1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * LOCALITY GROUP (LGROUP) PLATFORM SUPPORT FOR X86/AMD64 PLATFORMS 29 * ================================================================ 30 * Multiprocessor AMD and Intel systems may have Non Uniform Memory Access 31 * (NUMA). A NUMA machine consists of one or more "nodes" that each consist of 32 * one or more CPUs and some local memory. The CPUs in each node can access 33 * the memory in the other nodes but at a higher latency than accessing their 34 * local memory. Typically, a system with only one node has Uniform Memory 35 * Access (UMA), but it may be possible to have a one node system that has 36 * some global memory outside of the node which is higher latency. 37 * 38 * Module Description 39 * ------------------ 40 * This module provides a platform interface for determining which CPUs and 41 * which memory (and how much) are in a NUMA node and how far each node is from 42 * each other. The interface is used by the Virtual Memory (VM) system and the 43 * common lgroup framework. The VM system uses the plat_*() routines to fill 44 * in its memory node (memnode) array with the physical address range spanned 45 * by each NUMA node to know which memory belongs to which node, so it can 46 * build and manage a physical page free list for each NUMA node and allocate 47 * local memory from each node as needed. The common lgroup framework uses the 48 * exported lgrp_plat_*() routines to figure out which CPUs and memory belong 49 * to each node (leaf lgroup) and how far each node is from each other, so it 50 * can build the latency (lgroup) topology for the machine in order to optimize 51 * for locality. Also, an lgroup platform handle instead of lgroups are used 52 * in the interface with this module, so this module shouldn't need to know 53 * anything about lgroups. Instead, it just needs to know which CPUs, memory, 54 * etc. are in each NUMA node, how far each node is from each other, and to use 55 * a unique lgroup platform handle to refer to each node through the interface. 56 * 57 * Determining NUMA Configuration 58 * ------------------------------ 59 * By default, this module will try to determine the NUMA configuration of the 60 * machine by reading the ACPI System Resource Affinity Table (SRAT) and System 61 * Locality Information Table (SLIT). The SRAT contains info to tell which 62 * CPUs and memory are local to a given proximity domain (NUMA node). The SLIT 63 * is a matrix that gives the distance between each system locality (which is 64 * a NUMA node and should correspond to proximity domains in the SRAT). For 65 * more details on the SRAT and SLIT, please refer to an ACPI 3.0 or newer 66 * specification. 67 * 68 * If the SRAT doesn't exist on a system with AMD Opteron processors, we 69 * examine registers in PCI configuration space to determine how many nodes are 70 * in the system and which CPUs and memory are in each node. 71 * do while booting the kernel. 72 * 73 * NOTE: Using these PCI configuration space registers to determine this 74 * locality info is not guaranteed to work or be compatible across all 75 * Opteron processor families. 76 * 77 * If the SLIT does not exist or look right, the kernel will probe to determine 78 * the distance between nodes as long as the NUMA CPU and memory configuration 79 * has been determined (see lgrp_plat_probe() for details). 80 * 81 * Data Structures 82 * --------------- 83 * The main data structures used by this code are the following: 84 * 85 * - lgrp_plat_cpu_node[] CPU to node ID mapping table indexed by 86 * CPU ID (only used for SRAT) 87 * 88 * - lgrp_plat_lat_stats.latencies[][] Table of latencies between same and 89 * different nodes indexed by node ID 90 * 91 * - lgrp_plat_node_cnt Number of NUMA nodes in system 92 * 93 * - lgrp_plat_node_domain[] Node ID to proximity domain ID mapping 94 * table indexed by node ID (only used 95 * for SRAT) 96 * 97 * - lgrp_plat_node_memory[] Table with physical address range for 98 * each node indexed by node ID 99 * 100 * The code is implemented to make the following always be true: 101 * 102 * lgroup platform handle == node ID == memnode ID 103 * 104 * Moreover, it allows for the proximity domain ID to be equal to all of the 105 * above as long as the proximity domains IDs are numbered from 0 to <number of 106 * nodes - 1>. This is done by hashing each proximity domain ID into the range 107 * from 0 to <number of nodes - 1>. Then proximity ID N will hash into node ID 108 * N and proximity domain ID N will be entered into lgrp_plat_node_domain[N] 109 * and be assigned node ID N. If the proximity domain IDs aren't numbered 110 * from 0 to <number of nodes - 1>, then hashing the proximity domain IDs into 111 * lgrp_plat_node_domain[] will still work for assigning proximity domain IDs 112 * to node IDs. However, the proximity domain IDs may not map to the 113 * equivalent node ID since we want to keep the node IDs numbered from 0 to 114 * <number of nodes - 1> to minimize cost of searching and potentially space. 115 * 116 * The code below really tries to do the above. However, the virtual memory 117 * system expects the memnodes which describe the physical address range for 118 * each NUMA node to be arranged in ascending order by physical address. (:-( 119 * Otherwise, the kernel will panic in different semi-random places in the VM 120 * system. 121 * 122 * Consequently, this module has to try to sort the nodes in ascending order by 123 * each node's starting physical address to try to meet this "constraint" in 124 * the VM system (see lgrp_plat_node_sort()). Also, the lowest numbered 125 * proximity domain ID in the system is deteremined and used to make the lowest 126 * numbered proximity domain map to node 0 in hopes that the proximity domains 127 * are sorted in ascending order by physical address already even if their IDs 128 * don't start at 0 (see NODE_DOMAIN_HASH() and lgrp_plat_srat_domains()). 129 * Finally, it is important to note that these workarounds may not be 130 * sufficient if/when memory hotplugging is supported and the VM system may 131 * ultimately need to be fixed to handle this.... 132 */ 133 134 135 #include <sys/archsystm.h> /* for {in,out}{b,w,l}() */ 136 #include <sys/bootconf.h> 137 #include <sys/cmn_err.h> 138 #include <sys/controlregs.h> 139 #include <sys/cpupart.h> 140 #include <sys/cpuvar.h> 141 #include <sys/lgrp.h> 142 #include <sys/machsystm.h> 143 #include <sys/memlist.h> 144 #include <sys/memnode.h> 145 #include <sys/mman.h> 146 #include <sys/pci_cfgspace.h> 147 #include <sys/pci_impl.h> 148 #include <sys/param.h> 149 #include <sys/pghw.h> 150 #include <sys/promif.h> /* for prom_printf() */ 151 #include <sys/sysmacros.h> 152 #include <sys/systm.h> 153 #include <sys/thread.h> 154 #include <sys/types.h> 155 #include <sys/var.h> 156 #include <sys/x86_archext.h> /* for x86_feature and X86_AMD */ 157 #include <vm/hat_i86.h> 158 #include <vm/seg_kmem.h> 159 #include <vm/vm_dep.h> 160 161 #include "acpi_fw.h" /* for SRAT and SLIT */ 162 163 164 #define MAX_NODES 8 165 #define NLGRP (MAX_NODES * (MAX_NODES - 1) + 1) 166 167 /* 168 * Constants for configuring probing 169 */ 170 #define LGRP_PLAT_PROBE_NROUNDS 64 /* default laps for probing */ 171 #define LGRP_PLAT_PROBE_NSAMPLES 1 /* default samples to take */ 172 #define LGRP_PLAT_PROBE_NREADS 256 /* number of vendor ID reads */ 173 174 /* 175 * Flags for probing 176 */ 177 #define LGRP_PLAT_PROBE_ENABLE 0x1 /* enable probing */ 178 #define LGRP_PLAT_PROBE_PGCPY 0x2 /* probe using page copy */ 179 #define LGRP_PLAT_PROBE_VENDOR 0x4 /* probe vendor ID register */ 180 181 /* 182 * Hash proximity domain ID into node to domain mapping table "mod" number of 183 * nodes to minimize span of entries used and try to have lowest numbered 184 * proximity domain be node 0 185 */ 186 #define NODE_DOMAIN_HASH(domain, node_cnt) \ 187 ((lgrp_plat_prox_domain_min == UINT32_MAX) ? (domain) % node_cnt : \ 188 ((domain) - lgrp_plat_prox_domain_min) % node_cnt) 189 190 191 /* 192 * CPU to node ID mapping structure (only used with SRAT) 193 */ 194 typedef struct cpu_node_map { 195 int exists; 196 uint_t node; 197 uint32_t apicid; 198 uint32_t prox_domain; 199 } cpu_node_map_t; 200 201 /* 202 * Latency statistics 203 */ 204 typedef struct lgrp_plat_latency_stats { 205 hrtime_t latencies[MAX_NODES][MAX_NODES]; 206 hrtime_t latency_max; 207 hrtime_t latency_min; 208 } lgrp_plat_latency_stats_t; 209 210 /* 211 * Memory configuration for probing 212 */ 213 typedef struct lgrp_plat_probe_mem_config { 214 size_t probe_memsize; /* how much memory to probe per node */ 215 caddr_t probe_va[MAX_NODES]; /* where memory mapped for probing */ 216 pfn_t probe_pfn[MAX_NODES]; /* physical pages to map for probing */ 217 } lgrp_plat_probe_mem_config_t; 218 219 /* 220 * Statistics kept for probing 221 */ 222 typedef struct lgrp_plat_probe_stats { 223 hrtime_t flush_cost; 224 hrtime_t probe_cost; 225 hrtime_t probe_cost_total; 226 hrtime_t probe_error_code; 227 hrtime_t probe_errors[MAX_NODES][MAX_NODES]; 228 int probe_suspect[MAX_NODES][MAX_NODES]; 229 hrtime_t probe_max[MAX_NODES][MAX_NODES]; 230 hrtime_t probe_min[MAX_NODES][MAX_NODES]; 231 } lgrp_plat_probe_stats_t; 232 233 /* 234 * Node to proximity domain ID mapping structure (only used with SRAT) 235 */ 236 typedef struct node_domain_map { 237 int exists; 238 uint32_t prox_domain; 239 } node_domain_map_t; 240 241 /* 242 * Node ID and starting and ending page for physical memory in node 243 */ 244 typedef struct node_phys_addr_map { 245 pfn_t start; 246 pfn_t end; 247 int exists; 248 uint32_t prox_domain; 249 } node_phys_addr_map_t; 250 251 /* 252 * Number of CPUs for which we got APIC IDs 253 */ 254 static int lgrp_plat_apic_ncpus = 0; 255 256 /* 257 * CPU to node ID mapping table (only used for SRAT) and its max number of 258 * entries 259 */ 260 static cpu_node_map_t *lgrp_plat_cpu_node = NULL; 261 static uint_t lgrp_plat_cpu_node_nentries = 0; 262 263 /* 264 * Latency statistics 265 */ 266 lgrp_plat_latency_stats_t lgrp_plat_lat_stats; 267 268 /* 269 * Whether memory is interleaved across nodes causing MPO to be disabled 270 */ 271 static int lgrp_plat_mem_intrlv = 0; 272 273 /* 274 * Node ID to proximity domain ID mapping table (only used for SRAT) 275 */ 276 static node_domain_map_t lgrp_plat_node_domain[MAX_NODES]; 277 278 /* 279 * Physical address range for memory in each node 280 */ 281 static node_phys_addr_map_t lgrp_plat_node_memory[MAX_NODES]; 282 283 /* 284 * Statistics gotten from probing 285 */ 286 static lgrp_plat_probe_stats_t lgrp_plat_probe_stats; 287 288 /* 289 * Memory configuration for probing 290 */ 291 static lgrp_plat_probe_mem_config_t lgrp_plat_probe_mem_config; 292 293 /* 294 * Lowest proximity domain ID seen in ACPI SRAT 295 */ 296 static uint32_t lgrp_plat_prox_domain_min = UINT32_MAX; 297 298 /* 299 * Error code from processing ACPI SRAT 300 */ 301 static int lgrp_plat_srat_error = 0; 302 303 /* 304 * Error code from processing ACPI SLIT 305 */ 306 static int lgrp_plat_slit_error = 0; 307 308 /* 309 * Allocate lgroup array statically 310 */ 311 static lgrp_t lgrp_space[NLGRP]; 312 static int nlgrps_alloc; 313 314 315 /* 316 * Enable finding and using minimum proximity domain ID when hashing 317 */ 318 int lgrp_plat_domain_min_enable = 1; 319 320 /* 321 * Number of nodes in system 322 */ 323 uint_t lgrp_plat_node_cnt = 1; 324 325 /* 326 * Enable sorting nodes in ascending order by starting physical address 327 */ 328 int lgrp_plat_node_sort_enable = 1; 329 330 /* 331 * Configuration Parameters for Probing 332 * - lgrp_plat_probe_flags Flags to specify enabling probing, probe 333 * operation, etc. 334 * - lgrp_plat_probe_nrounds How many rounds of probing to do 335 * - lgrp_plat_probe_nsamples Number of samples to take when probing each 336 * node 337 * - lgrp_plat_probe_nreads Number of times to read vendor ID from 338 * Northbridge for each probe 339 */ 340 uint_t lgrp_plat_probe_flags = 0; 341 int lgrp_plat_probe_nrounds = LGRP_PLAT_PROBE_NROUNDS; 342 int lgrp_plat_probe_nsamples = LGRP_PLAT_PROBE_NSAMPLES; 343 int lgrp_plat_probe_nreads = LGRP_PLAT_PROBE_NREADS; 344 345 /* 346 * Enable use of ACPI System Resource Affinity Table (SRAT) and System 347 * Locality Information Table (SLIT) 348 */ 349 int lgrp_plat_srat_enable = 1; 350 int lgrp_plat_slit_enable = 1; 351 352 /* 353 * mnode_xwa: set to non-zero value to initiate workaround if large pages are 354 * found to be crossing memory node boundaries. The workaround will eliminate 355 * a base size page at the end of each memory node boundary to ensure that 356 * a large page with constituent pages that span more than 1 memory node 357 * can never be formed. 358 * 359 */ 360 int mnode_xwa = 1; 361 362 /* 363 * Static array to hold lgroup statistics 364 */ 365 struct lgrp_stats lgrp_stats[NLGRP]; 366 367 368 /* 369 * Forward declarations of platform interface routines 370 */ 371 void plat_build_mem_nodes(struct memlist *list); 372 373 int plat_lgrphand_to_mem_node(lgrp_handle_t hand); 374 375 lgrp_handle_t plat_mem_node_to_lgrphand(int mnode); 376 377 int plat_mnode_xcheck(pfn_t pfncnt); 378 379 int plat_pfn_to_mem_node(pfn_t pfn); 380 381 /* 382 * Forward declarations of lgroup platform interface routines 383 */ 384 lgrp_t *lgrp_plat_alloc(lgrp_id_t lgrpid); 385 386 void lgrp_plat_config(lgrp_config_flag_t flag, uintptr_t arg); 387 388 lgrp_handle_t lgrp_plat_cpu_to_hand(processorid_t id); 389 390 void lgrp_plat_init(lgrp_init_stages_t stage); 391 392 int lgrp_plat_latency(lgrp_handle_t from, lgrp_handle_t to); 393 394 int lgrp_plat_max_lgrps(void); 395 396 pgcnt_t lgrp_plat_mem_size(lgrp_handle_t plathand, 397 lgrp_mem_query_t query); 398 399 lgrp_handle_t lgrp_plat_pfn_to_hand(pfn_t pfn); 400 401 void lgrp_plat_probe(void); 402 403 lgrp_handle_t lgrp_plat_root_hand(void); 404 405 406 /* 407 * Forward declarations of local routines 408 */ 409 static int is_opteron(void); 410 411 static int lgrp_plat_cpu_node_update(node_domain_map_t *node_domain, 412 int node_cnt, cpu_node_map_t *cpu_node, int nentries, uint32_t apicid, 413 uint32_t domain); 414 415 static int lgrp_plat_cpu_to_node(cpu_t *cp, cpu_node_map_t *cpu_node, 416 int cpu_node_nentries); 417 418 static int lgrp_plat_domain_to_node(node_domain_map_t *node_domain, 419 int node_cnt, uint32_t domain); 420 421 static void lgrp_plat_get_numa_config(void); 422 423 static void lgrp_plat_latency_adjust(node_phys_addr_map_t *node_memory, 424 lgrp_plat_latency_stats_t *lat_stats, 425 lgrp_plat_probe_stats_t *probe_stats); 426 427 static int lgrp_plat_latency_verify(node_phys_addr_map_t *node_memory, 428 lgrp_plat_latency_stats_t *lat_stats); 429 430 static void lgrp_plat_main_init(void); 431 432 static pgcnt_t lgrp_plat_mem_size_default(lgrp_handle_t, lgrp_mem_query_t); 433 434 static int lgrp_plat_node_domain_update(node_domain_map_t *node_domain, 435 int node_cnt, uint32_t domain); 436 437 static int lgrp_plat_node_memory_update(node_domain_map_t *node_domain, 438 int node_cnt, node_phys_addr_map_t *node_memory, uint64_t start, 439 uint64_t end, uint32_t domain); 440 441 static void lgrp_plat_node_sort(node_domain_map_t *node_domain, 442 int node_cnt, cpu_node_map_t *cpu_node, int cpu_count, 443 node_phys_addr_map_t *node_memory); 444 445 static hrtime_t lgrp_plat_probe_time(int to, cpu_node_map_t *cpu_node, 446 int cpu_node_nentries, lgrp_plat_probe_mem_config_t *probe_mem_config, 447 lgrp_plat_latency_stats_t *lat_stats, lgrp_plat_probe_stats_t *probe_stats); 448 449 static int lgrp_plat_process_cpu_apicids(cpu_node_map_t *cpu_node); 450 451 static int lgrp_plat_process_slit(struct slit *tp, uint_t node_cnt, 452 node_phys_addr_map_t *node_memory, lgrp_plat_latency_stats_t *lat_stats); 453 454 static int lgrp_plat_process_srat(struct srat *tp, 455 uint32_t *prox_domain_min, node_domain_map_t *node_domain, 456 cpu_node_map_t *cpu_node, int cpu_count, 457 node_phys_addr_map_t *node_memory); 458 459 static void lgrp_plat_release_bootstrap(void); 460 461 static int lgrp_plat_srat_domains(struct srat *tp, 462 uint32_t *prox_domain_min); 463 464 static void lgrp_plat_2level_setup(node_phys_addr_map_t *node_memory, 465 lgrp_plat_latency_stats_t *lat_stats); 466 467 static void opt_get_numa_config(uint_t *node_cnt, int *mem_intrlv, 468 node_phys_addr_map_t *node_memory); 469 470 static hrtime_t opt_probe_vendor(int dest_node, int nreads); 471 472 473 /* 474 * PLATFORM INTERFACE ROUTINES 475 */ 476 477 /* 478 * Configure memory nodes for machines with more than one node (ie NUMA) 479 */ 480 void 481 plat_build_mem_nodes(struct memlist *list) 482 { 483 pfn_t cur_start; /* start addr of subrange */ 484 pfn_t cur_end; /* end addr of subrange */ 485 pfn_t start; /* start addr of whole range */ 486 pfn_t end; /* end addr of whole range */ 487 pgcnt_t endcnt; /* pages to sacrifice */ 488 489 /* 490 * Boot install lists are arranged <addr, len>, ... 491 */ 492 while (list) { 493 int node; 494 495 start = list->ml_address >> PAGESHIFT; 496 end = (list->ml_address + list->ml_size - 1) >> PAGESHIFT; 497 498 if (start > physmax) { 499 list = list->ml_next; 500 continue; 501 } 502 if (end > physmax) 503 end = physmax; 504 505 /* 506 * When there is only one memnode, just add memory to memnode 507 */ 508 if (max_mem_nodes == 1) { 509 mem_node_add_slice(start, end); 510 list = list->ml_next; 511 continue; 512 } 513 514 /* 515 * mem_node_add_slice() expects to get a memory range that 516 * is within one memnode, so need to split any memory range 517 * that spans multiple memnodes into subranges that are each 518 * contained within one memnode when feeding them to 519 * mem_node_add_slice() 520 */ 521 cur_start = start; 522 do { 523 node = plat_pfn_to_mem_node(cur_start); 524 525 /* 526 * Panic if DRAM address map registers or SRAT say 527 * memory in node doesn't exist or address from 528 * boot installed memory list entry isn't in this node. 529 * This shouldn't happen and rest of code can't deal 530 * with this if it does. 531 */ 532 if (node < 0 || node >= lgrp_plat_node_cnt || 533 !lgrp_plat_node_memory[node].exists || 534 cur_start < lgrp_plat_node_memory[node].start || 535 cur_start > lgrp_plat_node_memory[node].end) { 536 cmn_err(CE_PANIC, "Don't know which memnode " 537 "to add installed memory address 0x%lx\n", 538 cur_start); 539 } 540 541 /* 542 * End of current subrange should not span memnodes 543 */ 544 cur_end = end; 545 endcnt = 0; 546 if (lgrp_plat_node_memory[node].exists && 547 cur_end > lgrp_plat_node_memory[node].end) { 548 cur_end = lgrp_plat_node_memory[node].end; 549 if (mnode_xwa > 1) { 550 /* 551 * sacrifice the last page in each 552 * node to eliminate large pages 553 * that span more than 1 memory node. 554 */ 555 endcnt = 1; 556 physinstalled--; 557 } 558 } 559 560 mem_node_add_slice(cur_start, cur_end - endcnt); 561 562 /* 563 * Next subrange starts after end of current one 564 */ 565 cur_start = cur_end + 1; 566 } while (cur_end < end); 567 568 list = list->ml_next; 569 } 570 mem_node_physalign = 0; 571 mem_node_pfn_shift = 0; 572 } 573 574 575 int 576 plat_lgrphand_to_mem_node(lgrp_handle_t hand) 577 { 578 if (max_mem_nodes == 1) 579 return (0); 580 581 return ((int)hand); 582 } 583 584 585 /* 586 * plat_mnode_xcheck: checks the node memory ranges to see if there is a pfncnt 587 * range of pages aligned on pfncnt that crosses an node boundary. Returns 1 if 588 * a crossing is found and returns 0 otherwise. 589 */ 590 int 591 plat_mnode_xcheck(pfn_t pfncnt) 592 { 593 int node, prevnode = -1, basenode; 594 pfn_t ea, sa; 595 596 for (node = 0; node < lgrp_plat_node_cnt; node++) { 597 598 if (lgrp_plat_node_memory[node].exists == 0) 599 continue; 600 601 if (prevnode == -1) { 602 prevnode = node; 603 basenode = node; 604 continue; 605 } 606 607 /* assume x86 node pfn ranges are in increasing order */ 608 ASSERT(lgrp_plat_node_memory[node].start > 609 lgrp_plat_node_memory[prevnode].end); 610 611 /* 612 * continue if the starting address of node is not contiguous 613 * with the previous node. 614 */ 615 616 if (lgrp_plat_node_memory[node].start != 617 (lgrp_plat_node_memory[prevnode].end + 1)) { 618 basenode = node; 619 prevnode = node; 620 continue; 621 } 622 623 /* check if the starting address of node is pfncnt aligned */ 624 if ((lgrp_plat_node_memory[node].start & (pfncnt - 1)) != 0) { 625 626 /* 627 * at this point, node starts at an unaligned boundary 628 * and is contiguous with the previous node(s) to 629 * basenode. Check if there is an aligned contiguous 630 * range of length pfncnt that crosses this boundary. 631 */ 632 633 sa = P2ALIGN(lgrp_plat_node_memory[prevnode].end, 634 pfncnt); 635 ea = P2ROUNDUP((lgrp_plat_node_memory[node].start), 636 pfncnt); 637 638 ASSERT((ea - sa) == pfncnt); 639 if (sa >= lgrp_plat_node_memory[basenode].start && 640 ea <= (lgrp_plat_node_memory[node].end + 1)) { 641 /* 642 * large page found to cross mnode boundary. 643 * Return Failure if workaround not enabled. 644 */ 645 if (mnode_xwa == 0) 646 return (1); 647 mnode_xwa++; 648 } 649 } 650 prevnode = node; 651 } 652 return (0); 653 } 654 655 656 lgrp_handle_t 657 plat_mem_node_to_lgrphand(int mnode) 658 { 659 if (max_mem_nodes == 1) 660 return (LGRP_DEFAULT_HANDLE); 661 662 return ((lgrp_handle_t)mnode); 663 } 664 665 666 int 667 plat_pfn_to_mem_node(pfn_t pfn) 668 { 669 int node; 670 671 if (max_mem_nodes == 1) 672 return (0); 673 674 for (node = 0; node < lgrp_plat_node_cnt; node++) { 675 /* 676 * Skip nodes with no memory 677 */ 678 if (!lgrp_plat_node_memory[node].exists) 679 continue; 680 681 if (pfn >= lgrp_plat_node_memory[node].start && 682 pfn <= lgrp_plat_node_memory[node].end) 683 return (node); 684 } 685 686 /* 687 * Didn't find memnode where this PFN lives which should never happen 688 */ 689 ASSERT(node < lgrp_plat_node_cnt); 690 return (-1); 691 } 692 693 694 /* 695 * LGROUP PLATFORM INTERFACE ROUTINES 696 */ 697 698 /* 699 * Allocate additional space for an lgroup. 700 */ 701 /* ARGSUSED */ 702 lgrp_t * 703 lgrp_plat_alloc(lgrp_id_t lgrpid) 704 { 705 lgrp_t *lgrp; 706 707 lgrp = &lgrp_space[nlgrps_alloc++]; 708 if (lgrpid >= NLGRP || nlgrps_alloc > NLGRP) 709 return (NULL); 710 return (lgrp); 711 } 712 713 714 /* 715 * Platform handling for (re)configuration changes 716 */ 717 /* ARGSUSED */ 718 void 719 lgrp_plat_config(lgrp_config_flag_t flag, uintptr_t arg) 720 { 721 } 722 723 724 /* 725 * Return the platform handle for the lgroup containing the given CPU 726 */ 727 /* ARGSUSED */ 728 lgrp_handle_t 729 lgrp_plat_cpu_to_hand(processorid_t id) 730 { 731 lgrp_handle_t hand; 732 733 if (lgrp_plat_node_cnt == 1) 734 return (LGRP_DEFAULT_HANDLE); 735 736 hand = (lgrp_handle_t)lgrp_plat_cpu_to_node(cpu[id], 737 lgrp_plat_cpu_node, lgrp_plat_cpu_node_nentries); 738 739 ASSERT(hand != (lgrp_handle_t)-1); 740 if (hand == (lgrp_handle_t)-1) 741 return (LGRP_NULL_HANDLE); 742 743 return (hand); 744 } 745 746 747 /* 748 * Platform-specific initialization of lgroups 749 */ 750 void 751 lgrp_plat_init(lgrp_init_stages_t stage) 752 { 753 #if defined(__xpv) 754 #else /* __xpv */ 755 u_longlong_t value; 756 #endif /* __xpv */ 757 758 switch (stage) { 759 case LGRP_INIT_STAGE1: 760 #if defined(__xpv) 761 /* 762 * XXPV For now, the hypervisor treats all memory equally. 763 */ 764 lgrp_plat_node_cnt = max_mem_nodes = 1; 765 #else /* __xpv */ 766 /* 767 * Get boot property for lgroup topology height limit 768 */ 769 if (bootprop_getval(BP_LGRP_TOPO_LEVELS, &value) == 0) 770 (void) lgrp_topo_ht_limit_set((int)value); 771 772 /* 773 * Get boot property for enabling/disabling SRAT 774 */ 775 if (bootprop_getval(BP_LGRP_SRAT_ENABLE, &value) == 0) 776 lgrp_plat_srat_enable = (int)value; 777 778 /* 779 * Get boot property for enabling/disabling SLIT 780 */ 781 if (bootprop_getval(BP_LGRP_SLIT_ENABLE, &value) == 0) 782 lgrp_plat_slit_enable = (int)value; 783 784 /* 785 * Initialize as a UMA machine 786 */ 787 if (lgrp_topo_ht_limit() == 1) { 788 lgrp_plat_node_cnt = max_mem_nodes = 1; 789 return; 790 } 791 792 lgrp_plat_get_numa_config(); 793 #endif /* __xpv */ 794 break; 795 796 case LGRP_INIT_STAGE3: 797 lgrp_plat_probe(); 798 lgrp_plat_release_bootstrap(); 799 break; 800 801 case LGRP_INIT_STAGE4: 802 lgrp_plat_main_init(); 803 break; 804 805 default: 806 break; 807 } 808 } 809 810 811 /* 812 * Return latency between "from" and "to" lgroups 813 * 814 * This latency number can only be used for relative comparison 815 * between lgroups on the running system, cannot be used across platforms, 816 * and may not reflect the actual latency. It is platform and implementation 817 * specific, so platform gets to decide its value. It would be nice if the 818 * number was at least proportional to make comparisons more meaningful though. 819 */ 820 /* ARGSUSED */ 821 int 822 lgrp_plat_latency(lgrp_handle_t from, lgrp_handle_t to) 823 { 824 lgrp_handle_t src, dest; 825 int node; 826 827 if (max_mem_nodes == 1) 828 return (0); 829 830 /* 831 * Return max latency for root lgroup 832 */ 833 if (from == LGRP_DEFAULT_HANDLE || to == LGRP_DEFAULT_HANDLE) 834 return (lgrp_plat_lat_stats.latency_max); 835 836 src = from; 837 dest = to; 838 839 /* 840 * Return 0 for nodes (lgroup platform handles) out of range 841 */ 842 if (src < 0 || src >= MAX_NODES || dest < 0 || dest >= MAX_NODES) 843 return (0); 844 845 /* 846 * Probe from current CPU if its lgroup latencies haven't been set yet 847 * and we are trying to get latency from current CPU to some node 848 */ 849 node = lgrp_plat_cpu_to_node(CPU, lgrp_plat_cpu_node, 850 lgrp_plat_cpu_node_nentries); 851 ASSERT(node >= 0 && node < lgrp_plat_node_cnt); 852 if (lgrp_plat_lat_stats.latencies[src][src] == 0 && node == src) 853 lgrp_plat_probe(); 854 855 return (lgrp_plat_lat_stats.latencies[src][dest]); 856 } 857 858 859 /* 860 * Return the maximum number of lgrps supported by the platform. 861 * Before lgrp topology is known it returns an estimate based on the number of 862 * nodes. Once topology is known it returns the actual maximim number of lgrps 863 * created. Since x86/x64 doesn't support Dynamic Reconfiguration (DR) and 864 * dynamic addition of new nodes, this number may not grow during system 865 * lifetime (yet). 866 */ 867 int 868 lgrp_plat_max_lgrps(void) 869 { 870 return (lgrp_topo_initialized ? 871 lgrp_alloc_max + 1 : 872 lgrp_plat_node_cnt * (lgrp_plat_node_cnt - 1) + 1); 873 } 874 875 876 /* 877 * Return the number of free pages in an lgroup. 878 * 879 * For query of LGRP_MEM_SIZE_FREE, return the number of base pagesize 880 * pages on freelists. For query of LGRP_MEM_SIZE_AVAIL, return the 881 * number of allocatable base pagesize pages corresponding to the 882 * lgroup (e.g. do not include page_t's, BOP_ALLOC()'ed memory, ..) 883 * For query of LGRP_MEM_SIZE_INSTALL, return the amount of physical 884 * memory installed, regardless of whether or not it's usable. 885 */ 886 pgcnt_t 887 lgrp_plat_mem_size(lgrp_handle_t plathand, lgrp_mem_query_t query) 888 { 889 int mnode; 890 pgcnt_t npgs = (pgcnt_t)0; 891 extern struct memlist *phys_avail; 892 extern struct memlist *phys_install; 893 894 895 if (plathand == LGRP_DEFAULT_HANDLE) 896 return (lgrp_plat_mem_size_default(plathand, query)); 897 898 if (plathand != LGRP_NULL_HANDLE) { 899 mnode = plat_lgrphand_to_mem_node(plathand); 900 if (mnode >= 0 && mem_node_config[mnode].exists) { 901 switch (query) { 902 case LGRP_MEM_SIZE_FREE: 903 npgs = MNODE_PGCNT(mnode); 904 break; 905 case LGRP_MEM_SIZE_AVAIL: 906 npgs = mem_node_memlist_pages(mnode, 907 phys_avail); 908 break; 909 case LGRP_MEM_SIZE_INSTALL: 910 npgs = mem_node_memlist_pages(mnode, 911 phys_install); 912 break; 913 default: 914 break; 915 } 916 } 917 } 918 return (npgs); 919 } 920 921 922 /* 923 * Return the platform handle of the lgroup that contains the physical memory 924 * corresponding to the given page frame number 925 */ 926 /* ARGSUSED */ 927 lgrp_handle_t 928 lgrp_plat_pfn_to_hand(pfn_t pfn) 929 { 930 int mnode; 931 932 if (max_mem_nodes == 1) 933 return (LGRP_DEFAULT_HANDLE); 934 935 if (pfn > physmax) 936 return (LGRP_NULL_HANDLE); 937 938 mnode = plat_pfn_to_mem_node(pfn); 939 if (mnode < 0) 940 return (LGRP_NULL_HANDLE); 941 942 return (MEM_NODE_2_LGRPHAND(mnode)); 943 } 944 945 946 /* 947 * Probe memory in each node from current CPU to determine latency topology 948 * 949 * The probing code will probe the vendor ID register on the Northbridge of 950 * Opteron processors and probe memory for other processors by default. 951 * 952 * Since probing is inherently error prone, the code takes laps across all the 953 * nodes probing from each node to each of the other nodes some number of 954 * times. Furthermore, each node is probed some number of times before moving 955 * onto the next one during each lap. The minimum latency gotten between nodes 956 * is kept as the latency between the nodes. 957 * 958 * After all that, the probe times are adjusted by normalizing values that are 959 * close to each other and local latencies are made the same. Lastly, the 960 * latencies are verified to make sure that certain conditions are met (eg. 961 * local < remote, latency(a, b) == latency(b, a), etc.). 962 * 963 * If any of the conditions aren't met, the code will export a NUMA 964 * configuration with the local CPUs and memory given by the SRAT or PCI config 965 * space registers and one remote memory latency since it can't tell exactly 966 * how far each node is from each other. 967 */ 968 void 969 lgrp_plat_probe(void) 970 { 971 int from; 972 int i; 973 lgrp_plat_latency_stats_t *lat_stats; 974 boolean_t probed; 975 hrtime_t probe_time; 976 int to; 977 978 if (!(lgrp_plat_probe_flags & LGRP_PLAT_PROBE_ENABLE) || 979 max_mem_nodes == 1 || lgrp_topo_ht_limit() <= 2) 980 return; 981 982 /* 983 * Determine ID of node containing current CPU 984 */ 985 from = lgrp_plat_cpu_to_node(CPU, lgrp_plat_cpu_node, 986 lgrp_plat_cpu_node_nentries); 987 ASSERT(from >= 0 && from < lgrp_plat_node_cnt); 988 if (srat_ptr && lgrp_plat_srat_enable && !lgrp_plat_srat_error) 989 ASSERT(lgrp_plat_node_domain[from].exists); 990 991 /* 992 * Don't need to probe if got times already 993 */ 994 lat_stats = &lgrp_plat_lat_stats; 995 if (lat_stats->latencies[from][from] != 0) 996 return; 997 998 /* 999 * Read vendor ID in Northbridge or read and write page(s) 1000 * in each node from current CPU and remember how long it takes, 1001 * so we can build latency topology of machine later. 1002 * This should approximate the memory latency between each node. 1003 */ 1004 probed = B_FALSE; 1005 for (i = 0; i < lgrp_plat_probe_nrounds; i++) { 1006 for (to = 0; to < lgrp_plat_node_cnt; to++) { 1007 /* 1008 * Get probe time and skip over any nodes that can't be 1009 * probed yet or don't have memory 1010 */ 1011 probe_time = lgrp_plat_probe_time(to, 1012 lgrp_plat_cpu_node, lgrp_plat_cpu_node_nentries, 1013 &lgrp_plat_probe_mem_config, &lgrp_plat_lat_stats, 1014 &lgrp_plat_probe_stats); 1015 if (probe_time == 0) 1016 continue; 1017 1018 probed = B_TRUE; 1019 1020 /* 1021 * Keep lowest probe time as latency between nodes 1022 */ 1023 if (lat_stats->latencies[from][to] == 0 || 1024 probe_time < lat_stats->latencies[from][to]) 1025 lat_stats->latencies[from][to] = probe_time; 1026 1027 /* 1028 * Update overall minimum and maximum probe times 1029 * across all nodes 1030 */ 1031 if (probe_time < lat_stats->latency_min || 1032 lat_stats->latency_min == -1) 1033 lat_stats->latency_min = probe_time; 1034 if (probe_time > lat_stats->latency_max) 1035 lat_stats->latency_max = probe_time; 1036 } 1037 } 1038 1039 /* 1040 * Bail out if weren't able to probe any nodes from current CPU 1041 */ 1042 if (probed == B_FALSE) 1043 return; 1044 1045 /* 1046 * - Fix up latencies such that local latencies are same, 1047 * latency(i, j) == latency(j, i), etc. (if possible) 1048 * 1049 * - Verify that latencies look ok 1050 * 1051 * - Fallback to just optimizing for local and remote if 1052 * latencies didn't look right 1053 */ 1054 lgrp_plat_latency_adjust(lgrp_plat_node_memory, &lgrp_plat_lat_stats, 1055 &lgrp_plat_probe_stats); 1056 lgrp_plat_probe_stats.probe_error_code = 1057 lgrp_plat_latency_verify(lgrp_plat_node_memory, 1058 &lgrp_plat_lat_stats); 1059 if (lgrp_plat_probe_stats.probe_error_code) 1060 lgrp_plat_2level_setup(lgrp_plat_node_memory, 1061 &lgrp_plat_lat_stats); 1062 } 1063 1064 1065 /* 1066 * Return platform handle for root lgroup 1067 */ 1068 lgrp_handle_t 1069 lgrp_plat_root_hand(void) 1070 { 1071 return (LGRP_DEFAULT_HANDLE); 1072 } 1073 1074 1075 /* 1076 * INTERNAL ROUTINES 1077 */ 1078 1079 1080 /* 1081 * Update CPU to node mapping for given CPU and proximity domain (and returns 1082 * negative numbers for errors and positive ones for success) 1083 */ 1084 static int 1085 lgrp_plat_cpu_node_update(node_domain_map_t *node_domain, int node_cnt, 1086 cpu_node_map_t *cpu_node, int nentries, uint32_t apicid, uint32_t domain) 1087 { 1088 uint_t i; 1089 int node; 1090 1091 /* 1092 * Get node number for proximity domain 1093 */ 1094 node = lgrp_plat_domain_to_node(node_domain, node_cnt, domain); 1095 if (node == -1) { 1096 node = lgrp_plat_node_domain_update(node_domain, node_cnt, 1097 domain); 1098 if (node == -1) 1099 return (-1); 1100 } 1101 1102 /* 1103 * Search for entry with given APIC ID and fill in its node and 1104 * proximity domain IDs (if they haven't been set already) 1105 */ 1106 for (i = 0; i < nentries; i++) { 1107 /* 1108 * Skip nonexistent entries and ones without matching APIC ID 1109 */ 1110 if (!cpu_node[i].exists || cpu_node[i].apicid != apicid) 1111 continue; 1112 1113 /* 1114 * Just return if entry completely and correctly filled in 1115 * already 1116 */ 1117 if (cpu_node[i].prox_domain == domain && 1118 cpu_node[i].node == node) 1119 return (1); 1120 1121 /* 1122 * Fill in node and proximity domain IDs 1123 */ 1124 cpu_node[i].prox_domain = domain; 1125 cpu_node[i].node = node; 1126 1127 return (0); 1128 } 1129 1130 /* 1131 * Return error when entry for APIC ID wasn't found in table 1132 */ 1133 return (-2); 1134 } 1135 1136 1137 /* 1138 * Get node ID for given CPU 1139 */ 1140 static int 1141 lgrp_plat_cpu_to_node(cpu_t *cp, cpu_node_map_t *cpu_node, 1142 int cpu_node_nentries) 1143 { 1144 processorid_t cpuid; 1145 1146 if (cp == NULL) 1147 return (-1); 1148 1149 cpuid = cp->cpu_id; 1150 if (cpuid < 0 || cpuid >= max_ncpus) 1151 return (-1); 1152 1153 /* 1154 * SRAT doesn't exist, isn't enabled, or there was an error processing 1155 * it, so return node ID for Opteron and -1 otherwise. 1156 */ 1157 if (srat_ptr == NULL || !lgrp_plat_srat_enable || 1158 lgrp_plat_srat_error) { 1159 if (is_opteron()) 1160 return (pg_plat_hw_instance_id(cp, PGHW_PROCNODE)); 1161 return (-1); 1162 } 1163 1164 /* 1165 * Return -1 when CPU to node ID mapping entry doesn't exist for given 1166 * CPU 1167 */ 1168 if (cpuid >= cpu_node_nentries || !cpu_node[cpuid].exists) 1169 return (-1); 1170 1171 return (cpu_node[cpuid].node); 1172 } 1173 1174 1175 /* 1176 * Return node number for given proximity domain/system locality 1177 */ 1178 static int 1179 lgrp_plat_domain_to_node(node_domain_map_t *node_domain, int node_cnt, 1180 uint32_t domain) 1181 { 1182 uint_t node; 1183 uint_t start; 1184 1185 /* 1186 * Hash proximity domain ID into node to domain mapping table (array), 1187 * search for entry with matching proximity domain ID, and return index 1188 * of matching entry as node ID. 1189 */ 1190 node = start = NODE_DOMAIN_HASH(domain, node_cnt); 1191 do { 1192 if (node_domain[node].prox_domain == domain && 1193 node_domain[node].exists) 1194 return (node); 1195 node = (node + 1) % node_cnt; 1196 } while (node != start); 1197 return (-1); 1198 } 1199 1200 1201 /* 1202 * Get NUMA configuration of machine 1203 */ 1204 static void 1205 lgrp_plat_get_numa_config(void) 1206 { 1207 uint_t probe_op; 1208 1209 /* 1210 * Read boot property with CPU to APIC ID mapping table/array to 1211 * determine number of CPUs 1212 */ 1213 lgrp_plat_apic_ncpus = lgrp_plat_process_cpu_apicids(NULL); 1214 1215 /* 1216 * Determine which CPUs and memory are local to each other and number 1217 * of NUMA nodes by reading ACPI System Resource Affinity Table (SRAT) 1218 */ 1219 if (lgrp_plat_apic_ncpus > 0) { 1220 int retval; 1221 1222 /* 1223 * Temporarily allocate boot memory to use for CPU to node 1224 * mapping since kernel memory allocator isn't alive yet 1225 */ 1226 lgrp_plat_cpu_node = (cpu_node_map_t *)BOP_ALLOC(bootops, 1227 NULL, lgrp_plat_apic_ncpus * sizeof (cpu_node_map_t), 1228 sizeof (int)); 1229 1230 ASSERT(lgrp_plat_cpu_node != NULL); 1231 if (lgrp_plat_cpu_node) { 1232 lgrp_plat_cpu_node_nentries = lgrp_plat_apic_ncpus; 1233 bzero(lgrp_plat_cpu_node, lgrp_plat_cpu_node_nentries * 1234 sizeof (cpu_node_map_t)); 1235 } 1236 1237 /* 1238 * Fill in CPU to node ID mapping table with APIC ID for each 1239 * CPU 1240 */ 1241 (void) lgrp_plat_process_cpu_apicids(lgrp_plat_cpu_node); 1242 1243 retval = lgrp_plat_process_srat(srat_ptr, 1244 &lgrp_plat_prox_domain_min, 1245 lgrp_plat_node_domain, lgrp_plat_cpu_node, 1246 lgrp_plat_apic_ncpus, lgrp_plat_node_memory); 1247 if (retval <= 0) { 1248 lgrp_plat_srat_error = retval; 1249 lgrp_plat_node_cnt = 1; 1250 } else { 1251 lgrp_plat_srat_error = 0; 1252 lgrp_plat_node_cnt = retval; 1253 } 1254 } 1255 1256 /* 1257 * Try to use PCI config space registers on Opteron if there's an error 1258 * processing CPU to APIC ID mapping or SRAT 1259 */ 1260 if ((lgrp_plat_apic_ncpus <= 0 || lgrp_plat_srat_error != 0) && 1261 is_opteron()) 1262 opt_get_numa_config(&lgrp_plat_node_cnt, &lgrp_plat_mem_intrlv, 1263 lgrp_plat_node_memory); 1264 1265 /* 1266 * Don't bother to setup system for multiple lgroups and only use one 1267 * memory node when memory is interleaved between any nodes or there is 1268 * only one NUMA node 1269 * 1270 * NOTE: May need to change this for Dynamic Reconfiguration (DR) 1271 * when and if it happens for x86/x64 1272 */ 1273 if (lgrp_plat_mem_intrlv || lgrp_plat_node_cnt == 1) { 1274 lgrp_plat_node_cnt = max_mem_nodes = 1; 1275 (void) lgrp_topo_ht_limit_set(1); 1276 return; 1277 } 1278 1279 /* 1280 * Leaf lgroups on x86/x64 architectures contain one physical 1281 * processor chip. Tune lgrp_expand_proc_thresh and 1282 * lgrp_expand_proc_diff so that lgrp_choose() will spread 1283 * things out aggressively. 1284 */ 1285 lgrp_expand_proc_thresh = LGRP_LOADAVG_THREAD_MAX / 2; 1286 lgrp_expand_proc_diff = 0; 1287 1288 /* 1289 * There should be one memnode (physical page free list(s)) for 1290 * each node 1291 */ 1292 max_mem_nodes = lgrp_plat_node_cnt; 1293 1294 /* 1295 * Initialize min and max latency before reading SLIT or probing 1296 */ 1297 lgrp_plat_lat_stats.latency_min = -1; 1298 lgrp_plat_lat_stats.latency_max = 0; 1299 1300 /* 1301 * Determine how far each NUMA node is from each other by 1302 * reading ACPI System Locality Information Table (SLIT) if it 1303 * exists 1304 */ 1305 lgrp_plat_slit_error = lgrp_plat_process_slit(slit_ptr, 1306 lgrp_plat_node_cnt, lgrp_plat_node_memory, 1307 &lgrp_plat_lat_stats); 1308 if (lgrp_plat_slit_error == 0) 1309 return; 1310 1311 /* 1312 * Probe to determine latency between NUMA nodes when SLIT 1313 * doesn't exist or make sense 1314 */ 1315 lgrp_plat_probe_flags |= LGRP_PLAT_PROBE_ENABLE; 1316 1317 /* 1318 * Specify whether to probe using vendor ID register or page copy 1319 * if hasn't been specified already or is overspecified 1320 */ 1321 probe_op = lgrp_plat_probe_flags & 1322 (LGRP_PLAT_PROBE_PGCPY|LGRP_PLAT_PROBE_VENDOR); 1323 1324 if (probe_op == 0 || 1325 probe_op == (LGRP_PLAT_PROBE_PGCPY|LGRP_PLAT_PROBE_VENDOR)) { 1326 lgrp_plat_probe_flags &= 1327 ~(LGRP_PLAT_PROBE_PGCPY|LGRP_PLAT_PROBE_VENDOR); 1328 if (is_opteron()) 1329 lgrp_plat_probe_flags |= 1330 LGRP_PLAT_PROBE_VENDOR; 1331 else 1332 lgrp_plat_probe_flags |= LGRP_PLAT_PROBE_PGCPY; 1333 } 1334 1335 /* 1336 * Probing errors can mess up the lgroup topology and 1337 * force us fall back to a 2 level lgroup topology. 1338 * Here we bound how tall the lgroup topology can grow 1339 * in hopes of avoiding any anamolies in probing from 1340 * messing up the lgroup topology by limiting the 1341 * accuracy of the latency topology. 1342 * 1343 * Assume that nodes will at least be configured in a 1344 * ring, so limit height of lgroup topology to be less 1345 * than number of nodes on a system with 4 or more 1346 * nodes 1347 */ 1348 if (lgrp_plat_node_cnt >= 4 && lgrp_topo_ht_limit() == 1349 lgrp_topo_ht_limit_default()) 1350 (void) lgrp_topo_ht_limit_set(lgrp_plat_node_cnt - 1); 1351 } 1352 1353 1354 /* 1355 * Latencies must be within 1/(2**LGRP_LAT_TOLERANCE_SHIFT) of each other to 1356 * be considered same 1357 */ 1358 #define LGRP_LAT_TOLERANCE_SHIFT 4 1359 1360 int lgrp_plat_probe_lt_shift = LGRP_LAT_TOLERANCE_SHIFT; 1361 1362 1363 /* 1364 * Adjust latencies between nodes to be symmetric, normalize latencies between 1365 * any nodes that are within some tolerance to be same, and make local 1366 * latencies be same 1367 */ 1368 static void 1369 lgrp_plat_latency_adjust(node_phys_addr_map_t *node_memory, 1370 lgrp_plat_latency_stats_t *lat_stats, lgrp_plat_probe_stats_t *probe_stats) 1371 { 1372 int i; 1373 int j; 1374 int k; 1375 int l; 1376 u_longlong_t max; 1377 u_longlong_t min; 1378 u_longlong_t t; 1379 u_longlong_t t1; 1380 u_longlong_t t2; 1381 const lgrp_config_flag_t cflag = LGRP_CONFIG_LAT_CHANGE_ALL; 1382 int lat_corrected[MAX_NODES][MAX_NODES]; 1383 1384 /* 1385 * Nothing to do when this is an UMA machine or don't have args needed 1386 */ 1387 if (max_mem_nodes == 1) 1388 return; 1389 1390 ASSERT(node_memory != NULL && lat_stats != NULL && 1391 probe_stats != NULL); 1392 1393 /* 1394 * Make sure that latencies are symmetric between any two nodes 1395 * (ie. latency(node0, node1) == latency(node1, node0)) 1396 */ 1397 for (i = 0; i < lgrp_plat_node_cnt; i++) { 1398 if (!node_memory[i].exists) 1399 continue; 1400 1401 for (j = 0; j < lgrp_plat_node_cnt; j++) { 1402 if (!node_memory[j].exists) 1403 continue; 1404 1405 t1 = lat_stats->latencies[i][j]; 1406 t2 = lat_stats->latencies[j][i]; 1407 1408 if (t1 == 0 || t2 == 0 || t1 == t2) 1409 continue; 1410 1411 /* 1412 * Latencies should be same 1413 * - Use minimum of two latencies which should be same 1414 * - Track suspect probe times not within tolerance of 1415 * min value 1416 * - Remember how much values are corrected by 1417 */ 1418 if (t1 > t2) { 1419 t = t2; 1420 probe_stats->probe_errors[i][j] += t1 - t2; 1421 if (t1 - t2 > t2 >> lgrp_plat_probe_lt_shift) { 1422 probe_stats->probe_suspect[i][j]++; 1423 probe_stats->probe_suspect[j][i]++; 1424 } 1425 } else if (t2 > t1) { 1426 t = t1; 1427 probe_stats->probe_errors[j][i] += t2 - t1; 1428 if (t2 - t1 > t1 >> lgrp_plat_probe_lt_shift) { 1429 probe_stats->probe_suspect[i][j]++; 1430 probe_stats->probe_suspect[j][i]++; 1431 } 1432 } 1433 1434 lat_stats->latencies[i][j] = 1435 lat_stats->latencies[j][i] = t; 1436 lgrp_config(cflag, t1, t); 1437 lgrp_config(cflag, t2, t); 1438 } 1439 } 1440 1441 /* 1442 * Keep track of which latencies get corrected 1443 */ 1444 for (i = 0; i < MAX_NODES; i++) 1445 for (j = 0; j < MAX_NODES; j++) 1446 lat_corrected[i][j] = 0; 1447 1448 /* 1449 * For every two nodes, see whether there is another pair of nodes which 1450 * are about the same distance apart and make the latencies be the same 1451 * if they are close enough together 1452 */ 1453 for (i = 0; i < lgrp_plat_node_cnt; i++) { 1454 for (j = 0; j < lgrp_plat_node_cnt; j++) { 1455 if (!node_memory[j].exists) 1456 continue; 1457 /* 1458 * Pick one pair of nodes (i, j) 1459 * and get latency between them 1460 */ 1461 t1 = lat_stats->latencies[i][j]; 1462 1463 /* 1464 * Skip this pair of nodes if there isn't a latency 1465 * for it yet 1466 */ 1467 if (t1 == 0) 1468 continue; 1469 1470 for (k = 0; k < lgrp_plat_node_cnt; k++) { 1471 for (l = 0; l < lgrp_plat_node_cnt; l++) { 1472 if (!node_memory[l].exists) 1473 continue; 1474 /* 1475 * Pick another pair of nodes (k, l) 1476 * not same as (i, j) and get latency 1477 * between them 1478 */ 1479 if (k == i && l == j) 1480 continue; 1481 1482 t2 = lat_stats->latencies[k][l]; 1483 1484 /* 1485 * Skip this pair of nodes if there 1486 * isn't a latency for it yet 1487 */ 1488 1489 if (t2 == 0) 1490 continue; 1491 1492 /* 1493 * Skip nodes (k, l) if they already 1494 * have same latency as (i, j) or 1495 * their latency isn't close enough to 1496 * be considered/made the same 1497 */ 1498 if (t1 == t2 || (t1 > t2 && t1 - t2 > 1499 t1 >> lgrp_plat_probe_lt_shift) || 1500 (t2 > t1 && t2 - t1 > 1501 t2 >> lgrp_plat_probe_lt_shift)) 1502 continue; 1503 1504 /* 1505 * Make latency(i, j) same as 1506 * latency(k, l), try to use latency 1507 * that has been adjusted already to get 1508 * more consistency (if possible), and 1509 * remember which latencies were 1510 * adjusted for next time 1511 */ 1512 if (lat_corrected[i][j]) { 1513 t = t1; 1514 lgrp_config(cflag, t2, t); 1515 t2 = t; 1516 } else if (lat_corrected[k][l]) { 1517 t = t2; 1518 lgrp_config(cflag, t1, t); 1519 t1 = t; 1520 } else { 1521 if (t1 > t2) 1522 t = t2; 1523 else 1524 t = t1; 1525 lgrp_config(cflag, t1, t); 1526 lgrp_config(cflag, t2, t); 1527 t1 = t2 = t; 1528 } 1529 1530 lat_stats->latencies[i][j] = 1531 lat_stats->latencies[k][l] = t; 1532 1533 lat_corrected[i][j] = 1534 lat_corrected[k][l] = 1; 1535 } 1536 } 1537 } 1538 } 1539 1540 /* 1541 * Local latencies should be same 1542 * - Find min and max local latencies 1543 * - Make all local latencies be minimum 1544 */ 1545 min = -1; 1546 max = 0; 1547 for (i = 0; i < lgrp_plat_node_cnt; i++) { 1548 if (!node_memory[i].exists) 1549 continue; 1550 t = lat_stats->latencies[i][i]; 1551 if (t == 0) 1552 continue; 1553 if (min == -1 || t < min) 1554 min = t; 1555 if (t > max) 1556 max = t; 1557 } 1558 if (min != max) { 1559 for (i = 0; i < lgrp_plat_node_cnt; i++) { 1560 int local; 1561 1562 if (!node_memory[i].exists) 1563 continue; 1564 1565 local = lat_stats->latencies[i][i]; 1566 if (local == 0) 1567 continue; 1568 1569 /* 1570 * Track suspect probe times that aren't within 1571 * tolerance of minimum local latency and how much 1572 * probe times are corrected by 1573 */ 1574 if (local - min > min >> lgrp_plat_probe_lt_shift) 1575 probe_stats->probe_suspect[i][i]++; 1576 1577 probe_stats->probe_errors[i][i] += local - min; 1578 1579 /* 1580 * Make local latencies be minimum 1581 */ 1582 lgrp_config(LGRP_CONFIG_LAT_CHANGE, i, min); 1583 lat_stats->latencies[i][i] = min; 1584 } 1585 } 1586 1587 /* 1588 * Determine max probe time again since just adjusted latencies 1589 */ 1590 lat_stats->latency_max = 0; 1591 for (i = 0; i < lgrp_plat_node_cnt; i++) { 1592 for (j = 0; j < lgrp_plat_node_cnt; j++) { 1593 if (!node_memory[j].exists) 1594 continue; 1595 t = lat_stats->latencies[i][j]; 1596 if (t > lat_stats->latency_max) 1597 lat_stats->latency_max = t; 1598 } 1599 } 1600 } 1601 1602 1603 /* 1604 * Verify following about latencies between nodes: 1605 * 1606 * - Latencies should be symmetric (ie. latency(a, b) == latency(b, a)) 1607 * - Local latencies same 1608 * - Local < remote 1609 * - Number of latencies seen is reasonable 1610 * - Number of occurrences of a given latency should be more than 1 1611 * 1612 * Returns: 1613 * 0 Success 1614 * -1 Not symmetric 1615 * -2 Local latencies not same 1616 * -3 Local >= remote 1617 */ 1618 static int 1619 lgrp_plat_latency_verify(node_phys_addr_map_t *node_memory, 1620 lgrp_plat_latency_stats_t *lat_stats) 1621 { 1622 int i; 1623 int j; 1624 u_longlong_t t1; 1625 u_longlong_t t2; 1626 1627 ASSERT(node_memory != NULL && lat_stats != NULL); 1628 1629 /* 1630 * Nothing to do when this is an UMA machine, lgroup topology is 1631 * limited to 2 levels, or there aren't any probe times yet 1632 */ 1633 if (max_mem_nodes == 1 || lgrp_topo_levels < 2 || 1634 lat_stats->latencies[0][0] == 0) 1635 return (0); 1636 1637 /* 1638 * Make sure that latencies are symmetric between any two nodes 1639 * (ie. latency(node0, node1) == latency(node1, node0)) 1640 */ 1641 for (i = 0; i < lgrp_plat_node_cnt; i++) { 1642 if (!node_memory[i].exists) 1643 continue; 1644 for (j = 0; j < lgrp_plat_node_cnt; j++) { 1645 if (!node_memory[j].exists) 1646 continue; 1647 t1 = lat_stats->latencies[i][j]; 1648 t2 = lat_stats->latencies[j][i]; 1649 1650 if (t1 == 0 || t2 == 0 || t1 == t2) 1651 continue; 1652 1653 return (-1); 1654 } 1655 } 1656 1657 /* 1658 * Local latencies should be same 1659 */ 1660 t1 = lat_stats->latencies[0][0]; 1661 for (i = 1; i < lgrp_plat_node_cnt; i++) { 1662 if (!node_memory[i].exists) 1663 continue; 1664 1665 t2 = lat_stats->latencies[i][i]; 1666 if (t2 == 0) 1667 continue; 1668 1669 if (t1 == 0) { 1670 t1 = t2; 1671 continue; 1672 } 1673 1674 if (t1 != t2) 1675 return (-2); 1676 } 1677 1678 /* 1679 * Local latencies should be less than remote 1680 */ 1681 if (t1) { 1682 for (i = 0; i < lgrp_plat_node_cnt; i++) { 1683 for (j = 0; j < lgrp_plat_node_cnt; j++) { 1684 if (!node_memory[j].exists) 1685 continue; 1686 t2 = lat_stats->latencies[i][j]; 1687 if (i == j || t2 == 0) 1688 continue; 1689 1690 if (t1 >= t2) 1691 return (-3); 1692 } 1693 } 1694 } 1695 1696 return (0); 1697 } 1698 1699 1700 /* 1701 * Platform-specific initialization 1702 */ 1703 static void 1704 lgrp_plat_main_init(void) 1705 { 1706 int curnode; 1707 int ht_limit; 1708 int i; 1709 1710 /* 1711 * Print a notice that MPO is disabled when memory is interleaved 1712 * across nodes....Would do this when it is discovered, but can't 1713 * because it happens way too early during boot.... 1714 */ 1715 if (lgrp_plat_mem_intrlv) 1716 cmn_err(CE_NOTE, 1717 "MPO disabled because memory is interleaved\n"); 1718 1719 /* 1720 * Don't bother to do any probing if it is disabled, there is only one 1721 * node, or the height of the lgroup topology less than or equal to 2 1722 */ 1723 ht_limit = lgrp_topo_ht_limit(); 1724 if (!(lgrp_plat_probe_flags & LGRP_PLAT_PROBE_ENABLE) || 1725 max_mem_nodes == 1 || ht_limit <= 2) { 1726 /* 1727 * Setup lgroup latencies for 2 level lgroup topology 1728 * (ie. local and remote only) if they haven't been set yet 1729 */ 1730 if (ht_limit == 2 && lgrp_plat_lat_stats.latency_min == -1 && 1731 lgrp_plat_lat_stats.latency_max == 0) 1732 lgrp_plat_2level_setup(lgrp_plat_node_memory, 1733 &lgrp_plat_lat_stats); 1734 return; 1735 } 1736 1737 if (lgrp_plat_probe_flags & LGRP_PLAT_PROBE_VENDOR) { 1738 /* 1739 * Should have been able to probe from CPU 0 when it was added 1740 * to lgroup hierarchy, but may not have been able to then 1741 * because it happens so early in boot that gethrtime() hasn't 1742 * been initialized. (:-( 1743 */ 1744 curnode = lgrp_plat_cpu_to_node(CPU, lgrp_plat_cpu_node, 1745 lgrp_plat_cpu_node_nentries); 1746 ASSERT(curnode >= 0 && curnode < lgrp_plat_node_cnt); 1747 if (lgrp_plat_lat_stats.latencies[curnode][curnode] == 0) 1748 lgrp_plat_probe(); 1749 1750 return; 1751 } 1752 1753 /* 1754 * When probing memory, use one page for every sample to determine 1755 * lgroup topology and taking multiple samples 1756 */ 1757 if (lgrp_plat_probe_mem_config.probe_memsize == 0) 1758 lgrp_plat_probe_mem_config.probe_memsize = PAGESIZE * 1759 lgrp_plat_probe_nsamples; 1760 1761 /* 1762 * Map memory in each node needed for probing to determine latency 1763 * topology 1764 */ 1765 for (i = 0; i < lgrp_plat_node_cnt; i++) { 1766 int mnode; 1767 1768 /* 1769 * Skip this node and leave its probe page NULL 1770 * if it doesn't have any memory 1771 */ 1772 mnode = plat_lgrphand_to_mem_node((lgrp_handle_t)i); 1773 if (!mem_node_config[mnode].exists) { 1774 lgrp_plat_probe_mem_config.probe_va[i] = NULL; 1775 continue; 1776 } 1777 1778 /* 1779 * Allocate one kernel virtual page 1780 */ 1781 lgrp_plat_probe_mem_config.probe_va[i] = vmem_alloc(heap_arena, 1782 lgrp_plat_probe_mem_config.probe_memsize, VM_NOSLEEP); 1783 if (lgrp_plat_probe_mem_config.probe_va[i] == NULL) { 1784 cmn_err(CE_WARN, 1785 "lgrp_plat_main_init: couldn't allocate memory"); 1786 return; 1787 } 1788 1789 /* 1790 * Get PFN for first page in each node 1791 */ 1792 lgrp_plat_probe_mem_config.probe_pfn[i] = 1793 mem_node_config[mnode].physbase; 1794 1795 /* 1796 * Map virtual page to first page in node 1797 */ 1798 hat_devload(kas.a_hat, lgrp_plat_probe_mem_config.probe_va[i], 1799 lgrp_plat_probe_mem_config.probe_memsize, 1800 lgrp_plat_probe_mem_config.probe_pfn[i], 1801 PROT_READ | PROT_WRITE | HAT_PLAT_NOCACHE, 1802 HAT_LOAD_NOCONSIST); 1803 } 1804 1805 /* 1806 * Probe from current CPU 1807 */ 1808 lgrp_plat_probe(); 1809 } 1810 1811 1812 /* 1813 * Return the number of free, allocatable, or installed 1814 * pages in an lgroup 1815 * This is a copy of the MAX_MEM_NODES == 1 version of the routine 1816 * used when MPO is disabled (i.e. single lgroup) or this is the root lgroup 1817 */ 1818 /* ARGSUSED */ 1819 static pgcnt_t 1820 lgrp_plat_mem_size_default(lgrp_handle_t lgrphand, lgrp_mem_query_t query) 1821 { 1822 struct memlist *mlist; 1823 pgcnt_t npgs = 0; 1824 extern struct memlist *phys_avail; 1825 extern struct memlist *phys_install; 1826 1827 switch (query) { 1828 case LGRP_MEM_SIZE_FREE: 1829 return ((pgcnt_t)freemem); 1830 case LGRP_MEM_SIZE_AVAIL: 1831 memlist_read_lock(); 1832 for (mlist = phys_avail; mlist; mlist = mlist->ml_next) 1833 npgs += btop(mlist->ml_size); 1834 memlist_read_unlock(); 1835 return (npgs); 1836 case LGRP_MEM_SIZE_INSTALL: 1837 memlist_read_lock(); 1838 for (mlist = phys_install; mlist; mlist = mlist->ml_next) 1839 npgs += btop(mlist->ml_size); 1840 memlist_read_unlock(); 1841 return (npgs); 1842 default: 1843 return ((pgcnt_t)0); 1844 } 1845 } 1846 1847 1848 /* 1849 * Update node to proximity domain mappings for given domain and return node ID 1850 */ 1851 static int 1852 lgrp_plat_node_domain_update(node_domain_map_t *node_domain, int node_cnt, 1853 uint32_t domain) 1854 { 1855 uint_t node; 1856 uint_t start; 1857 1858 /* 1859 * Hash proximity domain ID into node to domain mapping table (array) 1860 * and add entry for it into first non-existent or matching entry found 1861 */ 1862 node = start = NODE_DOMAIN_HASH(domain, node_cnt); 1863 do { 1864 /* 1865 * Entry doesn't exist yet, so create one for this proximity 1866 * domain and return node ID which is index into mapping table. 1867 */ 1868 if (!node_domain[node].exists) { 1869 node_domain[node].exists = 1; 1870 node_domain[node].prox_domain = domain; 1871 return (node); 1872 } 1873 1874 /* 1875 * Entry exists for this proximity domain already, so just 1876 * return node ID (index into table). 1877 */ 1878 if (node_domain[node].prox_domain == domain) 1879 return (node); 1880 node = NODE_DOMAIN_HASH(node + 1, node_cnt); 1881 } while (node != start); 1882 1883 /* 1884 * Ran out of supported number of entries which shouldn't happen.... 1885 */ 1886 ASSERT(node != start); 1887 return (-1); 1888 } 1889 1890 1891 /* 1892 * Update node memory information for given proximity domain with specified 1893 * starting and ending physical address range (and return positive numbers for 1894 * success and negative ones for errors) 1895 */ 1896 static int 1897 lgrp_plat_node_memory_update(node_domain_map_t *node_domain, int node_cnt, 1898 node_phys_addr_map_t *node_memory, uint64_t start, uint64_t end, 1899 uint32_t domain) 1900 { 1901 int node; 1902 1903 /* 1904 * Get node number for proximity domain 1905 */ 1906 node = lgrp_plat_domain_to_node(node_domain, node_cnt, domain); 1907 if (node == -1) { 1908 node = lgrp_plat_node_domain_update(node_domain, node_cnt, 1909 domain); 1910 if (node == -1) 1911 return (-1); 1912 } 1913 1914 /* 1915 * Create entry in table for node if it doesn't exist 1916 */ 1917 if (!node_memory[node].exists) { 1918 node_memory[node].exists = 1; 1919 node_memory[node].start = btop(start); 1920 node_memory[node].end = btop(end); 1921 node_memory[node].prox_domain = domain; 1922 return (0); 1923 } 1924 1925 /* 1926 * Entry already exists for this proximity domain 1927 * 1928 * There may be more than one SRAT memory entry for a domain, so we may 1929 * need to update existing start or end address for the node. 1930 */ 1931 if (node_memory[node].prox_domain == domain) { 1932 if (btop(start) < node_memory[node].start) 1933 node_memory[node].start = btop(start); 1934 if (btop(end) > node_memory[node].end) 1935 node_memory[node].end = btop(end); 1936 return (1); 1937 } 1938 return (-2); 1939 } 1940 1941 1942 /* 1943 * Have to sort node by starting physical address because VM system (physical 1944 * page free list management) assumes and expects memnodes to be sorted in 1945 * ascending order by physical address. If not, the kernel will panic in 1946 * potentially a number of different places. (:-( 1947 * NOTE: This workaround will not be sufficient if/when hotplugging memory is 1948 * supported on x86/x64. 1949 */ 1950 static void 1951 lgrp_plat_node_sort(node_domain_map_t *node_domain, int node_cnt, 1952 cpu_node_map_t *cpu_node, int cpu_count, node_phys_addr_map_t *node_memory) 1953 { 1954 boolean_t found; 1955 int i; 1956 int j; 1957 int n; 1958 boolean_t sorted; 1959 boolean_t swapped; 1960 1961 if (!lgrp_plat_node_sort_enable || node_cnt <= 1 || 1962 node_domain == NULL || node_memory == NULL) 1963 return; 1964 1965 /* 1966 * Sorted already? 1967 */ 1968 sorted = B_TRUE; 1969 for (i = 0; i < node_cnt - 1; i++) { 1970 /* 1971 * Skip entries that don't exist 1972 */ 1973 if (!node_memory[i].exists) 1974 continue; 1975 1976 /* 1977 * Try to find next existing entry to compare against 1978 */ 1979 found = B_FALSE; 1980 for (j = i + 1; j < node_cnt; j++) { 1981 if (node_memory[j].exists) { 1982 found = B_TRUE; 1983 break; 1984 } 1985 } 1986 1987 /* 1988 * Done if no more existing entries to compare against 1989 */ 1990 if (found == B_FALSE) 1991 break; 1992 1993 /* 1994 * Not sorted if starting address of current entry is bigger 1995 * than starting address of next existing entry 1996 */ 1997 if (node_memory[i].start > node_memory[j].start) { 1998 sorted = B_FALSE; 1999 break; 2000 } 2001 } 2002 2003 /* 2004 * Don't need to sort if sorted already 2005 */ 2006 if (sorted == B_TRUE) 2007 return; 2008 2009 /* 2010 * Just use bubble sort since number of nodes is small 2011 */ 2012 n = node_cnt; 2013 do { 2014 swapped = B_FALSE; 2015 n--; 2016 for (i = 0; i < n; i++) { 2017 /* 2018 * Skip entries that don't exist 2019 */ 2020 if (!node_memory[i].exists) 2021 continue; 2022 2023 /* 2024 * Try to find next existing entry to compare against 2025 */ 2026 found = B_FALSE; 2027 for (j = i + 1; j <= n; j++) { 2028 if (node_memory[j].exists) { 2029 found = B_TRUE; 2030 break; 2031 } 2032 } 2033 2034 /* 2035 * Done if no more existing entries to compare against 2036 */ 2037 if (found == B_FALSE) 2038 break; 2039 2040 if (node_memory[i].start > node_memory[j].start) { 2041 node_phys_addr_map_t save_addr; 2042 node_domain_map_t save_node; 2043 2044 /* 2045 * Swap node to proxmity domain ID assignments 2046 */ 2047 bcopy(&node_domain[i], &save_node, 2048 sizeof (node_domain_map_t)); 2049 bcopy(&node_domain[j], &node_domain[i], 2050 sizeof (node_domain_map_t)); 2051 bcopy(&save_node, &node_domain[j], 2052 sizeof (node_domain_map_t)); 2053 2054 /* 2055 * Swap node to physical memory assignments 2056 */ 2057 bcopy(&node_memory[i], &save_addr, 2058 sizeof (node_phys_addr_map_t)); 2059 bcopy(&node_memory[j], &node_memory[i], 2060 sizeof (node_phys_addr_map_t)); 2061 bcopy(&save_addr, &node_memory[j], 2062 sizeof (node_phys_addr_map_t)); 2063 swapped = B_TRUE; 2064 } 2065 } 2066 } while (swapped == B_TRUE); 2067 2068 /* 2069 * Check to make sure that CPUs assigned to correct node IDs now since 2070 * node to proximity domain ID assignments may have been changed above 2071 */ 2072 if (n == node_cnt - 1 || cpu_node == NULL || cpu_count < 1) 2073 return; 2074 for (i = 0; i < cpu_count; i++) { 2075 int node; 2076 2077 node = lgrp_plat_domain_to_node(node_domain, node_cnt, 2078 cpu_node[i].prox_domain); 2079 if (cpu_node[i].node != node) 2080 cpu_node[i].node = node; 2081 } 2082 2083 } 2084 2085 2086 /* 2087 * Return time needed to probe from current CPU to memory in given node 2088 */ 2089 static hrtime_t 2090 lgrp_plat_probe_time(int to, cpu_node_map_t *cpu_node, int cpu_node_nentries, 2091 lgrp_plat_probe_mem_config_t *probe_mem_config, 2092 lgrp_plat_latency_stats_t *lat_stats, lgrp_plat_probe_stats_t *probe_stats) 2093 { 2094 caddr_t buf; 2095 hrtime_t elapsed; 2096 hrtime_t end; 2097 int from; 2098 int i; 2099 int ipl; 2100 hrtime_t max; 2101 hrtime_t min; 2102 hrtime_t start; 2103 extern int use_sse_pagecopy; 2104 2105 /* 2106 * Determine ID of node containing current CPU 2107 */ 2108 from = lgrp_plat_cpu_to_node(CPU, cpu_node, cpu_node_nentries); 2109 ASSERT(from >= 0 && from < lgrp_plat_node_cnt); 2110 2111 /* 2112 * Do common work for probing main memory 2113 */ 2114 if (lgrp_plat_probe_flags & LGRP_PLAT_PROBE_PGCPY) { 2115 /* 2116 * Skip probing any nodes without memory and 2117 * set probe time to 0 2118 */ 2119 if (probe_mem_config->probe_va[to] == NULL) { 2120 lat_stats->latencies[from][to] = 0; 2121 return (0); 2122 } 2123 2124 /* 2125 * Invalidate caches once instead of once every sample 2126 * which should cut cost of probing by a lot 2127 */ 2128 probe_stats->flush_cost = gethrtime(); 2129 invalidate_cache(); 2130 probe_stats->flush_cost = gethrtime() - 2131 probe_stats->flush_cost; 2132 probe_stats->probe_cost_total += probe_stats->flush_cost; 2133 } 2134 2135 /* 2136 * Probe from current CPU to given memory using specified operation 2137 * and take specified number of samples 2138 */ 2139 max = 0; 2140 min = -1; 2141 for (i = 0; i < lgrp_plat_probe_nsamples; i++) { 2142 probe_stats->probe_cost = gethrtime(); 2143 2144 /* 2145 * Can't measure probe time if gethrtime() isn't working yet 2146 */ 2147 if (probe_stats->probe_cost == 0 && gethrtime() == 0) 2148 return (0); 2149 2150 if (lgrp_plat_probe_flags & LGRP_PLAT_PROBE_VENDOR) { 2151 /* 2152 * Measure how long it takes to read vendor ID from 2153 * Northbridge 2154 */ 2155 elapsed = opt_probe_vendor(to, lgrp_plat_probe_nreads); 2156 } else { 2157 /* 2158 * Measure how long it takes to copy page 2159 * on top of itself 2160 */ 2161 buf = probe_mem_config->probe_va[to] + (i * PAGESIZE); 2162 2163 kpreempt_disable(); 2164 ipl = splhigh(); 2165 start = gethrtime(); 2166 if (use_sse_pagecopy) 2167 hwblkpagecopy(buf, buf); 2168 else 2169 bcopy(buf, buf, PAGESIZE); 2170 end = gethrtime(); 2171 elapsed = end - start; 2172 splx(ipl); 2173 kpreempt_enable(); 2174 } 2175 2176 probe_stats->probe_cost = gethrtime() - 2177 probe_stats->probe_cost; 2178 probe_stats->probe_cost_total += probe_stats->probe_cost; 2179 2180 if (min == -1 || elapsed < min) 2181 min = elapsed; 2182 if (elapsed > max) 2183 max = elapsed; 2184 } 2185 2186 /* 2187 * Update minimum and maximum probe times between 2188 * these two nodes 2189 */ 2190 if (min < probe_stats->probe_min[from][to] || 2191 probe_stats->probe_min[from][to] == 0) 2192 probe_stats->probe_min[from][to] = min; 2193 2194 if (max > probe_stats->probe_max[from][to]) 2195 probe_stats->probe_max[from][to] = max; 2196 2197 return (min); 2198 } 2199 2200 2201 /* 2202 * Read boot property with CPU to APIC ID array, fill in CPU to node ID 2203 * mapping table with APIC ID for each CPU (if pointer to table isn't NULL), 2204 * and return number of CPU APIC IDs. 2205 * 2206 * NOTE: This code assumes that CPU IDs are assigned in order that they appear 2207 * in in cpu_apicid_array boot property which is based on and follows 2208 * same ordering as processor list in ACPI MADT. If the code in 2209 * usr/src/uts/i86pc/io/pcplusmp/apic.c that reads MADT and assigns 2210 * CPU IDs ever changes, then this code will need to change too.... 2211 */ 2212 static int 2213 lgrp_plat_process_cpu_apicids(cpu_node_map_t *cpu_node) 2214 { 2215 int boot_prop_len; 2216 char *boot_prop_name = BP_CPU_APICID_ARRAY; 2217 uint8_t cpu_apicid_array[UINT8_MAX + 1]; 2218 int i; 2219 int n; 2220 2221 /* 2222 * Check length of property value 2223 */ 2224 boot_prop_len = BOP_GETPROPLEN(bootops, boot_prop_name); 2225 if (boot_prop_len <= 0 || boot_prop_len > sizeof (cpu_apicid_array)) 2226 return (-1); 2227 2228 /* 2229 * Calculate number of entries in array and return when there's just 2230 * one CPU since that's not very interesting for NUMA 2231 */ 2232 n = boot_prop_len / sizeof (uint8_t); 2233 if (n == 1) 2234 return (-2); 2235 2236 /* 2237 * Get CPU to APIC ID property value 2238 */ 2239 if (BOP_GETPROP(bootops, boot_prop_name, cpu_apicid_array) < 0) 2240 return (-3); 2241 2242 /* 2243 * Just return number of CPU APIC IDs if CPU to node mapping table is 2244 * NULL 2245 */ 2246 if (cpu_node == NULL) 2247 return (n); 2248 2249 /* 2250 * Fill in CPU to node ID mapping table with APIC ID for each CPU 2251 */ 2252 for (i = 0; i < n; i++) { 2253 cpu_node[i].exists = 1; 2254 cpu_node[i].apicid = cpu_apicid_array[i]; 2255 } 2256 2257 /* 2258 * Return number of CPUs based on number of APIC IDs 2259 */ 2260 return (n); 2261 } 2262 2263 2264 /* 2265 * Read ACPI System Locality Information Table (SLIT) to determine how far each 2266 * NUMA node is from each other 2267 */ 2268 static int 2269 lgrp_plat_process_slit(struct slit *tp, uint_t node_cnt, 2270 node_phys_addr_map_t *node_memory, lgrp_plat_latency_stats_t *lat_stats) 2271 { 2272 int i; 2273 int j; 2274 int localities; 2275 hrtime_t max; 2276 hrtime_t min; 2277 int retval; 2278 uint8_t *slit_entries; 2279 2280 if (tp == NULL || !lgrp_plat_slit_enable) 2281 return (1); 2282 2283 if (lat_stats == NULL) 2284 return (2); 2285 2286 localities = tp->number; 2287 if (localities != node_cnt) 2288 return (3); 2289 2290 min = lat_stats->latency_min; 2291 max = lat_stats->latency_max; 2292 2293 /* 2294 * Fill in latency matrix based on SLIT entries 2295 */ 2296 slit_entries = tp->entry; 2297 for (i = 0; i < localities; i++) { 2298 for (j = 0; j < localities; j++) { 2299 uint8_t latency; 2300 2301 latency = slit_entries[(i * localities) + j]; 2302 lat_stats->latencies[i][j] = latency; 2303 if (latency < min || min == -1) 2304 min = latency; 2305 if (latency > max) 2306 max = latency; 2307 } 2308 } 2309 2310 /* 2311 * Verify that latencies/distances given in SLIT look reasonable 2312 */ 2313 retval = lgrp_plat_latency_verify(node_memory, lat_stats); 2314 2315 if (retval) { 2316 /* 2317 * Reinitialize (zero) latency table since SLIT doesn't look 2318 * right 2319 */ 2320 for (i = 0; i < localities; i++) { 2321 for (j = 0; j < localities; j++) 2322 lat_stats->latencies[i][j] = 0; 2323 } 2324 } else { 2325 /* 2326 * Update min and max latencies seen since SLIT looks valid 2327 */ 2328 lat_stats->latency_min = min; 2329 lat_stats->latency_max = max; 2330 } 2331 2332 return (retval); 2333 } 2334 2335 2336 /* 2337 * Read ACPI System Resource Affinity Table (SRAT) to determine which CPUs 2338 * and memory are local to each other in the same NUMA node and return number 2339 * of nodes 2340 */ 2341 static int 2342 lgrp_plat_process_srat(struct srat *tp, uint32_t *prox_domain_min, 2343 node_domain_map_t *node_domain, cpu_node_map_t *cpu_node, int cpu_count, 2344 node_phys_addr_map_t *node_memory) 2345 { 2346 struct srat_item *srat_end; 2347 int i; 2348 struct srat_item *item; 2349 int node_cnt; 2350 int proc_entry_count; 2351 2352 /* 2353 * Nothing to do when no SRAT or disabled 2354 */ 2355 if (tp == NULL || !lgrp_plat_srat_enable) 2356 return (-1); 2357 2358 /* 2359 * Determine number of nodes by counting number of proximity domains in 2360 * SRAT and return if number of nodes is 1 or less since don't need to 2361 * read SRAT then 2362 */ 2363 node_cnt = lgrp_plat_srat_domains(tp, prox_domain_min); 2364 if (node_cnt == 1) 2365 return (1); 2366 else if (node_cnt <= 0) 2367 return (-2); 2368 2369 /* 2370 * Walk through SRAT, examining each CPU and memory entry to determine 2371 * which CPUs and memory belong to which node. 2372 */ 2373 item = tp->list; 2374 srat_end = (struct srat_item *)(tp->hdr.len + (uintptr_t)tp); 2375 proc_entry_count = 0; 2376 while (item < srat_end) { 2377 uint32_t apic_id; 2378 uint32_t domain; 2379 uint64_t end; 2380 uint64_t length; 2381 uint64_t start; 2382 2383 switch (item->type) { 2384 case SRAT_PROCESSOR: /* CPU entry */ 2385 if (!(item->i.p.flags & SRAT_ENABLED) || 2386 cpu_node == NULL) 2387 break; 2388 2389 /* 2390 * Calculate domain (node) ID and fill in APIC ID to 2391 * domain/node mapping table 2392 */ 2393 domain = item->i.p.domain1; 2394 for (i = 0; i < 3; i++) { 2395 domain += item->i.p.domain2[i] << 2396 ((i + 1) * 8); 2397 } 2398 apic_id = item->i.p.apic_id; 2399 2400 if (lgrp_plat_cpu_node_update(node_domain, node_cnt, 2401 cpu_node, cpu_count, apic_id, domain) < 0) 2402 return (-3); 2403 2404 proc_entry_count++; 2405 break; 2406 2407 case SRAT_MEMORY: /* memory entry */ 2408 if (!(item->i.m.flags & SRAT_ENABLED) || 2409 node_memory == NULL) 2410 break; 2411 2412 /* 2413 * Get domain (node) ID and fill in domain/node 2414 * to memory mapping table 2415 */ 2416 domain = item->i.m.domain; 2417 start = item->i.m.base_addr; 2418 length = item->i.m.len; 2419 end = start + length - 1; 2420 2421 if (lgrp_plat_node_memory_update(node_domain, node_cnt, 2422 node_memory, start, end, domain) < 0) 2423 return (-4); 2424 break; 2425 case SRAT_X2APIC: /* x2apic CPU entry */ 2426 if (!(item->i.xp.flags & SRAT_ENABLED) || 2427 cpu_node == NULL) 2428 break; 2429 2430 /* 2431 * Calculate domain (node) ID and fill in APIC ID to 2432 * domain/node mapping table 2433 */ 2434 domain = item->i.xp.domain; 2435 apic_id = item->i.xp.x2apic_id; 2436 2437 if (lgrp_plat_cpu_node_update(node_domain, node_cnt, 2438 cpu_node, cpu_count, apic_id, domain) < 0) 2439 return (-3); 2440 2441 proc_entry_count++; 2442 break; 2443 2444 default: 2445 break; 2446 } 2447 2448 item = (struct srat_item *)((uintptr_t)item + item->len); 2449 } 2450 2451 /* 2452 * Should have seen at least as many SRAT processor entries as CPUs 2453 */ 2454 if (proc_entry_count < cpu_count) 2455 return (-5); 2456 2457 /* 2458 * Need to sort nodes by starting physical address since VM system 2459 * assumes and expects memnodes to be sorted in ascending order by 2460 * physical address 2461 */ 2462 lgrp_plat_node_sort(node_domain, node_cnt, cpu_node, cpu_count, 2463 node_memory); 2464 2465 return (node_cnt); 2466 } 2467 2468 2469 /* 2470 * Allocate permanent memory for any temporary memory that we needed to 2471 * allocate using BOP_ALLOC() before kmem_alloc() and VM system were 2472 * initialized and copy everything from temporary to permanent memory since 2473 * temporary boot memory will eventually be released during boot 2474 */ 2475 static void 2476 lgrp_plat_release_bootstrap(void) 2477 { 2478 void *buf; 2479 size_t size; 2480 2481 if (lgrp_plat_cpu_node_nentries > 0) { 2482 size = lgrp_plat_cpu_node_nentries * sizeof (cpu_node_map_t); 2483 buf = kmem_alloc(size, KM_SLEEP); 2484 bcopy(lgrp_plat_cpu_node, buf, size); 2485 lgrp_plat_cpu_node = buf; 2486 } 2487 } 2488 2489 2490 /* 2491 * Return number of proximity domains given in ACPI SRAT 2492 */ 2493 static int 2494 lgrp_plat_srat_domains(struct srat *tp, uint32_t *prox_domain_min) 2495 { 2496 int domain_cnt; 2497 uint32_t domain_min; 2498 struct srat_item *end; 2499 int i; 2500 struct srat_item *item; 2501 node_domain_map_t node_domain[MAX_NODES]; 2502 2503 2504 if (tp == NULL || !lgrp_plat_srat_enable) 2505 return (1); 2506 2507 /* 2508 * Walk through SRAT to find minimum proximity domain ID 2509 */ 2510 domain_min = UINT32_MAX; 2511 item = tp->list; 2512 end = (struct srat_item *)(tp->hdr.len + (uintptr_t)tp); 2513 while (item < end) { 2514 uint32_t domain; 2515 2516 switch (item->type) { 2517 case SRAT_PROCESSOR: /* CPU entry */ 2518 if (!(item->i.p.flags & SRAT_ENABLED)) { 2519 item = (struct srat_item *)((uintptr_t)item + 2520 item->len); 2521 continue; 2522 } 2523 domain = item->i.p.domain1; 2524 for (i = 0; i < 3; i++) { 2525 domain += item->i.p.domain2[i] << 2526 ((i + 1) * 8); 2527 } 2528 break; 2529 2530 case SRAT_MEMORY: /* memory entry */ 2531 if (!(item->i.m.flags & SRAT_ENABLED)) { 2532 item = (struct srat_item *)((uintptr_t)item + 2533 item->len); 2534 continue; 2535 } 2536 domain = item->i.m.domain; 2537 break; 2538 2539 case SRAT_X2APIC: /* x2apic CPU entry */ 2540 if (!(item->i.xp.flags & SRAT_ENABLED)) { 2541 item = (struct srat_item *)((uintptr_t)item + 2542 item->len); 2543 continue; 2544 } 2545 domain = item->i.xp.domain; 2546 break; 2547 2548 default: 2549 item = (struct srat_item *)((uintptr_t)item + 2550 item->len); 2551 continue; 2552 } 2553 2554 /* 2555 * Keep track of minimum proximity domain ID 2556 */ 2557 if (domain < domain_min) 2558 domain_min = domain; 2559 2560 item = (struct srat_item *)((uintptr_t)item + item->len); 2561 } 2562 if (lgrp_plat_domain_min_enable && prox_domain_min != NULL) 2563 *prox_domain_min = domain_min; 2564 2565 /* 2566 * Walk through SRAT, examining each CPU and memory entry to determine 2567 * proximity domain ID for each. 2568 */ 2569 domain_cnt = 0; 2570 item = tp->list; 2571 end = (struct srat_item *)(tp->hdr.len + (uintptr_t)tp); 2572 bzero(node_domain, MAX_NODES * sizeof (node_domain_map_t)); 2573 while (item < end) { 2574 uint32_t domain; 2575 boolean_t overflow; 2576 uint_t start; 2577 2578 switch (item->type) { 2579 case SRAT_PROCESSOR: /* CPU entry */ 2580 if (!(item->i.p.flags & SRAT_ENABLED)) { 2581 item = (struct srat_item *)((uintptr_t)item + 2582 item->len); 2583 continue; 2584 } 2585 domain = item->i.p.domain1; 2586 for (i = 0; i < 3; i++) { 2587 domain += item->i.p.domain2[i] << 2588 ((i + 1) * 8); 2589 } 2590 break; 2591 2592 case SRAT_MEMORY: /* memory entry */ 2593 if (!(item->i.m.flags & SRAT_ENABLED)) { 2594 item = (struct srat_item *)((uintptr_t)item + 2595 item->len); 2596 continue; 2597 } 2598 domain = item->i.m.domain; 2599 break; 2600 2601 case SRAT_X2APIC: /* x2apic CPU entry */ 2602 if (!(item->i.xp.flags & SRAT_ENABLED)) { 2603 item = (struct srat_item *)((uintptr_t)item + 2604 item->len); 2605 continue; 2606 } 2607 domain = item->i.xp.domain; 2608 break; 2609 2610 default: 2611 item = (struct srat_item *)((uintptr_t)item + 2612 item->len); 2613 continue; 2614 } 2615 2616 /* 2617 * Count and keep track of which proximity domain IDs seen 2618 */ 2619 start = i = domain % MAX_NODES; 2620 overflow = B_TRUE; 2621 do { 2622 /* 2623 * Create entry for proximity domain and increment 2624 * count when no entry exists where proximity domain 2625 * hashed 2626 */ 2627 if (!node_domain[i].exists) { 2628 node_domain[i].exists = 1; 2629 node_domain[i].prox_domain = domain; 2630 domain_cnt++; 2631 overflow = B_FALSE; 2632 break; 2633 } 2634 2635 /* 2636 * Nothing to do when proximity domain seen already 2637 * and its entry exists 2638 */ 2639 if (node_domain[i].prox_domain == domain) { 2640 overflow = B_FALSE; 2641 break; 2642 } 2643 2644 /* 2645 * Entry exists where proximity domain hashed, but for 2646 * different proximity domain so keep search for empty 2647 * slot to put it or matching entry whichever comes 2648 * first. 2649 */ 2650 i = (i + 1) % MAX_NODES; 2651 } while (i != start); 2652 2653 /* 2654 * Didn't find empty or matching entry which means have more 2655 * proximity domains than supported nodes (:-( 2656 */ 2657 ASSERT(overflow != B_TRUE); 2658 if (overflow == B_TRUE) 2659 return (-1); 2660 2661 item = (struct srat_item *)((uintptr_t)item + item->len); 2662 } 2663 return (domain_cnt); 2664 } 2665 2666 2667 /* 2668 * Set lgroup latencies for 2 level lgroup topology 2669 */ 2670 static void 2671 lgrp_plat_2level_setup(node_phys_addr_map_t *node_memory, 2672 lgrp_plat_latency_stats_t *lat_stats) 2673 { 2674 int i; 2675 2676 ASSERT(node_memory != NULL && lat_stats != NULL); 2677 2678 if (lgrp_plat_node_cnt >= 4) 2679 cmn_err(CE_NOTE, 2680 "MPO only optimizing for local and remote\n"); 2681 for (i = 0; i < lgrp_plat_node_cnt; i++) { 2682 int j; 2683 2684 if (!node_memory[i].exists) 2685 continue; 2686 for (j = 0; j < lgrp_plat_node_cnt; j++) { 2687 if (!node_memory[j].exists) 2688 continue; 2689 if (i == j) 2690 lat_stats->latencies[i][j] = 2; 2691 else 2692 lat_stats->latencies[i][j] = 3; 2693 } 2694 } 2695 lat_stats->latency_min = 2; 2696 lat_stats->latency_max = 3; 2697 lgrp_config(LGRP_CONFIG_FLATTEN, 2, 0); 2698 } 2699 2700 2701 /* 2702 * The following Opteron specific constants, macros, types, and routines define 2703 * PCI configuration space registers and how to read them to determine the NUMA 2704 * configuration of *supported* Opteron processors. They provide the same 2705 * information that may be gotten from the ACPI System Resource Affinity Table 2706 * (SRAT) if it exists on the machine of interest. 2707 * 2708 * The AMD BIOS and Kernel Developer's Guide (BKDG) for the processor family 2709 * of interest describes all of these registers and their contents. The main 2710 * registers used by this code to determine the NUMA configuration of the 2711 * machine are the node ID register for the number of NUMA nodes and the DRAM 2712 * address map registers for the physical address range of each node. 2713 * 2714 * NOTE: The format and how to determine the NUMA configuration using PCI 2715 * config space registers may change or may not be supported in future 2716 * Opteron processor families. 2717 */ 2718 2719 /* 2720 * How many bits to shift Opteron DRAM Address Map base and limit registers 2721 * to get actual value 2722 */ 2723 #define OPT_DRAMADDR_HI_LSHIFT_ADDR 40 /* shift left for address */ 2724 #define OPT_DRAMADDR_LO_LSHIFT_ADDR 8 /* shift left for address */ 2725 2726 #define OPT_DRAMADDR_HI_MASK_ADDR 0x000000FF /* address bits 47-40 */ 2727 #define OPT_DRAMADDR_LO_MASK_ADDR 0xFFFF0000 /* address bits 39-24 */ 2728 2729 #define OPT_DRAMADDR_LO_MASK_OFF 0xFFFFFF /* offset for address */ 2730 2731 /* 2732 * Macros to derive addresses from Opteron DRAM Address Map registers 2733 */ 2734 #define OPT_DRAMADDR_HI(reg) \ 2735 (((u_longlong_t)reg & OPT_DRAMADDR_HI_MASK_ADDR) << \ 2736 OPT_DRAMADDR_HI_LSHIFT_ADDR) 2737 2738 #define OPT_DRAMADDR_LO(reg) \ 2739 (((u_longlong_t)reg & OPT_DRAMADDR_LO_MASK_ADDR) << \ 2740 OPT_DRAMADDR_LO_LSHIFT_ADDR) 2741 2742 #define OPT_DRAMADDR(high, low) \ 2743 (OPT_DRAMADDR_HI(high) | OPT_DRAMADDR_LO(low)) 2744 2745 /* 2746 * Bit masks defining what's in Opteron DRAM Address Map base register 2747 */ 2748 #define OPT_DRAMBASE_LO_MASK_RE 0x1 /* read enable */ 2749 #define OPT_DRAMBASE_LO_MASK_WE 0x2 /* write enable */ 2750 #define OPT_DRAMBASE_LO_MASK_INTRLVEN 0x700 /* interleave */ 2751 2752 /* 2753 * Bit masks defining what's in Opteron DRAM Address Map limit register 2754 */ 2755 #define OPT_DRAMLIMIT_LO_MASK_DSTNODE 0x7 /* destination node */ 2756 #define OPT_DRAMLIMIT_LO_MASK_INTRLVSEL 0x700 /* interleave select */ 2757 2758 2759 /* 2760 * Opteron Node ID register in PCI configuration space contains 2761 * number of nodes in system, etc. for Opteron K8. The following 2762 * constants and macros define its contents, structure, and access. 2763 */ 2764 2765 /* 2766 * Bit masks defining what's in Opteron Node ID register 2767 */ 2768 #define OPT_NODE_MASK_ID 0x7 /* node ID */ 2769 #define OPT_NODE_MASK_CNT 0x70 /* node count */ 2770 #define OPT_NODE_MASK_IONODE 0x700 /* Hypertransport I/O hub node ID */ 2771 #define OPT_NODE_MASK_LCKNODE 0x7000 /* lock controller node ID */ 2772 #define OPT_NODE_MASK_CPUCNT 0xF0000 /* CPUs in system (0 means 1 CPU) */ 2773 2774 /* 2775 * How many bits in Opteron Node ID register to shift right to get actual value 2776 */ 2777 #define OPT_NODE_RSHIFT_CNT 0x4 /* shift right for node count value */ 2778 2779 /* 2780 * Macros to get values from Opteron Node ID register 2781 */ 2782 #define OPT_NODE_CNT(reg) \ 2783 ((reg & OPT_NODE_MASK_CNT) >> OPT_NODE_RSHIFT_CNT) 2784 2785 /* 2786 * Macro to setup PCI Extended Configuration Space (ECS) address to give to 2787 * "in/out" instructions 2788 * 2789 * NOTE: Should only be used in lgrp_plat_init() before MMIO setup because any 2790 * other uses should just do MMIO to access PCI ECS. 2791 * Must enable special bit in Northbridge Configuration Register on 2792 * Greyhound for extended CF8 space access to be able to access PCI ECS 2793 * using "in/out" instructions and restore special bit after done 2794 * accessing PCI ECS. 2795 */ 2796 #define OPT_PCI_ECS_ADDR(bus, device, function, reg) \ 2797 (PCI_CONE | (((bus) & 0xff) << 16) | (((device & 0x1f)) << 11) | \ 2798 (((function) & 0x7) << 8) | ((reg) & 0xfc) | \ 2799 ((((reg) >> 8) & 0xf) << 24)) 2800 2801 /* 2802 * PCI configuration space registers accessed by specifying 2803 * a bus, device, function, and offset. The following constants 2804 * define the values needed to access Opteron K8 configuration 2805 * info to determine its node topology 2806 */ 2807 2808 #define OPT_PCS_BUS_CONFIG 0 /* Hypertransport config space bus */ 2809 2810 /* 2811 * Opteron PCI configuration space register function values 2812 */ 2813 #define OPT_PCS_FUNC_HT 0 /* Hypertransport configuration */ 2814 #define OPT_PCS_FUNC_ADDRMAP 1 /* Address map configuration */ 2815 #define OPT_PCS_FUNC_DRAM 2 /* DRAM configuration */ 2816 #define OPT_PCS_FUNC_MISC 3 /* Miscellaneous configuration */ 2817 2818 /* 2819 * PCI Configuration Space register offsets 2820 */ 2821 #define OPT_PCS_OFF_VENDOR 0x0 /* device/vendor ID register */ 2822 #define OPT_PCS_OFF_DRAMBASE_HI 0x140 /* DRAM Base register (node 0) */ 2823 #define OPT_PCS_OFF_DRAMBASE_LO 0x40 /* DRAM Base register (node 0) */ 2824 #define OPT_PCS_OFF_NODEID 0x60 /* Node ID register */ 2825 2826 /* 2827 * Opteron PCI Configuration Space device IDs for nodes 2828 */ 2829 #define OPT_PCS_DEV_NODE0 24 /* device number for node 0 */ 2830 2831 2832 /* 2833 * Opteron DRAM address map gives base and limit for physical memory in a node 2834 */ 2835 typedef struct opt_dram_addr_map { 2836 uint32_t base_hi; 2837 uint32_t base_lo; 2838 uint32_t limit_hi; 2839 uint32_t limit_lo; 2840 } opt_dram_addr_map_t; 2841 2842 2843 /* 2844 * Supported AMD processor families 2845 */ 2846 #define AMD_FAMILY_HAMMER 15 2847 #define AMD_FAMILY_GREYHOUND 16 2848 2849 /* 2850 * Whether to have is_opteron() return 1 even when processor isn't supported 2851 */ 2852 uint_t is_opteron_override = 0; 2853 2854 /* 2855 * AMD processor family for current CPU 2856 */ 2857 uint_t opt_family = 0; 2858 2859 2860 /* 2861 * Determine whether we're running on a supported AMD Opteron since reading 2862 * node count and DRAM address map registers may have different format or 2863 * may not be supported across processor families 2864 */ 2865 static int 2866 is_opteron(void) 2867 { 2868 2869 if (x86_vendor != X86_VENDOR_AMD) 2870 return (0); 2871 2872 opt_family = cpuid_getfamily(CPU); 2873 if (opt_family == AMD_FAMILY_HAMMER || 2874 opt_family == AMD_FAMILY_GREYHOUND || is_opteron_override) 2875 return (1); 2876 else 2877 return (0); 2878 } 2879 2880 2881 /* 2882 * Determine NUMA configuration for Opteron from registers that live in PCI 2883 * configuration space 2884 */ 2885 static void 2886 opt_get_numa_config(uint_t *node_cnt, int *mem_intrlv, 2887 node_phys_addr_map_t *node_memory) 2888 { 2889 uint_t bus; 2890 uint_t dev; 2891 struct opt_dram_addr_map dram_map[MAX_NODES]; 2892 uint_t node; 2893 uint_t node_info[MAX_NODES]; 2894 uint_t off_hi; 2895 uint_t off_lo; 2896 uint64_t nb_cfg_reg; 2897 2898 /* 2899 * Read configuration registers from PCI configuration space to 2900 * determine node information, which memory is in each node, etc. 2901 * 2902 * Write to PCI configuration space address register to specify 2903 * which configuration register to read and read/write PCI 2904 * configuration space data register to get/set contents 2905 */ 2906 bus = OPT_PCS_BUS_CONFIG; 2907 dev = OPT_PCS_DEV_NODE0; 2908 off_hi = OPT_PCS_OFF_DRAMBASE_HI; 2909 off_lo = OPT_PCS_OFF_DRAMBASE_LO; 2910 2911 /* 2912 * Read node ID register for node 0 to get node count 2913 */ 2914 node_info[0] = pci_getl_func(bus, dev, OPT_PCS_FUNC_HT, 2915 OPT_PCS_OFF_NODEID); 2916 *node_cnt = OPT_NODE_CNT(node_info[0]) + 1; 2917 2918 /* 2919 * If number of nodes is more than maximum supported, then set node 2920 * count to 1 and treat system as UMA instead of NUMA. 2921 */ 2922 if (*node_cnt > MAX_NODES) { 2923 *node_cnt = 1; 2924 return; 2925 } 2926 2927 /* 2928 * For Greyhound, PCI Extended Configuration Space must be enabled to 2929 * read high DRAM address map base and limit registers 2930 */ 2931 if (opt_family == AMD_FAMILY_GREYHOUND) { 2932 nb_cfg_reg = rdmsr(MSR_AMD_NB_CFG); 2933 if ((nb_cfg_reg & AMD_GH_NB_CFG_EN_ECS) == 0) 2934 wrmsr(MSR_AMD_NB_CFG, 2935 nb_cfg_reg | AMD_GH_NB_CFG_EN_ECS); 2936 } 2937 2938 for (node = 0; node < *node_cnt; node++) { 2939 uint32_t base_hi; 2940 uint32_t base_lo; 2941 uint32_t limit_hi; 2942 uint32_t limit_lo; 2943 2944 /* 2945 * Read node ID register (except for node 0 which we just read) 2946 */ 2947 if (node > 0) { 2948 node_info[node] = pci_getl_func(bus, dev, 2949 OPT_PCS_FUNC_HT, OPT_PCS_OFF_NODEID); 2950 } 2951 2952 /* 2953 * Read DRAM base and limit registers which specify 2954 * physical memory range of each node 2955 */ 2956 if (opt_family != AMD_FAMILY_GREYHOUND) 2957 base_hi = 0; 2958 else { 2959 outl(PCI_CONFADD, OPT_PCI_ECS_ADDR(bus, dev, 2960 OPT_PCS_FUNC_ADDRMAP, off_hi)); 2961 base_hi = dram_map[node].base_hi = 2962 inl(PCI_CONFDATA); 2963 } 2964 base_lo = dram_map[node].base_lo = pci_getl_func(bus, dev, 2965 OPT_PCS_FUNC_ADDRMAP, off_lo); 2966 2967 if ((dram_map[node].base_lo & OPT_DRAMBASE_LO_MASK_INTRLVEN) && 2968 mem_intrlv) 2969 *mem_intrlv = *mem_intrlv + 1; 2970 2971 off_hi += 4; /* high limit register offset */ 2972 if (opt_family != AMD_FAMILY_GREYHOUND) 2973 limit_hi = 0; 2974 else { 2975 outl(PCI_CONFADD, OPT_PCI_ECS_ADDR(bus, dev, 2976 OPT_PCS_FUNC_ADDRMAP, off_hi)); 2977 limit_hi = dram_map[node].limit_hi = 2978 inl(PCI_CONFDATA); 2979 } 2980 2981 off_lo += 4; /* low limit register offset */ 2982 limit_lo = dram_map[node].limit_lo = pci_getl_func(bus, 2983 dev, OPT_PCS_FUNC_ADDRMAP, off_lo); 2984 2985 /* 2986 * Increment device number to next node and register offsets 2987 * for DRAM base register of next node 2988 */ 2989 off_hi += 4; 2990 off_lo += 4; 2991 dev++; 2992 2993 /* 2994 * Both read and write enable bits must be enabled in DRAM 2995 * address map base register for physical memory to exist in 2996 * node 2997 */ 2998 if ((base_lo & OPT_DRAMBASE_LO_MASK_RE) == 0 || 2999 (base_lo & OPT_DRAMBASE_LO_MASK_WE) == 0) { 3000 /* 3001 * Mark node memory as non-existent and set start and 3002 * end addresses to be same in node_memory[] 3003 */ 3004 node_memory[node].exists = 0; 3005 node_memory[node].start = node_memory[node].end = 3006 (pfn_t)-1; 3007 continue; 3008 } 3009 3010 /* 3011 * Mark node memory as existing and remember physical address 3012 * range of each node for use later 3013 */ 3014 node_memory[node].exists = 1; 3015 3016 node_memory[node].start = btop(OPT_DRAMADDR(base_hi, base_lo)); 3017 3018 node_memory[node].end = btop(OPT_DRAMADDR(limit_hi, limit_lo) | 3019 OPT_DRAMADDR_LO_MASK_OFF); 3020 } 3021 3022 /* 3023 * Restore PCI Extended Configuration Space enable bit 3024 */ 3025 if (opt_family == AMD_FAMILY_GREYHOUND) { 3026 if ((nb_cfg_reg & AMD_GH_NB_CFG_EN_ECS) == 0) 3027 wrmsr(MSR_AMD_NB_CFG, nb_cfg_reg); 3028 } 3029 } 3030 3031 3032 /* 3033 * Return average amount of time to read vendor ID register on Northbridge 3034 * N times on specified destination node from current CPU 3035 */ 3036 static hrtime_t 3037 opt_probe_vendor(int dest_node, int nreads) 3038 { 3039 int cnt; 3040 uint_t dev; 3041 /* LINTED: set but not used in function */ 3042 volatile uint_t dev_vendor; 3043 hrtime_t elapsed; 3044 hrtime_t end; 3045 int ipl; 3046 hrtime_t start; 3047 3048 dev = OPT_PCS_DEV_NODE0 + dest_node; 3049 kpreempt_disable(); 3050 ipl = spl8(); 3051 outl(PCI_CONFADD, PCI_CADDR1(0, dev, OPT_PCS_FUNC_DRAM, 3052 OPT_PCS_OFF_VENDOR)); 3053 start = gethrtime(); 3054 for (cnt = 0; cnt < nreads; cnt++) 3055 dev_vendor = inl(PCI_CONFDATA); 3056 end = gethrtime(); 3057 elapsed = (end - start) / nreads; 3058 splx(ipl); 3059 kpreempt_enable(); 3060 return (elapsed); 3061 } 3062