1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/cpuvar.h> 30 #include <sys/regset.h> 31 #include <sys/psw.h> 32 #include <sys/types.h> 33 #include <sys/thread.h> 34 #include <sys/systm.h> 35 #include <sys/segments.h> 36 #include <sys/pcb.h> 37 #include <sys/trap.h> 38 #include <sys/ftrace.h> 39 #include <sys/traptrace.h> 40 #include <sys/clock.h> 41 #include <sys/panic.h> 42 #include <sys/disp.h> 43 #include <vm/seg_kp.h> 44 #include <sys/stack.h> 45 #include <sys/sysmacros.h> 46 #include <sys/cmn_err.h> 47 #include <sys/kstat.h> 48 #include <sys/smp_impldefs.h> 49 #include <sys/pool_pset.h> 50 #include <sys/zone.h> 51 #include <sys/bitmap.h> 52 #include <sys/archsystm.h> 53 #include <sys/machsystm.h> 54 #include <sys/ontrap.h> 55 #include <sys/x86_archext.h> 56 #include <sys/promif.h> 57 #include <vm/hat_i86.h> 58 #if defined(__xpv) 59 #include <sys/hypervisor.h> 60 #endif 61 62 63 #if defined(__xpv) && defined(DEBUG) 64 65 /* 66 * This panic message is intended as an aid to interrupt debugging. 67 * 68 * The associated assertion tests the condition of enabling 69 * events when events are already enabled. The implication 70 * being that whatever code the programmer thought was 71 * protected by having events disabled until the second 72 * enable happened really wasn't protected at all .. 73 */ 74 75 int stistipanic = 1; /* controls the debug panic check */ 76 const char *stistimsg = "stisti"; 77 ulong_t laststi[NCPU]; 78 79 /* 80 * This variable tracks the last place events were disabled on each cpu 81 * it assists in debugging when asserts that interupts are enabled trip. 82 */ 83 ulong_t lastcli[NCPU]; 84 85 #endif 86 87 /* 88 * Set cpu's base SPL level to the highest active interrupt level 89 */ 90 void 91 set_base_spl(void) 92 { 93 struct cpu *cpu = CPU; 94 uint16_t active = (uint16_t)cpu->cpu_intr_actv; 95 96 cpu->cpu_base_spl = active == 0 ? 0 : bsrw_insn(active); 97 } 98 99 /* 100 * Do all the work necessary to set up the cpu and thread structures 101 * to dispatch a high-level interrupt. 102 * 103 * Returns 0 if we're -not- already on the high-level interrupt stack, 104 * (and *must* switch to it), non-zero if we are already on that stack. 105 * 106 * Called with interrupts masked. 107 * The 'pil' is already set to the appropriate level for rp->r_trapno. 108 */ 109 static int 110 hilevel_intr_prolog(struct cpu *cpu, uint_t pil, uint_t oldpil, struct regs *rp) 111 { 112 struct machcpu *mcpu = &cpu->cpu_m; 113 uint_t mask; 114 hrtime_t intrtime; 115 hrtime_t now = tsc_read(); 116 117 ASSERT(pil > LOCK_LEVEL); 118 119 if (pil == CBE_HIGH_PIL) { 120 cpu->cpu_profile_pil = oldpil; 121 if (USERMODE(rp->r_cs)) { 122 cpu->cpu_profile_pc = 0; 123 cpu->cpu_profile_upc = rp->r_pc; 124 } else { 125 cpu->cpu_profile_pc = rp->r_pc; 126 cpu->cpu_profile_upc = 0; 127 } 128 } 129 130 mask = cpu->cpu_intr_actv & CPU_INTR_ACTV_HIGH_LEVEL_MASK; 131 if (mask != 0) { 132 int nestpil; 133 134 /* 135 * We have interrupted another high-level interrupt. 136 * Load starting timestamp, compute interval, update 137 * cumulative counter. 138 */ 139 nestpil = bsrw_insn((uint16_t)mask); 140 ASSERT(nestpil < pil); 141 intrtime = now - 142 mcpu->pil_high_start[nestpil - (LOCK_LEVEL + 1)]; 143 mcpu->intrstat[nestpil][0] += intrtime; 144 cpu->cpu_intracct[cpu->cpu_mstate] += intrtime; 145 /* 146 * Another high-level interrupt is active below this one, so 147 * there is no need to check for an interrupt thread. That 148 * will be done by the lowest priority high-level interrupt 149 * active. 150 */ 151 } else { 152 kthread_t *t = cpu->cpu_thread; 153 154 /* 155 * See if we are interrupting a low-level interrupt thread. 156 * If so, account for its time slice only if its time stamp 157 * is non-zero. 158 */ 159 if ((t->t_flag & T_INTR_THREAD) != 0 && t->t_intr_start != 0) { 160 intrtime = now - t->t_intr_start; 161 mcpu->intrstat[t->t_pil][0] += intrtime; 162 cpu->cpu_intracct[cpu->cpu_mstate] += intrtime; 163 t->t_intr_start = 0; 164 } 165 } 166 167 /* 168 * Store starting timestamp in CPU structure for this PIL. 169 */ 170 mcpu->pil_high_start[pil - (LOCK_LEVEL + 1)] = now; 171 172 ASSERT((cpu->cpu_intr_actv & (1 << pil)) == 0); 173 174 if (pil == 15) { 175 /* 176 * To support reentrant level 15 interrupts, we maintain a 177 * recursion count in the top half of cpu_intr_actv. Only 178 * when this count hits zero do we clear the PIL 15 bit from 179 * the lower half of cpu_intr_actv. 180 */ 181 uint16_t *refcntp = (uint16_t *)&cpu->cpu_intr_actv + 1; 182 (*refcntp)++; 183 } 184 185 mask = cpu->cpu_intr_actv; 186 187 cpu->cpu_intr_actv |= (1 << pil); 188 189 return (mask & CPU_INTR_ACTV_HIGH_LEVEL_MASK); 190 } 191 192 /* 193 * Does most of the work of returning from a high level interrupt. 194 * 195 * Returns 0 if there are no more high level interrupts (in which 196 * case we must switch back to the interrupted thread stack) or 197 * non-zero if there are more (in which case we should stay on it). 198 * 199 * Called with interrupts masked 200 */ 201 static int 202 hilevel_intr_epilog(struct cpu *cpu, uint_t pil, uint_t oldpil, uint_t vecnum) 203 { 204 struct machcpu *mcpu = &cpu->cpu_m; 205 uint_t mask; 206 hrtime_t intrtime; 207 hrtime_t now = tsc_read(); 208 209 ASSERT(mcpu->mcpu_pri == pil); 210 211 cpu->cpu_stats.sys.intr[pil - 1]++; 212 213 ASSERT(cpu->cpu_intr_actv & (1 << pil)); 214 215 if (pil == 15) { 216 /* 217 * To support reentrant level 15 interrupts, we maintain a 218 * recursion count in the top half of cpu_intr_actv. Only 219 * when this count hits zero do we clear the PIL 15 bit from 220 * the lower half of cpu_intr_actv. 221 */ 222 uint16_t *refcntp = (uint16_t *)&cpu->cpu_intr_actv + 1; 223 224 ASSERT(*refcntp > 0); 225 226 if (--(*refcntp) == 0) 227 cpu->cpu_intr_actv &= ~(1 << pil); 228 } else { 229 cpu->cpu_intr_actv &= ~(1 << pil); 230 } 231 232 ASSERT(mcpu->pil_high_start[pil - (LOCK_LEVEL + 1)] != 0); 233 234 intrtime = now - mcpu->pil_high_start[pil - (LOCK_LEVEL + 1)]; 235 mcpu->intrstat[pil][0] += intrtime; 236 cpu->cpu_intracct[cpu->cpu_mstate] += intrtime; 237 238 /* 239 * Check for lower-pil nested high-level interrupt beneath 240 * current one. If so, place a starting timestamp in its 241 * pil_high_start entry. 242 */ 243 mask = cpu->cpu_intr_actv & CPU_INTR_ACTV_HIGH_LEVEL_MASK; 244 if (mask != 0) { 245 int nestpil; 246 247 /* 248 * find PIL of nested interrupt 249 */ 250 nestpil = bsrw_insn((uint16_t)mask); 251 ASSERT(nestpil < pil); 252 mcpu->pil_high_start[nestpil - (LOCK_LEVEL + 1)] = now; 253 /* 254 * (Another high-level interrupt is active below this one, 255 * so there is no need to check for an interrupt 256 * thread. That will be done by the lowest priority 257 * high-level interrupt active.) 258 */ 259 } else { 260 /* 261 * Check to see if there is a low-level interrupt active. 262 * If so, place a starting timestamp in the thread 263 * structure. 264 */ 265 kthread_t *t = cpu->cpu_thread; 266 267 if (t->t_flag & T_INTR_THREAD) 268 t->t_intr_start = now; 269 } 270 271 mcpu->mcpu_pri = oldpil; 272 (void) (*setlvlx)(oldpil, vecnum); 273 274 return (cpu->cpu_intr_actv & CPU_INTR_ACTV_HIGH_LEVEL_MASK); 275 } 276 277 /* 278 * Set up the cpu, thread and interrupt thread structures for 279 * executing an interrupt thread. The new stack pointer of the 280 * interrupt thread (which *must* be switched to) is returned. 281 */ 282 static caddr_t 283 intr_thread_prolog(struct cpu *cpu, caddr_t stackptr, uint_t pil) 284 { 285 struct machcpu *mcpu = &cpu->cpu_m; 286 kthread_t *t, *volatile it; 287 hrtime_t now = tsc_read(); 288 289 ASSERT(pil > 0); 290 ASSERT((cpu->cpu_intr_actv & (1 << pil)) == 0); 291 cpu->cpu_intr_actv |= (1 << pil); 292 293 /* 294 * Get set to run an interrupt thread. 295 * There should always be an interrupt thread, since we 296 * allocate one for each level on each CPU. 297 * 298 * t_intr_start could be zero due to cpu_intr_swtch_enter. 299 */ 300 t = cpu->cpu_thread; 301 if ((t->t_flag & T_INTR_THREAD) && t->t_intr_start != 0) { 302 hrtime_t intrtime = now - t->t_intr_start; 303 mcpu->intrstat[t->t_pil][0] += intrtime; 304 cpu->cpu_intracct[cpu->cpu_mstate] += intrtime; 305 t->t_intr_start = 0; 306 } 307 308 ASSERT(SA((uintptr_t)stackptr) == (uintptr_t)stackptr); 309 310 t->t_sp = (uintptr_t)stackptr; /* mark stack in curthread for resume */ 311 312 /* 313 * unlink the interrupt thread off the cpu 314 * 315 * Note that the code in kcpc_overflow_intr -relies- on the 316 * ordering of events here - in particular that t->t_lwp of 317 * the interrupt thread is set to the pinned thread *before* 318 * curthread is changed. 319 */ 320 it = cpu->cpu_intr_thread; 321 cpu->cpu_intr_thread = it->t_link; 322 it->t_intr = t; 323 it->t_lwp = t->t_lwp; 324 325 /* 326 * (threads on the interrupt thread free list could have state 327 * preset to TS_ONPROC, but it helps in debugging if 328 * they're TS_FREE.) 329 */ 330 it->t_state = TS_ONPROC; 331 332 cpu->cpu_thread = it; /* new curthread on this cpu */ 333 it->t_pil = (uchar_t)pil; 334 it->t_pri = intr_pri + (pri_t)pil; 335 it->t_intr_start = now; 336 337 return (it->t_stk); 338 } 339 340 341 #ifdef DEBUG 342 int intr_thread_cnt; 343 #endif 344 345 /* 346 * Called with interrupts disabled 347 */ 348 static void 349 intr_thread_epilog(struct cpu *cpu, uint_t vec, uint_t oldpil) 350 { 351 struct machcpu *mcpu = &cpu->cpu_m; 352 kthread_t *t; 353 kthread_t *it = cpu->cpu_thread; /* curthread */ 354 uint_t pil, basespl; 355 hrtime_t intrtime; 356 hrtime_t now = tsc_read(); 357 358 pil = it->t_pil; 359 cpu->cpu_stats.sys.intr[pil - 1]++; 360 361 ASSERT(it->t_intr_start != 0); 362 intrtime = now - it->t_intr_start; 363 mcpu->intrstat[pil][0] += intrtime; 364 cpu->cpu_intracct[cpu->cpu_mstate] += intrtime; 365 366 ASSERT(cpu->cpu_intr_actv & (1 << pil)); 367 cpu->cpu_intr_actv &= ~(1 << pil); 368 369 /* 370 * If there is still an interrupted thread underneath this one 371 * then the interrupt was never blocked and the return is 372 * fairly simple. Otherwise it isn't. 373 */ 374 if ((t = it->t_intr) == NULL) { 375 /* 376 * The interrupted thread is no longer pinned underneath 377 * the interrupt thread. This means the interrupt must 378 * have blocked, and the interrupted thread has been 379 * unpinned, and has probably been running around the 380 * system for a while. 381 * 382 * Since there is no longer a thread under this one, put 383 * this interrupt thread back on the CPU's free list and 384 * resume the idle thread which will dispatch the next 385 * thread to run. 386 */ 387 #ifdef DEBUG 388 intr_thread_cnt++; 389 #endif 390 cpu->cpu_stats.sys.intrblk++; 391 /* 392 * Set CPU's base SPL based on active interrupts bitmask 393 */ 394 set_base_spl(); 395 basespl = cpu->cpu_base_spl; 396 mcpu->mcpu_pri = basespl; 397 (*setlvlx)(basespl, vec); 398 (void) splhigh(); 399 sti(); 400 it->t_state = TS_FREE; 401 /* 402 * Return interrupt thread to pool 403 */ 404 it->t_link = cpu->cpu_intr_thread; 405 cpu->cpu_intr_thread = it; 406 swtch(); 407 panic("intr_thread_epilog: swtch returned"); 408 /*NOTREACHED*/ 409 } 410 411 /* 412 * Return interrupt thread to the pool 413 */ 414 it->t_link = cpu->cpu_intr_thread; 415 cpu->cpu_intr_thread = it; 416 it->t_state = TS_FREE; 417 418 basespl = cpu->cpu_base_spl; 419 pil = MAX(oldpil, basespl); 420 mcpu->mcpu_pri = pil; 421 (*setlvlx)(pil, vec); 422 t->t_intr_start = now; 423 cpu->cpu_thread = t; 424 } 425 426 /* 427 * intr_get_time() is a resource for interrupt handlers to determine how 428 * much time has been spent handling the current interrupt. Such a function 429 * is needed because higher level interrupts can arrive during the 430 * processing of an interrupt. intr_get_time() only returns time spent in the 431 * current interrupt handler. 432 * 433 * The caller must be calling from an interrupt handler running at a pil 434 * below or at lock level. Timings are not provided for high-level 435 * interrupts. 436 * 437 * The first time intr_get_time() is called while handling an interrupt, 438 * it returns the time since the interrupt handler was invoked. Subsequent 439 * calls will return the time since the prior call to intr_get_time(). Time 440 * is returned as ticks. Use scalehrtimef() to convert ticks to nsec. 441 * 442 * Theory Of Intrstat[][]: 443 * 444 * uint64_t intrstat[pil][0..1] is an array indexed by pil level, with two 445 * uint64_ts per pil. 446 * 447 * intrstat[pil][0] is a cumulative count of the number of ticks spent 448 * handling all interrupts at the specified pil on this CPU. It is 449 * exported via kstats to the user. 450 * 451 * intrstat[pil][1] is always a count of ticks less than or equal to the 452 * value in [0]. The difference between [1] and [0] is the value returned 453 * by a call to intr_get_time(). At the start of interrupt processing, 454 * [0] and [1] will be equal (or nearly so). As the interrupt consumes 455 * time, [0] will increase, but [1] will remain the same. A call to 456 * intr_get_time() will return the difference, then update [1] to be the 457 * same as [0]. Future calls will return the time since the last call. 458 * Finally, when the interrupt completes, [1] is updated to the same as [0]. 459 * 460 * Implementation: 461 * 462 * intr_get_time() works much like a higher level interrupt arriving. It 463 * "checkpoints" the timing information by incrementing intrstat[pil][0] 464 * to include elapsed running time, and by setting t_intr_start to rdtsc. 465 * It then sets the return value to intrstat[pil][0] - intrstat[pil][1], 466 * and updates intrstat[pil][1] to be the same as the new value of 467 * intrstat[pil][0]. 468 * 469 * In the normal handling of interrupts, after an interrupt handler returns 470 * and the code in intr_thread() updates intrstat[pil][0], it then sets 471 * intrstat[pil][1] to the new value of intrstat[pil][0]. When [0] == [1], 472 * the timings are reset, i.e. intr_get_time() will return [0] - [1] which 473 * is 0. 474 * 475 * Whenever interrupts arrive on a CPU which is handling a lower pil 476 * interrupt, they update the lower pil's [0] to show time spent in the 477 * handler that they've interrupted. This results in a growing discrepancy 478 * between [0] and [1], which is returned the next time intr_get_time() is 479 * called. Time spent in the higher-pil interrupt will not be returned in 480 * the next intr_get_time() call from the original interrupt, because 481 * the higher-pil interrupt's time is accumulated in intrstat[higherpil][]. 482 */ 483 uint64_t 484 intr_get_time(void) 485 { 486 struct cpu *cpu; 487 struct machcpu *mcpu; 488 kthread_t *t; 489 uint64_t time, delta, ret; 490 uint_t pil; 491 492 cli(); 493 cpu = CPU; 494 mcpu = &cpu->cpu_m; 495 t = cpu->cpu_thread; 496 pil = t->t_pil; 497 ASSERT((cpu->cpu_intr_actv & CPU_INTR_ACTV_HIGH_LEVEL_MASK) == 0); 498 ASSERT(t->t_flag & T_INTR_THREAD); 499 ASSERT(pil != 0); 500 ASSERT(t->t_intr_start != 0); 501 502 time = tsc_read(); 503 delta = time - t->t_intr_start; 504 t->t_intr_start = time; 505 506 time = mcpu->intrstat[pil][0] + delta; 507 ret = time - mcpu->intrstat[pil][1]; 508 mcpu->intrstat[pil][0] = time; 509 mcpu->intrstat[pil][1] = time; 510 cpu->cpu_intracct[cpu->cpu_mstate] += delta; 511 512 sti(); 513 return (ret); 514 } 515 516 static caddr_t 517 dosoftint_prolog( 518 struct cpu *cpu, 519 caddr_t stackptr, 520 uint32_t st_pending, 521 uint_t oldpil) 522 { 523 kthread_t *t, *volatile it; 524 struct machcpu *mcpu = &cpu->cpu_m; 525 uint_t pil; 526 hrtime_t now; 527 528 top: 529 ASSERT(st_pending == mcpu->mcpu_softinfo.st_pending); 530 531 pil = bsrw_insn((uint16_t)st_pending); 532 if (pil <= oldpil || pil <= cpu->cpu_base_spl) 533 return (0); 534 535 /* 536 * XX64 Sigh. 537 * 538 * This is a transliteration of the i386 assembler code for 539 * soft interrupts. One question is "why does this need 540 * to be atomic?" One possible race is -other- processors 541 * posting soft interrupts to us in set_pending() i.e. the 542 * CPU might get preempted just after the address computation, 543 * but just before the atomic transaction, so another CPU would 544 * actually set the original CPU's st_pending bit. However, 545 * it looks like it would be simpler to disable preemption there. 546 * Are there other races for which preemption control doesn't work? 547 * 548 * The i386 assembler version -also- checks to see if the bit 549 * being cleared was actually set; if it wasn't, it rechecks 550 * for more. This seems a bit strange, as the only code that 551 * ever clears the bit is -this- code running with interrupts 552 * disabled on -this- CPU. This code would probably be cheaper: 553 * 554 * atomic_and_32((uint32_t *)&mcpu->mcpu_softinfo.st_pending, 555 * ~(1 << pil)); 556 * 557 * and t->t_preempt--/++ around set_pending() even cheaper, 558 * but at this point, correctness is critical, so we slavishly 559 * emulate the i386 port. 560 */ 561 if (atomic_btr32((uint32_t *) 562 &mcpu->mcpu_softinfo.st_pending, pil) == 0) { 563 st_pending = mcpu->mcpu_softinfo.st_pending; 564 goto top; 565 } 566 567 mcpu->mcpu_pri = pil; 568 (*setspl)(pil); 569 570 now = tsc_read(); 571 572 /* 573 * Get set to run interrupt thread. 574 * There should always be an interrupt thread since we 575 * allocate one for each level on the CPU. 576 */ 577 it = cpu->cpu_intr_thread; 578 cpu->cpu_intr_thread = it->t_link; 579 580 /* t_intr_start could be zero due to cpu_intr_swtch_enter. */ 581 t = cpu->cpu_thread; 582 if ((t->t_flag & T_INTR_THREAD) && t->t_intr_start != 0) { 583 hrtime_t intrtime = now - t->t_intr_start; 584 mcpu->intrstat[pil][0] += intrtime; 585 cpu->cpu_intracct[cpu->cpu_mstate] += intrtime; 586 t->t_intr_start = 0; 587 } 588 589 /* 590 * Note that the code in kcpc_overflow_intr -relies- on the 591 * ordering of events here - in particular that t->t_lwp of 592 * the interrupt thread is set to the pinned thread *before* 593 * curthread is changed. 594 */ 595 it->t_lwp = t->t_lwp; 596 it->t_state = TS_ONPROC; 597 598 /* 599 * Push interrupted thread onto list from new thread. 600 * Set the new thread as the current one. 601 * Set interrupted thread's T_SP because if it is the idle thread, 602 * resume() may use that stack between threads. 603 */ 604 605 ASSERT(SA((uintptr_t)stackptr) == (uintptr_t)stackptr); 606 t->t_sp = (uintptr_t)stackptr; 607 608 it->t_intr = t; 609 cpu->cpu_thread = it; 610 611 /* 612 * Set bit for this pil in CPU's interrupt active bitmask. 613 */ 614 ASSERT((cpu->cpu_intr_actv & (1 << pil)) == 0); 615 cpu->cpu_intr_actv |= (1 << pil); 616 617 /* 618 * Initialize thread priority level from intr_pri 619 */ 620 it->t_pil = (uchar_t)pil; 621 it->t_pri = (pri_t)pil + intr_pri; 622 it->t_intr_start = now; 623 624 return (it->t_stk); 625 } 626 627 static void 628 dosoftint_epilog(struct cpu *cpu, uint_t oldpil) 629 { 630 struct machcpu *mcpu = &cpu->cpu_m; 631 kthread_t *t, *it; 632 uint_t pil, basespl; 633 hrtime_t intrtime; 634 hrtime_t now = tsc_read(); 635 636 it = cpu->cpu_thread; 637 pil = it->t_pil; 638 639 cpu->cpu_stats.sys.intr[pil - 1]++; 640 641 ASSERT(cpu->cpu_intr_actv & (1 << pil)); 642 cpu->cpu_intr_actv &= ~(1 << pil); 643 intrtime = now - it->t_intr_start; 644 mcpu->intrstat[pil][0] += intrtime; 645 cpu->cpu_intracct[cpu->cpu_mstate] += intrtime; 646 647 /* 648 * If there is still an interrupted thread underneath this one 649 * then the interrupt was never blocked and the return is 650 * fairly simple. Otherwise it isn't. 651 */ 652 if ((t = it->t_intr) == NULL) { 653 /* 654 * Put thread back on the interrupt thread list. 655 * This was an interrupt thread, so set CPU's base SPL. 656 */ 657 set_base_spl(); 658 it->t_state = TS_FREE; 659 it->t_link = cpu->cpu_intr_thread; 660 cpu->cpu_intr_thread = it; 661 (void) splhigh(); 662 sti(); 663 swtch(); 664 /*NOTREACHED*/ 665 panic("dosoftint_epilog: swtch returned"); 666 } 667 it->t_link = cpu->cpu_intr_thread; 668 cpu->cpu_intr_thread = it; 669 it->t_state = TS_FREE; 670 cpu->cpu_thread = t; 671 if (t->t_flag & T_INTR_THREAD) 672 t->t_intr_start = now; 673 basespl = cpu->cpu_base_spl; 674 pil = MAX(oldpil, basespl); 675 mcpu->mcpu_pri = pil; 676 (*setspl)(pil); 677 } 678 679 680 /* 681 * Make the interrupted thread 'to' be runnable. 682 * 683 * Since t->t_sp has already been saved, t->t_pc is all 684 * that needs to be set in this function. 685 * 686 * Returns the interrupt level of the interrupt thread. 687 */ 688 int 689 intr_passivate( 690 kthread_t *it, /* interrupt thread */ 691 kthread_t *t) /* interrupted thread */ 692 { 693 extern void _sys_rtt(); 694 695 ASSERT(it->t_flag & T_INTR_THREAD); 696 ASSERT(SA(t->t_sp) == t->t_sp); 697 698 t->t_pc = (uintptr_t)_sys_rtt; 699 return (it->t_pil); 700 } 701 702 /* 703 * Create interrupt kstats for this CPU. 704 */ 705 void 706 cpu_create_intrstat(cpu_t *cp) 707 { 708 int i; 709 kstat_t *intr_ksp; 710 kstat_named_t *knp; 711 char name[KSTAT_STRLEN]; 712 zoneid_t zoneid; 713 714 ASSERT(MUTEX_HELD(&cpu_lock)); 715 716 if (pool_pset_enabled()) 717 zoneid = GLOBAL_ZONEID; 718 else 719 zoneid = ALL_ZONES; 720 721 intr_ksp = kstat_create_zone("cpu", cp->cpu_id, "intrstat", "misc", 722 KSTAT_TYPE_NAMED, PIL_MAX * 2, NULL, zoneid); 723 724 /* 725 * Initialize each PIL's named kstat 726 */ 727 if (intr_ksp != NULL) { 728 intr_ksp->ks_update = cpu_kstat_intrstat_update; 729 knp = (kstat_named_t *)intr_ksp->ks_data; 730 intr_ksp->ks_private = cp; 731 for (i = 0; i < PIL_MAX; i++) { 732 (void) snprintf(name, KSTAT_STRLEN, "level-%d-time", 733 i + 1); 734 kstat_named_init(&knp[i * 2], name, KSTAT_DATA_UINT64); 735 (void) snprintf(name, KSTAT_STRLEN, "level-%d-count", 736 i + 1); 737 kstat_named_init(&knp[(i * 2) + 1], name, 738 KSTAT_DATA_UINT64); 739 } 740 kstat_install(intr_ksp); 741 } 742 } 743 744 /* 745 * Delete interrupt kstats for this CPU. 746 */ 747 void 748 cpu_delete_intrstat(cpu_t *cp) 749 { 750 kstat_delete_byname_zone("cpu", cp->cpu_id, "intrstat", ALL_ZONES); 751 } 752 753 /* 754 * Convert interrupt statistics from CPU ticks to nanoseconds and 755 * update kstat. 756 */ 757 int 758 cpu_kstat_intrstat_update(kstat_t *ksp, int rw) 759 { 760 kstat_named_t *knp = ksp->ks_data; 761 cpu_t *cpup = (cpu_t *)ksp->ks_private; 762 int i; 763 hrtime_t hrt; 764 765 if (rw == KSTAT_WRITE) 766 return (EACCES); 767 768 for (i = 0; i < PIL_MAX; i++) { 769 hrt = (hrtime_t)cpup->cpu_m.intrstat[i + 1][0]; 770 scalehrtimef(&hrt); 771 knp[i * 2].value.ui64 = (uint64_t)hrt; 772 knp[(i * 2) + 1].value.ui64 = cpup->cpu_stats.sys.intr[i]; 773 } 774 775 return (0); 776 } 777 778 /* 779 * An interrupt thread is ending a time slice, so compute the interval it 780 * ran for and update the statistic for its PIL. 781 */ 782 void 783 cpu_intr_swtch_enter(kthread_id_t t) 784 { 785 uint64_t interval; 786 uint64_t start; 787 cpu_t *cpu; 788 789 ASSERT((t->t_flag & T_INTR_THREAD) != 0); 790 ASSERT(t->t_pil > 0 && t->t_pil <= LOCK_LEVEL); 791 792 /* 793 * We could be here with a zero timestamp. This could happen if: 794 * an interrupt thread which no longer has a pinned thread underneath 795 * it (i.e. it blocked at some point in its past) has finished running 796 * its handler. intr_thread() updated the interrupt statistic for its 797 * PIL and zeroed its timestamp. Since there was no pinned thread to 798 * return to, swtch() gets called and we end up here. 799 * 800 * Note that we use atomic ops below (cas64 and atomic_add_64), which 801 * we don't use in the functions above, because we're not called 802 * with interrupts blocked, but the epilog/prolog functions are. 803 */ 804 if (t->t_intr_start) { 805 do { 806 start = t->t_intr_start; 807 interval = tsc_read() - start; 808 } while (cas64(&t->t_intr_start, start, 0) != start); 809 cpu = CPU; 810 cpu->cpu_m.intrstat[t->t_pil][0] += interval; 811 812 atomic_add_64((uint64_t *)&cpu->cpu_intracct[cpu->cpu_mstate], 813 interval); 814 } else 815 ASSERT(t->t_intr == NULL); 816 } 817 818 /* 819 * An interrupt thread is returning from swtch(). Place a starting timestamp 820 * in its thread structure. 821 */ 822 void 823 cpu_intr_swtch_exit(kthread_id_t t) 824 { 825 uint64_t ts; 826 827 ASSERT((t->t_flag & T_INTR_THREAD) != 0); 828 ASSERT(t->t_pil > 0 && t->t_pil <= LOCK_LEVEL); 829 830 do { 831 ts = t->t_intr_start; 832 } while (cas64(&t->t_intr_start, ts, tsc_read()) != ts); 833 } 834 835 /* 836 * Dispatch a hilevel interrupt (one above LOCK_LEVEL) 837 */ 838 /*ARGSUSED*/ 839 static void 840 dispatch_hilevel(uint_t vector, uint_t arg2) 841 { 842 sti(); 843 av_dispatch_autovect(vector); 844 cli(); 845 } 846 847 /* 848 * Dispatch a soft interrupt 849 */ 850 /*ARGSUSED*/ 851 static void 852 dispatch_softint(uint_t oldpil, uint_t arg2) 853 { 854 struct cpu *cpu = CPU; 855 856 sti(); 857 av_dispatch_softvect((int)cpu->cpu_thread->t_pil); 858 cli(); 859 860 /* 861 * Must run softint_epilog() on the interrupt thread stack, since 862 * there may not be a return from it if the interrupt thread blocked. 863 */ 864 dosoftint_epilog(cpu, oldpil); 865 } 866 867 /* 868 * Dispatch a normal interrupt 869 */ 870 static void 871 dispatch_hardint(uint_t vector, uint_t oldipl) 872 { 873 struct cpu *cpu = CPU; 874 875 sti(); 876 av_dispatch_autovect(vector); 877 cli(); 878 879 /* 880 * Must run intr_thread_epilog() on the interrupt thread stack, since 881 * there may not be a return from it if the interrupt thread blocked. 882 */ 883 intr_thread_epilog(cpu, vector, oldipl); 884 } 885 886 /* 887 * Deliver any softints the current interrupt priority allows. 888 * Called with interrupts disabled. 889 */ 890 void 891 dosoftint(struct regs *regs) 892 { 893 struct cpu *cpu = CPU; 894 int oldipl; 895 caddr_t newsp; 896 897 while (cpu->cpu_softinfo.st_pending) { 898 oldipl = cpu->cpu_pri; 899 newsp = dosoftint_prolog(cpu, (caddr_t)regs, 900 cpu->cpu_softinfo.st_pending, oldipl); 901 /* 902 * If returned stack pointer is NULL, priority is too high 903 * to run any of the pending softints now. 904 * Break out and they will be run later. 905 */ 906 if (newsp == NULL) 907 break; 908 switch_sp_and_call(newsp, dispatch_softint, oldipl, 0); 909 } 910 } 911 912 /* 913 * Interrupt service routine, called with interrupts disabled. 914 */ 915 /*ARGSUSED*/ 916 void 917 do_interrupt(struct regs *rp, trap_trace_rec_t *ttp) 918 { 919 struct cpu *cpu = CPU; 920 int newipl, oldipl = cpu->cpu_pri; 921 uint_t vector; 922 caddr_t newsp; 923 924 #ifdef TRAPTRACE 925 ttp->ttr_marker = TT_INTERRUPT; 926 ttp->ttr_ipl = 0xff; 927 ttp->ttr_pri = oldipl; 928 ttp->ttr_spl = cpu->cpu_base_spl; 929 ttp->ttr_vector = 0xff; 930 #endif /* TRAPTRACE */ 931 932 #if !defined(__xpv) 933 /* 934 * Handle any pending TLB flushing 935 */ 936 tlb_service(); 937 #endif 938 939 /* 940 * If it's a softint go do it now. 941 */ 942 if (rp->r_trapno == T_SOFTINT) { 943 dosoftint(rp); 944 ASSERT(!interrupts_enabled()); 945 return; 946 } 947 948 /* 949 * Raise the interrupt priority. 950 */ 951 newipl = (*setlvl)(oldipl, (int *)&rp->r_trapno); 952 #ifdef TRAPTRACE 953 ttp->ttr_ipl = newipl; 954 #endif /* TRAPTRACE */ 955 956 /* 957 * Bail if it is a spurious interrupt 958 */ 959 if (newipl == -1) 960 return; 961 cpu->cpu_pri = newipl; 962 vector = rp->r_trapno; 963 #ifdef TRAPTRACE 964 ttp->ttr_vector = vector; 965 #endif /* TRAPTRACE */ 966 if (newipl > LOCK_LEVEL) { 967 /* 968 * High priority interrupts run on this cpu's interrupt stack. 969 */ 970 if (hilevel_intr_prolog(cpu, newipl, oldipl, rp) == 0) { 971 newsp = cpu->cpu_intr_stack; 972 switch_sp_and_call(newsp, dispatch_hilevel, vector, 0); 973 } else { /* already on the interrupt stack */ 974 dispatch_hilevel(vector, 0); 975 } 976 (void) hilevel_intr_epilog(cpu, newipl, oldipl, vector); 977 } else { 978 /* 979 * Run this interrupt in a separate thread. 980 */ 981 newsp = intr_thread_prolog(cpu, (caddr_t)rp, newipl); 982 switch_sp_and_call(newsp, dispatch_hardint, vector, oldipl); 983 } 984 985 /* 986 * Deliver any pending soft interrupts. 987 */ 988 if (cpu->cpu_softinfo.st_pending) 989 dosoftint(rp); 990 } 991 992 /* 993 * Common tasks always done by _sys_rtt, called with interrupts disabled. 994 * Returns 1 if returning to userland, 0 if returning to system mode. 995 */ 996 int 997 sys_rtt_common(struct regs *rp) 998 { 999 kthread_t *tp; 1000 extern void mutex_exit_critical_start(); 1001 extern long mutex_exit_critical_size; 1002 extern void mutex_owner_running_critical_start(); 1003 extern long mutex_owner_running_critical_size; 1004 1005 loop: 1006 1007 /* 1008 * Check if returning to user 1009 */ 1010 tp = CPU->cpu_thread; 1011 if (USERMODE(rp->r_cs)) { 1012 /* 1013 * Check if AST pending. 1014 */ 1015 if (tp->t_astflag) { 1016 /* 1017 * Let trap() handle the AST 1018 */ 1019 sti(); 1020 rp->r_trapno = T_AST; 1021 trap(rp, (caddr_t)0, CPU->cpu_id); 1022 cli(); 1023 goto loop; 1024 } 1025 1026 #if defined(__amd64) 1027 /* 1028 * We are done if segment registers do not need updating. 1029 */ 1030 if (tp->t_lwp->lwp_pcb.pcb_rupdate == 0) 1031 return (1); 1032 1033 if (update_sregs(rp, tp->t_lwp)) { 1034 /* 1035 * 1 or more of the selectors is bad. 1036 * Deliver a SIGSEGV. 1037 */ 1038 proc_t *p = ttoproc(tp); 1039 1040 sti(); 1041 mutex_enter(&p->p_lock); 1042 tp->t_lwp->lwp_cursig = SIGSEGV; 1043 mutex_exit(&p->p_lock); 1044 psig(); 1045 tp->t_sig_check = 1; 1046 cli(); 1047 } 1048 tp->t_lwp->lwp_pcb.pcb_rupdate = 0; 1049 1050 #endif /* __amd64 */ 1051 return (1); 1052 } 1053 1054 /* 1055 * Here if we are returning to supervisor mode. 1056 * Check for a kernel preemption request. 1057 */ 1058 if (CPU->cpu_kprunrun && (rp->r_ps & PS_IE)) { 1059 1060 /* 1061 * Do nothing if already in kpreempt 1062 */ 1063 if (!tp->t_preempt_lk) { 1064 tp->t_preempt_lk = 1; 1065 sti(); 1066 kpreempt(1); /* asynchronous kpreempt call */ 1067 cli(); 1068 tp->t_preempt_lk = 0; 1069 } 1070 } 1071 1072 /* 1073 * If we interrupted the mutex_exit() critical region we must 1074 * reset the PC back to the beginning to prevent missed wakeups 1075 * See the comments in mutex_exit() for details. 1076 */ 1077 if ((uintptr_t)rp->r_pc - (uintptr_t)mutex_exit_critical_start < 1078 mutex_exit_critical_size) { 1079 rp->r_pc = (greg_t)mutex_exit_critical_start; 1080 } 1081 1082 /* 1083 * If we interrupted the mutex_owner_running() critical region we 1084 * must reset the PC back to the beginning to prevent dereferencing 1085 * of a freed thread pointer. See the comments in mutex_owner_running 1086 * for details. 1087 */ 1088 if ((uintptr_t)rp->r_pc - 1089 (uintptr_t)mutex_owner_running_critical_start < 1090 mutex_owner_running_critical_size) { 1091 rp->r_pc = (greg_t)mutex_owner_running_critical_start; 1092 } 1093 1094 return (0); 1095 } 1096 1097 void 1098 send_dirint(int cpuid, int int_level) 1099 { 1100 (*send_dirintf)(cpuid, int_level); 1101 } 1102 1103 /* 1104 * do_splx routine, takes new ipl to set 1105 * returns the old ipl. 1106 * We are careful not to set priority lower than CPU->cpu_base_pri, 1107 * even though it seems we're raising the priority, it could be set 1108 * higher at any time by an interrupt routine, so we must block interrupts 1109 * and look at CPU->cpu_base_pri 1110 */ 1111 int 1112 do_splx(int newpri) 1113 { 1114 ulong_t flag; 1115 cpu_t *cpu; 1116 int curpri, basepri; 1117 1118 flag = intr_clear(); 1119 cpu = CPU; /* ints are disabled, now safe to cache cpu ptr */ 1120 curpri = cpu->cpu_m.mcpu_pri; 1121 basepri = cpu->cpu_base_spl; 1122 if (newpri < basepri) 1123 newpri = basepri; 1124 cpu->cpu_m.mcpu_pri = newpri; 1125 (*setspl)(newpri); 1126 /* 1127 * If we are going to reenable interrupts see if new priority level 1128 * allows pending softint delivery. 1129 */ 1130 if ((flag & PS_IE) && 1131 bsrw_insn((uint16_t)cpu->cpu_softinfo.st_pending) > newpri) 1132 fakesoftint(); 1133 ASSERT(!interrupts_enabled()); 1134 intr_restore(flag); 1135 return (curpri); 1136 } 1137 1138 /* 1139 * Common spl raise routine, takes new ipl to set 1140 * returns the old ipl, will not lower ipl. 1141 */ 1142 int 1143 splr(int newpri) 1144 { 1145 ulong_t flag; 1146 cpu_t *cpu; 1147 int curpri, basepri; 1148 1149 flag = intr_clear(); 1150 cpu = CPU; /* ints are disabled, now safe to cache cpu ptr */ 1151 curpri = cpu->cpu_m.mcpu_pri; 1152 /* 1153 * Only do something if new priority is larger 1154 */ 1155 if (newpri > curpri) { 1156 basepri = cpu->cpu_base_spl; 1157 if (newpri < basepri) 1158 newpri = basepri; 1159 cpu->cpu_m.mcpu_pri = newpri; 1160 (*setspl)(newpri); 1161 /* 1162 * See if new priority level allows pending softint delivery 1163 */ 1164 if ((flag & PS_IE) && 1165 bsrw_insn((uint16_t)cpu->cpu_softinfo.st_pending) > newpri) 1166 fakesoftint(); 1167 } 1168 intr_restore(flag); 1169 return (curpri); 1170 } 1171 1172 int 1173 getpil(void) 1174 { 1175 return (CPU->cpu_m.mcpu_pri); 1176 } 1177 1178 int 1179 interrupts_enabled(void) 1180 { 1181 ulong_t flag; 1182 1183 flag = getflags(); 1184 return ((flag & PS_IE) == PS_IE); 1185 } 1186 1187 #ifdef DEBUG 1188 void 1189 assert_ints_enabled(void) 1190 { 1191 ASSERT(!interrupts_unleashed || interrupts_enabled()); 1192 } 1193 #endif /* DEBUG */ 1194