1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * This file contains the functions for performing Fast Reboot -- a 29 * reboot which bypasses the firmware and bootloader, considerably 30 * reducing downtime. 31 * 32 * fastboot_load_kernel(): This function is invoked by mdpreboot() in the 33 * reboot path. It loads the new kernel and boot archive into memory, builds 34 * the data structure containing sufficient information about the new 35 * kernel and boot archive to be passed to the fast reboot switcher 36 * (see fb_swtch_src.s for details). When invoked the switcher relocates 37 * the new kernel and boot archive to physically contiguous low memory, 38 * similar to where the boot loader would have loaded them, and jumps to 39 * the new kernel. 40 * 41 * If fastreboot_onpanic is enabled, fastboot_load_kernel() is called 42 * by fastreboot_post_startup() to load the back up kernel in case of 43 * panic. 44 * 45 * The physical addresses of the memory allocated for the new kernel, boot 46 * archive and their page tables must be above where the boot archive ends 47 * after it has been relocated by the switcher, otherwise the new files 48 * and their page tables could be overridden during relocation. 49 * 50 * fast_reboot(): This function is invoked by mdboot() once it's determined 51 * that the system is capable of fast reboot. It jumps to the fast reboot 52 * switcher with the data structure built by fastboot_load_kernel() as the 53 * argument. 54 */ 55 56 #include <sys/types.h> 57 #include <sys/param.h> 58 #include <sys/segments.h> 59 #include <sys/sysmacros.h> 60 #include <sys/vm.h> 61 62 #include <sys/proc.h> 63 #include <sys/buf.h> 64 #include <sys/kmem.h> 65 66 #include <sys/reboot.h> 67 #include <sys/uadmin.h> 68 69 #include <sys/cred.h> 70 #include <sys/vnode.h> 71 #include <sys/file.h> 72 73 #include <sys/cmn_err.h> 74 #include <sys/dumphdr.h> 75 #include <sys/bootconf.h> 76 #include <sys/ddidmareq.h> 77 #include <sys/varargs.h> 78 #include <sys/promif.h> 79 #include <sys/modctl.h> 80 81 #include <vm/hat.h> 82 #include <vm/as.h> 83 #include <vm/page.h> 84 #include <vm/seg.h> 85 #include <vm/hat_i86.h> 86 #include <sys/vm_machparam.h> 87 #include <sys/archsystm.h> 88 #include <sys/machsystm.h> 89 #include <sys/mman.h> 90 #include <sys/x86_archext.h> 91 #include <sys/smp_impldefs.h> 92 #include <sys/spl.h> 93 94 #include <sys/fastboot.h> 95 #include <sys/machelf.h> 96 #include <sys/kobj.h> 97 #include <sys/multiboot.h> 98 #include <sys/kobj_lex.h> 99 100 /* 101 * Macro to determine how many pages are needed for PTEs to map a particular 102 * file. Allocate one extra page table entry for terminating the list. 103 */ 104 #define FASTBOOT_PTE_LIST_SIZE(fsize) \ 105 P2ROUNDUP((((fsize) >> PAGESHIFT) + 1) * sizeof (x86pte_t), PAGESIZE) 106 107 /* 108 * Data structure containing necessary information for the fast reboot 109 * switcher to jump to the new kernel. 110 */ 111 fastboot_info_t newkernel = { 0 }; 112 char fastboot_args[OBP_MAXPATHLEN]; 113 114 static char fastboot_filename[2][OBP_MAXPATHLEN] = { { 0 }, { 0 }}; 115 static x86pte_t ptp_bits = PT_VALID | PT_REF | PT_USER | PT_WRITABLE; 116 static x86pte_t pte_bits = 117 PT_VALID | PT_REF | PT_MOD | PT_NOCONSIST | PT_WRITABLE; 118 static uint_t fastboot_shift_amt_pae[] = {12, 21, 30, 39}; 119 120 int fastboot_debug = 0; 121 int fastboot_contig = 0; 122 123 /* 124 * Fake starting va for new kernel and boot archive. 125 */ 126 static uintptr_t fake_va = FASTBOOT_FAKE_VA; 127 128 /* 129 * Reserve memory below PA 1G in preparation of fast reboot. 130 * 131 * This variable is only checked when fastreboot_capable is set, but 132 * fastreboot_onpanic is not set. The amount of memory reserved 133 * is negligible, but just in case we are really short of low memory, 134 * this variable will give us a backdoor to not consume memory at all. 135 */ 136 int reserve_mem_enabled = 1; 137 138 /* 139 * Mutex to protect fastreboot_onpanic. 140 */ 141 kmutex_t fastreboot_config_mutex; 142 143 /* 144 * Amount of memory below PA 1G to reserve for constructing the multiboot 145 * data structure and the page tables as we tend to run out of those 146 * when more drivers are loaded. 147 */ 148 static size_t fastboot_mbi_size = 0x2000; /* 8K */ 149 static size_t fastboot_pagetable_size = 0x5000; /* 20K */ 150 151 /* 152 * Use below 1G for page tables as 153 * 1. we are only doing 1:1 mapping of the bottom 1G of physical memory. 154 * 2. we are using 2G as the fake virtual address for the new kernel and 155 * boot archive. 156 */ 157 static ddi_dma_attr_t fastboot_below_1G_dma_attr = { 158 DMA_ATTR_V0, 159 0x0000000008000000ULL, /* dma_attr_addr_lo: 128MB */ 160 0x000000003FFFFFFFULL, /* dma_attr_addr_hi: 1G */ 161 0x00000000FFFFFFFFULL, /* dma_attr_count_max */ 162 0x0000000000001000ULL, /* dma_attr_align: 4KB */ 163 1, /* dma_attr_burstsize */ 164 1, /* dma_attr_minxfer */ 165 0x00000000FFFFFFFFULL, /* dma_attr_maxxfer */ 166 0x00000000FFFFFFFFULL, /* dma_attr_seg */ 167 1, /* dma_attr_sgllen */ 168 0x1000ULL, /* dma_attr_granular */ 169 0, /* dma_attr_flags */ 170 }; 171 172 static ddi_dma_attr_t fastboot_dma_attr = { 173 DMA_ATTR_V0, 174 0x0000000008000000ULL, /* dma_attr_addr_lo: 128MB */ 175 #ifdef __amd64 176 0xFFFFFFFFFFFFFFFFULL, /* dma_attr_addr_hi: 2^64B */ 177 #else 178 0x0000000FFFFFFFFFULL, /* dma_attr_addr_hi: 64GB */ 179 #endif /* __amd64 */ 180 0x00000000FFFFFFFFULL, /* dma_attr_count_max */ 181 0x0000000000001000ULL, /* dma_attr_align: 4KB */ 182 1, /* dma_attr_burstsize */ 183 1, /* dma_attr_minxfer */ 184 0x00000000FFFFFFFFULL, /* dma_attr_maxxfer */ 185 0x00000000FFFFFFFFULL, /* dma_attr_seg */ 186 1, /* dma_attr_sgllen */ 187 0x1000ULL, /* dma_attr_granular */ 188 0, /* dma_attr_flags */ 189 }; 190 191 /* 192 * Various information saved from the previous boot to reconstruct 193 * multiboot_info. 194 */ 195 extern multiboot_info_t saved_mbi; 196 extern mb_memory_map_t saved_mmap[FASTBOOT_SAVED_MMAP_COUNT]; 197 extern uint8_t saved_drives[FASTBOOT_SAVED_DRIVES_SIZE]; 198 extern char saved_cmdline[FASTBOOT_SAVED_CMDLINE_LEN]; 199 extern int saved_cmdline_len; 200 extern size_t saved_file_size[]; 201 202 extern void* contig_alloc(size_t size, ddi_dma_attr_t *attr, 203 uintptr_t align, int cansleep); 204 extern void contig_free(void *addr, size_t size); 205 206 207 /* PRINTLIKE */ 208 extern void vprintf(const char *, va_list); 209 210 211 /* 212 * Need to be able to get boot_archives from other places 213 */ 214 #define BOOTARCHIVE64 "/platform/i86pc/amd64/boot_archive" 215 #define BOOTARCHIVE32 "/platform/i86pc/boot_archive" 216 #define BOOTARCHIVE32_FAILSAFE "/boot/x86.miniroot-safe" 217 #define BOOTARCHIVE64_FAILSAFE "/boot/amd64/x86.miniroot-safe" 218 #define FAILSAFE_BOOTFILE32 "/boot/platform/i86pc/kernel/unix" 219 #define FAILSAFE_BOOTFILE64 "/boot/platform/i86pc/kernel/amd64/unix" 220 221 static uint_t fastboot_vatoindex(fastboot_info_t *, uintptr_t, int); 222 static void fastboot_map_with_size(fastboot_info_t *, uintptr_t, 223 paddr_t, size_t, int); 224 static void fastboot_build_pagetables(fastboot_info_t *); 225 static int fastboot_build_mbi(char *, fastboot_info_t *); 226 static void fastboot_free_file(fastboot_file_t *); 227 228 static const char fastboot_enomem_msg[] = "Fastboot: Couldn't allocate 0x%" 229 PRIx64" bytes below %s to do fast reboot"; 230 231 static void 232 dprintf(char *fmt, ...) 233 { 234 va_list adx; 235 236 if (!fastboot_debug) 237 return; 238 239 va_start(adx, fmt); 240 vprintf(fmt, adx); 241 va_end(adx); 242 } 243 244 245 /* 246 * Return the index corresponding to a virt address at a given page table level. 247 */ 248 static uint_t 249 fastboot_vatoindex(fastboot_info_t *nk, uintptr_t va, int level) 250 { 251 return ((va >> nk->fi_shift_amt[level]) & (nk->fi_ptes_per_table - 1)); 252 } 253 254 255 /* 256 * Add mapping from vstart to pstart for the specified size. 257 * vstart, pstart and size should all have been aligned at 2M boundaries. 258 */ 259 static void 260 fastboot_map_with_size(fastboot_info_t *nk, uintptr_t vstart, paddr_t pstart, 261 size_t size, int level) 262 { 263 x86pte_t pteval, *table; 264 uintptr_t vaddr; 265 paddr_t paddr; 266 int index, l; 267 268 table = (x86pte_t *)(nk->fi_pagetable_va); 269 270 for (l = nk->fi_top_level; l >= level; l--) { 271 272 index = fastboot_vatoindex(nk, vstart, l); 273 274 if (l == level) { 275 /* 276 * Last level. Program the page table entries. 277 */ 278 for (vaddr = vstart, paddr = pstart; 279 vaddr < vstart + size; 280 vaddr += (1ULL << nk->fi_shift_amt[l]), 281 paddr += (1ULL << nk->fi_shift_amt[l])) { 282 283 uint_t index = fastboot_vatoindex(nk, vaddr, l); 284 285 if (l > 0) 286 pteval = paddr | pte_bits | PT_PAGESIZE; 287 else 288 pteval = paddr | pte_bits; 289 290 table[index] = pteval; 291 } 292 } else if (table[index] & PT_VALID) { 293 294 table = (x86pte_t *) 295 ((uintptr_t)(((paddr_t)table[index] & MMU_PAGEMASK) 296 - nk->fi_pagetable_pa) + nk->fi_pagetable_va); 297 } else { 298 /* 299 * Intermediate levels. 300 * Program with either valid bit or PTP bits. 301 */ 302 if (l == nk->fi_top_level) { 303 #ifdef __amd64 304 ASSERT(nk->fi_top_level == 3); 305 table[index] = nk->fi_next_table_pa | ptp_bits; 306 #else 307 table[index] = nk->fi_next_table_pa | PT_VALID; 308 #endif /* __amd64 */ 309 } else { 310 table[index] = nk->fi_next_table_pa | ptp_bits; 311 } 312 table = (x86pte_t *)(nk->fi_next_table_va); 313 nk->fi_next_table_va += MMU_PAGESIZE; 314 nk->fi_next_table_pa += MMU_PAGESIZE; 315 } 316 } 317 } 318 319 /* 320 * Build page tables for the lower 1G of physical memory using 2M 321 * pages, and prepare page tables for mapping new kernel and boot 322 * archive pages using 4K pages. 323 */ 324 static void 325 fastboot_build_pagetables(fastboot_info_t *nk) 326 { 327 /* 328 * Map lower 1G physical memory. Use large pages. 329 */ 330 fastboot_map_with_size(nk, 0, 0, ONE_GIG, 1); 331 332 /* 333 * Map one 4K page to get the middle page tables set up. 334 */ 335 fake_va = P2ALIGN_TYPED(fake_va, nk->fi_lpagesize, uintptr_t); 336 fastboot_map_with_size(nk, fake_va, 337 nk->fi_files[0].fb_pte_list_va[0] & MMU_PAGEMASK, PAGESIZE, 0); 338 } 339 340 341 /* 342 * Sanity check. Look for dboot offset. 343 */ 344 static int 345 fastboot_elf64_find_dboot_load_offset(void *img, off_t imgsz, uint32_t *offp) 346 { 347 Elf64_Ehdr *ehdr = (Elf64_Ehdr *)img; 348 Elf64_Phdr *phdr; 349 uint8_t *phdrbase; 350 int i; 351 352 if ((ehdr->e_phoff + ehdr->e_phnum * ehdr->e_phentsize) >= imgsz) 353 return (-1); 354 355 phdrbase = (uint8_t *)img + ehdr->e_phoff; 356 357 for (i = 0; i < ehdr->e_phnum; i++) { 358 phdr = (Elf64_Phdr *)(phdrbase + ehdr->e_phentsize * i); 359 360 if (phdr->p_type == PT_LOAD) { 361 if (phdr->p_vaddr == phdr->p_paddr && 362 phdr->p_vaddr == DBOOT_ENTRY_ADDRESS) { 363 ASSERT(phdr->p_offset <= UINT32_MAX); 364 *offp = (uint32_t)phdr->p_offset; 365 return (0); 366 } 367 } 368 } 369 370 return (-1); 371 } 372 373 374 /* 375 * Initialize text and data section information for 32-bit kernel. 376 * sectcntp - is both input/output parameter. 377 * On entry, *sectcntp contains maximum allowable number of sections; 378 * on return, it contains the actual number of sections filled. 379 */ 380 static int 381 fastboot_elf32_find_loadables(void *img, off_t imgsz, fastboot_section_t *sectp, 382 int *sectcntp, uint32_t *offp) 383 { 384 Elf32_Ehdr *ehdr = (Elf32_Ehdr *)img; 385 Elf32_Phdr *phdr; 386 uint8_t *phdrbase; 387 int i; 388 int used_sections = 0; 389 const int max_sectcnt = *sectcntp; 390 391 if ((ehdr->e_phoff + ehdr->e_phnum * ehdr->e_phentsize) >= imgsz) 392 return (-1); 393 394 phdrbase = (uint8_t *)img + ehdr->e_phoff; 395 396 for (i = 0; i < ehdr->e_phnum; i++) { 397 phdr = (Elf32_Phdr *)(phdrbase + ehdr->e_phentsize * i); 398 399 if (phdr->p_type == PT_INTERP) 400 return (-1); 401 402 if (phdr->p_type != PT_LOAD) 403 continue; 404 405 if (phdr->p_vaddr == phdr->p_paddr && 406 phdr->p_paddr == DBOOT_ENTRY_ADDRESS) { 407 *offp = (uint32_t)phdr->p_offset; 408 } else { 409 if (max_sectcnt <= used_sections) 410 return (-1); 411 412 sectp[used_sections].fb_sec_offset = phdr->p_offset; 413 sectp[used_sections].fb_sec_paddr = phdr->p_paddr; 414 sectp[used_sections].fb_sec_size = phdr->p_filesz; 415 sectp[used_sections].fb_sec_bss_size = 416 (phdr->p_filesz < phdr->p_memsz) ? 417 (phdr->p_memsz - phdr->p_filesz) : 0; 418 419 /* Extra sanity check for the input object file */ 420 if (sectp[used_sections].fb_sec_paddr + 421 sectp[used_sections].fb_sec_size + 422 sectp[used_sections].fb_sec_bss_size >= 423 DBOOT_ENTRY_ADDRESS) 424 return (-1); 425 426 used_sections++; 427 } 428 } 429 430 *sectcntp = used_sections; 431 return (0); 432 } 433 434 /* 435 * Create multiboot info structure (mbi) base on the saved mbi. 436 * Recalculate values of the pointer type fields in the data 437 * structure based on the new starting physical address of the 438 * data structure. 439 */ 440 static int 441 fastboot_build_mbi(char *mdep, fastboot_info_t *nk) 442 { 443 mb_module_t *mbp; 444 multiboot_info_t *mbi; /* pointer to multiboot structure */ 445 uintptr_t start_addr_va; /* starting VA of mbi */ 446 uintptr_t start_addr_pa; /* starting PA of mbi */ 447 size_t offs = 0; /* offset from the starting address */ 448 size_t arglen; /* length of the command line arg */ 449 size_t size; /* size of the memory reserved for mbi */ 450 size_t mdnsz; /* length of the boot archive name */ 451 452 /* 453 * If mdep is not NULL or empty, use the length of mdep + 1 454 * (for NULL terminating) as the length of the new command 455 * line; else use the saved command line length as the 456 * length for the new command line. 457 */ 458 if (mdep != NULL && strlen(mdep) != 0) { 459 arglen = strlen(mdep) + 1; 460 } else { 461 arglen = saved_cmdline_len; 462 } 463 464 /* 465 * Allocate memory for the new multiboot info structure (mbi). 466 * If we have reserved memory for mbi but it's not enough, 467 * free it and reallocate. 468 */ 469 size = PAGESIZE + P2ROUNDUP(arglen, PAGESIZE); 470 if (nk->fi_mbi_size && nk->fi_mbi_size < size) { 471 contig_free((void *)nk->fi_new_mbi_va, nk->fi_mbi_size); 472 nk->fi_mbi_size = 0; 473 } 474 475 if (nk->fi_mbi_size == 0) { 476 if ((nk->fi_new_mbi_va = 477 (uintptr_t)contig_alloc(size, &fastboot_below_1G_dma_attr, 478 PAGESIZE, 0)) == NULL) { 479 cmn_err(CE_WARN, fastboot_enomem_msg, 480 (uint64_t)size, "1G"); 481 return (-1); 482 } 483 /* 484 * fi_mbi_size must be set after the allocation succeeds 485 * as it's used to determine how much memory to free. 486 */ 487 nk->fi_mbi_size = size; 488 } 489 490 /* 491 * Initalize memory 492 */ 493 bzero((void *)nk->fi_new_mbi_va, nk->fi_mbi_size); 494 495 /* 496 * Get PA for the new mbi 497 */ 498 start_addr_va = nk->fi_new_mbi_va; 499 start_addr_pa = mmu_ptob((uint64_t)hat_getpfnum(kas.a_hat, 500 (caddr_t)start_addr_va)); 501 nk->fi_new_mbi_pa = (paddr_t)start_addr_pa; 502 503 /* 504 * Populate the rest of the fields in the data structure 505 */ 506 507 /* 508 * Copy from the saved mbi to preserve all non-pointer type fields. 509 */ 510 mbi = (multiboot_info_t *)start_addr_va; 511 bcopy(&saved_mbi, mbi, sizeof (*mbi)); 512 513 /* 514 * Recalculate mods_addr. Set mod_start and mod_end based on 515 * the physical address of the new boot archive. Set mod_name 516 * to the name of the new boto archive. 517 */ 518 offs += sizeof (multiboot_info_t); 519 mbi->mods_addr = start_addr_pa + offs; 520 mbp = (mb_module_t *)(start_addr_va + offs); 521 mbp->mod_start = nk->fi_files[FASTBOOT_BOOTARCHIVE].fb_dest_pa; 522 mbp->mod_end = nk->fi_files[FASTBOOT_BOOTARCHIVE].fb_next_pa; 523 524 offs += sizeof (mb_module_t); 525 mdnsz = strlen(fastboot_filename[FASTBOOT_NAME_BOOTARCHIVE]) + 1; 526 bcopy(fastboot_filename[FASTBOOT_NAME_BOOTARCHIVE], 527 (void *)(start_addr_va + offs), mdnsz); 528 mbp->mod_name = start_addr_pa + offs; 529 mbp->reserved = 0; 530 531 /* 532 * Make sure the offset is 16-byte aligned to avoid unaligned access. 533 */ 534 offs += mdnsz; 535 offs = P2ROUNDUP_TYPED(offs, 16, size_t); 536 537 /* 538 * Recalculate mmap_addr 539 */ 540 mbi->mmap_addr = start_addr_pa + offs; 541 bcopy((void *)(uintptr_t)saved_mmap, (void *)(start_addr_va + offs), 542 saved_mbi.mmap_length); 543 offs += saved_mbi.mmap_length; 544 545 /* 546 * Recalculate drives_addr 547 */ 548 mbi->drives_addr = start_addr_pa + offs; 549 bcopy((void *)(uintptr_t)saved_drives, (void *)(start_addr_va + offs), 550 saved_mbi.drives_length); 551 offs += saved_mbi.drives_length; 552 553 /* 554 * Recalculate the address of cmdline. Set cmdline to contain the 555 * new boot argument. 556 */ 557 mbi->cmdline = start_addr_pa + offs; 558 559 if (mdep != NULL && strlen(mdep) != 0) { 560 bcopy(mdep, (void *)(start_addr_va + offs), arglen); 561 } else { 562 bcopy((void *)saved_cmdline, (void *)(start_addr_va + offs), 563 arglen); 564 } 565 566 /* clear fields and flags that are not copied */ 567 bzero(&mbi->config_table, 568 sizeof (*mbi) - offsetof(multiboot_info_t, config_table)); 569 mbi->flags &= ~(MB_INFO_CONFIG_TABLE | MB_INFO_BOOT_LOADER_NAME | 570 MB_INFO_APM_TABLE | MB_INFO_VIDEO_INFO); 571 572 return (0); 573 } 574 575 /* 576 * Initialize HAT related fields 577 */ 578 static void 579 fastboot_init_fields(fastboot_info_t *nk) 580 { 581 if (x86_feature & X86_PAE) { 582 nk->fi_has_pae = 1; 583 nk->fi_shift_amt = fastboot_shift_amt_pae; 584 nk->fi_ptes_per_table = 512; 585 nk->fi_lpagesize = (2 << 20); /* 2M */ 586 #ifdef __amd64 587 nk->fi_top_level = 3; 588 #else 589 nk->fi_top_level = 2; 590 #endif /* __amd64 */ 591 } 592 } 593 594 /* 595 * Process boot argument 596 */ 597 static void 598 fastboot_parse_mdep(char *mdep, char *kern_bootpath, int *bootpath_len, 599 char *bootargs) 600 { 601 int i; 602 603 /* 604 * If mdep is not NULL, it comes in the format of 605 * mountpoint unix args 606 */ 607 if (mdep != NULL && strlen(mdep) != 0) { 608 if (mdep[0] != '-') { 609 /* First get the root argument */ 610 i = 0; 611 while (mdep[i] != '\0' && mdep[i] != ' ') { 612 i++; 613 } 614 615 if (i < 4 || strncmp(&mdep[i-4], "unix", 4) != 0) { 616 /* mount point */ 617 bcopy(mdep, kern_bootpath, i); 618 kern_bootpath[i] = '\0'; 619 *bootpath_len = i; 620 621 /* 622 * Get the next argument. It should be unix as 623 * we have validated in in halt.c. 624 */ 625 if (strlen(mdep) > i) { 626 mdep += (i + 1); 627 i = 0; 628 while (mdep[i] != '\0' && 629 mdep[i] != ' ') { 630 i++; 631 } 632 } 633 634 } 635 bcopy(mdep, kern_bootfile, i); 636 kern_bootfile[i] = '\0'; 637 bcopy(mdep, bootargs, strlen(mdep)); 638 } else { 639 int off = strlen(kern_bootfile); 640 bcopy(kern_bootfile, bootargs, off); 641 bcopy(" ", &bootargs[off++], 1); 642 bcopy(mdep, &bootargs[off], strlen(mdep)); 643 off += strlen(mdep); 644 bootargs[off] = '\0'; 645 } 646 } 647 } 648 649 /* 650 * Reserve memory under PA 1G for mapping the new kernel and boot archive. 651 * This function is only called if fastreboot_onpanic is *not* set. 652 */ 653 static void 654 fastboot_reserve_mem(fastboot_info_t *nk) 655 { 656 int i; 657 658 /* 659 * A valid kernel is in place. No need to reserve any memory. 660 */ 661 if (nk->fi_valid) 662 return; 663 664 /* 665 * Reserve memory under PA 1G for PTE lists. 666 */ 667 for (i = 0; i < FASTBOOT_MAX_FILES_MAP; i++) { 668 fastboot_file_t *fb = &nk->fi_files[i]; 669 size_t fsize_roundup, size; 670 671 fsize_roundup = P2ROUNDUP_TYPED(saved_file_size[i], 672 PAGESIZE, size_t); 673 size = FASTBOOT_PTE_LIST_SIZE(fsize_roundup); 674 if ((fb->fb_pte_list_va = contig_alloc(size, 675 &fastboot_below_1G_dma_attr, PAGESIZE, 0)) == NULL) { 676 return; 677 } 678 fb->fb_pte_list_size = size; 679 } 680 681 /* 682 * Reserve memory under PA 1G for page tables. 683 */ 684 if ((nk->fi_pagetable_va = 685 (uintptr_t)contig_alloc(fastboot_pagetable_size, 686 &fastboot_below_1G_dma_attr, PAGESIZE, 0)) == NULL) { 687 return; 688 } 689 nk->fi_pagetable_size = fastboot_pagetable_size; 690 691 /* 692 * Reserve memory under PA 1G for multiboot structure. 693 */ 694 if ((nk->fi_new_mbi_va = (uintptr_t)contig_alloc(fastboot_mbi_size, 695 &fastboot_below_1G_dma_attr, PAGESIZE, 0)) == NULL) { 696 return; 697 } 698 nk->fi_mbi_size = fastboot_mbi_size; 699 } 700 701 /* 702 * Calculate MD5 digest for the given fastboot_file. 703 * Assumes that the file is allready loaded properly. 704 */ 705 static void 706 fastboot_cksum_file(fastboot_file_t *fb, uchar_t *md5_hash) 707 { 708 MD5_CTX md5_ctx; 709 710 MD5Init(&md5_ctx); 711 MD5Update(&md5_ctx, (void *)fb->fb_va, fb->fb_size); 712 MD5Final(md5_hash, &md5_ctx); 713 } 714 715 /* 716 * Free up the memory we have allocated for a file 717 */ 718 static void 719 fastboot_free_file(fastboot_file_t *fb) 720 { 721 size_t fsize_roundup; 722 723 fsize_roundup = P2ROUNDUP_TYPED(fb->fb_size, PAGESIZE, size_t); 724 if (fsize_roundup) { 725 contig_free((void *)fb->fb_va, fsize_roundup); 726 fb->fb_va = NULL; 727 fb->fb_size = 0; 728 } 729 } 730 731 /* 732 * Free up memory used by the PTEs for a file. 733 */ 734 static void 735 fastboot_free_file_pte(fastboot_file_t *fb, uint64_t endaddr) 736 { 737 if (fb->fb_pte_list_size && fb->fb_pte_list_pa < endaddr) { 738 contig_free((void *)fb->fb_pte_list_va, fb->fb_pte_list_size); 739 fb->fb_pte_list_va = 0; 740 fb->fb_pte_list_pa = 0; 741 fb->fb_pte_list_size = 0; 742 } 743 } 744 745 /* 746 * Free up all the memory used for representing a kernel with 747 * fastboot_info_t. 748 */ 749 static void 750 fastboot_free_mem(fastboot_info_t *nk, uint64_t endaddr) 751 { 752 int i; 753 754 for (i = 0; i < FASTBOOT_MAX_FILES_MAP; i++) { 755 fastboot_free_file(nk->fi_files + i); 756 fastboot_free_file_pte(nk->fi_files + i, endaddr); 757 } 758 759 if (nk->fi_pagetable_size && nk->fi_pagetable_pa < endaddr) { 760 contig_free((void *)nk->fi_pagetable_va, nk->fi_pagetable_size); 761 nk->fi_pagetable_va = 0; 762 nk->fi_pagetable_pa = 0; 763 nk->fi_pagetable_size = 0; 764 } 765 766 if (nk->fi_mbi_size && nk->fi_new_mbi_pa < endaddr) { 767 contig_free((void *)nk->fi_new_mbi_va, nk->fi_mbi_size); 768 nk->fi_new_mbi_va = 0; 769 nk->fi_new_mbi_pa = 0; 770 nk->fi_mbi_size = 0; 771 } 772 } 773 774 /* 775 * Only free up the memory allocated for the kernel and boot archive, 776 * but not for the page tables. 777 */ 778 void 779 fastboot_free_newkernel(fastboot_info_t *nk) 780 { 781 int i; 782 783 nk->fi_valid = 0; 784 /* 785 * Free the memory we have allocated 786 */ 787 for (i = 0; i < FASTBOOT_MAX_FILES_MAP; i++) { 788 fastboot_free_file(&(nk->fi_files[i])); 789 } 790 } 791 792 static void 793 fastboot_cksum_cdata(fastboot_info_t *nk, uchar_t *md5_hash) 794 { 795 int i; 796 MD5_CTX md5_ctx; 797 798 MD5Init(&md5_ctx); 799 for (i = 0; i < FASTBOOT_MAX_FILES_MAP; i++) { 800 MD5Update(&md5_ctx, nk->fi_files[i].fb_pte_list_va, 801 nk->fi_files[i].fb_pte_list_size); 802 } 803 MD5Update(&md5_ctx, (void *)nk->fi_pagetable_va, nk->fi_pagetable_size); 804 MD5Update(&md5_ctx, (void *)nk->fi_new_mbi_va, nk->fi_mbi_size); 805 806 MD5Final(md5_hash, &md5_ctx); 807 } 808 809 /* 810 * Generate MD5 checksum of the given kernel. 811 */ 812 static void 813 fastboot_cksum_generate(fastboot_info_t *nk) 814 { 815 int i; 816 817 for (i = 0; i < FASTBOOT_MAX_FILES_MAP; i++) { 818 fastboot_cksum_file(nk->fi_files + i, nk->fi_md5_hash[i]); 819 } 820 fastboot_cksum_cdata(nk, nk->fi_md5_hash[i]); 821 } 822 823 /* 824 * Calculate MD5 checksum of the given kernel and verify that 825 * it matches with what was calculated before. 826 */ 827 int 828 fastboot_cksum_verify(fastboot_info_t *nk) 829 { 830 int i; 831 uchar_t md5_hash[MD5_DIGEST_LENGTH]; 832 833 for (i = 0; i < FASTBOOT_MAX_FILES_MAP; i++) { 834 fastboot_cksum_file(nk->fi_files + i, md5_hash); 835 if (bcmp(nk->fi_md5_hash[i], md5_hash, 836 sizeof (nk->fi_md5_hash[i])) != 0) 837 return (i + 1); 838 } 839 840 fastboot_cksum_cdata(nk, md5_hash); 841 if (bcmp(nk->fi_md5_hash[i], md5_hash, 842 sizeof (nk->fi_md5_hash[i])) != 0) 843 return (i + 1); 844 845 return (0); 846 } 847 848 /* 849 * This function performs the following tasks: 850 * - Read the sizes of the new kernel and boot archive. 851 * - Allocate memory for the new kernel and boot archive. 852 * - Allocate memory for page tables necessary for mapping the memory 853 * allocated for the files. 854 * - Read the new kernel and boot archive into memory. 855 * - Map in the fast reboot switcher. 856 * - Load the fast reboot switcher to FASTBOOT_SWTCH_PA. 857 * - Build the new multiboot_info structure 858 * - Build page tables for the low 1G of physical memory. 859 * - Mark the data structure as valid if all steps have succeeded. 860 */ 861 void 862 fastboot_load_kernel(char *mdep) 863 { 864 void *buf = NULL; 865 int i; 866 fastboot_file_t *fb; 867 uint32_t dboot_start_offset; 868 char kern_bootpath[OBP_MAXPATHLEN]; 869 extern uintptr_t postbootkernelbase; 870 uintptr_t saved_kernelbase; 871 int bootpath_len = 0; 872 int is_failsafe = 0; 873 int is_retry = 0; 874 uint64_t end_addr; 875 876 if (!fastreboot_capable) 877 return; 878 879 if (newkernel.fi_valid) 880 fastboot_free_newkernel(&newkernel); 881 882 saved_kernelbase = postbootkernelbase; 883 884 postbootkernelbase = 0; 885 886 /* 887 * Initialize various HAT related fields in the data structure 888 */ 889 fastboot_init_fields(&newkernel); 890 891 bzero(kern_bootpath, OBP_MAXPATHLEN); 892 893 /* 894 * Process the boot argument 895 */ 896 bzero(fastboot_args, OBP_MAXPATHLEN); 897 fastboot_parse_mdep(mdep, kern_bootpath, &bootpath_len, fastboot_args); 898 899 /* 900 * Make sure we get the null character 901 */ 902 bcopy(kern_bootpath, fastboot_filename[FASTBOOT_NAME_UNIX], 903 bootpath_len); 904 bcopy(kern_bootfile, 905 &fastboot_filename[FASTBOOT_NAME_UNIX][bootpath_len], 906 strlen(kern_bootfile) + 1); 907 908 bcopy(kern_bootpath, fastboot_filename[FASTBOOT_NAME_BOOTARCHIVE], 909 bootpath_len); 910 911 if (bcmp(kern_bootfile, FAILSAFE_BOOTFILE32, 912 (sizeof (FAILSAFE_BOOTFILE32) - 1)) == 0 || 913 bcmp(kern_bootfile, FAILSAFE_BOOTFILE64, 914 (sizeof (FAILSAFE_BOOTFILE64) - 1)) == 0) { 915 is_failsafe = 1; 916 } 917 918 load_kernel_retry: 919 /* 920 * Read in unix and boot_archive 921 */ 922 end_addr = DBOOT_ENTRY_ADDRESS; 923 for (i = 0; i < FASTBOOT_MAX_FILES_MAP; i++) { 924 struct _buf *file; 925 uintptr_t va; 926 uint64_t fsize; 927 size_t fsize_roundup, pt_size; 928 int page_index; 929 uintptr_t offset; 930 ddi_dma_attr_t dma_attr = fastboot_dma_attr; 931 932 933 dprintf("fastboot_filename[%d] = %s\n", 934 i, fastboot_filename[i]); 935 936 if ((file = kobj_open_file(fastboot_filename[i])) == 937 (struct _buf *)-1) { 938 cmn_err(CE_WARN, "Fastboot: Couldn't open %s", 939 fastboot_filename[i]); 940 goto err_out; 941 } 942 943 if (kobj_get_filesize(file, &fsize) != 0) { 944 cmn_err(CE_WARN, 945 "Fastboot: Couldn't get filesize for %s", 946 fastboot_filename[i]); 947 goto err_out; 948 } 949 950 fsize_roundup = P2ROUNDUP_TYPED(fsize, PAGESIZE, size_t); 951 952 /* 953 * Where the files end in physical memory after being 954 * relocated by the fast boot switcher. 955 */ 956 end_addr += fsize_roundup; 957 if (end_addr > fastboot_below_1G_dma_attr.dma_attr_addr_hi) { 958 cmn_err(CE_WARN, "Fastboot: boot archive is too big"); 959 goto err_out; 960 } 961 962 /* 963 * Adjust dma_attr_addr_lo so that the new kernel and boot 964 * archive will not be overridden during relocation. 965 */ 966 if (end_addr > fastboot_dma_attr.dma_attr_addr_lo || 967 end_addr > fastboot_below_1G_dma_attr.dma_attr_addr_lo) { 968 969 if (is_retry) { 970 /* 971 * If we have already tried and didn't succeed, 972 * just give up. 973 */ 974 cmn_err(CE_WARN, 975 "Fastboot: boot archive is too big"); 976 goto err_out; 977 } else { 978 /* Set the flag so we don't keep retrying */ 979 is_retry++; 980 981 /* Adjust dma_attr_addr_lo */ 982 fastboot_dma_attr.dma_attr_addr_lo = end_addr; 983 fastboot_below_1G_dma_attr.dma_attr_addr_lo = 984 end_addr; 985 986 /* 987 * Free the memory we have already allocated 988 * whose physical addresses might not fit 989 * the new lo and hi constraints. 990 */ 991 fastboot_free_mem(&newkernel, end_addr); 992 goto load_kernel_retry; 993 } 994 } 995 996 997 if (!fastboot_contig) 998 dma_attr.dma_attr_sgllen = (fsize / PAGESIZE) + 999 (((fsize % PAGESIZE) == 0) ? 0 : 1); 1000 1001 if ((buf = contig_alloc(fsize, &dma_attr, PAGESIZE, 0)) 1002 == NULL) { 1003 cmn_err(CE_WARN, fastboot_enomem_msg, fsize, "64G"); 1004 goto err_out; 1005 } 1006 1007 va = P2ROUNDUP_TYPED((uintptr_t)buf, PAGESIZE, uintptr_t); 1008 1009 if (kobj_read_file(file, (char *)va, fsize, 0) < 0) { 1010 cmn_err(CE_WARN, "Fastboot: Couldn't read %s", 1011 fastboot_filename[i]); 1012 goto err_out; 1013 } 1014 1015 fb = &newkernel.fi_files[i]; 1016 fb->fb_va = va; 1017 fb->fb_size = fsize; 1018 fb->fb_sectcnt = 0; 1019 1020 pt_size = FASTBOOT_PTE_LIST_SIZE(fsize_roundup); 1021 1022 /* 1023 * If we have reserved memory but it not enough, free it. 1024 */ 1025 if (fb->fb_pte_list_size && fb->fb_pte_list_size < pt_size) { 1026 contig_free((void *)fb->fb_pte_list_va, 1027 fb->fb_pte_list_size); 1028 fb->fb_pte_list_size = 0; 1029 } 1030 1031 if (fb->fb_pte_list_size == 0) { 1032 if ((fb->fb_pte_list_va = 1033 (x86pte_t *)contig_alloc(pt_size, 1034 &fastboot_below_1G_dma_attr, PAGESIZE, 0)) 1035 == NULL) { 1036 cmn_err(CE_WARN, fastboot_enomem_msg, 1037 (uint64_t)pt_size, "1G"); 1038 goto err_out; 1039 } 1040 /* 1041 * fb_pte_list_size must be set after the allocation 1042 * succeeds as it's used to determine how much memory to 1043 * free. 1044 */ 1045 fb->fb_pte_list_size = pt_size; 1046 } 1047 1048 bzero((void *)(fb->fb_pte_list_va), fb->fb_pte_list_size); 1049 1050 fb->fb_pte_list_pa = mmu_ptob((uint64_t)hat_getpfnum(kas.a_hat, 1051 (caddr_t)fb->fb_pte_list_va)); 1052 1053 for (page_index = 0, offset = 0; offset < fb->fb_size; 1054 offset += PAGESIZE) { 1055 uint64_t paddr; 1056 1057 paddr = mmu_ptob((uint64_t)hat_getpfnum(kas.a_hat, 1058 (caddr_t)fb->fb_va + offset)); 1059 1060 ASSERT(paddr >= fastboot_dma_attr.dma_attr_addr_lo); 1061 1062 /* 1063 * Include the pte_bits so we don't have to make 1064 * it in assembly. 1065 */ 1066 fb->fb_pte_list_va[page_index++] = (x86pte_t) 1067 (paddr | pte_bits); 1068 } 1069 1070 fb->fb_pte_list_va[page_index] = FASTBOOT_TERMINATE; 1071 1072 if (i == FASTBOOT_UNIX) { 1073 Ehdr *ehdr = (Ehdr *)va; 1074 int j; 1075 1076 /* 1077 * Sanity checks: 1078 */ 1079 for (j = 0; j < SELFMAG; j++) { 1080 if (ehdr->e_ident[j] != ELFMAG[j]) { 1081 cmn_err(CE_WARN, "Fastboot: Bad ELF " 1082 "signature"); 1083 goto err_out; 1084 } 1085 } 1086 1087 if (ehdr->e_ident[EI_CLASS] == ELFCLASS32 && 1088 ehdr->e_ident[EI_DATA] == ELFDATA2LSB && 1089 ehdr->e_machine == EM_386) { 1090 1091 fb->fb_sectcnt = sizeof (fb->fb_sections) / 1092 sizeof (fb->fb_sections[0]); 1093 1094 if (fastboot_elf32_find_loadables((void *)va, 1095 fsize, &fb->fb_sections[0], 1096 &fb->fb_sectcnt, &dboot_start_offset) < 0) { 1097 cmn_err(CE_WARN, "Fastboot: ELF32 " 1098 "program section failure"); 1099 goto err_out; 1100 } 1101 1102 if (fb->fb_sectcnt == 0) { 1103 cmn_err(CE_WARN, "Fastboot: No ELF32 " 1104 "program sections found"); 1105 goto err_out; 1106 } 1107 1108 if (is_failsafe) { 1109 /* Failsafe boot_archive */ 1110 bcopy(BOOTARCHIVE32_FAILSAFE, 1111 &fastboot_filename 1112 [FASTBOOT_NAME_BOOTARCHIVE] 1113 [bootpath_len], 1114 sizeof (BOOTARCHIVE32_FAILSAFE)); 1115 } else { 1116 bcopy(BOOTARCHIVE32, 1117 &fastboot_filename 1118 [FASTBOOT_NAME_BOOTARCHIVE] 1119 [bootpath_len], 1120 sizeof (BOOTARCHIVE32)); 1121 } 1122 1123 } else if (ehdr->e_ident[EI_CLASS] == ELFCLASS64 && 1124 ehdr->e_ident[EI_DATA] == ELFDATA2LSB && 1125 ehdr->e_machine == EM_AMD64) { 1126 1127 if (fastboot_elf64_find_dboot_load_offset( 1128 (void *)va, fsize, &dboot_start_offset) 1129 != 0) { 1130 cmn_err(CE_WARN, "Fastboot: Couldn't " 1131 "find ELF64 dboot entry offset"); 1132 goto err_out; 1133 } 1134 1135 if ((x86_feature & X86_64) == 0 || 1136 (x86_feature & X86_PAE) == 0) { 1137 cmn_err(CE_WARN, "Fastboot: Cannot " 1138 "reboot to %s: " 1139 "not a 64-bit capable system", 1140 kern_bootfile); 1141 goto err_out; 1142 } 1143 1144 if (is_failsafe) { 1145 /* Failsafe boot_archive */ 1146 bcopy(BOOTARCHIVE64_FAILSAFE, 1147 &fastboot_filename 1148 [FASTBOOT_NAME_BOOTARCHIVE] 1149 [bootpath_len], 1150 sizeof (BOOTARCHIVE64_FAILSAFE)); 1151 } else { 1152 bcopy(BOOTARCHIVE64, 1153 &fastboot_filename 1154 [FASTBOOT_NAME_BOOTARCHIVE] 1155 [bootpath_len], 1156 sizeof (BOOTARCHIVE64)); 1157 } 1158 } else { 1159 cmn_err(CE_WARN, "Fastboot: Unknown ELF type"); 1160 goto err_out; 1161 } 1162 1163 fb->fb_dest_pa = DBOOT_ENTRY_ADDRESS - 1164 dboot_start_offset; 1165 1166 fb->fb_next_pa = DBOOT_ENTRY_ADDRESS + fsize_roundup; 1167 } else { 1168 fb->fb_dest_pa = newkernel.fi_files[i - 1].fb_next_pa; 1169 fb->fb_next_pa = fb->fb_dest_pa + fsize_roundup; 1170 } 1171 1172 kobj_close_file(file); 1173 1174 } 1175 1176 /* 1177 * Add the function that will switch us to 32-bit protected mode 1178 */ 1179 fb = &newkernel.fi_files[FASTBOOT_SWTCH]; 1180 fb->fb_va = fb->fb_dest_pa = FASTBOOT_SWTCH_PA; 1181 fb->fb_size = MMU_PAGESIZE; 1182 1183 hat_devload(kas.a_hat, (caddr_t)fb->fb_va, 1184 MMU_PAGESIZE, mmu_btop(fb->fb_dest_pa), 1185 PROT_READ | PROT_WRITE | PROT_EXEC, 1186 HAT_LOAD_NOCONSIST | HAT_LOAD_LOCK); 1187 1188 /* 1189 * Build the new multiboot_info structure 1190 */ 1191 if (fastboot_build_mbi(fastboot_args, &newkernel) != 0) { 1192 goto err_out; 1193 } 1194 1195 /* 1196 * Build page table for low 1G physical memory. Use big pages. 1197 * Allocate 4 (5 for amd64) pages for the page tables. 1198 * 1 page for PML4 (amd64) 1199 * 1 page for Page-Directory-Pointer Table 1200 * 2 pages for Page Directory 1201 * 1 page for Page Table. 1202 * The page table entry will be rewritten to map the physical 1203 * address as we do the copying. 1204 */ 1205 if (newkernel.fi_has_pae) { 1206 #ifdef __amd64 1207 size_t size = MMU_PAGESIZE * 5; 1208 #else 1209 size_t size = MMU_PAGESIZE * 4; 1210 #endif /* __amd64 */ 1211 1212 if (newkernel.fi_pagetable_size && newkernel.fi_pagetable_size 1213 < size) { 1214 contig_free((void *)newkernel.fi_pagetable_va, 1215 newkernel.fi_pagetable_size); 1216 newkernel.fi_pagetable_size = 0; 1217 } 1218 1219 if (newkernel.fi_pagetable_size == 0) { 1220 if ((newkernel.fi_pagetable_va = (uintptr_t) 1221 contig_alloc(size, &fastboot_below_1G_dma_attr, 1222 MMU_PAGESIZE, 0)) == NULL) { 1223 cmn_err(CE_WARN, fastboot_enomem_msg, 1224 (uint64_t)size, "1G"); 1225 goto err_out; 1226 } 1227 /* 1228 * fi_pagetable_size must be set after the allocation 1229 * succeeds as it's used to determine how much memory to 1230 * free. 1231 */ 1232 newkernel.fi_pagetable_size = size; 1233 } 1234 1235 bzero((void *)(newkernel.fi_pagetable_va), size); 1236 1237 newkernel.fi_pagetable_pa = 1238 mmu_ptob((uint64_t)hat_getpfnum(kas.a_hat, 1239 (caddr_t)newkernel.fi_pagetable_va)); 1240 1241 newkernel.fi_last_table_pa = newkernel.fi_pagetable_pa + 1242 size - MMU_PAGESIZE; 1243 1244 newkernel.fi_next_table_va = newkernel.fi_pagetable_va + 1245 MMU_PAGESIZE; 1246 newkernel.fi_next_table_pa = newkernel.fi_pagetable_pa + 1247 MMU_PAGESIZE; 1248 1249 fastboot_build_pagetables(&newkernel); 1250 } 1251 1252 1253 /* Generate MD5 checksums */ 1254 fastboot_cksum_generate(&newkernel); 1255 1256 /* Mark it as valid */ 1257 newkernel.fi_valid = 1; 1258 newkernel.fi_magic = FASTBOOT_MAGIC; 1259 1260 postbootkernelbase = saved_kernelbase; 1261 return; 1262 1263 err_out: 1264 postbootkernelbase = saved_kernelbase; 1265 newkernel.fi_valid = 0; 1266 fastboot_free_newkernel(&newkernel); 1267 } 1268 1269 1270 /* ARGSUSED */ 1271 static int 1272 fastboot_xc_func(fastboot_info_t *nk, xc_arg_t unused2, xc_arg_t unused3) 1273 { 1274 void (*fastboot_func)(fastboot_info_t *); 1275 fastboot_file_t *fb = &nk->fi_files[FASTBOOT_SWTCH]; 1276 fastboot_func = (void (*)())(fb->fb_va); 1277 kthread_t *t_intr = curthread->t_intr; 1278 1279 if (&kas != curproc->p_as) { 1280 hat_devload(curproc->p_as->a_hat, (caddr_t)fb->fb_va, 1281 MMU_PAGESIZE, mmu_btop(fb->fb_dest_pa), 1282 PROT_READ | PROT_WRITE | PROT_EXEC, 1283 HAT_LOAD_NOCONSIST | HAT_LOAD_LOCK); 1284 } 1285 1286 /* 1287 * If we have pinned a thread, make sure the address is mapped 1288 * in the address space of the pinned thread. 1289 */ 1290 if (t_intr && t_intr->t_procp->p_as->a_hat != curproc->p_as->a_hat && 1291 t_intr->t_procp->p_as != &kas) 1292 hat_devload(t_intr->t_procp->p_as->a_hat, (caddr_t)fb->fb_va, 1293 MMU_PAGESIZE, mmu_btop(fb->fb_dest_pa), 1294 PROT_READ | PROT_WRITE | PROT_EXEC, 1295 HAT_LOAD_NOCONSIST | HAT_LOAD_LOCK); 1296 1297 (*psm_shutdownf)(A_SHUTDOWN, AD_FASTREBOOT); 1298 (*fastboot_func)(nk); 1299 1300 /*NOTREACHED*/ 1301 return (0); 1302 } 1303 1304 /* 1305 * Jump to the fast reboot switcher. This function never returns. 1306 */ 1307 void 1308 fast_reboot() 1309 { 1310 processorid_t bootcpuid = 0; 1311 extern uintptr_t postbootkernelbase; 1312 extern char fb_swtch_image[]; 1313 fastboot_file_t *fb; 1314 int i; 1315 1316 postbootkernelbase = 0; 1317 1318 fb = &newkernel.fi_files[FASTBOOT_SWTCH]; 1319 1320 /* 1321 * Map the address into both the current proc's address 1322 * space and the kernel's address space in case the panic 1323 * is forced by kmdb. 1324 */ 1325 if (&kas != curproc->p_as) { 1326 hat_devload(curproc->p_as->a_hat, (caddr_t)fb->fb_va, 1327 MMU_PAGESIZE, mmu_btop(fb->fb_dest_pa), 1328 PROT_READ | PROT_WRITE | PROT_EXEC, 1329 HAT_LOAD_NOCONSIST | HAT_LOAD_LOCK); 1330 } 1331 1332 bcopy((void *)fb_swtch_image, (void *)fb->fb_va, fb->fb_size); 1333 1334 1335 /* 1336 * Set fb_va to fake_va 1337 */ 1338 for (i = 0; i < FASTBOOT_MAX_FILES_MAP; i++) { 1339 newkernel.fi_files[i].fb_va = fake_va; 1340 1341 } 1342 1343 if (panicstr && CPU->cpu_id != bootcpuid && 1344 CPU_ACTIVE(cpu_get(bootcpuid))) { 1345 extern void panic_idle(void); 1346 cpuset_t cpuset; 1347 1348 CPUSET_ZERO(cpuset); 1349 CPUSET_ADD(cpuset, bootcpuid); 1350 xc_priority((xc_arg_t)&newkernel, 0, 0, CPUSET2BV(cpuset), 1351 (xc_func_t)fastboot_xc_func); 1352 1353 panic_idle(); 1354 } else 1355 (void) fastboot_xc_func(&newkernel, 0, 0); 1356 } 1357 1358 1359 /* 1360 * Get boot property value for fastreboot_onpanic. 1361 * 1362 * NOTE: If fastreboot_onpanic is set to non-zero in /etc/system, 1363 * new setting passed in via "-B fastreboot_onpanic" is ignored. 1364 * This order of precedence is to enable developers debugging panics 1365 * that occur early in boot to utilize Fast Reboot on panic. 1366 */ 1367 static void 1368 fastboot_get_bootprop(void) 1369 { 1370 int val = 0xaa, len, ret; 1371 dev_info_t *devi; 1372 char *propstr = NULL; 1373 1374 devi = ddi_root_node(); 1375 1376 ret = ddi_prop_lookup_string(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS, 1377 FASTREBOOT_ONPANIC, &propstr); 1378 1379 if (ret == DDI_PROP_SUCCESS) { 1380 if (FASTREBOOT_ONPANIC_NOTSET(propstr)) 1381 val = 0; 1382 else if (FASTREBOOT_ONPANIC_ISSET(propstr)) 1383 val = UA_FASTREBOOT_ONPANIC; 1384 1385 /* 1386 * Only set fastreboot_onpanic to the value passed in 1387 * if it's not already set to non-zero, and the value 1388 * has indeed been passed in via command line. 1389 */ 1390 if (!fastreboot_onpanic && val != 0xaa) 1391 fastreboot_onpanic = val; 1392 ddi_prop_free(propstr); 1393 } else if (ret != DDI_PROP_NOT_FOUND && ret != DDI_PROP_UNDEFINED) { 1394 cmn_err(CE_WARN, "%s value is invalid, will be ignored", 1395 FASTREBOOT_ONPANIC); 1396 } 1397 1398 len = sizeof (fastreboot_onpanic_cmdline); 1399 ret = ddi_getlongprop_buf(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS, 1400 FASTREBOOT_ONPANIC_CMDLINE, fastreboot_onpanic_cmdline, &len); 1401 1402 if (ret == DDI_PROP_BUF_TOO_SMALL) 1403 cmn_err(CE_WARN, "%s value is too long, will be ignored", 1404 FASTREBOOT_ONPANIC_CMDLINE); 1405 } 1406 1407 /* 1408 * This function is called by main() to either load the backup kernel for panic 1409 * fast reboot, or to reserve low physical memory for fast reboot. 1410 */ 1411 void 1412 fastboot_post_startup() 1413 { 1414 if (!fastreboot_capable) 1415 return; 1416 1417 mutex_enter(&fastreboot_config_mutex); 1418 1419 fastboot_get_bootprop(); 1420 1421 if (fastreboot_onpanic) 1422 fastboot_load_kernel(fastreboot_onpanic_cmdline); 1423 else if (reserve_mem_enabled) 1424 fastboot_reserve_mem(&newkernel); 1425 1426 mutex_exit(&fastreboot_config_mutex); 1427 } 1428 1429 /* 1430 * Update boot configuration settings. 1431 * If the new fastreboot_onpanic setting is false, and a kernel has 1432 * been preloaded, free the memory; 1433 * if the new fastreboot_onpanic setting is true and newkernel is 1434 * not valid, load the new kernel. 1435 */ 1436 void 1437 fastboot_update_config(const char *mdep) 1438 { 1439 uint8_t boot_config = (uint8_t)*mdep; 1440 int cur_fastreboot_onpanic; 1441 1442 if (!fastreboot_capable) 1443 return; 1444 1445 mutex_enter(&fastreboot_config_mutex); 1446 1447 cur_fastreboot_onpanic = fastreboot_onpanic; 1448 fastreboot_onpanic = boot_config & UA_FASTREBOOT_ONPANIC; 1449 1450 if (fastreboot_onpanic && (!cur_fastreboot_onpanic || 1451 !newkernel.fi_valid)) 1452 fastboot_load_kernel(fastreboot_onpanic_cmdline); 1453 if (cur_fastreboot_onpanic && !fastreboot_onpanic) 1454 fastboot_free_newkernel(&newkernel); 1455 1456 mutex_exit(&fastreboot_config_mutex); 1457 } 1458 1459 /* 1460 * This is the interface to be called by other kernel components to 1461 * disable fastreboot_onpanic. 1462 */ 1463 void 1464 fastreboot_disable() 1465 { 1466 uint8_t boot_config = (uint8_t)(~UA_FASTREBOOT_ONPANIC); 1467 fastboot_update_config((const char *)&boot_config); 1468 } 1469 1470 /* 1471 * This is the interface to be called by fm_panic() in case FMA has diagnosed 1472 * a terminal machine check exception. It does not free up memory allocated 1473 * for the backup kernel. General disabling fastreboot_onpanic in a 1474 * non-panicking situation must go through fastboot_update_config(). 1475 */ 1476 void 1477 fastreboot_disable_highpil() 1478 { 1479 fastreboot_onpanic = 0; 1480 } 1481 1482 1483 /* 1484 * A simplified interface for uadmin to call to update the configuration 1485 * setting and load a new kernel if necessary. 1486 */ 1487 void 1488 fastboot_update_and_load(int fcn, char *mdep) 1489 { 1490 if (fcn != AD_FASTREBOOT) { 1491 /* 1492 * If user has explicitly requested reboot to prom, 1493 * or uadmin(1M) was invoked with other functions, 1494 * don't try to fast reboot after dumping. 1495 */ 1496 fastreboot_disable(); 1497 } 1498 1499 mutex_enter(&fastreboot_config_mutex); 1500 1501 if (fastreboot_onpanic) 1502 fastboot_load_kernel(mdep); 1503 1504 mutex_exit(&fastreboot_config_mutex); 1505 } 1506