)((uintptr_t)tp + 3239 tp->ProximityOffset); item < end; 3240 item = (void *)(item->Length + (uintptr_t)item)) { 3241 if (item->RangeStart < proxmin) { 3242 proxmin = item->RangeStart; 3243 } 3244 3245 last_seen = item->RangeEnd - item->RangeStart + 1; 3246 /* 3247 * Break out if all proximity domains have been 3248 * processed. Some BIOSes may have unused items 3249 * at the end of MSCT table. 3250 */ 3251 if (last_seen > tp->MaxProximityDomains) { 3252 break; 3253 } 3254 } 3255 *prox_domain_min = proxmin; 3256 } 3257 3258 return (tp->MaxProximityDomains + 1); 3259 } 3260 3261 3262 /* 3263 * Set lgroup latencies for 2 level lgroup topology 3264 */ 3265 static void 3266 lgrp_plat_2level_setup(lgrp_plat_latency_stats_t *lat_stats) 3267 { 3268 int i, j; 3269 3270 ASSERT(lat_stats != NULL); 3271 3272 if (lgrp_plat_node_cnt >= 4) 3273 cmn_err(CE_NOTE, 3274 "MPO only optimizing for local and remote\n"); 3275 for (i = 0; i < lgrp_plat_node_cnt; i++) { 3276 for (j = 0; j < lgrp_plat_node_cnt; j++) { 3277 if (i == j) 3278 lat_stats->latencies[i][j] = 2; 3279 else 3280 lat_stats->latencies[i][j] = 3; 3281 } 3282 } 3283 lat_stats->latency_min = 2; 3284 lat_stats->latency_max = 3; 3285 /* TODO: check it. */ 3286 lgrp_config(LGRP_CONFIG_FLATTEN, 2, 0); 3287 lgrp_plat_topo_flatten = 1; 3288 } 3289 3290 3291 /* 3292 * The following Opteron specific constants, macros, types, and routines define 3293 * PCI configuration space registers and how to read them to determine the NUMA 3294 * configuration of *supported* Opteron processors. They provide the same 3295 * information that may be gotten from the ACPI System Resource Affinity Table 3296 * (SRAT) if it exists on the machine of interest. 3297 * 3298 * The AMD BIOS and Kernel Developer's Guide (BKDG) for the processor family 3299 * of interest describes all of these registers and their contents. The main 3300 * registers used by this code to determine the NUMA configuration of the 3301 * machine are the node ID register for the number of NUMA nodes and the DRAM 3302 * address map registers for the physical address range of each node. 3303 * 3304 * NOTE: The format and how to determine the NUMA configuration using PCI 3305 * config space registers may change or may not be supported in future 3306 * Opteron processor families. 3307 */ 3308 3309 /* 3310 * How many bits to shift Opteron DRAM Address Map base and limit registers 3311 * to get actual value 3312 */ 3313 #define OPT_DRAMADDR_HI_LSHIFT_ADDR 40 /* shift left for address */ 3314 #define OPT_DRAMADDR_LO_LSHIFT_ADDR 8 /* shift left for address */ 3315 3316 #define OPT_DRAMADDR_HI_MASK_ADDR 0x000000FF /* address bits 47-40 */ 3317 #define OPT_DRAMADDR_LO_MASK_ADDR 0xFFFF0000 /* address bits 39-24 */ 3318 3319 #define OPT_DRAMADDR_LO_MASK_OFF 0xFFFFFF /* offset for address */ 3320 3321 /* 3322 * Macros to derive addresses from Opteron DRAM Address Map registers 3323 */ 3324 #define OPT_DRAMADDR_HI(reg) \ 3325 (((u_longlong_t)reg & OPT_DRAMADDR_HI_MASK_ADDR) << \ 3326 OPT_DRAMADDR_HI_LSHIFT_ADDR) 3327 3328 #define OPT_DRAMADDR_LO(reg) \ 3329 (((u_longlong_t)reg & OPT_DRAMADDR_LO_MASK_ADDR) << \ 3330 OPT_DRAMADDR_LO_LSHIFT_ADDR) 3331 3332 #define OPT_DRAMADDR(high, low) \ 3333 (OPT_DRAMADDR_HI(high) | OPT_DRAMADDR_LO(low)) 3334 3335 /* 3336 * Bit masks defining what's in Opteron DRAM Address Map base register 3337 */ 3338 #define OPT_DRAMBASE_LO_MASK_RE 0x1 /* read enable */ 3339 #define OPT_DRAMBASE_LO_MASK_WE 0x2 /* write enable */ 3340 #define OPT_DRAMBASE_LO_MASK_INTRLVEN 0x700 /* interleave */ 3341 3342 /* 3343 * Bit masks defining what's in Opteron DRAM Address Map limit register 3344 */ 3345 #define OPT_DRAMLIMIT_LO_MASK_DSTNODE 0x7 /* destination node */ 3346 #define OPT_DRAMLIMIT_LO_MASK_INTRLVSEL 0x700 /* interleave select */ 3347 3348 3349 /* 3350 * Opteron Node ID register in PCI configuration space contains 3351 * number of nodes in system, etc. for Opteron K8. The following 3352 * constants and macros define its contents, structure, and access. 3353 */ 3354 3355 /* 3356 * Bit masks defining what's in Opteron Node ID register 3357 */ 3358 #define OPT_NODE_MASK_ID 0x7 /* node ID */ 3359 #define OPT_NODE_MASK_CNT 0x70 /* node count */ 3360 #define OPT_NODE_MASK_IONODE 0x700 /* Hypertransport I/O hub node ID */ 3361 #define OPT_NODE_MASK_LCKNODE 0x7000 /* lock controller node ID */ 3362 #define OPT_NODE_MASK_CPUCNT 0xF0000 /* CPUs in system (0 means 1 CPU) */ 3363 3364 /* 3365 * How many bits in Opteron Node ID register to shift right to get actual value 3366 */ 3367 #define OPT_NODE_RSHIFT_CNT 0x4 /* shift right for node count value */ 3368 3369 /* 3370 * Macros to get values from Opteron Node ID register 3371 */ 3372 #define OPT_NODE_CNT(reg) \ 3373 ((reg & OPT_NODE_MASK_CNT) >> OPT_NODE_RSHIFT_CNT) 3374 3375 /* 3376 * Macro to setup PCI Extended Configuration Space (ECS) address to give to 3377 * "in/out" instructions 3378 * 3379 * NOTE: Should only be used in lgrp_plat_init() before MMIO setup because any 3380 * other uses should just do MMIO to access PCI ECS. 3381 * Must enable special bit in Northbridge Configuration Register on 3382 * Greyhound for extended CF8 space access to be able to access PCI ECS 3383 * using "in/out" instructions and restore special bit after done 3384 * accessing PCI ECS. 3385 */ 3386 #define OPT_PCI_ECS_ADDR(bus, device, function, reg) \ 3387 (PCI_CONE | (((bus) & 0xff) << 16) | (((device & 0x1f)) << 11) | \ 3388 (((function) & 0x7) << 8) | ((reg) & 0xfc) | \ 3389 ((((reg) >> 8) & 0xf) << 24)) 3390 3391 /* 3392 * PCI configuration space registers accessed by specifying 3393 * a bus, device, function, and offset. The following constants 3394 * define the values needed to access Opteron K8 configuration 3395 * info to determine its node topology 3396 */ 3397 3398 #define OPT_PCS_BUS_CONFIG 0 /* Hypertransport config space bus */ 3399 3400 /* 3401 * Opteron PCI configuration space register function values 3402 */ 3403 #define OPT_PCS_FUNC_HT 0 /* Hypertransport configuration */ 3404 #define OPT_PCS_FUNC_ADDRMAP 1 /* Address map configuration */ 3405 #define OPT_PCS_FUNC_DRAM 2 /* DRAM configuration */ 3406 #define OPT_PCS_FUNC_MISC 3 /* Miscellaneous configuration */ 3407 3408 /* 3409 * PCI Configuration Space register offsets 3410 */ 3411 #define OPT_PCS_OFF_VENDOR 0x0 /* device/vendor ID register */ 3412 #define OPT_PCS_OFF_DRAMBASE_HI 0x140 /* DRAM Base register (node 0) */ 3413 #define OPT_PCS_OFF_DRAMBASE_LO 0x40 /* DRAM Base register (node 0) */ 3414 #define OPT_PCS_OFF_NODEID 0x60 /* Node ID register */ 3415 3416 /* 3417 * Opteron PCI Configuration Space device IDs for nodes 3418 */ 3419 #define OPT_PCS_DEV_NODE0 24 /* device number for node 0 */ 3420 3421 3422 /* 3423 * Opteron DRAM address map gives base and limit for physical memory in a node 3424 */ 3425 typedef struct opt_dram_addr_map { 3426 uint32_t base_hi; 3427 uint32_t base_lo; 3428 uint32_t limit_hi; 3429 uint32_t limit_lo; 3430 } opt_dram_addr_map_t; 3431 3432 3433 /* 3434 * Supported AMD processor families 3435 */ 3436 #define AMD_FAMILY_HAMMER 15 3437 #define AMD_FAMILY_GREYHOUND 16 3438 3439 /* 3440 * Whether to have is_opteron() return 1 even when processor isn't supported 3441 */ 3442 uint_t is_opteron_override = 0; 3443 3444 /* 3445 * AMD processor family for current CPU 3446 */ 3447 uint_t opt_family = 0; 3448 3449 3450 /* 3451 * Determine whether we're running on a supported AMD Opteron since reading 3452 * node count and DRAM address map registers may have different format or 3453 * may not be supported across processor families 3454 */ 3455 static int 3456 is_opteron(void) 3457 { 3458 3459 if (x86_vendor != X86_VENDOR_AMD) 3460 return (0); 3461 3462 opt_family = cpuid_getfamily(CPU); 3463 if (opt_family == AMD_FAMILY_HAMMER || 3464 opt_family == AMD_FAMILY_GREYHOUND || is_opteron_override) 3465 return (1); 3466 else 3467 return (0); 3468 } 3469 3470 3471 /* 3472 * Determine NUMA configuration for Opteron from registers that live in PCI 3473 * configuration space 3474 */ 3475 static void 3476 opt_get_numa_config(uint_t *node_cnt, int *mem_intrlv, 3477 memnode_phys_addr_map_t *memnode_info) 3478 { 3479 uint_t bus; 3480 uint_t dev; 3481 struct opt_dram_addr_map dram_map[MAX_NODES]; 3482 uint_t node; 3483 uint_t node_info[MAX_NODES]; 3484 uint_t off_hi; 3485 uint_t off_lo; 3486 uint64_t nb_cfg_reg; 3487 3488 /* 3489 * Read configuration registers from PCI configuration space to 3490 * determine node information, which memory is in each node, etc. 3491 * 3492 * Write to PCI configuration space address register to specify 3493 * which configuration register to read and read/write PCI 3494 * configuration space data register to get/set contents 3495 */ 3496 bus = OPT_PCS_BUS_CONFIG; 3497 dev = OPT_PCS_DEV_NODE0; 3498 off_hi = OPT_PCS_OFF_DRAMBASE_HI; 3499 off_lo = OPT_PCS_OFF_DRAMBASE_LO; 3500 3501 /* 3502 * Read node ID register for node 0 to get node count 3503 */ 3504 node_info[0] = pci_getl_func(bus, dev, OPT_PCS_FUNC_HT, 3505 OPT_PCS_OFF_NODEID); 3506 *node_cnt = OPT_NODE_CNT(node_info[0]) + 1; 3507 3508 /* 3509 * If number of nodes is more than maximum supported, then set node 3510 * count to 1 and treat system as UMA instead of NUMA. 3511 */ 3512 if (*node_cnt > MAX_NODES) { 3513 *node_cnt = 1; 3514 return; 3515 } 3516 3517 /* 3518 * For Greyhound, PCI Extended Configuration Space must be enabled to 3519 * read high DRAM address map base and limit registers 3520 */ 3521 nb_cfg_reg = 0; 3522 if (opt_family == AMD_FAMILY_GREYHOUND) { 3523 nb_cfg_reg = rdmsr(MSR_AMD_NB_CFG); 3524 if ((nb_cfg_reg & AMD_GH_NB_CFG_EN_ECS) == 0) 3525 wrmsr(MSR_AMD_NB_CFG, 3526 nb_cfg_reg | AMD_GH_NB_CFG_EN_ECS); 3527 } 3528 3529 for (node = 0; node < *node_cnt; node++) { 3530 uint32_t base_hi; 3531 uint32_t base_lo; 3532 uint32_t limit_hi; 3533 uint32_t limit_lo; 3534 3535 /* 3536 * Read node ID register (except for node 0 which we just read) 3537 */ 3538 if (node > 0) { 3539 node_info[node] = pci_getl_func(bus, dev, 3540 OPT_PCS_FUNC_HT, OPT_PCS_OFF_NODEID); 3541 } 3542 3543 /* 3544 * Read DRAM base and limit registers which specify 3545 * physical memory range of each node 3546 */ 3547 if (opt_family != AMD_FAMILY_GREYHOUND) 3548 base_hi = 0; 3549 else { 3550 outl(PCI_CONFADD, OPT_PCI_ECS_ADDR(bus, dev, 3551 OPT_PCS_FUNC_ADDRMAP, off_hi)); 3552 base_hi = dram_map[node].base_hi = 3553 inl(PCI_CONFDATA); 3554 } 3555 base_lo = dram_map[node].base_lo = pci_getl_func(bus, dev, 3556 OPT_PCS_FUNC_ADDRMAP, off_lo); 3557 3558 if ((dram_map[node].base_lo & OPT_DRAMBASE_LO_MASK_INTRLVEN) && 3559 mem_intrlv) 3560 *mem_intrlv = *mem_intrlv + 1; 3561 3562 off_hi += 4; /* high limit register offset */ 3563 if (opt_family != AMD_FAMILY_GREYHOUND) 3564 limit_hi = 0; 3565 else { 3566 outl(PCI_CONFADD, OPT_PCI_ECS_ADDR(bus, dev, 3567 OPT_PCS_FUNC_ADDRMAP, off_hi)); 3568 limit_hi = dram_map[node].limit_hi = 3569 inl(PCI_CONFDATA); 3570 } 3571 3572 off_lo += 4; /* low limit register offset */ 3573 limit_lo = dram_map[node].limit_lo = pci_getl_func(bus, 3574 dev, OPT_PCS_FUNC_ADDRMAP, off_lo); 3575 3576 /* 3577 * Increment device number to next node and register offsets 3578 * for DRAM base register of next node 3579 */ 3580 off_hi += 4; 3581 off_lo += 4; 3582 dev++; 3583 3584 /* 3585 * Both read and write enable bits must be enabled in DRAM 3586 * address map base register for physical memory to exist in 3587 * node 3588 */ 3589 if ((base_lo & OPT_DRAMBASE_LO_MASK_RE) == 0 || 3590 (base_lo & OPT_DRAMBASE_LO_MASK_WE) == 0) { 3591 /* 3592 * Mark node memory as non-existent and set start and 3593 * end addresses to be same in memnode_info[] 3594 */ 3595 memnode_info[node].exists = 0; 3596 memnode_info[node].start = memnode_info[node].end = 3597 (pfn_t)-1; 3598 continue; 3599 } 3600 3601 /* 3602 * Mark node memory as existing and remember physical address 3603 * range of each node for use later 3604 */ 3605 memnode_info[node].exists = 1; 3606 3607 memnode_info[node].start = btop(OPT_DRAMADDR(base_hi, base_lo)); 3608 3609 memnode_info[node].end = btop(OPT_DRAMADDR(limit_hi, limit_lo) | 3610 OPT_DRAMADDR_LO_MASK_OFF); 3611 } 3612 3613 /* 3614 * Restore PCI Extended Configuration Space enable bit 3615 */ 3616 if (opt_family == AMD_FAMILY_GREYHOUND) { 3617 if ((nb_cfg_reg & AMD_GH_NB_CFG_EN_ECS) == 0) 3618 wrmsr(MSR_AMD_NB_CFG, nb_cfg_reg); 3619 } 3620 } 3621 3622 3623 /* 3624 * Return average amount of time to read vendor ID register on Northbridge 3625 * N times on specified destination node from current CPU 3626 */ 3627 static hrtime_t 3628 opt_probe_vendor(int dest_node, int nreads) 3629 { 3630 int cnt; 3631 uint_t dev; 3632 /* LINTED: set but not used in function */ 3633 volatile uint_t dev_vendor __unused; 3634 hrtime_t elapsed; 3635 hrtime_t end; 3636 int ipl; 3637 hrtime_t start; 3638 3639 dev = OPT_PCS_DEV_NODE0 + dest_node; 3640 kpreempt_disable(); 3641 ipl = spl8(); 3642 outl(PCI_CONFADD, PCI_CADDR1(0, dev, OPT_PCS_FUNC_DRAM, 3643 OPT_PCS_OFF_VENDOR)); 3644 start = gethrtime(); 3645 for (cnt = 0; cnt < nreads; cnt++) 3646 dev_vendor = inl(PCI_CONFDATA); 3647 end = gethrtime(); 3648 elapsed = (end - start) / nreads; 3649 splx(ipl); 3650 kpreempt_enable(); 3651 return (elapsed); 3652 } 3653