1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #include <sys/cpuvar.h> 28 #include <sys/regset.h> 29 #include <sys/psw.h> 30 #include <sys/types.h> 31 #include <sys/thread.h> 32 #include <sys/systm.h> 33 #include <sys/segments.h> 34 #include <sys/pcb.h> 35 #include <sys/trap.h> 36 #include <sys/ftrace.h> 37 #include <sys/traptrace.h> 38 #include <sys/clock.h> 39 #include <sys/panic.h> 40 #include <sys/disp.h> 41 #include <vm/seg_kp.h> 42 #include <sys/stack.h> 43 #include <sys/sysmacros.h> 44 #include <sys/cmn_err.h> 45 #include <sys/kstat.h> 46 #include <sys/smp_impldefs.h> 47 #include <sys/pool_pset.h> 48 #include <sys/zone.h> 49 #include <sys/bitmap.h> 50 #include <sys/archsystm.h> 51 #include <sys/machsystm.h> 52 #include <sys/ontrap.h> 53 #include <sys/x86_archext.h> 54 #include <sys/promif.h> 55 #include <vm/hat_i86.h> 56 #if defined(__xpv) 57 #include <sys/hypervisor.h> 58 #endif 59 60 61 #if defined(__xpv) && defined(DEBUG) 62 63 /* 64 * This panic message is intended as an aid to interrupt debugging. 65 * 66 * The associated assertion tests the condition of enabling 67 * events when events are already enabled. The implication 68 * being that whatever code the programmer thought was 69 * protected by having events disabled until the second 70 * enable happened really wasn't protected at all .. 71 */ 72 73 int stistipanic = 1; /* controls the debug panic check */ 74 const char *stistimsg = "stisti"; 75 ulong_t laststi[NCPU]; 76 77 /* 78 * This variable tracks the last place events were disabled on each cpu 79 * it assists in debugging when asserts that interupts are enabled trip. 80 */ 81 ulong_t lastcli[NCPU]; 82 83 #endif 84 85 /* 86 * Set cpu's base SPL level to the highest active interrupt level 87 */ 88 void 89 set_base_spl(void) 90 { 91 struct cpu *cpu = CPU; 92 uint16_t active = (uint16_t)cpu->cpu_intr_actv; 93 94 cpu->cpu_base_spl = active == 0 ? 0 : bsrw_insn(active); 95 } 96 97 /* 98 * Do all the work necessary to set up the cpu and thread structures 99 * to dispatch a high-level interrupt. 100 * 101 * Returns 0 if we're -not- already on the high-level interrupt stack, 102 * (and *must* switch to it), non-zero if we are already on that stack. 103 * 104 * Called with interrupts masked. 105 * The 'pil' is already set to the appropriate level for rp->r_trapno. 106 */ 107 static int 108 hilevel_intr_prolog(struct cpu *cpu, uint_t pil, uint_t oldpil, struct regs *rp) 109 { 110 struct machcpu *mcpu = &cpu->cpu_m; 111 uint_t mask; 112 hrtime_t intrtime; 113 hrtime_t now = tsc_read(); 114 115 ASSERT(pil > LOCK_LEVEL); 116 117 if (pil == CBE_HIGH_PIL) { 118 cpu->cpu_profile_pil = oldpil; 119 if (USERMODE(rp->r_cs)) { 120 cpu->cpu_profile_pc = 0; 121 cpu->cpu_profile_upc = rp->r_pc; 122 cpu->cpu_cpcprofile_pc = 0; 123 cpu->cpu_cpcprofile_upc = rp->r_pc; 124 } else { 125 cpu->cpu_profile_pc = rp->r_pc; 126 cpu->cpu_profile_upc = 0; 127 cpu->cpu_cpcprofile_pc = rp->r_pc; 128 cpu->cpu_cpcprofile_upc = 0; 129 } 130 } 131 132 mask = cpu->cpu_intr_actv & CPU_INTR_ACTV_HIGH_LEVEL_MASK; 133 if (mask != 0) { 134 int nestpil; 135 136 /* 137 * We have interrupted another high-level interrupt. 138 * Load starting timestamp, compute interval, update 139 * cumulative counter. 140 */ 141 nestpil = bsrw_insn((uint16_t)mask); 142 ASSERT(nestpil < pil); 143 intrtime = now - 144 mcpu->pil_high_start[nestpil - (LOCK_LEVEL + 1)]; 145 mcpu->intrstat[nestpil][0] += intrtime; 146 cpu->cpu_intracct[cpu->cpu_mstate] += intrtime; 147 /* 148 * Another high-level interrupt is active below this one, so 149 * there is no need to check for an interrupt thread. That 150 * will be done by the lowest priority high-level interrupt 151 * active. 152 */ 153 } else { 154 kthread_t *t = cpu->cpu_thread; 155 156 /* 157 * See if we are interrupting a low-level interrupt thread. 158 * If so, account for its time slice only if its time stamp 159 * is non-zero. 160 */ 161 if ((t->t_flag & T_INTR_THREAD) != 0 && t->t_intr_start != 0) { 162 intrtime = now - t->t_intr_start; 163 mcpu->intrstat[t->t_pil][0] += intrtime; 164 cpu->cpu_intracct[cpu->cpu_mstate] += intrtime; 165 t->t_intr_start = 0; 166 } 167 } 168 169 /* 170 * Store starting timestamp in CPU structure for this PIL. 171 */ 172 mcpu->pil_high_start[pil - (LOCK_LEVEL + 1)] = now; 173 174 ASSERT((cpu->cpu_intr_actv & (1 << pil)) == 0); 175 176 if (pil == 15) { 177 /* 178 * To support reentrant level 15 interrupts, we maintain a 179 * recursion count in the top half of cpu_intr_actv. Only 180 * when this count hits zero do we clear the PIL 15 bit from 181 * the lower half of cpu_intr_actv. 182 */ 183 uint16_t *refcntp = (uint16_t *)&cpu->cpu_intr_actv + 1; 184 (*refcntp)++; 185 } 186 187 mask = cpu->cpu_intr_actv; 188 189 cpu->cpu_intr_actv |= (1 << pil); 190 191 return (mask & CPU_INTR_ACTV_HIGH_LEVEL_MASK); 192 } 193 194 /* 195 * Does most of the work of returning from a high level interrupt. 196 * 197 * Returns 0 if there are no more high level interrupts (in which 198 * case we must switch back to the interrupted thread stack) or 199 * non-zero if there are more (in which case we should stay on it). 200 * 201 * Called with interrupts masked 202 */ 203 static int 204 hilevel_intr_epilog(struct cpu *cpu, uint_t pil, uint_t oldpil, uint_t vecnum) 205 { 206 struct machcpu *mcpu = &cpu->cpu_m; 207 uint_t mask; 208 hrtime_t intrtime; 209 hrtime_t now = tsc_read(); 210 211 ASSERT(mcpu->mcpu_pri == pil); 212 213 cpu->cpu_stats.sys.intr[pil - 1]++; 214 215 ASSERT(cpu->cpu_intr_actv & (1 << pil)); 216 217 if (pil == 15) { 218 /* 219 * To support reentrant level 15 interrupts, we maintain a 220 * recursion count in the top half of cpu_intr_actv. Only 221 * when this count hits zero do we clear the PIL 15 bit from 222 * the lower half of cpu_intr_actv. 223 */ 224 uint16_t *refcntp = (uint16_t *)&cpu->cpu_intr_actv + 1; 225 226 ASSERT(*refcntp > 0); 227 228 if (--(*refcntp) == 0) 229 cpu->cpu_intr_actv &= ~(1 << pil); 230 } else { 231 cpu->cpu_intr_actv &= ~(1 << pil); 232 } 233 234 ASSERT(mcpu->pil_high_start[pil - (LOCK_LEVEL + 1)] != 0); 235 236 intrtime = now - mcpu->pil_high_start[pil - (LOCK_LEVEL + 1)]; 237 mcpu->intrstat[pil][0] += intrtime; 238 cpu->cpu_intracct[cpu->cpu_mstate] += intrtime; 239 240 /* 241 * Check for lower-pil nested high-level interrupt beneath 242 * current one. If so, place a starting timestamp in its 243 * pil_high_start entry. 244 */ 245 mask = cpu->cpu_intr_actv & CPU_INTR_ACTV_HIGH_LEVEL_MASK; 246 if (mask != 0) { 247 int nestpil; 248 249 /* 250 * find PIL of nested interrupt 251 */ 252 nestpil = bsrw_insn((uint16_t)mask); 253 ASSERT(nestpil < pil); 254 mcpu->pil_high_start[nestpil - (LOCK_LEVEL + 1)] = now; 255 /* 256 * (Another high-level interrupt is active below this one, 257 * so there is no need to check for an interrupt 258 * thread. That will be done by the lowest priority 259 * high-level interrupt active.) 260 */ 261 } else { 262 /* 263 * Check to see if there is a low-level interrupt active. 264 * If so, place a starting timestamp in the thread 265 * structure. 266 */ 267 kthread_t *t = cpu->cpu_thread; 268 269 if (t->t_flag & T_INTR_THREAD) 270 t->t_intr_start = now; 271 } 272 273 mcpu->mcpu_pri = oldpil; 274 (void) (*setlvlx)(oldpil, vecnum); 275 276 return (cpu->cpu_intr_actv & CPU_INTR_ACTV_HIGH_LEVEL_MASK); 277 } 278 279 /* 280 * Set up the cpu, thread and interrupt thread structures for 281 * executing an interrupt thread. The new stack pointer of the 282 * interrupt thread (which *must* be switched to) is returned. 283 */ 284 static caddr_t 285 intr_thread_prolog(struct cpu *cpu, caddr_t stackptr, uint_t pil) 286 { 287 struct machcpu *mcpu = &cpu->cpu_m; 288 kthread_t *t, *volatile it; 289 hrtime_t now = tsc_read(); 290 291 ASSERT(pil > 0); 292 ASSERT((cpu->cpu_intr_actv & (1 << pil)) == 0); 293 cpu->cpu_intr_actv |= (1 << pil); 294 295 /* 296 * Get set to run an interrupt thread. 297 * There should always be an interrupt thread, since we 298 * allocate one for each level on each CPU. 299 * 300 * t_intr_start could be zero due to cpu_intr_swtch_enter. 301 */ 302 t = cpu->cpu_thread; 303 if ((t->t_flag & T_INTR_THREAD) && t->t_intr_start != 0) { 304 hrtime_t intrtime = now - t->t_intr_start; 305 mcpu->intrstat[t->t_pil][0] += intrtime; 306 cpu->cpu_intracct[cpu->cpu_mstate] += intrtime; 307 t->t_intr_start = 0; 308 } 309 310 ASSERT(SA((uintptr_t)stackptr) == (uintptr_t)stackptr); 311 312 t->t_sp = (uintptr_t)stackptr; /* mark stack in curthread for resume */ 313 314 /* 315 * unlink the interrupt thread off the cpu 316 * 317 * Note that the code in kcpc_overflow_intr -relies- on the 318 * ordering of events here - in particular that t->t_lwp of 319 * the interrupt thread is set to the pinned thread *before* 320 * curthread is changed. 321 */ 322 it = cpu->cpu_intr_thread; 323 cpu->cpu_intr_thread = it->t_link; 324 it->t_intr = t; 325 it->t_lwp = t->t_lwp; 326 327 /* 328 * (threads on the interrupt thread free list could have state 329 * preset to TS_ONPROC, but it helps in debugging if 330 * they're TS_FREE.) 331 */ 332 it->t_state = TS_ONPROC; 333 334 cpu->cpu_thread = it; /* new curthread on this cpu */ 335 it->t_pil = (uchar_t)pil; 336 it->t_pri = intr_pri + (pri_t)pil; 337 it->t_intr_start = now; 338 339 return (it->t_stk); 340 } 341 342 343 #ifdef DEBUG 344 int intr_thread_cnt; 345 #endif 346 347 /* 348 * Called with interrupts disabled 349 */ 350 static void 351 intr_thread_epilog(struct cpu *cpu, uint_t vec, uint_t oldpil) 352 { 353 struct machcpu *mcpu = &cpu->cpu_m; 354 kthread_t *t; 355 kthread_t *it = cpu->cpu_thread; /* curthread */ 356 uint_t pil, basespl; 357 hrtime_t intrtime; 358 hrtime_t now = tsc_read(); 359 360 pil = it->t_pil; 361 cpu->cpu_stats.sys.intr[pil - 1]++; 362 363 ASSERT(it->t_intr_start != 0); 364 intrtime = now - it->t_intr_start; 365 mcpu->intrstat[pil][0] += intrtime; 366 cpu->cpu_intracct[cpu->cpu_mstate] += intrtime; 367 368 ASSERT(cpu->cpu_intr_actv & (1 << pil)); 369 cpu->cpu_intr_actv &= ~(1 << pil); 370 371 /* 372 * If there is still an interrupted thread underneath this one 373 * then the interrupt was never blocked and the return is 374 * fairly simple. Otherwise it isn't. 375 */ 376 if ((t = it->t_intr) == NULL) { 377 /* 378 * The interrupted thread is no longer pinned underneath 379 * the interrupt thread. This means the interrupt must 380 * have blocked, and the interrupted thread has been 381 * unpinned, and has probably been running around the 382 * system for a while. 383 * 384 * Since there is no longer a thread under this one, put 385 * this interrupt thread back on the CPU's free list and 386 * resume the idle thread which will dispatch the next 387 * thread to run. 388 */ 389 #ifdef DEBUG 390 intr_thread_cnt++; 391 #endif 392 cpu->cpu_stats.sys.intrblk++; 393 /* 394 * Set CPU's base SPL based on active interrupts bitmask 395 */ 396 set_base_spl(); 397 basespl = cpu->cpu_base_spl; 398 mcpu->mcpu_pri = basespl; 399 (*setlvlx)(basespl, vec); 400 (void) splhigh(); 401 sti(); 402 it->t_state = TS_FREE; 403 /* 404 * Return interrupt thread to pool 405 */ 406 it->t_link = cpu->cpu_intr_thread; 407 cpu->cpu_intr_thread = it; 408 swtch(); 409 panic("intr_thread_epilog: swtch returned"); 410 /*NOTREACHED*/ 411 } 412 413 /* 414 * Return interrupt thread to the pool 415 */ 416 it->t_link = cpu->cpu_intr_thread; 417 cpu->cpu_intr_thread = it; 418 it->t_state = TS_FREE; 419 420 basespl = cpu->cpu_base_spl; 421 pil = MAX(oldpil, basespl); 422 mcpu->mcpu_pri = pil; 423 (*setlvlx)(pil, vec); 424 t->t_intr_start = now; 425 cpu->cpu_thread = t; 426 } 427 428 /* 429 * intr_get_time() is a resource for interrupt handlers to determine how 430 * much time has been spent handling the current interrupt. Such a function 431 * is needed because higher level interrupts can arrive during the 432 * processing of an interrupt. intr_get_time() only returns time spent in the 433 * current interrupt handler. 434 * 435 * The caller must be calling from an interrupt handler running at a pil 436 * below or at lock level. Timings are not provided for high-level 437 * interrupts. 438 * 439 * The first time intr_get_time() is called while handling an interrupt, 440 * it returns the time since the interrupt handler was invoked. Subsequent 441 * calls will return the time since the prior call to intr_get_time(). Time 442 * is returned as ticks. Use scalehrtimef() to convert ticks to nsec. 443 * 444 * Theory Of Intrstat[][]: 445 * 446 * uint64_t intrstat[pil][0..1] is an array indexed by pil level, with two 447 * uint64_ts per pil. 448 * 449 * intrstat[pil][0] is a cumulative count of the number of ticks spent 450 * handling all interrupts at the specified pil on this CPU. It is 451 * exported via kstats to the user. 452 * 453 * intrstat[pil][1] is always a count of ticks less than or equal to the 454 * value in [0]. The difference between [1] and [0] is the value returned 455 * by a call to intr_get_time(). At the start of interrupt processing, 456 * [0] and [1] will be equal (or nearly so). As the interrupt consumes 457 * time, [0] will increase, but [1] will remain the same. A call to 458 * intr_get_time() will return the difference, then update [1] to be the 459 * same as [0]. Future calls will return the time since the last call. 460 * Finally, when the interrupt completes, [1] is updated to the same as [0]. 461 * 462 * Implementation: 463 * 464 * intr_get_time() works much like a higher level interrupt arriving. It 465 * "checkpoints" the timing information by incrementing intrstat[pil][0] 466 * to include elapsed running time, and by setting t_intr_start to rdtsc. 467 * It then sets the return value to intrstat[pil][0] - intrstat[pil][1], 468 * and updates intrstat[pil][1] to be the same as the new value of 469 * intrstat[pil][0]. 470 * 471 * In the normal handling of interrupts, after an interrupt handler returns 472 * and the code in intr_thread() updates intrstat[pil][0], it then sets 473 * intrstat[pil][1] to the new value of intrstat[pil][0]. When [0] == [1], 474 * the timings are reset, i.e. intr_get_time() will return [0] - [1] which 475 * is 0. 476 * 477 * Whenever interrupts arrive on a CPU which is handling a lower pil 478 * interrupt, they update the lower pil's [0] to show time spent in the 479 * handler that they've interrupted. This results in a growing discrepancy 480 * between [0] and [1], which is returned the next time intr_get_time() is 481 * called. Time spent in the higher-pil interrupt will not be returned in 482 * the next intr_get_time() call from the original interrupt, because 483 * the higher-pil interrupt's time is accumulated in intrstat[higherpil][]. 484 */ 485 uint64_t 486 intr_get_time(void) 487 { 488 struct cpu *cpu; 489 struct machcpu *mcpu; 490 kthread_t *t; 491 uint64_t time, delta, ret; 492 uint_t pil; 493 494 cli(); 495 cpu = CPU; 496 mcpu = &cpu->cpu_m; 497 t = cpu->cpu_thread; 498 pil = t->t_pil; 499 ASSERT((cpu->cpu_intr_actv & CPU_INTR_ACTV_HIGH_LEVEL_MASK) == 0); 500 ASSERT(t->t_flag & T_INTR_THREAD); 501 ASSERT(pil != 0); 502 ASSERT(t->t_intr_start != 0); 503 504 time = tsc_read(); 505 delta = time - t->t_intr_start; 506 t->t_intr_start = time; 507 508 time = mcpu->intrstat[pil][0] + delta; 509 ret = time - mcpu->intrstat[pil][1]; 510 mcpu->intrstat[pil][0] = time; 511 mcpu->intrstat[pil][1] = time; 512 cpu->cpu_intracct[cpu->cpu_mstate] += delta; 513 514 sti(); 515 return (ret); 516 } 517 518 static caddr_t 519 dosoftint_prolog( 520 struct cpu *cpu, 521 caddr_t stackptr, 522 uint32_t st_pending, 523 uint_t oldpil) 524 { 525 kthread_t *t, *volatile it; 526 struct machcpu *mcpu = &cpu->cpu_m; 527 uint_t pil; 528 hrtime_t now; 529 530 top: 531 ASSERT(st_pending == mcpu->mcpu_softinfo.st_pending); 532 533 pil = bsrw_insn((uint16_t)st_pending); 534 if (pil <= oldpil || pil <= cpu->cpu_base_spl) 535 return (0); 536 537 /* 538 * XX64 Sigh. 539 * 540 * This is a transliteration of the i386 assembler code for 541 * soft interrupts. One question is "why does this need 542 * to be atomic?" One possible race is -other- processors 543 * posting soft interrupts to us in set_pending() i.e. the 544 * CPU might get preempted just after the address computation, 545 * but just before the atomic transaction, so another CPU would 546 * actually set the original CPU's st_pending bit. However, 547 * it looks like it would be simpler to disable preemption there. 548 * Are there other races for which preemption control doesn't work? 549 * 550 * The i386 assembler version -also- checks to see if the bit 551 * being cleared was actually set; if it wasn't, it rechecks 552 * for more. This seems a bit strange, as the only code that 553 * ever clears the bit is -this- code running with interrupts 554 * disabled on -this- CPU. This code would probably be cheaper: 555 * 556 * atomic_and_32((uint32_t *)&mcpu->mcpu_softinfo.st_pending, 557 * ~(1 << pil)); 558 * 559 * and t->t_preempt--/++ around set_pending() even cheaper, 560 * but at this point, correctness is critical, so we slavishly 561 * emulate the i386 port. 562 */ 563 if (atomic_btr32((uint32_t *) 564 &mcpu->mcpu_softinfo.st_pending, pil) == 0) { 565 st_pending = mcpu->mcpu_softinfo.st_pending; 566 goto top; 567 } 568 569 mcpu->mcpu_pri = pil; 570 (*setspl)(pil); 571 572 now = tsc_read(); 573 574 /* 575 * Get set to run interrupt thread. 576 * There should always be an interrupt thread since we 577 * allocate one for each level on the CPU. 578 */ 579 it = cpu->cpu_intr_thread; 580 cpu->cpu_intr_thread = it->t_link; 581 582 /* t_intr_start could be zero due to cpu_intr_swtch_enter. */ 583 t = cpu->cpu_thread; 584 if ((t->t_flag & T_INTR_THREAD) && t->t_intr_start != 0) { 585 hrtime_t intrtime = now - t->t_intr_start; 586 mcpu->intrstat[pil][0] += intrtime; 587 cpu->cpu_intracct[cpu->cpu_mstate] += intrtime; 588 t->t_intr_start = 0; 589 } 590 591 /* 592 * Note that the code in kcpc_overflow_intr -relies- on the 593 * ordering of events here - in particular that t->t_lwp of 594 * the interrupt thread is set to the pinned thread *before* 595 * curthread is changed. 596 */ 597 it->t_lwp = t->t_lwp; 598 it->t_state = TS_ONPROC; 599 600 /* 601 * Push interrupted thread onto list from new thread. 602 * Set the new thread as the current one. 603 * Set interrupted thread's T_SP because if it is the idle thread, 604 * resume() may use that stack between threads. 605 */ 606 607 ASSERT(SA((uintptr_t)stackptr) == (uintptr_t)stackptr); 608 t->t_sp = (uintptr_t)stackptr; 609 610 it->t_intr = t; 611 cpu->cpu_thread = it; 612 613 /* 614 * Set bit for this pil in CPU's interrupt active bitmask. 615 */ 616 ASSERT((cpu->cpu_intr_actv & (1 << pil)) == 0); 617 cpu->cpu_intr_actv |= (1 << pil); 618 619 /* 620 * Initialize thread priority level from intr_pri 621 */ 622 it->t_pil = (uchar_t)pil; 623 it->t_pri = (pri_t)pil + intr_pri; 624 it->t_intr_start = now; 625 626 return (it->t_stk); 627 } 628 629 static void 630 dosoftint_epilog(struct cpu *cpu, uint_t oldpil) 631 { 632 struct machcpu *mcpu = &cpu->cpu_m; 633 kthread_t *t, *it; 634 uint_t pil, basespl; 635 hrtime_t intrtime; 636 hrtime_t now = tsc_read(); 637 638 it = cpu->cpu_thread; 639 pil = it->t_pil; 640 641 cpu->cpu_stats.sys.intr[pil - 1]++; 642 643 ASSERT(cpu->cpu_intr_actv & (1 << pil)); 644 cpu->cpu_intr_actv &= ~(1 << pil); 645 intrtime = now - it->t_intr_start; 646 mcpu->intrstat[pil][0] += intrtime; 647 cpu->cpu_intracct[cpu->cpu_mstate] += intrtime; 648 649 /* 650 * If there is still an interrupted thread underneath this one 651 * then the interrupt was never blocked and the return is 652 * fairly simple. Otherwise it isn't. 653 */ 654 if ((t = it->t_intr) == NULL) { 655 /* 656 * Put thread back on the interrupt thread list. 657 * This was an interrupt thread, so set CPU's base SPL. 658 */ 659 set_base_spl(); 660 it->t_state = TS_FREE; 661 it->t_link = cpu->cpu_intr_thread; 662 cpu->cpu_intr_thread = it; 663 (void) splhigh(); 664 sti(); 665 swtch(); 666 /*NOTREACHED*/ 667 panic("dosoftint_epilog: swtch returned"); 668 } 669 it->t_link = cpu->cpu_intr_thread; 670 cpu->cpu_intr_thread = it; 671 it->t_state = TS_FREE; 672 cpu->cpu_thread = t; 673 if (t->t_flag & T_INTR_THREAD) 674 t->t_intr_start = now; 675 basespl = cpu->cpu_base_spl; 676 pil = MAX(oldpil, basespl); 677 mcpu->mcpu_pri = pil; 678 (*setspl)(pil); 679 } 680 681 682 /* 683 * Make the interrupted thread 'to' be runnable. 684 * 685 * Since t->t_sp has already been saved, t->t_pc is all 686 * that needs to be set in this function. 687 * 688 * Returns the interrupt level of the interrupt thread. 689 */ 690 int 691 intr_passivate( 692 kthread_t *it, /* interrupt thread */ 693 kthread_t *t) /* interrupted thread */ 694 { 695 extern void _sys_rtt(); 696 697 ASSERT(it->t_flag & T_INTR_THREAD); 698 ASSERT(SA(t->t_sp) == t->t_sp); 699 700 t->t_pc = (uintptr_t)_sys_rtt; 701 return (it->t_pil); 702 } 703 704 /* 705 * Create interrupt kstats for this CPU. 706 */ 707 void 708 cpu_create_intrstat(cpu_t *cp) 709 { 710 int i; 711 kstat_t *intr_ksp; 712 kstat_named_t *knp; 713 char name[KSTAT_STRLEN]; 714 zoneid_t zoneid; 715 716 ASSERT(MUTEX_HELD(&cpu_lock)); 717 718 if (pool_pset_enabled()) 719 zoneid = GLOBAL_ZONEID; 720 else 721 zoneid = ALL_ZONES; 722 723 intr_ksp = kstat_create_zone("cpu", cp->cpu_id, "intrstat", "misc", 724 KSTAT_TYPE_NAMED, PIL_MAX * 2, NULL, zoneid); 725 726 /* 727 * Initialize each PIL's named kstat 728 */ 729 if (intr_ksp != NULL) { 730 intr_ksp->ks_update = cpu_kstat_intrstat_update; 731 knp = (kstat_named_t *)intr_ksp->ks_data; 732 intr_ksp->ks_private = cp; 733 for (i = 0; i < PIL_MAX; i++) { 734 (void) snprintf(name, KSTAT_STRLEN, "level-%d-time", 735 i + 1); 736 kstat_named_init(&knp[i * 2], name, KSTAT_DATA_UINT64); 737 (void) snprintf(name, KSTAT_STRLEN, "level-%d-count", 738 i + 1); 739 kstat_named_init(&knp[(i * 2) + 1], name, 740 KSTAT_DATA_UINT64); 741 } 742 kstat_install(intr_ksp); 743 } 744 } 745 746 /* 747 * Delete interrupt kstats for this CPU. 748 */ 749 void 750 cpu_delete_intrstat(cpu_t *cp) 751 { 752 kstat_delete_byname_zone("cpu", cp->cpu_id, "intrstat", ALL_ZONES); 753 } 754 755 /* 756 * Convert interrupt statistics from CPU ticks to nanoseconds and 757 * update kstat. 758 */ 759 int 760 cpu_kstat_intrstat_update(kstat_t *ksp, int rw) 761 { 762 kstat_named_t *knp = ksp->ks_data; 763 cpu_t *cpup = (cpu_t *)ksp->ks_private; 764 int i; 765 hrtime_t hrt; 766 767 if (rw == KSTAT_WRITE) 768 return (EACCES); 769 770 for (i = 0; i < PIL_MAX; i++) { 771 hrt = (hrtime_t)cpup->cpu_m.intrstat[i + 1][0]; 772 scalehrtimef(&hrt); 773 knp[i * 2].value.ui64 = (uint64_t)hrt; 774 knp[(i * 2) + 1].value.ui64 = cpup->cpu_stats.sys.intr[i]; 775 } 776 777 return (0); 778 } 779 780 /* 781 * An interrupt thread is ending a time slice, so compute the interval it 782 * ran for and update the statistic for its PIL. 783 */ 784 void 785 cpu_intr_swtch_enter(kthread_id_t t) 786 { 787 uint64_t interval; 788 uint64_t start; 789 cpu_t *cpu; 790 791 ASSERT((t->t_flag & T_INTR_THREAD) != 0); 792 ASSERT(t->t_pil > 0 && t->t_pil <= LOCK_LEVEL); 793 794 /* 795 * We could be here with a zero timestamp. This could happen if: 796 * an interrupt thread which no longer has a pinned thread underneath 797 * it (i.e. it blocked at some point in its past) has finished running 798 * its handler. intr_thread() updated the interrupt statistic for its 799 * PIL and zeroed its timestamp. Since there was no pinned thread to 800 * return to, swtch() gets called and we end up here. 801 * 802 * Note that we use atomic ops below (cas64 and atomic_add_64), which 803 * we don't use in the functions above, because we're not called 804 * with interrupts blocked, but the epilog/prolog functions are. 805 */ 806 if (t->t_intr_start) { 807 do { 808 start = t->t_intr_start; 809 interval = tsc_read() - start; 810 } while (cas64(&t->t_intr_start, start, 0) != start); 811 cpu = CPU; 812 cpu->cpu_m.intrstat[t->t_pil][0] += interval; 813 814 atomic_add_64((uint64_t *)&cpu->cpu_intracct[cpu->cpu_mstate], 815 interval); 816 } else 817 ASSERT(t->t_intr == NULL); 818 } 819 820 /* 821 * An interrupt thread is returning from swtch(). Place a starting timestamp 822 * in its thread structure. 823 */ 824 void 825 cpu_intr_swtch_exit(kthread_id_t t) 826 { 827 uint64_t ts; 828 829 ASSERT((t->t_flag & T_INTR_THREAD) != 0); 830 ASSERT(t->t_pil > 0 && t->t_pil <= LOCK_LEVEL); 831 832 do { 833 ts = t->t_intr_start; 834 } while (cas64(&t->t_intr_start, ts, tsc_read()) != ts); 835 } 836 837 /* 838 * Dispatch a hilevel interrupt (one above LOCK_LEVEL) 839 */ 840 /*ARGSUSED*/ 841 static void 842 dispatch_hilevel(uint_t vector, uint_t arg2) 843 { 844 sti(); 845 av_dispatch_autovect(vector); 846 cli(); 847 } 848 849 /* 850 * Dispatch a soft interrupt 851 */ 852 /*ARGSUSED*/ 853 static void 854 dispatch_softint(uint_t oldpil, uint_t arg2) 855 { 856 struct cpu *cpu = CPU; 857 858 sti(); 859 av_dispatch_softvect((int)cpu->cpu_thread->t_pil); 860 cli(); 861 862 /* 863 * Must run softint_epilog() on the interrupt thread stack, since 864 * there may not be a return from it if the interrupt thread blocked. 865 */ 866 dosoftint_epilog(cpu, oldpil); 867 } 868 869 /* 870 * Dispatch a normal interrupt 871 */ 872 static void 873 dispatch_hardint(uint_t vector, uint_t oldipl) 874 { 875 struct cpu *cpu = CPU; 876 877 sti(); 878 av_dispatch_autovect(vector); 879 cli(); 880 881 /* 882 * Must run intr_thread_epilog() on the interrupt thread stack, since 883 * there may not be a return from it if the interrupt thread blocked. 884 */ 885 intr_thread_epilog(cpu, vector, oldipl); 886 } 887 888 /* 889 * Deliver any softints the current interrupt priority allows. 890 * Called with interrupts disabled. 891 */ 892 void 893 dosoftint(struct regs *regs) 894 { 895 struct cpu *cpu = CPU; 896 int oldipl; 897 caddr_t newsp; 898 899 while (cpu->cpu_softinfo.st_pending) { 900 oldipl = cpu->cpu_pri; 901 newsp = dosoftint_prolog(cpu, (caddr_t)regs, 902 cpu->cpu_softinfo.st_pending, oldipl); 903 /* 904 * If returned stack pointer is NULL, priority is too high 905 * to run any of the pending softints now. 906 * Break out and they will be run later. 907 */ 908 if (newsp == NULL) 909 break; 910 switch_sp_and_call(newsp, dispatch_softint, oldipl, 0); 911 } 912 } 913 914 /* 915 * Interrupt service routine, called with interrupts disabled. 916 */ 917 /*ARGSUSED*/ 918 void 919 do_interrupt(struct regs *rp, trap_trace_rec_t *ttp) 920 { 921 struct cpu *cpu = CPU; 922 int newipl, oldipl = cpu->cpu_pri; 923 uint_t vector; 924 caddr_t newsp; 925 926 #ifdef TRAPTRACE 927 ttp->ttr_marker = TT_INTERRUPT; 928 ttp->ttr_ipl = 0xff; 929 ttp->ttr_pri = oldipl; 930 ttp->ttr_spl = cpu->cpu_base_spl; 931 ttp->ttr_vector = 0xff; 932 #endif /* TRAPTRACE */ 933 934 #if !defined(__xpv) 935 /* 936 * Handle any pending TLB flushing 937 */ 938 tlb_service(); 939 #endif 940 941 /* 942 * If it's a softint go do it now. 943 */ 944 if (rp->r_trapno == T_SOFTINT) { 945 dosoftint(rp); 946 ASSERT(!interrupts_enabled()); 947 return; 948 } 949 950 /* 951 * Raise the interrupt priority. 952 */ 953 newipl = (*setlvl)(oldipl, (int *)&rp->r_trapno); 954 #ifdef TRAPTRACE 955 ttp->ttr_ipl = newipl; 956 #endif /* TRAPTRACE */ 957 958 /* 959 * Bail if it is a spurious interrupt 960 */ 961 if (newipl == -1) 962 return; 963 cpu->cpu_pri = newipl; 964 vector = rp->r_trapno; 965 #ifdef TRAPTRACE 966 ttp->ttr_vector = vector; 967 #endif /* TRAPTRACE */ 968 if (newipl > LOCK_LEVEL) { 969 /* 970 * High priority interrupts run on this cpu's interrupt stack. 971 */ 972 if (hilevel_intr_prolog(cpu, newipl, oldipl, rp) == 0) { 973 newsp = cpu->cpu_intr_stack; 974 switch_sp_and_call(newsp, dispatch_hilevel, vector, 0); 975 } else { /* already on the interrupt stack */ 976 dispatch_hilevel(vector, 0); 977 } 978 (void) hilevel_intr_epilog(cpu, newipl, oldipl, vector); 979 } else { 980 /* 981 * Run this interrupt in a separate thread. 982 */ 983 newsp = intr_thread_prolog(cpu, (caddr_t)rp, newipl); 984 switch_sp_and_call(newsp, dispatch_hardint, vector, oldipl); 985 } 986 987 /* 988 * Deliver any pending soft interrupts. 989 */ 990 if (cpu->cpu_softinfo.st_pending) 991 dosoftint(rp); 992 } 993 994 /* 995 * Common tasks always done by _sys_rtt, called with interrupts disabled. 996 * Returns 1 if returning to userland, 0 if returning to system mode. 997 */ 998 int 999 sys_rtt_common(struct regs *rp) 1000 { 1001 kthread_t *tp; 1002 extern void mutex_exit_critical_start(); 1003 extern long mutex_exit_critical_size; 1004 extern void mutex_owner_running_critical_start(); 1005 extern long mutex_owner_running_critical_size; 1006 1007 loop: 1008 1009 /* 1010 * Check if returning to user 1011 */ 1012 tp = CPU->cpu_thread; 1013 if (USERMODE(rp->r_cs)) { 1014 /* 1015 * Check if AST pending. 1016 */ 1017 if (tp->t_astflag) { 1018 /* 1019 * Let trap() handle the AST 1020 */ 1021 sti(); 1022 rp->r_trapno = T_AST; 1023 trap(rp, (caddr_t)0, CPU->cpu_id); 1024 cli(); 1025 goto loop; 1026 } 1027 1028 #if defined(__amd64) 1029 /* 1030 * We are done if segment registers do not need updating. 1031 */ 1032 if (tp->t_lwp->lwp_pcb.pcb_rupdate == 0) 1033 return (1); 1034 1035 if (update_sregs(rp, tp->t_lwp)) { 1036 /* 1037 * 1 or more of the selectors is bad. 1038 * Deliver a SIGSEGV. 1039 */ 1040 proc_t *p = ttoproc(tp); 1041 1042 sti(); 1043 mutex_enter(&p->p_lock); 1044 tp->t_lwp->lwp_cursig = SIGSEGV; 1045 mutex_exit(&p->p_lock); 1046 psig(); 1047 tp->t_sig_check = 1; 1048 cli(); 1049 } 1050 tp->t_lwp->lwp_pcb.pcb_rupdate = 0; 1051 1052 #endif /* __amd64 */ 1053 return (1); 1054 } 1055 1056 /* 1057 * Here if we are returning to supervisor mode. 1058 * Check for a kernel preemption request. 1059 */ 1060 if (CPU->cpu_kprunrun && (rp->r_ps & PS_IE)) { 1061 1062 /* 1063 * Do nothing if already in kpreempt 1064 */ 1065 if (!tp->t_preempt_lk) { 1066 tp->t_preempt_lk = 1; 1067 sti(); 1068 kpreempt(1); /* asynchronous kpreempt call */ 1069 cli(); 1070 tp->t_preempt_lk = 0; 1071 } 1072 } 1073 1074 /* 1075 * If we interrupted the mutex_exit() critical region we must 1076 * reset the PC back to the beginning to prevent missed wakeups 1077 * See the comments in mutex_exit() for details. 1078 */ 1079 if ((uintptr_t)rp->r_pc - (uintptr_t)mutex_exit_critical_start < 1080 mutex_exit_critical_size) { 1081 rp->r_pc = (greg_t)mutex_exit_critical_start; 1082 } 1083 1084 /* 1085 * If we interrupted the mutex_owner_running() critical region we 1086 * must reset the PC back to the beginning to prevent dereferencing 1087 * of a freed thread pointer. See the comments in mutex_owner_running 1088 * for details. 1089 */ 1090 if ((uintptr_t)rp->r_pc - 1091 (uintptr_t)mutex_owner_running_critical_start < 1092 mutex_owner_running_critical_size) { 1093 rp->r_pc = (greg_t)mutex_owner_running_critical_start; 1094 } 1095 1096 return (0); 1097 } 1098 1099 void 1100 send_dirint(int cpuid, int int_level) 1101 { 1102 (*send_dirintf)(cpuid, int_level); 1103 } 1104 1105 /* 1106 * do_splx routine, takes new ipl to set 1107 * returns the old ipl. 1108 * We are careful not to set priority lower than CPU->cpu_base_pri, 1109 * even though it seems we're raising the priority, it could be set 1110 * higher at any time by an interrupt routine, so we must block interrupts 1111 * and look at CPU->cpu_base_pri 1112 */ 1113 int 1114 do_splx(int newpri) 1115 { 1116 ulong_t flag; 1117 cpu_t *cpu; 1118 int curpri, basepri; 1119 1120 flag = intr_clear(); 1121 cpu = CPU; /* ints are disabled, now safe to cache cpu ptr */ 1122 curpri = cpu->cpu_m.mcpu_pri; 1123 basepri = cpu->cpu_base_spl; 1124 if (newpri < basepri) 1125 newpri = basepri; 1126 cpu->cpu_m.mcpu_pri = newpri; 1127 (*setspl)(newpri); 1128 /* 1129 * If we are going to reenable interrupts see if new priority level 1130 * allows pending softint delivery. 1131 */ 1132 if ((flag & PS_IE) && 1133 bsrw_insn((uint16_t)cpu->cpu_softinfo.st_pending) > newpri) 1134 fakesoftint(); 1135 ASSERT(!interrupts_enabled()); 1136 intr_restore(flag); 1137 return (curpri); 1138 } 1139 1140 /* 1141 * Common spl raise routine, takes new ipl to set 1142 * returns the old ipl, will not lower ipl. 1143 */ 1144 int 1145 splr(int newpri) 1146 { 1147 ulong_t flag; 1148 cpu_t *cpu; 1149 int curpri, basepri; 1150 1151 flag = intr_clear(); 1152 cpu = CPU; /* ints are disabled, now safe to cache cpu ptr */ 1153 curpri = cpu->cpu_m.mcpu_pri; 1154 /* 1155 * Only do something if new priority is larger 1156 */ 1157 if (newpri > curpri) { 1158 basepri = cpu->cpu_base_spl; 1159 if (newpri < basepri) 1160 newpri = basepri; 1161 cpu->cpu_m.mcpu_pri = newpri; 1162 (*setspl)(newpri); 1163 /* 1164 * See if new priority level allows pending softint delivery 1165 */ 1166 if ((flag & PS_IE) && 1167 bsrw_insn((uint16_t)cpu->cpu_softinfo.st_pending) > newpri) 1168 fakesoftint(); 1169 } 1170 intr_restore(flag); 1171 return (curpri); 1172 } 1173 1174 int 1175 getpil(void) 1176 { 1177 return (CPU->cpu_m.mcpu_pri); 1178 } 1179 1180 int 1181 interrupts_enabled(void) 1182 { 1183 ulong_t flag; 1184 1185 flag = getflags(); 1186 return ((flag & PS_IE) == PS_IE); 1187 } 1188 1189 #ifdef DEBUG 1190 void 1191 assert_ints_enabled(void) 1192 { 1193 ASSERT(!interrupts_unleashed || interrupts_enabled()); 1194 } 1195 #endif /* DEBUG */ 1196