1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * This file contains the functions for performing Fast Reboot -- a 29 * reboot which bypasses the firmware and bootloader, considerably 30 * reducing downtime. 31 * 32 * fastboot_load_kernel(): This function is invoked by mdpreboot() in the 33 * reboot path. It loads the new kernel and boot archive into memory, builds 34 * the data structure containing sufficient information about the new 35 * kernel and boot archive to be passed to the fast reboot switcher 36 * (see fb_swtch_src.s for details). When invoked the switcher relocates 37 * the new kernel and boot archive to physically contiguous low memory, 38 * similar to where the boot loader would have loaded them, and jumps to 39 * the new kernel. 40 * 41 * If fastreboot_onpanic is enabled, fastboot_load_kernel() is called 42 * by fastreboot_post_startup() to load the back up kernel in case of 43 * panic. 44 * 45 * The physical addresses of the memory allocated for the new kernel, boot 46 * archive and their page tables must be above where the boot archive ends 47 * after it has been relocated by the switcher, otherwise the new files 48 * and their page tables could be overridden during relocation. 49 * 50 * fast_reboot(): This function is invoked by mdboot() once it's determined 51 * that the system is capable of fast reboot. It jumps to the fast reboot 52 * switcher with the data structure built by fastboot_load_kernel() as the 53 * argument. 54 */ 55 56 #include <sys/types.h> 57 #include <sys/param.h> 58 #include <sys/segments.h> 59 #include <sys/sysmacros.h> 60 #include <sys/vm.h> 61 62 #include <sys/proc.h> 63 #include <sys/buf.h> 64 #include <sys/kmem.h> 65 66 #include <sys/reboot.h> 67 #include <sys/uadmin.h> 68 69 #include <sys/cred.h> 70 #include <sys/vnode.h> 71 #include <sys/file.h> 72 73 #include <sys/cmn_err.h> 74 #include <sys/dumphdr.h> 75 #include <sys/bootconf.h> 76 #include <sys/ddidmareq.h> 77 #include <sys/varargs.h> 78 #include <sys/promif.h> 79 #include <sys/modctl.h> 80 81 #include <vm/hat.h> 82 #include <vm/as.h> 83 #include <vm/page.h> 84 #include <vm/seg.h> 85 #include <vm/hat_i86.h> 86 #include <sys/vm_machparam.h> 87 #include <sys/archsystm.h> 88 #include <sys/machsystm.h> 89 #include <sys/mman.h> 90 #include <sys/x86_archext.h> 91 #include <sys/smp_impldefs.h> 92 #include <sys/spl.h> 93 94 #include <sys/fastboot.h> 95 #include <sys/machelf.h> 96 #include <sys/kobj.h> 97 #include <sys/multiboot.h> 98 #include <sys/kobj_lex.h> 99 100 /* 101 * Macro to determine how many pages are needed for PTEs to map a particular 102 * file. Allocate one extra page table entry for terminating the list. 103 */ 104 #define FASTBOOT_PTE_LIST_SIZE(fsize) \ 105 P2ROUNDUP((((fsize) >> PAGESHIFT) + 1) * sizeof (x86pte_t), PAGESIZE) 106 107 /* 108 * Data structure containing necessary information for the fast reboot 109 * switcher to jump to the new kernel. 110 */ 111 fastboot_info_t newkernel = { 0 }; 112 char fastboot_args[OBP_MAXPATHLEN]; 113 114 static char fastboot_filename[2][OBP_MAXPATHLEN] = { { 0 }, { 0 }}; 115 static x86pte_t ptp_bits = PT_VALID | PT_REF | PT_USER | PT_WRITABLE; 116 static x86pte_t pte_bits = 117 PT_VALID | PT_REF | PT_MOD | PT_NOCONSIST | PT_WRITABLE; 118 static uint_t fastboot_shift_amt_pae[] = {12, 21, 30, 39}; 119 120 int fastboot_debug = 0; 121 int fastboot_contig = 0; 122 123 /* 124 * Fake starting va for new kernel and boot archive. 125 */ 126 static uintptr_t fake_va = FASTBOOT_FAKE_VA; 127 128 /* 129 * Reserve memory below PA 1G in preparation of fast reboot. 130 * 131 * This variable is only checked when fastreboot_capable is set, but 132 * fastreboot_onpanic is not set. The amount of memory reserved 133 * is negligible, but just in case we are really short of low memory, 134 * this variable will give us a backdoor to not consume memory at all. 135 */ 136 int reserve_mem_enabled = 1; 137 138 /* 139 * Amount of memory below PA 1G to reserve for constructing the multiboot 140 * data structure and the page tables as we tend to run out of those 141 * when more drivers are loaded. 142 */ 143 static size_t fastboot_mbi_size = 0x2000; /* 8K */ 144 static size_t fastboot_pagetable_size = 0x5000; /* 20K */ 145 146 /* 147 * Use below 1G for page tables as 148 * 1. we are only doing 1:1 mapping of the bottom 1G of physical memory. 149 * 2. we are using 2G as the fake virtual address for the new kernel and 150 * boot archive. 151 */ 152 static ddi_dma_attr_t fastboot_below_1G_dma_attr = { 153 DMA_ATTR_V0, 154 0x0000000008000000ULL, /* dma_attr_addr_lo: 128MB */ 155 0x000000003FFFFFFFULL, /* dma_attr_addr_hi: 1G */ 156 0x00000000FFFFFFFFULL, /* dma_attr_count_max */ 157 0x0000000000001000ULL, /* dma_attr_align: 4KB */ 158 1, /* dma_attr_burstsize */ 159 1, /* dma_attr_minxfer */ 160 0x00000000FFFFFFFFULL, /* dma_attr_maxxfer */ 161 0x00000000FFFFFFFFULL, /* dma_attr_seg */ 162 1, /* dma_attr_sgllen */ 163 0x1000ULL, /* dma_attr_granular */ 164 0, /* dma_attr_flags */ 165 }; 166 167 static ddi_dma_attr_t fastboot_dma_attr = { 168 DMA_ATTR_V0, 169 0x0000000008000000ULL, /* dma_attr_addr_lo: 128MB */ 170 #ifdef __amd64 171 0xFFFFFFFFFFFFFFFFULL, /* dma_attr_addr_hi: 2^64B */ 172 #else 173 0x0000000FFFFFFFFFULL, /* dma_attr_addr_hi: 64GB */ 174 #endif /* __amd64 */ 175 0x00000000FFFFFFFFULL, /* dma_attr_count_max */ 176 0x0000000000001000ULL, /* dma_attr_align: 4KB */ 177 1, /* dma_attr_burstsize */ 178 1, /* dma_attr_minxfer */ 179 0x00000000FFFFFFFFULL, /* dma_attr_maxxfer */ 180 0x00000000FFFFFFFFULL, /* dma_attr_seg */ 181 1, /* dma_attr_sgllen */ 182 0x1000ULL, /* dma_attr_granular */ 183 0, /* dma_attr_flags */ 184 }; 185 186 /* 187 * Various information saved from the previous boot to reconstruct 188 * multiboot_info. 189 */ 190 extern multiboot_info_t saved_mbi; 191 extern mb_memory_map_t saved_mmap[FASTBOOT_SAVED_MMAP_COUNT]; 192 extern struct sol_netinfo saved_drives[FASTBOOT_SAVED_DRIVES_COUNT]; 193 extern char saved_cmdline[FASTBOOT_SAVED_CMDLINE_LEN]; 194 extern int saved_cmdline_len; 195 extern size_t saved_file_size[]; 196 197 extern void* contig_alloc(size_t size, ddi_dma_attr_t *attr, 198 uintptr_t align, int cansleep); 199 extern void contig_free(void *addr, size_t size); 200 201 202 /* PRINTLIKE */ 203 extern void vprintf(const char *, va_list); 204 205 206 /* 207 * Need to be able to get boot_archives from other places 208 */ 209 #define BOOTARCHIVE64 "/platform/i86pc/amd64/boot_archive" 210 #define BOOTARCHIVE32 "/platform/i86pc/boot_archive" 211 #define BOOTARCHIVE32_FAILSAFE "/boot/x86.miniroot-safe" 212 #define BOOTARCHIVE64_FAILSAFE "/boot/amd64/x86.miniroot-safe" 213 #define FAILSAFE_BOOTFILE32 "/boot/platform/i86pc/kernel/unix" 214 #define FAILSAFE_BOOTFILE64 "/boot/platform/i86pc/kernel/amd64/unix" 215 216 static uint_t fastboot_vatoindex(fastboot_info_t *, uintptr_t, int); 217 static void fastboot_map_with_size(fastboot_info_t *, uintptr_t, 218 paddr_t, size_t, int); 219 static void fastboot_build_pagetables(fastboot_info_t *); 220 static int fastboot_build_mbi(char *, fastboot_info_t *); 221 static void fastboot_free_file(fastboot_file_t *); 222 223 static const char fastboot_enomem_msg[] = "Fastboot: Couldn't allocate 0x%" 224 PRIx64" bytes below %s to do fast reboot"; 225 226 static void 227 dprintf(char *fmt, ...) 228 { 229 va_list adx; 230 231 if (!fastboot_debug) 232 return; 233 234 va_start(adx, fmt); 235 vprintf(fmt, adx); 236 va_end(adx); 237 } 238 239 240 /* 241 * Return the index corresponding to a virt address at a given page table level. 242 */ 243 static uint_t 244 fastboot_vatoindex(fastboot_info_t *nk, uintptr_t va, int level) 245 { 246 return ((va >> nk->fi_shift_amt[level]) & (nk->fi_ptes_per_table - 1)); 247 } 248 249 250 /* 251 * Add mapping from vstart to pstart for the specified size. 252 * vstart, pstart and size should all have been aligned at 2M boundaries. 253 */ 254 static void 255 fastboot_map_with_size(fastboot_info_t *nk, uintptr_t vstart, paddr_t pstart, 256 size_t size, int level) 257 { 258 x86pte_t pteval, *table; 259 uintptr_t vaddr; 260 paddr_t paddr; 261 int index, l; 262 263 table = (x86pte_t *)(nk->fi_pagetable_va); 264 265 for (l = nk->fi_top_level; l >= level; l--) { 266 267 index = fastboot_vatoindex(nk, vstart, l); 268 269 if (l == level) { 270 /* 271 * Last level. Program the page table entries. 272 */ 273 for (vaddr = vstart, paddr = pstart; 274 vaddr < vstart + size; 275 vaddr += (1ULL << nk->fi_shift_amt[l]), 276 paddr += (1ULL << nk->fi_shift_amt[l])) { 277 278 uint_t index = fastboot_vatoindex(nk, vaddr, l); 279 280 if (l > 0) 281 pteval = paddr | pte_bits | PT_PAGESIZE; 282 else 283 pteval = paddr | pte_bits; 284 285 table[index] = pteval; 286 } 287 } else if (table[index] & PT_VALID) { 288 289 table = (x86pte_t *) 290 ((uintptr_t)(((paddr_t)table[index] & MMU_PAGEMASK) 291 - nk->fi_pagetable_pa) + nk->fi_pagetable_va); 292 } else { 293 /* 294 * Intermediate levels. 295 * Program with either valid bit or PTP bits. 296 */ 297 if (l == nk->fi_top_level) { 298 #ifdef __amd64 299 ASSERT(nk->fi_top_level == 3); 300 table[index] = nk->fi_next_table_pa | ptp_bits; 301 #else 302 table[index] = nk->fi_next_table_pa | PT_VALID; 303 #endif /* __amd64 */ 304 } else { 305 table[index] = nk->fi_next_table_pa | ptp_bits; 306 } 307 table = (x86pte_t *)(nk->fi_next_table_va); 308 nk->fi_next_table_va += MMU_PAGESIZE; 309 nk->fi_next_table_pa += MMU_PAGESIZE; 310 } 311 } 312 } 313 314 /* 315 * Build page tables for the lower 1G of physical memory using 2M 316 * pages, and prepare page tables for mapping new kernel and boot 317 * archive pages using 4K pages. 318 */ 319 static void 320 fastboot_build_pagetables(fastboot_info_t *nk) 321 { 322 /* 323 * Map lower 1G physical memory. Use large pages. 324 */ 325 fastboot_map_with_size(nk, 0, 0, ONE_GIG, 1); 326 327 /* 328 * Map one 4K page to get the middle page tables set up. 329 */ 330 fake_va = P2ALIGN_TYPED(fake_va, nk->fi_lpagesize, uintptr_t); 331 fastboot_map_with_size(nk, fake_va, 332 nk->fi_files[0].fb_pte_list_va[0] & MMU_PAGEMASK, PAGESIZE, 0); 333 } 334 335 336 /* 337 * Sanity check. Look for dboot offset. 338 */ 339 static int 340 fastboot_elf64_find_dboot_load_offset(void *img, off_t imgsz, uint32_t *offp) 341 { 342 Elf64_Ehdr *ehdr = (Elf64_Ehdr *)img; 343 Elf64_Phdr *phdr; 344 uint8_t *phdrbase; 345 int i; 346 347 if ((ehdr->e_phoff + ehdr->e_phnum * ehdr->e_phentsize) >= imgsz) 348 return (-1); 349 350 phdrbase = (uint8_t *)img + ehdr->e_phoff; 351 352 for (i = 0; i < ehdr->e_phnum; i++) { 353 phdr = (Elf64_Phdr *)(phdrbase + ehdr->e_phentsize * i); 354 355 if (phdr->p_type == PT_LOAD) { 356 if (phdr->p_vaddr == phdr->p_paddr && 357 phdr->p_vaddr == DBOOT_ENTRY_ADDRESS) { 358 ASSERT(phdr->p_offset <= UINT32_MAX); 359 *offp = (uint32_t)phdr->p_offset; 360 return (0); 361 } 362 } 363 } 364 365 return (-1); 366 } 367 368 369 /* 370 * Initialize text and data section information for 32-bit kernel. 371 * sectcntp - is both input/output parameter. 372 * On entry, *sectcntp contains maximum allowable number of sections; 373 * on return, it contains the actual number of sections filled. 374 */ 375 static int 376 fastboot_elf32_find_loadables(void *img, off_t imgsz, fastboot_section_t *sectp, 377 int *sectcntp, uint32_t *offp) 378 { 379 Elf32_Ehdr *ehdr = (Elf32_Ehdr *)img; 380 Elf32_Phdr *phdr; 381 uint8_t *phdrbase; 382 int i; 383 int used_sections = 0; 384 const int max_sectcnt = *sectcntp; 385 386 if ((ehdr->e_phoff + ehdr->e_phnum * ehdr->e_phentsize) >= imgsz) 387 return (-1); 388 389 phdrbase = (uint8_t *)img + ehdr->e_phoff; 390 391 for (i = 0; i < ehdr->e_phnum; i++) { 392 phdr = (Elf32_Phdr *)(phdrbase + ehdr->e_phentsize * i); 393 394 if (phdr->p_type == PT_INTERP) 395 return (-1); 396 397 if (phdr->p_type != PT_LOAD) 398 continue; 399 400 if (phdr->p_vaddr == phdr->p_paddr && 401 phdr->p_paddr == DBOOT_ENTRY_ADDRESS) { 402 *offp = (uint32_t)phdr->p_offset; 403 } else { 404 if (max_sectcnt <= used_sections) 405 return (-1); 406 407 sectp[used_sections].fb_sec_offset = phdr->p_offset; 408 sectp[used_sections].fb_sec_paddr = phdr->p_paddr; 409 sectp[used_sections].fb_sec_size = phdr->p_filesz; 410 sectp[used_sections].fb_sec_bss_size = 411 (phdr->p_filesz < phdr->p_memsz) ? 412 (phdr->p_memsz - phdr->p_filesz) : 0; 413 414 /* Extra sanity check for the input object file */ 415 if (sectp[used_sections].fb_sec_paddr + 416 sectp[used_sections].fb_sec_size + 417 sectp[used_sections].fb_sec_bss_size >= 418 DBOOT_ENTRY_ADDRESS) 419 return (-1); 420 421 used_sections++; 422 } 423 } 424 425 *sectcntp = used_sections; 426 return (0); 427 } 428 429 /* 430 * Create multiboot info structure 431 */ 432 static int 433 fastboot_build_mbi(char *mdep, fastboot_info_t *nk) 434 { 435 mb_module_t *mbp; 436 uintptr_t next_addr; 437 uintptr_t new_mbi_pa; 438 size_t arglen; 439 char bootargs[OBP_MAXPATHLEN]; 440 size_t size; 441 442 bzero(bootargs, OBP_MAXPATHLEN); 443 444 if (mdep != NULL && strlen(mdep) != 0) { 445 arglen = strlen(mdep) + 1; 446 } else { 447 arglen = saved_cmdline_len; 448 } 449 450 size = PAGESIZE + P2ROUNDUP(arglen, PAGESIZE); 451 if (nk->fi_mbi_size && nk->fi_mbi_size < size) { 452 contig_free((void *)nk->fi_new_mbi_va, nk->fi_mbi_size); 453 nk->fi_mbi_size = 0; 454 } 455 456 if (nk->fi_mbi_size == 0) { 457 if ((nk->fi_new_mbi_va = 458 (uintptr_t)contig_alloc(size, &fastboot_below_1G_dma_attr, 459 PAGESIZE, 0)) == NULL) { 460 cmn_err(CE_WARN, fastboot_enomem_msg, 461 (uint64_t)size, "1G"); 462 return (-1); 463 } 464 /* 465 * fi_mbi_size must be set after the allocation succeeds 466 * as it's used to determine how much memory to free. 467 */ 468 nk->fi_mbi_size = size; 469 } 470 471 bzero((void *)nk->fi_new_mbi_va, nk->fi_mbi_size); 472 473 new_mbi_pa = mmu_ptob((uint64_t)hat_getpfnum(kas.a_hat, 474 (caddr_t)nk->fi_new_mbi_va)); 475 476 /* 477 * Map the address into both the current proc's address 478 * space and the kernel's address space in case the panic 479 * is forced by kmdb. 480 */ 481 AS_LOCK_ENTER(&kas, &kas.a_lock, RW_WRITER); 482 hat_devload(kas.a_hat, (caddr_t)new_mbi_pa, nk->fi_mbi_size, 483 mmu_btop(new_mbi_pa), PROT_READ | PROT_WRITE, 484 HAT_LOAD_NOCONSIST | HAT_LOAD_LOCK); 485 AS_LOCK_EXIT(&kas, &kas.a_lock); 486 487 if (&kas != curproc->p_as) { 488 struct as *asp = curproc->p_as; 489 AS_LOCK_ENTER(asp, &asp->a_lock, RW_WRITER); 490 hat_devload(asp->a_hat, (caddr_t)new_mbi_pa, nk->fi_mbi_size, 491 mmu_btop(new_mbi_pa), PROT_READ | PROT_WRITE, 492 HAT_LOAD_NOCONSIST | HAT_LOAD_LOCK); 493 AS_LOCK_EXIT(asp, &asp->a_lock); 494 } 495 496 nk->fi_new_mbi_pa = (paddr_t)new_mbi_pa; 497 498 bcopy(&saved_mbi, (void *)new_mbi_pa, sizeof (multiboot_info_t)); 499 500 next_addr = new_mbi_pa + sizeof (multiboot_info_t); 501 ((multiboot_info_t *)new_mbi_pa)->mods_addr = next_addr; 502 mbp = (mb_module_t *)(uintptr_t)next_addr; 503 mbp->mod_start = nk->fi_files[FASTBOOT_BOOTARCHIVE].fb_dest_pa; 504 mbp->mod_end = nk->fi_files[FASTBOOT_BOOTARCHIVE].fb_next_pa; 505 506 next_addr += sizeof (mb_module_t); 507 bcopy(fastboot_filename[FASTBOOT_NAME_BOOTARCHIVE], (void *)next_addr, 508 strlen(fastboot_filename[FASTBOOT_NAME_BOOTARCHIVE])); 509 510 mbp->mod_name = next_addr; 511 mbp->reserved = 0; 512 next_addr += strlen(fastboot_filename[FASTBOOT_NAME_BOOTARCHIVE]); 513 *(char *)next_addr = '\0'; 514 next_addr++; 515 next_addr = P2ROUNDUP_TYPED(next_addr, 16, uintptr_t); 516 517 ((multiboot_info_t *)new_mbi_pa)->mmap_addr = next_addr; 518 bcopy((void *)(uintptr_t)saved_mmap, (void *)next_addr, 519 saved_mbi.mmap_length); 520 next_addr += saved_mbi.mmap_length; 521 522 ((multiboot_info_t *)new_mbi_pa)->drives_addr = next_addr; 523 bcopy((void *)(uintptr_t)saved_drives, (void *)next_addr, 524 saved_mbi.drives_length); 525 next_addr += saved_mbi.drives_length; 526 527 ((multiboot_info_t *)new_mbi_pa)->cmdline = next_addr; 528 529 if (mdep != NULL && strlen(mdep) != 0) { 530 bcopy(mdep, (void *)(uintptr_t) 531 (((multiboot_info_t *)new_mbi_pa)->cmdline), (arglen - 1)); 532 } else { 533 bcopy((void *)saved_cmdline, (void *)next_addr, (arglen - 1)); 534 } 535 /* Terminate the string */ 536 ((char *)(intptr_t)next_addr)[arglen - 1] = '\0'; 537 538 return (0); 539 } 540 541 /* 542 * Initialize HAT related fields 543 */ 544 static void 545 fastboot_init_fields(fastboot_info_t *nk) 546 { 547 if (x86_feature & X86_PAE) { 548 nk->fi_has_pae = 1; 549 nk->fi_shift_amt = fastboot_shift_amt_pae; 550 nk->fi_ptes_per_table = 512; 551 nk->fi_lpagesize = (2 << 20); /* 2M */ 552 #ifdef __amd64 553 nk->fi_top_level = 3; 554 #else 555 nk->fi_top_level = 2; 556 #endif /* __amd64 */ 557 } 558 } 559 560 /* 561 * Process boot argument 562 */ 563 static void 564 fastboot_parse_mdep(char *mdep, char *kern_bootpath, int *bootpath_len, 565 char *bootargs) 566 { 567 int i; 568 569 /* 570 * If mdep is not NULL, it comes in the format of 571 * mountpoint unix args 572 */ 573 if (mdep != NULL && strlen(mdep) != 0) { 574 if (mdep[0] != '-') { 575 /* First get the root argument */ 576 i = 0; 577 while (mdep[i] != '\0' && mdep[i] != ' ') { 578 i++; 579 } 580 581 if (i < 4 || strncmp(&mdep[i-4], "unix", 4) != 0) { 582 /* mount point */ 583 bcopy(mdep, kern_bootpath, i); 584 kern_bootpath[i] = '\0'; 585 *bootpath_len = i; 586 587 /* 588 * Get the next argument. It should be unix as 589 * we have validated in in halt.c. 590 */ 591 if (strlen(mdep) > i) { 592 mdep += (i + 1); 593 i = 0; 594 while (mdep[i] != '\0' && 595 mdep[i] != ' ') { 596 i++; 597 } 598 } 599 600 } 601 bcopy(mdep, kern_bootfile, i); 602 kern_bootfile[i] = '\0'; 603 bcopy(mdep, bootargs, strlen(mdep)); 604 } else { 605 int off = strlen(kern_bootfile); 606 bcopy(kern_bootfile, bootargs, off); 607 bcopy(" ", &bootargs[off++], 1); 608 bcopy(mdep, &bootargs[off], strlen(mdep)); 609 off += strlen(mdep); 610 bootargs[off] = '\0'; 611 } 612 } 613 } 614 615 /* 616 * Reserve memory under PA 1G for mapping the new kernel and boot archive. 617 * This function is only called if fastreboot_onpanic is *not* set. 618 */ 619 static void 620 fastboot_reserve_mem(fastboot_info_t *nk) 621 { 622 int i; 623 624 /* 625 * A valid kernel is in place. No need to reserve any memory. 626 */ 627 if (nk->fi_valid) 628 return; 629 630 /* 631 * Reserve memory under PA 1G for PTE lists. 632 */ 633 for (i = 0; i < FASTBOOT_MAX_FILES_MAP; i++) { 634 fastboot_file_t *fb = &nk->fi_files[i]; 635 size_t fsize_roundup, size; 636 637 fsize_roundup = P2ROUNDUP_TYPED(saved_file_size[i], 638 PAGESIZE, size_t); 639 size = FASTBOOT_PTE_LIST_SIZE(fsize_roundup); 640 if ((fb->fb_pte_list_va = contig_alloc(size, 641 &fastboot_below_1G_dma_attr, PAGESIZE, 0)) == NULL) { 642 return; 643 } 644 fb->fb_pte_list_size = size; 645 } 646 647 /* 648 * Reserve memory under PA 1G for page tables. 649 */ 650 if ((nk->fi_pagetable_va = 651 (uintptr_t)contig_alloc(fastboot_pagetable_size, 652 &fastboot_below_1G_dma_attr, PAGESIZE, 0)) == NULL) { 653 return; 654 } 655 nk->fi_pagetable_size = fastboot_pagetable_size; 656 657 /* 658 * Reserve memory under PA 1G for multiboot structure. 659 */ 660 if ((nk->fi_new_mbi_va = (uintptr_t)contig_alloc(fastboot_mbi_size, 661 &fastboot_below_1G_dma_attr, PAGESIZE, 0)) == NULL) { 662 return; 663 } 664 nk->fi_mbi_size = fastboot_mbi_size; 665 } 666 667 /* 668 * Calculate MD5 digest for the given fastboot_file. 669 * Assumes that the file is allready loaded properly. 670 */ 671 static void 672 fastboot_cksum_file(fastboot_file_t *fb, uchar_t *md5_hash) 673 { 674 MD5_CTX md5_ctx; 675 676 MD5Init(&md5_ctx); 677 MD5Update(&md5_ctx, (void *)fb->fb_va, fb->fb_size); 678 MD5Final(md5_hash, &md5_ctx); 679 } 680 681 /* 682 * Free up the memory we have allocated for a file 683 */ 684 static void 685 fastboot_free_file(fastboot_file_t *fb) 686 { 687 size_t fsize_roundup; 688 689 fsize_roundup = P2ROUNDUP_TYPED(fb->fb_size, PAGESIZE, size_t); 690 if (fsize_roundup) { 691 contig_free((void *)fb->fb_va, fsize_roundup); 692 fb->fb_va = NULL; 693 fb->fb_size = 0; 694 } 695 } 696 697 /* 698 * Free up memory used by the PTEs for a file. 699 */ 700 static void 701 fastboot_free_file_pte(fastboot_file_t *fb, uint64_t endaddr) 702 { 703 if (fb->fb_pte_list_size && fb->fb_pte_list_pa < endaddr) { 704 contig_free((void *)fb->fb_pte_list_va, fb->fb_pte_list_size); 705 fb->fb_pte_list_va = 0; 706 fb->fb_pte_list_pa = 0; 707 fb->fb_pte_list_size = 0; 708 } 709 } 710 711 /* 712 * Free up all the memory used for representing a kernel with 713 * fastboot_info_t. 714 */ 715 static void 716 fastboot_free_mem(fastboot_info_t *nk, uint64_t endaddr) 717 { 718 int i; 719 720 for (i = 0; i < FASTBOOT_MAX_FILES_MAP; i++) { 721 fastboot_free_file(nk->fi_files + i); 722 fastboot_free_file_pte(nk->fi_files + i, endaddr); 723 } 724 725 if (nk->fi_pagetable_size && nk->fi_pagetable_pa < endaddr) { 726 contig_free((void *)nk->fi_pagetable_va, nk->fi_pagetable_size); 727 nk->fi_pagetable_va = 0; 728 nk->fi_pagetable_pa = 0; 729 nk->fi_pagetable_size = 0; 730 } 731 732 if (nk->fi_mbi_size && nk->fi_new_mbi_pa < endaddr) { 733 contig_free((void *)nk->fi_new_mbi_va, nk->fi_mbi_size); 734 nk->fi_new_mbi_va = 0; 735 nk->fi_new_mbi_pa = 0; 736 nk->fi_mbi_size = 0; 737 } 738 } 739 740 /* 741 * Only free up the memory allocated for the kernel and boot archive, 742 * but not for the page tables. 743 */ 744 void 745 fastboot_free_newkernel(fastboot_info_t *nk) 746 { 747 int i; 748 749 nk->fi_valid = 0; 750 /* 751 * Free the memory we have allocated 752 */ 753 for (i = 0; i < FASTBOOT_MAX_FILES_MAP; i++) { 754 fastboot_free_file(&(nk->fi_files[i])); 755 } 756 } 757 758 static void 759 fastboot_cksum_cdata(fastboot_info_t *nk, uchar_t *md5_hash) 760 { 761 int i; 762 MD5_CTX md5_ctx; 763 764 MD5Init(&md5_ctx); 765 for (i = 0; i < FASTBOOT_MAX_FILES_MAP; i++) { 766 MD5Update(&md5_ctx, nk->fi_files[i].fb_pte_list_va, 767 nk->fi_files[i].fb_pte_list_size); 768 } 769 MD5Update(&md5_ctx, (void *)nk->fi_pagetable_va, nk->fi_pagetable_size); 770 MD5Update(&md5_ctx, (void *)nk->fi_new_mbi_va, nk->fi_mbi_size); 771 772 MD5Final(md5_hash, &md5_ctx); 773 } 774 775 /* 776 * Generate MD5 checksum of the given kernel. 777 */ 778 static void 779 fastboot_cksum_generate(fastboot_info_t *nk) 780 { 781 int i; 782 783 for (i = 0; i < FASTBOOT_MAX_FILES_MAP; i++) { 784 fastboot_cksum_file(nk->fi_files + i, nk->fi_md5_hash[i]); 785 } 786 fastboot_cksum_cdata(nk, nk->fi_md5_hash[i]); 787 } 788 789 /* 790 * Calculate MD5 checksum of the given kernel and verify that 791 * it matches with what was calculated before. 792 */ 793 int 794 fastboot_cksum_verify(fastboot_info_t *nk) 795 { 796 int i; 797 uchar_t md5_hash[MD5_DIGEST_LENGTH]; 798 799 for (i = 0; i < FASTBOOT_MAX_FILES_MAP; i++) { 800 fastboot_cksum_file(nk->fi_files + i, md5_hash); 801 if (bcmp(nk->fi_md5_hash[i], md5_hash, 802 sizeof (nk->fi_md5_hash[i])) != 0) 803 return (i + 1); 804 } 805 806 fastboot_cksum_cdata(nk, md5_hash); 807 if (bcmp(nk->fi_md5_hash[i], md5_hash, 808 sizeof (nk->fi_md5_hash[i])) != 0) 809 return (i + 1); 810 811 return (0); 812 } 813 814 /* 815 * This function performs the following tasks: 816 * - Read the sizes of the new kernel and boot archive. 817 * - Allocate memory for the new kernel and boot archive. 818 * - Allocate memory for page tables necessary for mapping the memory 819 * allocated for the files. 820 * - Read the new kernel and boot archive into memory. 821 * - Map in the fast reboot switcher. 822 * - Load the fast reboot switcher to FASTBOOT_SWTCH_PA. 823 * - Build the new multiboot_info structure 824 * - Build page tables for the low 1G of physical memory. 825 * - Mark the data structure as valid if all steps have succeeded. 826 */ 827 void 828 fastboot_load_kernel(char *mdep) 829 { 830 void *buf = NULL; 831 int i; 832 fastboot_file_t *fb; 833 uint32_t dboot_start_offset; 834 char kern_bootpath[OBP_MAXPATHLEN]; 835 extern uintptr_t postbootkernelbase; 836 uintptr_t saved_kernelbase; 837 int bootpath_len = 0; 838 int is_failsafe = 0; 839 int is_retry = 0; 840 uint64_t end_addr; 841 842 ASSERT(fastreboot_capable); 843 844 if (newkernel.fi_valid) 845 fastboot_free_newkernel(&newkernel); 846 847 saved_kernelbase = postbootkernelbase; 848 849 postbootkernelbase = 0; 850 851 /* 852 * Initialize various HAT related fields in the data structure 853 */ 854 fastboot_init_fields(&newkernel); 855 856 bzero(kern_bootpath, OBP_MAXPATHLEN); 857 858 /* 859 * Process the boot argument 860 */ 861 bzero(fastboot_args, OBP_MAXPATHLEN); 862 fastboot_parse_mdep(mdep, kern_bootpath, &bootpath_len, fastboot_args); 863 864 /* 865 * Make sure we get the null character 866 */ 867 bcopy(kern_bootpath, fastboot_filename[FASTBOOT_NAME_UNIX], 868 bootpath_len); 869 bcopy(kern_bootfile, 870 &fastboot_filename[FASTBOOT_NAME_UNIX][bootpath_len], 871 strlen(kern_bootfile) + 1); 872 873 bcopy(kern_bootpath, fastboot_filename[FASTBOOT_NAME_BOOTARCHIVE], 874 bootpath_len); 875 876 if (bcmp(kern_bootfile, FAILSAFE_BOOTFILE32, 877 (sizeof (FAILSAFE_BOOTFILE32) - 1)) == 0 || 878 bcmp(kern_bootfile, FAILSAFE_BOOTFILE64, 879 (sizeof (FAILSAFE_BOOTFILE64) - 1)) == 0) { 880 is_failsafe = 1; 881 } 882 883 load_kernel_retry: 884 /* 885 * Read in unix and boot_archive 886 */ 887 end_addr = DBOOT_ENTRY_ADDRESS; 888 for (i = 0; i < FASTBOOT_MAX_FILES_MAP; i++) { 889 struct _buf *file; 890 uintptr_t va; 891 uint64_t fsize; 892 size_t fsize_roundup, pt_size; 893 int page_index; 894 uintptr_t offset; 895 ddi_dma_attr_t dma_attr = fastboot_dma_attr; 896 897 898 dprintf("fastboot_filename[%d] = %s\n", 899 i, fastboot_filename[i]); 900 901 if ((file = kobj_open_file(fastboot_filename[i])) == 902 (struct _buf *)-1) { 903 cmn_err(CE_WARN, "Fastboot: Couldn't open %s", 904 fastboot_filename[i]); 905 goto err_out; 906 } 907 908 if (kobj_get_filesize(file, &fsize) != 0) { 909 cmn_err(CE_WARN, 910 "Fastboot: Couldn't get filesize for %s", 911 fastboot_filename[i]); 912 goto err_out; 913 } 914 915 fsize_roundup = P2ROUNDUP_TYPED(fsize, PAGESIZE, size_t); 916 917 /* 918 * Where the files end in physical memory after being 919 * relocated by the fast boot switcher. 920 */ 921 end_addr += fsize_roundup; 922 if (end_addr > fastboot_below_1G_dma_attr.dma_attr_addr_hi) { 923 cmn_err(CE_WARN, "Fastboot: boot archive is too big"); 924 goto err_out; 925 } 926 927 /* 928 * Adjust dma_attr_addr_lo so that the new kernel and boot 929 * archive will not be overridden during relocation. 930 */ 931 if (end_addr > fastboot_dma_attr.dma_attr_addr_lo || 932 end_addr > fastboot_below_1G_dma_attr.dma_attr_addr_lo) { 933 934 if (is_retry) { 935 /* 936 * If we have already tried and didn't succeed, 937 * just give up. 938 */ 939 cmn_err(CE_WARN, 940 "Fastboot: boot archive is too big"); 941 goto err_out; 942 } else { 943 /* Set the flag so we don't keep retrying */ 944 is_retry++; 945 946 /* Adjust dma_attr_addr_lo */ 947 fastboot_dma_attr.dma_attr_addr_lo = end_addr; 948 fastboot_below_1G_dma_attr.dma_attr_addr_lo = 949 end_addr; 950 951 /* 952 * Free the memory we have already allocated 953 * whose physical addresses might not fit 954 * the new lo and hi constraints. 955 */ 956 fastboot_free_mem(&newkernel, end_addr); 957 goto load_kernel_retry; 958 } 959 } 960 961 962 if (!fastboot_contig) 963 dma_attr.dma_attr_sgllen = (fsize / PAGESIZE) + 964 (((fsize % PAGESIZE) == 0) ? 0 : 1); 965 966 if ((buf = contig_alloc(fsize, &dma_attr, PAGESIZE, 0)) 967 == NULL) { 968 cmn_err(CE_WARN, fastboot_enomem_msg, fsize, "64G"); 969 goto err_out; 970 } 971 972 va = P2ROUNDUP_TYPED((uintptr_t)buf, PAGESIZE, uintptr_t); 973 974 if (kobj_read_file(file, (char *)va, fsize, 0) < 0) { 975 cmn_err(CE_WARN, "Fastboot: Couldn't read %s", 976 fastboot_filename[i]); 977 goto err_out; 978 } 979 980 fb = &newkernel.fi_files[i]; 981 fb->fb_va = va; 982 fb->fb_size = fsize; 983 fb->fb_sectcnt = 0; 984 985 pt_size = FASTBOOT_PTE_LIST_SIZE(fsize_roundup); 986 987 /* 988 * If we have reserved memory but it not enough, free it. 989 */ 990 if (fb->fb_pte_list_size && fb->fb_pte_list_size < pt_size) { 991 contig_free((void *)fb->fb_pte_list_va, 992 fb->fb_pte_list_size); 993 fb->fb_pte_list_size = 0; 994 } 995 996 if (fb->fb_pte_list_size == 0) { 997 if ((fb->fb_pte_list_va = 998 (x86pte_t *)contig_alloc(pt_size, 999 &fastboot_below_1G_dma_attr, PAGESIZE, 0)) 1000 == NULL) { 1001 cmn_err(CE_WARN, fastboot_enomem_msg, 1002 (uint64_t)pt_size, "1G"); 1003 goto err_out; 1004 } 1005 /* 1006 * fb_pte_list_size must be set after the allocation 1007 * succeeds as it's used to determine how much memory to 1008 * free. 1009 */ 1010 fb->fb_pte_list_size = pt_size; 1011 } 1012 1013 bzero((void *)(fb->fb_pte_list_va), fb->fb_pte_list_size); 1014 1015 fb->fb_pte_list_pa = mmu_ptob((uint64_t)hat_getpfnum(kas.a_hat, 1016 (caddr_t)fb->fb_pte_list_va)); 1017 1018 for (page_index = 0, offset = 0; offset < fb->fb_size; 1019 offset += PAGESIZE) { 1020 uint64_t paddr; 1021 1022 paddr = mmu_ptob((uint64_t)hat_getpfnum(kas.a_hat, 1023 (caddr_t)fb->fb_va + offset)); 1024 1025 ASSERT(paddr >= fastboot_dma_attr.dma_attr_addr_lo); 1026 1027 /* 1028 * Include the pte_bits so we don't have to make 1029 * it in assembly. 1030 */ 1031 fb->fb_pte_list_va[page_index++] = (x86pte_t) 1032 (paddr | pte_bits); 1033 } 1034 1035 fb->fb_pte_list_va[page_index] = FASTBOOT_TERMINATE; 1036 1037 if (i == FASTBOOT_UNIX) { 1038 Ehdr *ehdr = (Ehdr *)va; 1039 int j; 1040 1041 /* 1042 * Sanity checks: 1043 */ 1044 for (j = 0; j < SELFMAG; j++) { 1045 if (ehdr->e_ident[j] != ELFMAG[j]) { 1046 cmn_err(CE_WARN, "Fastboot: Bad ELF " 1047 "signature"); 1048 goto err_out; 1049 } 1050 } 1051 1052 if (ehdr->e_ident[EI_CLASS] == ELFCLASS32 && 1053 ehdr->e_ident[EI_DATA] == ELFDATA2LSB && 1054 ehdr->e_machine == EM_386) { 1055 1056 fb->fb_sectcnt = sizeof (fb->fb_sections) / 1057 sizeof (fb->fb_sections[0]); 1058 1059 if (fastboot_elf32_find_loadables((void *)va, 1060 fsize, &fb->fb_sections[0], 1061 &fb->fb_sectcnt, &dboot_start_offset) < 0) { 1062 cmn_err(CE_WARN, "Fastboot: ELF32 " 1063 "program section failure"); 1064 goto err_out; 1065 } 1066 1067 if (fb->fb_sectcnt == 0) { 1068 cmn_err(CE_WARN, "Fastboot: No ELF32 " 1069 "program sections found"); 1070 goto err_out; 1071 } 1072 1073 if (is_failsafe) { 1074 /* Failsafe boot_archive */ 1075 bcopy(BOOTARCHIVE32_FAILSAFE, 1076 &fastboot_filename 1077 [FASTBOOT_NAME_BOOTARCHIVE] 1078 [bootpath_len], 1079 sizeof (BOOTARCHIVE32_FAILSAFE)); 1080 } else { 1081 bcopy(BOOTARCHIVE32, 1082 &fastboot_filename 1083 [FASTBOOT_NAME_BOOTARCHIVE] 1084 [bootpath_len], 1085 sizeof (BOOTARCHIVE32)); 1086 } 1087 1088 } else if (ehdr->e_ident[EI_CLASS] == ELFCLASS64 && 1089 ehdr->e_ident[EI_DATA] == ELFDATA2LSB && 1090 ehdr->e_machine == EM_AMD64) { 1091 1092 if (fastboot_elf64_find_dboot_load_offset( 1093 (void *)va, fsize, &dboot_start_offset) 1094 != 0) { 1095 cmn_err(CE_WARN, "Fastboot: Couldn't " 1096 "find ELF64 dboot entry offset"); 1097 goto err_out; 1098 } 1099 1100 if ((x86_feature & X86_64) == 0 || 1101 (x86_feature & X86_PAE) == 0) { 1102 cmn_err(CE_WARN, "Fastboot: Cannot " 1103 "reboot to %s: " 1104 "not a 64-bit capable system", 1105 kern_bootfile); 1106 goto err_out; 1107 } 1108 1109 if (is_failsafe) { 1110 /* Failsafe boot_archive */ 1111 bcopy(BOOTARCHIVE64_FAILSAFE, 1112 &fastboot_filename 1113 [FASTBOOT_NAME_BOOTARCHIVE] 1114 [bootpath_len], 1115 sizeof (BOOTARCHIVE64_FAILSAFE)); 1116 } else { 1117 bcopy(BOOTARCHIVE64, 1118 &fastboot_filename 1119 [FASTBOOT_NAME_BOOTARCHIVE] 1120 [bootpath_len], 1121 sizeof (BOOTARCHIVE64)); 1122 } 1123 } else { 1124 cmn_err(CE_WARN, "Fastboot: Unknown ELF type"); 1125 goto err_out; 1126 } 1127 1128 fb->fb_dest_pa = DBOOT_ENTRY_ADDRESS - 1129 dboot_start_offset; 1130 1131 fb->fb_next_pa = DBOOT_ENTRY_ADDRESS + fsize_roundup; 1132 } else { 1133 fb->fb_dest_pa = newkernel.fi_files[i - 1].fb_next_pa; 1134 fb->fb_next_pa = fb->fb_dest_pa + fsize_roundup; 1135 } 1136 1137 kobj_close_file(file); 1138 1139 } 1140 1141 /* 1142 * Add the function that will switch us to 32-bit protected mode 1143 */ 1144 fb = &newkernel.fi_files[FASTBOOT_SWTCH]; 1145 fb->fb_va = fb->fb_dest_pa = FASTBOOT_SWTCH_PA; 1146 fb->fb_size = MMU_PAGESIZE; 1147 1148 hat_devload(kas.a_hat, (caddr_t)fb->fb_va, 1149 MMU_PAGESIZE, mmu_btop(fb->fb_dest_pa), 1150 PROT_READ | PROT_WRITE | PROT_EXEC, 1151 HAT_LOAD_NOCONSIST | HAT_LOAD_LOCK); 1152 1153 /* 1154 * Build the new multiboot_info structure 1155 */ 1156 if (fastboot_build_mbi(fastboot_args, &newkernel) != 0) { 1157 goto err_out; 1158 } 1159 1160 /* 1161 * Build page table for low 1G physical memory. Use big pages. 1162 * Allocate 4 (5 for amd64) pages for the page tables. 1163 * 1 page for PML4 (amd64) 1164 * 1 page for Page-Directory-Pointer Table 1165 * 2 pages for Page Directory 1166 * 1 page for Page Table. 1167 * The page table entry will be rewritten to map the physical 1168 * address as we do the copying. 1169 */ 1170 if (newkernel.fi_has_pae) { 1171 #ifdef __amd64 1172 size_t size = MMU_PAGESIZE * 5; 1173 #else 1174 size_t size = MMU_PAGESIZE * 4; 1175 #endif /* __amd64 */ 1176 1177 if (newkernel.fi_pagetable_size && newkernel.fi_pagetable_size 1178 < size) { 1179 contig_free((void *)newkernel.fi_pagetable_va, 1180 newkernel.fi_pagetable_size); 1181 newkernel.fi_pagetable_size = 0; 1182 } 1183 1184 if (newkernel.fi_pagetable_size == 0) { 1185 if ((newkernel.fi_pagetable_va = (uintptr_t) 1186 contig_alloc(size, &fastboot_below_1G_dma_attr, 1187 MMU_PAGESIZE, 0)) == NULL) { 1188 cmn_err(CE_WARN, fastboot_enomem_msg, 1189 (uint64_t)size, "1G"); 1190 goto err_out; 1191 } 1192 /* 1193 * fi_pagetable_size must be set after the allocation 1194 * succeeds as it's used to determine how much memory to 1195 * free. 1196 */ 1197 newkernel.fi_pagetable_size = size; 1198 } 1199 1200 bzero((void *)(newkernel.fi_pagetable_va), size); 1201 1202 newkernel.fi_pagetable_pa = 1203 mmu_ptob((uint64_t)hat_getpfnum(kas.a_hat, 1204 (caddr_t)newkernel.fi_pagetable_va)); 1205 1206 newkernel.fi_last_table_pa = newkernel.fi_pagetable_pa + 1207 size - MMU_PAGESIZE; 1208 1209 newkernel.fi_next_table_va = newkernel.fi_pagetable_va + 1210 MMU_PAGESIZE; 1211 newkernel.fi_next_table_pa = newkernel.fi_pagetable_pa + 1212 MMU_PAGESIZE; 1213 1214 fastboot_build_pagetables(&newkernel); 1215 } 1216 1217 1218 /* Generate MD5 checksums */ 1219 fastboot_cksum_generate(&newkernel); 1220 1221 /* Mark it as valid */ 1222 newkernel.fi_valid = 1; 1223 newkernel.fi_magic = FASTBOOT_MAGIC; 1224 1225 postbootkernelbase = saved_kernelbase; 1226 return; 1227 1228 err_out: 1229 postbootkernelbase = saved_kernelbase; 1230 newkernel.fi_valid = 0; 1231 fastboot_free_newkernel(&newkernel); 1232 } 1233 1234 1235 /* ARGSUSED */ 1236 static int 1237 fastboot_xc_func(fastboot_info_t *nk, xc_arg_t unused2, xc_arg_t unused3) 1238 { 1239 void (*fastboot_func)(fastboot_info_t *); 1240 fastboot_file_t *fb = &nk->fi_files[FASTBOOT_SWTCH]; 1241 fastboot_func = (void (*)())(fb->fb_va); 1242 kthread_t *t_intr = curthread->t_intr; 1243 1244 if (&kas != curproc->p_as) { 1245 hat_devload(curproc->p_as->a_hat, (caddr_t)fb->fb_va, 1246 MMU_PAGESIZE, mmu_btop(fb->fb_dest_pa), 1247 PROT_READ | PROT_WRITE | PROT_EXEC, 1248 HAT_LOAD_NOCONSIST | HAT_LOAD_LOCK); 1249 } 1250 1251 /* 1252 * If we have pinned a thread, make sure the address is mapped 1253 * in the address space of the pinned thread. 1254 */ 1255 if (t_intr && t_intr->t_procp->p_as->a_hat != curproc->p_as->a_hat && 1256 t_intr->t_procp->p_as != &kas) 1257 hat_devload(t_intr->t_procp->p_as->a_hat, (caddr_t)fb->fb_va, 1258 MMU_PAGESIZE, mmu_btop(fb->fb_dest_pa), 1259 PROT_READ | PROT_WRITE | PROT_EXEC, 1260 HAT_LOAD_NOCONSIST | HAT_LOAD_LOCK); 1261 1262 (*psm_shutdownf)(A_SHUTDOWN, AD_FASTREBOOT); 1263 (*fastboot_func)(nk); 1264 1265 /*NOTREACHED*/ 1266 return (0); 1267 } 1268 1269 /* 1270 * Jump to the fast reboot switcher. This function never returns. 1271 */ 1272 void 1273 fast_reboot() 1274 { 1275 processorid_t bootcpuid = 0; 1276 extern uintptr_t postbootkernelbase; 1277 extern char fb_swtch_image[]; 1278 fastboot_file_t *fb; 1279 int i; 1280 1281 postbootkernelbase = 0; 1282 1283 fb = &newkernel.fi_files[FASTBOOT_SWTCH]; 1284 1285 /* 1286 * Map the address into both the current proc's address 1287 * space and the kernel's address space in case the panic 1288 * is forced by kmdb. 1289 */ 1290 if (&kas != curproc->p_as) { 1291 hat_devload(curproc->p_as->a_hat, (caddr_t)fb->fb_va, 1292 MMU_PAGESIZE, mmu_btop(fb->fb_dest_pa), 1293 PROT_READ | PROT_WRITE | PROT_EXEC, 1294 HAT_LOAD_NOCONSIST | HAT_LOAD_LOCK); 1295 } 1296 1297 bcopy((void *)fb_swtch_image, (void *)fb->fb_va, fb->fb_size); 1298 1299 1300 /* 1301 * Set fb_va to fake_va 1302 */ 1303 for (i = 0; i < FASTBOOT_MAX_FILES_MAP; i++) { 1304 newkernel.fi_files[i].fb_va = fake_va; 1305 1306 } 1307 1308 if (panicstr && CPU->cpu_id != bootcpuid && 1309 CPU_ACTIVE(cpu_get(bootcpuid))) { 1310 cpuset_t cpuset; 1311 1312 CPUSET_ZERO(cpuset); 1313 CPUSET_ADD(cpuset, bootcpuid); 1314 xc_trycall((xc_arg_t)&newkernel, 0, 0, cpuset, 1315 (xc_func_t)fastboot_xc_func); 1316 1317 /* Do what panic_idle() does */ 1318 splx(ipltospl(CLOCK_LEVEL)); 1319 (void) setjmp(&curthread->t_pcb); 1320 for (;;) 1321 ; 1322 } else 1323 (void) fastboot_xc_func(&newkernel, 0, 0); 1324 } 1325 1326 1327 /* 1328 * Get boot property value for fastreboot_onpanic. 1329 * 1330 * NOTE: If fastreboot_onpanic is set to non-zero in /etc/system, 1331 * new setting passed in via "-B fastreboot_onpanic" is ignored. 1332 * This order of precedence is to enable developers debugging panics 1333 * that occur early in boot to utilize Fast Reboot on panic. 1334 */ 1335 static void 1336 fastboot_get_bootprop(void) 1337 { 1338 int val = 0xaa, len, ret; 1339 dev_info_t *devi; 1340 char *propstr = NULL; 1341 1342 devi = ddi_root_node(); 1343 1344 ret = ddi_prop_lookup_string(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS, 1345 FASTREBOOT_ONPANIC, &propstr); 1346 1347 if (ret == DDI_PROP_SUCCESS) { 1348 if (FASTREBOOT_ONPANIC_NOTSET(propstr)) 1349 val = 0; 1350 else if (FASTREBOOT_ONPANIC_ISSET(propstr)) 1351 val = UA_FASTREBOOT_ONPANIC; 1352 1353 /* 1354 * Only set fastreboot_onpanic to the value passed in 1355 * if it's not already set to non-zero, and the value 1356 * has indeed been passed in via command line. 1357 */ 1358 if (!fastreboot_onpanic && val != 0xaa) 1359 fastreboot_onpanic = val; 1360 ddi_prop_free(propstr); 1361 } else if (ret != DDI_PROP_NOT_FOUND && ret != DDI_PROP_UNDEFINED) { 1362 cmn_err(CE_WARN, "%s value is invalid, will be ignored", 1363 FASTREBOOT_ONPANIC); 1364 } 1365 1366 len = sizeof (fastreboot_onpanic_cmdline); 1367 ret = ddi_getlongprop_buf(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS, 1368 FASTREBOOT_ONPANIC_CMDLINE, fastreboot_onpanic_cmdline, &len); 1369 1370 if (ret == DDI_PROP_BUF_TOO_SMALL) 1371 cmn_err(CE_WARN, "%s value is too long, will be ignored", 1372 FASTREBOOT_ONPANIC_CMDLINE); 1373 } 1374 1375 /* 1376 * This function is called by main() to either load the backup kernel for panic 1377 * fast reboot, or to reserve low physical memory for fast reboot. 1378 */ 1379 void 1380 fastboot_post_startup() 1381 { 1382 if (!fastreboot_capable) 1383 return; 1384 1385 fastboot_get_bootprop(); 1386 1387 if (fastreboot_onpanic) 1388 fastboot_load_kernel(fastreboot_onpanic_cmdline); 1389 else if (reserve_mem_enabled) 1390 fastboot_reserve_mem(&newkernel); 1391 } 1392 1393 /* 1394 * Update boot configuration settings. 1395 * If the new fastreboot_onpanic setting is false, and a kernel has 1396 * been preloaded, free the memory; 1397 * if the new fastreboot_onpanic setting is true and newkernel is 1398 * not valid, load the new kernel. 1399 */ 1400 void 1401 fastboot_update_config(const char *mdep) 1402 { 1403 uint8_t boot_config = (uint8_t)*mdep; 1404 int cur_fastreboot_onpanic = fastreboot_onpanic; 1405 1406 if (!fastreboot_capable) 1407 return; 1408 1409 fastreboot_onpanic = boot_config & UA_FASTREBOOT_ONPANIC; 1410 if (fastreboot_onpanic && (!cur_fastreboot_onpanic || 1411 !newkernel.fi_valid)) 1412 fastboot_load_kernel(fastreboot_onpanic_cmdline); 1413 if (cur_fastreboot_onpanic && !fastreboot_onpanic) 1414 fastboot_free_newkernel(&newkernel); 1415 } 1416