1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 26 /* 27 * This file contains the functions for performing Fast Reboot -- a 28 * reboot which bypasses the firmware and bootloader, considerably 29 * reducing downtime. 30 * 31 * fastboot_load_kernel(): This function is invoked by mdpreboot() in the 32 * reboot path. It loads the new kernel and boot archive into memory, builds 33 * the data structure containing sufficient information about the new 34 * kernel and boot archive to be passed to the fast reboot switcher 35 * (see fb_swtch_src.s for details). When invoked the switcher relocates 36 * the new kernel and boot archive to physically contiguous low memory, 37 * similar to where the boot loader would have loaded them, and jumps to 38 * the new kernel. 39 * 40 * If fastreboot_onpanic is enabled, fastboot_load_kernel() is called 41 * by fastreboot_post_startup() to load the back up kernel in case of 42 * panic. 43 * 44 * The physical addresses of the memory allocated for the new kernel, boot 45 * archive and their page tables must be above where the boot archive ends 46 * after it has been relocated by the switcher, otherwise the new files 47 * and their page tables could be overridden during relocation. 48 * 49 * fast_reboot(): This function is invoked by mdboot() once it's determined 50 * that the system is capable of fast reboot. It jumps to the fast reboot 51 * switcher with the data structure built by fastboot_load_kernel() as the 52 * argument. 53 */ 54 55 #include <sys/types.h> 56 #include <sys/param.h> 57 #include <sys/segments.h> 58 #include <sys/sysmacros.h> 59 #include <sys/vm.h> 60 61 #include <sys/proc.h> 62 #include <sys/buf.h> 63 #include <sys/kmem.h> 64 65 #include <sys/reboot.h> 66 #include <sys/uadmin.h> 67 68 #include <sys/cred.h> 69 #include <sys/vnode.h> 70 #include <sys/file.h> 71 72 #include <sys/cmn_err.h> 73 #include <sys/dumphdr.h> 74 #include <sys/bootconf.h> 75 #include <sys/ddidmareq.h> 76 #include <sys/varargs.h> 77 #include <sys/promif.h> 78 #include <sys/modctl.h> 79 80 #include <vm/hat.h> 81 #include <vm/as.h> 82 #include <vm/page.h> 83 #include <vm/seg.h> 84 #include <vm/hat_i86.h> 85 #include <sys/vm_machparam.h> 86 #include <sys/archsystm.h> 87 #include <sys/machsystm.h> 88 #include <sys/mman.h> 89 #include <sys/x86_archext.h> 90 #include <sys/smp_impldefs.h> 91 #include <sys/spl.h> 92 93 #include <sys/fastboot_impl.h> 94 #include <sys/machelf.h> 95 #include <sys/kobj.h> 96 #include <sys/multiboot.h> 97 #include <sys/kobj_lex.h> 98 99 /* 100 * Macro to determine how many pages are needed for PTEs to map a particular 101 * file. Allocate one extra page table entry for terminating the list. 102 */ 103 #define FASTBOOT_PTE_LIST_SIZE(fsize) \ 104 P2ROUNDUP((((fsize) >> PAGESHIFT) + 1) * sizeof (x86pte_t), PAGESIZE) 105 106 /* 107 * Data structure containing necessary information for the fast reboot 108 * switcher to jump to the new kernel. 109 */ 110 fastboot_info_t newkernel = { 0 }; 111 char fastboot_args[OBP_MAXPATHLEN]; 112 113 static char fastboot_filename[2][OBP_MAXPATHLEN] = { { 0 }, { 0 }}; 114 static x86pte_t ptp_bits = PT_VALID | PT_REF | PT_USER | PT_WRITABLE; 115 static x86pte_t pte_bits = 116 PT_VALID | PT_REF | PT_MOD | PT_NOCONSIST | PT_WRITABLE; 117 static uint_t fastboot_shift_amt_pae[] = {12, 21, 30, 39}; 118 119 /* Index into Fast Reboot not supported message array */ 120 static uint32_t fastreboot_nosup_id = FBNS_DEFAULT; 121 122 /* Fast Reboot not supported message array */ 123 static const char * const fastreboot_nosup_desc[FBNS_END] = { 124 #define fastboot_nosup_msg(id, str) str, 125 #include <sys/fastboot_msg.h> 126 }; 127 128 int fastboot_debug = 0; 129 int fastboot_contig = 0; 130 131 /* 132 * Fake starting va for new kernel and boot archive. 133 */ 134 static uintptr_t fake_va = FASTBOOT_FAKE_VA; 135 136 /* 137 * Reserve memory below PA 1G in preparation of fast reboot. 138 * 139 * This variable is only checked when fastreboot_capable is set, but 140 * fastreboot_onpanic is not set. The amount of memory reserved 141 * is negligible, but just in case we are really short of low memory, 142 * this variable will give us a backdoor to not consume memory at all. 143 */ 144 int reserve_mem_enabled = 1; 145 146 /* 147 * Mutex to protect fastreboot_onpanic. 148 */ 149 kmutex_t fastreboot_config_mutex; 150 151 /* 152 * Amount of memory below PA 1G to reserve for constructing the multiboot 153 * data structure and the page tables as we tend to run out of those 154 * when more drivers are loaded. 155 */ 156 static size_t fastboot_mbi_size = 0x2000; /* 8K */ 157 static size_t fastboot_pagetable_size = 0x5000; /* 20K */ 158 159 /* 160 * Minimum system uptime in clock_t before Fast Reboot should be used 161 * on panic. Will be initialized in fastboot_post_startup(). 162 */ 163 clock_t fastreboot_onpanic_uptime = LONG_MAX; 164 165 /* 166 * lbolt value when the system booted. This value will be used if the system 167 * panics to calculate how long the system has been up. If the uptime is less 168 * than fastreboot_onpanic_uptime, a reboot through BIOS will be performed to 169 * avoid a potential panic/reboot loop. 170 */ 171 clock_t lbolt_at_boot = LONG_MAX; 172 173 /* 174 * Use below 1G for page tables as 175 * 1. we are only doing 1:1 mapping of the bottom 1G of physical memory. 176 * 2. we are using 2G as the fake virtual address for the new kernel and 177 * boot archive. 178 */ 179 static ddi_dma_attr_t fastboot_below_1G_dma_attr = { 180 DMA_ATTR_V0, 181 0x0000000008000000ULL, /* dma_attr_addr_lo: 128MB */ 182 0x000000003FFFFFFFULL, /* dma_attr_addr_hi: 1G */ 183 0x00000000FFFFFFFFULL, /* dma_attr_count_max */ 184 0x0000000000001000ULL, /* dma_attr_align: 4KB */ 185 1, /* dma_attr_burstsize */ 186 1, /* dma_attr_minxfer */ 187 0x00000000FFFFFFFFULL, /* dma_attr_maxxfer */ 188 0x00000000FFFFFFFFULL, /* dma_attr_seg */ 189 1, /* dma_attr_sgllen */ 190 0x1000ULL, /* dma_attr_granular */ 191 0, /* dma_attr_flags */ 192 }; 193 194 static ddi_dma_attr_t fastboot_dma_attr = { 195 DMA_ATTR_V0, 196 0x0000000008000000ULL, /* dma_attr_addr_lo: 128MB */ 197 #ifdef __amd64 198 0xFFFFFFFFFFFFFFFFULL, /* dma_attr_addr_hi: 2^64B */ 199 #else 200 0x0000000FFFFFFFFFULL, /* dma_attr_addr_hi: 64GB */ 201 #endif /* __amd64 */ 202 0x00000000FFFFFFFFULL, /* dma_attr_count_max */ 203 0x0000000000001000ULL, /* dma_attr_align: 4KB */ 204 1, /* dma_attr_burstsize */ 205 1, /* dma_attr_minxfer */ 206 0x00000000FFFFFFFFULL, /* dma_attr_maxxfer */ 207 0x00000000FFFFFFFFULL, /* dma_attr_seg */ 208 1, /* dma_attr_sgllen */ 209 0x1000ULL, /* dma_attr_granular */ 210 0, /* dma_attr_flags */ 211 }; 212 213 /* 214 * Various information saved from the previous boot to reconstruct 215 * multiboot_info. 216 */ 217 extern multiboot_info_t saved_mbi; 218 extern mb_memory_map_t saved_mmap[FASTBOOT_SAVED_MMAP_COUNT]; 219 extern uint8_t saved_drives[FASTBOOT_SAVED_DRIVES_SIZE]; 220 extern char saved_cmdline[FASTBOOT_SAVED_CMDLINE_LEN]; 221 extern int saved_cmdline_len; 222 extern size_t saved_file_size[]; 223 224 extern void* contig_alloc(size_t size, ddi_dma_attr_t *attr, 225 uintptr_t align, int cansleep); 226 extern void contig_free(void *addr, size_t size); 227 228 229 /* PRINTLIKE */ 230 extern void vprintf(const char *, va_list); 231 232 233 /* 234 * Need to be able to get boot_archives from other places 235 */ 236 #define BOOTARCHIVE64 "/platform/i86pc/amd64/boot_archive" 237 #define BOOTARCHIVE32 "/platform/i86pc/boot_archive" 238 #define BOOTARCHIVE32_FAILSAFE "/boot/x86.miniroot-safe" 239 #define BOOTARCHIVE64_FAILSAFE "/boot/amd64/x86.miniroot-safe" 240 #define FAILSAFE_BOOTFILE32 "/boot/platform/i86pc/kernel/unix" 241 #define FAILSAFE_BOOTFILE64 "/boot/platform/i86pc/kernel/amd64/unix" 242 243 static uint_t fastboot_vatoindex(fastboot_info_t *, uintptr_t, int); 244 static void fastboot_map_with_size(fastboot_info_t *, uintptr_t, 245 paddr_t, size_t, int); 246 static void fastboot_build_pagetables(fastboot_info_t *); 247 static int fastboot_build_mbi(char *, fastboot_info_t *); 248 static void fastboot_free_file(fastboot_file_t *); 249 250 static const char fastboot_enomem_msg[] = "!Fastboot: Couldn't allocate 0x%" 251 PRIx64" bytes below %s to do fast reboot"; 252 253 static void 254 dprintf(char *fmt, ...) 255 { 256 va_list adx; 257 258 if (!fastboot_debug) 259 return; 260 261 va_start(adx, fmt); 262 vprintf(fmt, adx); 263 va_end(adx); 264 } 265 266 267 /* 268 * Return the index corresponding to a virt address at a given page table level. 269 */ 270 static uint_t 271 fastboot_vatoindex(fastboot_info_t *nk, uintptr_t va, int level) 272 { 273 return ((va >> nk->fi_shift_amt[level]) & (nk->fi_ptes_per_table - 1)); 274 } 275 276 277 /* 278 * Add mapping from vstart to pstart for the specified size. 279 * vstart, pstart and size should all have been aligned at 2M boundaries. 280 */ 281 static void 282 fastboot_map_with_size(fastboot_info_t *nk, uintptr_t vstart, paddr_t pstart, 283 size_t size, int level) 284 { 285 x86pte_t pteval, *table; 286 uintptr_t vaddr; 287 paddr_t paddr; 288 int index, l; 289 290 table = (x86pte_t *)(nk->fi_pagetable_va); 291 292 for (l = nk->fi_top_level; l >= level; l--) { 293 294 index = fastboot_vatoindex(nk, vstart, l); 295 296 if (l == level) { 297 /* 298 * Last level. Program the page table entries. 299 */ 300 for (vaddr = vstart, paddr = pstart; 301 vaddr < vstart + size; 302 vaddr += (1ULL << nk->fi_shift_amt[l]), 303 paddr += (1ULL << nk->fi_shift_amt[l])) { 304 305 uint_t index = fastboot_vatoindex(nk, vaddr, l); 306 307 if (l > 0) 308 pteval = paddr | pte_bits | PT_PAGESIZE; 309 else 310 pteval = paddr | pte_bits; 311 312 table[index] = pteval; 313 } 314 } else if (table[index] & PT_VALID) { 315 316 table = (x86pte_t *) 317 ((uintptr_t)(((paddr_t)table[index] & MMU_PAGEMASK) 318 - nk->fi_pagetable_pa) + nk->fi_pagetable_va); 319 } else { 320 /* 321 * Intermediate levels. 322 * Program with either valid bit or PTP bits. 323 */ 324 if (l == nk->fi_top_level) { 325 #ifdef __amd64 326 ASSERT(nk->fi_top_level == 3); 327 table[index] = nk->fi_next_table_pa | ptp_bits; 328 #else 329 table[index] = nk->fi_next_table_pa | PT_VALID; 330 #endif /* __amd64 */ 331 } else { 332 table[index] = nk->fi_next_table_pa | ptp_bits; 333 } 334 table = (x86pte_t *)(nk->fi_next_table_va); 335 nk->fi_next_table_va += MMU_PAGESIZE; 336 nk->fi_next_table_pa += MMU_PAGESIZE; 337 } 338 } 339 } 340 341 /* 342 * Build page tables for the lower 1G of physical memory using 2M 343 * pages, and prepare page tables for mapping new kernel and boot 344 * archive pages using 4K pages. 345 */ 346 static void 347 fastboot_build_pagetables(fastboot_info_t *nk) 348 { 349 /* 350 * Map lower 1G physical memory. Use large pages. 351 */ 352 fastboot_map_with_size(nk, 0, 0, ONE_GIG, 1); 353 354 /* 355 * Map one 4K page to get the middle page tables set up. 356 */ 357 fake_va = P2ALIGN_TYPED(fake_va, nk->fi_lpagesize, uintptr_t); 358 fastboot_map_with_size(nk, fake_va, 359 nk->fi_files[0].fb_pte_list_va[0] & MMU_PAGEMASK, PAGESIZE, 0); 360 } 361 362 363 /* 364 * Sanity check. Look for dboot offset. 365 */ 366 static int 367 fastboot_elf64_find_dboot_load_offset(void *img, off_t imgsz, uint32_t *offp) 368 { 369 Elf64_Ehdr *ehdr = (Elf64_Ehdr *)img; 370 Elf64_Phdr *phdr; 371 uint8_t *phdrbase; 372 int i; 373 374 if ((ehdr->e_phoff + ehdr->e_phnum * ehdr->e_phentsize) >= imgsz) 375 return (-1); 376 377 phdrbase = (uint8_t *)img + ehdr->e_phoff; 378 379 for (i = 0; i < ehdr->e_phnum; i++) { 380 phdr = (Elf64_Phdr *)(phdrbase + ehdr->e_phentsize * i); 381 382 if (phdr->p_type == PT_LOAD) { 383 if (phdr->p_vaddr == phdr->p_paddr && 384 phdr->p_vaddr == DBOOT_ENTRY_ADDRESS) { 385 ASSERT(phdr->p_offset <= UINT32_MAX); 386 *offp = (uint32_t)phdr->p_offset; 387 return (0); 388 } 389 } 390 } 391 392 return (-1); 393 } 394 395 396 /* 397 * Initialize text and data section information for 32-bit kernel. 398 * sectcntp - is both input/output parameter. 399 * On entry, *sectcntp contains maximum allowable number of sections; 400 * on return, it contains the actual number of sections filled. 401 */ 402 static int 403 fastboot_elf32_find_loadables(void *img, off_t imgsz, fastboot_section_t *sectp, 404 int *sectcntp, uint32_t *offp) 405 { 406 Elf32_Ehdr *ehdr = (Elf32_Ehdr *)img; 407 Elf32_Phdr *phdr; 408 uint8_t *phdrbase; 409 int i; 410 int used_sections = 0; 411 const int max_sectcnt = *sectcntp; 412 413 if ((ehdr->e_phoff + ehdr->e_phnum * ehdr->e_phentsize) >= imgsz) 414 return (-1); 415 416 phdrbase = (uint8_t *)img + ehdr->e_phoff; 417 418 for (i = 0; i < ehdr->e_phnum; i++) { 419 phdr = (Elf32_Phdr *)(phdrbase + ehdr->e_phentsize * i); 420 421 if (phdr->p_type == PT_INTERP) 422 return (-1); 423 424 if (phdr->p_type != PT_LOAD) 425 continue; 426 427 if (phdr->p_vaddr == phdr->p_paddr && 428 phdr->p_paddr == DBOOT_ENTRY_ADDRESS) { 429 *offp = (uint32_t)phdr->p_offset; 430 } else { 431 if (max_sectcnt <= used_sections) 432 return (-1); 433 434 sectp[used_sections].fb_sec_offset = phdr->p_offset; 435 sectp[used_sections].fb_sec_paddr = phdr->p_paddr; 436 sectp[used_sections].fb_sec_size = phdr->p_filesz; 437 sectp[used_sections].fb_sec_bss_size = 438 (phdr->p_filesz < phdr->p_memsz) ? 439 (phdr->p_memsz - phdr->p_filesz) : 0; 440 441 /* Extra sanity check for the input object file */ 442 if (sectp[used_sections].fb_sec_paddr + 443 sectp[used_sections].fb_sec_size + 444 sectp[used_sections].fb_sec_bss_size >= 445 DBOOT_ENTRY_ADDRESS) 446 return (-1); 447 448 used_sections++; 449 } 450 } 451 452 *sectcntp = used_sections; 453 return (0); 454 } 455 456 /* 457 * Create multiboot info structure (mbi) base on the saved mbi. 458 * Recalculate values of the pointer type fields in the data 459 * structure based on the new starting physical address of the 460 * data structure. 461 */ 462 static int 463 fastboot_build_mbi(char *mdep, fastboot_info_t *nk) 464 { 465 mb_module_t *mbp; 466 multiboot_info_t *mbi; /* pointer to multiboot structure */ 467 uintptr_t start_addr_va; /* starting VA of mbi */ 468 uintptr_t start_addr_pa; /* starting PA of mbi */ 469 size_t offs = 0; /* offset from the starting address */ 470 size_t arglen; /* length of the command line arg */ 471 size_t size; /* size of the memory reserved for mbi */ 472 size_t mdnsz; /* length of the boot archive name */ 473 474 /* 475 * If mdep is not NULL or empty, use the length of mdep + 1 476 * (for NULL terminating) as the length of the new command 477 * line; else use the saved command line length as the 478 * length for the new command line. 479 */ 480 if (mdep != NULL && strlen(mdep) != 0) { 481 arglen = strlen(mdep) + 1; 482 } else { 483 arglen = saved_cmdline_len; 484 } 485 486 /* 487 * Allocate memory for the new multiboot info structure (mbi). 488 * If we have reserved memory for mbi but it's not enough, 489 * free it and reallocate. 490 */ 491 size = PAGESIZE + P2ROUNDUP(arglen, PAGESIZE); 492 if (nk->fi_mbi_size && nk->fi_mbi_size < size) { 493 contig_free((void *)nk->fi_new_mbi_va, nk->fi_mbi_size); 494 nk->fi_mbi_size = 0; 495 } 496 497 if (nk->fi_mbi_size == 0) { 498 if ((nk->fi_new_mbi_va = 499 (uintptr_t)contig_alloc(size, &fastboot_below_1G_dma_attr, 500 PAGESIZE, 0)) == 0) { 501 cmn_err(CE_NOTE, fastboot_enomem_msg, 502 (uint64_t)size, "1G"); 503 return (-1); 504 } 505 /* 506 * fi_mbi_size must be set after the allocation succeeds 507 * as it's used to determine how much memory to free. 508 */ 509 nk->fi_mbi_size = size; 510 } 511 512 /* 513 * Initalize memory 514 */ 515 bzero((void *)nk->fi_new_mbi_va, nk->fi_mbi_size); 516 517 /* 518 * Get PA for the new mbi 519 */ 520 start_addr_va = nk->fi_new_mbi_va; 521 start_addr_pa = mmu_ptob((uint64_t)hat_getpfnum(kas.a_hat, 522 (caddr_t)start_addr_va)); 523 nk->fi_new_mbi_pa = (paddr_t)start_addr_pa; 524 525 /* 526 * Populate the rest of the fields in the data structure 527 */ 528 529 /* 530 * Copy from the saved mbi to preserve all non-pointer type fields. 531 */ 532 mbi = (multiboot_info_t *)start_addr_va; 533 bcopy(&saved_mbi, mbi, sizeof (*mbi)); 534 535 /* 536 * Recalculate mods_addr. Set mod_start and mod_end based on 537 * the physical address of the new boot archive. Set mod_name 538 * to the name of the new boto archive. 539 */ 540 offs += sizeof (multiboot_info_t); 541 mbi->mods_addr = start_addr_pa + offs; 542 mbp = (mb_module_t *)(start_addr_va + offs); 543 mbp->mod_start = nk->fi_files[FASTBOOT_BOOTARCHIVE].fb_dest_pa; 544 mbp->mod_end = nk->fi_files[FASTBOOT_BOOTARCHIVE].fb_next_pa; 545 546 offs += sizeof (mb_module_t); 547 mdnsz = strlen(fastboot_filename[FASTBOOT_NAME_BOOTARCHIVE]) + 1; 548 bcopy(fastboot_filename[FASTBOOT_NAME_BOOTARCHIVE], 549 (void *)(start_addr_va + offs), mdnsz); 550 mbp->mod_name = start_addr_pa + offs; 551 mbp->reserved = 0; 552 553 /* 554 * Make sure the offset is 16-byte aligned to avoid unaligned access. 555 */ 556 offs += mdnsz; 557 offs = P2ROUNDUP_TYPED(offs, 16, size_t); 558 559 /* 560 * Recalculate mmap_addr 561 */ 562 mbi->mmap_addr = start_addr_pa + offs; 563 bcopy((void *)(uintptr_t)saved_mmap, (void *)(start_addr_va + offs), 564 saved_mbi.mmap_length); 565 offs += saved_mbi.mmap_length; 566 567 /* 568 * Recalculate drives_addr 569 */ 570 mbi->drives_addr = start_addr_pa + offs; 571 bcopy((void *)(uintptr_t)saved_drives, (void *)(start_addr_va + offs), 572 saved_mbi.drives_length); 573 offs += saved_mbi.drives_length; 574 575 /* 576 * Recalculate the address of cmdline. Set cmdline to contain the 577 * new boot argument. 578 */ 579 mbi->cmdline = start_addr_pa + offs; 580 581 if (mdep != NULL && strlen(mdep) != 0) { 582 bcopy(mdep, (void *)(start_addr_va + offs), arglen); 583 } else { 584 bcopy((void *)saved_cmdline, (void *)(start_addr_va + offs), 585 arglen); 586 } 587 588 /* clear fields and flags that are not copied */ 589 bzero(&mbi->config_table, 590 sizeof (*mbi) - offsetof(multiboot_info_t, config_table)); 591 mbi->flags &= ~(MB_INFO_CONFIG_TABLE | MB_INFO_BOOT_LOADER_NAME | 592 MB_INFO_APM_TABLE | MB_INFO_VIDEO_INFO); 593 594 return (0); 595 } 596 597 /* 598 * Initialize HAT related fields 599 */ 600 static void 601 fastboot_init_fields(fastboot_info_t *nk) 602 { 603 if (is_x86_feature(x86_featureset, X86FSET_PAE)) { 604 nk->fi_has_pae = 1; 605 nk->fi_shift_amt = fastboot_shift_amt_pae; 606 nk->fi_ptes_per_table = 512; 607 nk->fi_lpagesize = (2 << 20); /* 2M */ 608 #ifdef __amd64 609 nk->fi_top_level = 3; 610 #else 611 nk->fi_top_level = 2; 612 #endif /* __amd64 */ 613 } 614 } 615 616 /* 617 * Process boot argument 618 */ 619 static void 620 fastboot_parse_mdep(char *mdep, char *kern_bootpath, int *bootpath_len, 621 char *bootargs) 622 { 623 int i; 624 625 /* 626 * If mdep is not NULL, it comes in the format of 627 * mountpoint unix args 628 */ 629 if (mdep != NULL && strlen(mdep) != 0) { 630 if (mdep[0] != '-') { 631 /* First get the root argument */ 632 i = 0; 633 while (mdep[i] != '\0' && mdep[i] != ' ') { 634 i++; 635 } 636 637 if (i < 4 || strncmp(&mdep[i-4], "unix", 4) != 0) { 638 /* mount point */ 639 bcopy(mdep, kern_bootpath, i); 640 kern_bootpath[i] = '\0'; 641 *bootpath_len = i; 642 643 /* 644 * Get the next argument. It should be unix as 645 * we have validated in in halt.c. 646 */ 647 if (strlen(mdep) > i) { 648 mdep += (i + 1); 649 i = 0; 650 while (mdep[i] != '\0' && 651 mdep[i] != ' ') { 652 i++; 653 } 654 } 655 656 } 657 bcopy(mdep, kern_bootfile, i); 658 kern_bootfile[i] = '\0'; 659 bcopy(mdep, bootargs, strlen(mdep)); 660 } else { 661 int off = strlen(kern_bootfile); 662 bcopy(kern_bootfile, bootargs, off); 663 bcopy(" ", &bootargs[off++], 1); 664 bcopy(mdep, &bootargs[off], strlen(mdep)); 665 off += strlen(mdep); 666 bootargs[off] = '\0'; 667 } 668 } 669 } 670 671 /* 672 * Reserve memory under PA 1G for mapping the new kernel and boot archive. 673 * This function is only called if fastreboot_onpanic is *not* set. 674 */ 675 static void 676 fastboot_reserve_mem(fastboot_info_t *nk) 677 { 678 int i; 679 680 /* 681 * A valid kernel is in place. No need to reserve any memory. 682 */ 683 if (nk->fi_valid) 684 return; 685 686 /* 687 * Reserve memory under PA 1G for PTE lists. 688 */ 689 for (i = 0; i < FASTBOOT_MAX_FILES_MAP; i++) { 690 fastboot_file_t *fb = &nk->fi_files[i]; 691 size_t fsize_roundup, size; 692 693 fsize_roundup = P2ROUNDUP_TYPED(saved_file_size[i], 694 PAGESIZE, size_t); 695 size = FASTBOOT_PTE_LIST_SIZE(fsize_roundup); 696 if ((fb->fb_pte_list_va = contig_alloc(size, 697 &fastboot_below_1G_dma_attr, PAGESIZE, 0)) == NULL) { 698 return; 699 } 700 fb->fb_pte_list_size = size; 701 } 702 703 /* 704 * Reserve memory under PA 1G for page tables. 705 */ 706 if ((nk->fi_pagetable_va = 707 (uintptr_t)contig_alloc(fastboot_pagetable_size, 708 &fastboot_below_1G_dma_attr, PAGESIZE, 0)) == 0) { 709 return; 710 } 711 nk->fi_pagetable_size = fastboot_pagetable_size; 712 713 /* 714 * Reserve memory under PA 1G for multiboot structure. 715 */ 716 if ((nk->fi_new_mbi_va = (uintptr_t)contig_alloc(fastboot_mbi_size, 717 &fastboot_below_1G_dma_attr, PAGESIZE, 0)) == 0) { 718 return; 719 } 720 nk->fi_mbi_size = fastboot_mbi_size; 721 } 722 723 /* 724 * Calculate MD5 digest for the given fastboot_file. 725 * Assumes that the file is allready loaded properly. 726 */ 727 static void 728 fastboot_cksum_file(fastboot_file_t *fb, uchar_t *md5_hash) 729 { 730 MD5_CTX md5_ctx; 731 732 MD5Init(&md5_ctx); 733 MD5Update(&md5_ctx, (void *)fb->fb_va, fb->fb_size); 734 MD5Final(md5_hash, &md5_ctx); 735 } 736 737 /* 738 * Free up the memory we have allocated for a file 739 */ 740 static void 741 fastboot_free_file(fastboot_file_t *fb) 742 { 743 size_t fsize_roundup; 744 745 fsize_roundup = P2ROUNDUP_TYPED(fb->fb_size, PAGESIZE, size_t); 746 if (fsize_roundup) { 747 contig_free((void *)fb->fb_va, fsize_roundup); 748 fb->fb_va = 0; 749 fb->fb_size = 0; 750 } 751 } 752 753 /* 754 * Free up memory used by the PTEs for a file. 755 */ 756 static void 757 fastboot_free_file_pte(fastboot_file_t *fb, uint64_t endaddr) 758 { 759 if (fb->fb_pte_list_size && fb->fb_pte_list_pa < endaddr) { 760 contig_free((void *)fb->fb_pte_list_va, fb->fb_pte_list_size); 761 fb->fb_pte_list_va = 0; 762 fb->fb_pte_list_pa = 0; 763 fb->fb_pte_list_size = 0; 764 } 765 } 766 767 /* 768 * Free up all the memory used for representing a kernel with 769 * fastboot_info_t. 770 */ 771 static void 772 fastboot_free_mem(fastboot_info_t *nk, uint64_t endaddr) 773 { 774 int i; 775 776 for (i = 0; i < FASTBOOT_MAX_FILES_MAP; i++) { 777 fastboot_free_file(nk->fi_files + i); 778 fastboot_free_file_pte(nk->fi_files + i, endaddr); 779 } 780 781 if (nk->fi_pagetable_size && nk->fi_pagetable_pa < endaddr) { 782 contig_free((void *)nk->fi_pagetable_va, nk->fi_pagetable_size); 783 nk->fi_pagetable_va = 0; 784 nk->fi_pagetable_pa = 0; 785 nk->fi_pagetable_size = 0; 786 } 787 788 if (nk->fi_mbi_size && nk->fi_new_mbi_pa < endaddr) { 789 contig_free((void *)nk->fi_new_mbi_va, nk->fi_mbi_size); 790 nk->fi_new_mbi_va = 0; 791 nk->fi_new_mbi_pa = 0; 792 nk->fi_mbi_size = 0; 793 } 794 } 795 796 /* 797 * Only free up the memory allocated for the kernel and boot archive, 798 * but not for the page tables. 799 */ 800 void 801 fastboot_free_newkernel(fastboot_info_t *nk) 802 { 803 int i; 804 805 nk->fi_valid = 0; 806 /* 807 * Free the memory we have allocated 808 */ 809 for (i = 0; i < FASTBOOT_MAX_FILES_MAP; i++) { 810 fastboot_free_file(&(nk->fi_files[i])); 811 } 812 } 813 814 static void 815 fastboot_cksum_cdata(fastboot_info_t *nk, uchar_t *md5_hash) 816 { 817 int i; 818 MD5_CTX md5_ctx; 819 820 MD5Init(&md5_ctx); 821 for (i = 0; i < FASTBOOT_MAX_FILES_MAP; i++) { 822 MD5Update(&md5_ctx, nk->fi_files[i].fb_pte_list_va, 823 nk->fi_files[i].fb_pte_list_size); 824 } 825 MD5Update(&md5_ctx, (void *)nk->fi_pagetable_va, nk->fi_pagetable_size); 826 MD5Update(&md5_ctx, (void *)nk->fi_new_mbi_va, nk->fi_mbi_size); 827 828 MD5Final(md5_hash, &md5_ctx); 829 } 830 831 /* 832 * Generate MD5 checksum of the given kernel. 833 */ 834 static void 835 fastboot_cksum_generate(fastboot_info_t *nk) 836 { 837 int i; 838 839 for (i = 0; i < FASTBOOT_MAX_FILES_MAP; i++) { 840 fastboot_cksum_file(nk->fi_files + i, nk->fi_md5_hash[i]); 841 } 842 fastboot_cksum_cdata(nk, nk->fi_md5_hash[i]); 843 } 844 845 /* 846 * Calculate MD5 checksum of the given kernel and verify that 847 * it matches with what was calculated before. 848 */ 849 int 850 fastboot_cksum_verify(fastboot_info_t *nk) 851 { 852 int i; 853 uchar_t md5_hash[MD5_DIGEST_LENGTH]; 854 855 for (i = 0; i < FASTBOOT_MAX_FILES_MAP; i++) { 856 fastboot_cksum_file(nk->fi_files + i, md5_hash); 857 if (bcmp(nk->fi_md5_hash[i], md5_hash, 858 sizeof (nk->fi_md5_hash[i])) != 0) 859 return (i + 1); 860 } 861 862 fastboot_cksum_cdata(nk, md5_hash); 863 if (bcmp(nk->fi_md5_hash[i], md5_hash, 864 sizeof (nk->fi_md5_hash[i])) != 0) 865 return (i + 1); 866 867 return (0); 868 } 869 870 /* 871 * This function performs the following tasks: 872 * - Read the sizes of the new kernel and boot archive. 873 * - Allocate memory for the new kernel and boot archive. 874 * - Allocate memory for page tables necessary for mapping the memory 875 * allocated for the files. 876 * - Read the new kernel and boot archive into memory. 877 * - Map in the fast reboot switcher. 878 * - Load the fast reboot switcher to FASTBOOT_SWTCH_PA. 879 * - Build the new multiboot_info structure 880 * - Build page tables for the low 1G of physical memory. 881 * - Mark the data structure as valid if all steps have succeeded. 882 */ 883 void 884 fastboot_load_kernel(char *mdep) 885 { 886 void *buf = NULL; 887 int i; 888 fastboot_file_t *fb; 889 uint32_t dboot_start_offset; 890 char kern_bootpath[OBP_MAXPATHLEN]; 891 extern uintptr_t postbootkernelbase; 892 uintptr_t saved_kernelbase; 893 int bootpath_len = 0; 894 int is_failsafe = 0; 895 int is_retry = 0; 896 uint64_t end_addr; 897 898 if (!fastreboot_capable) 899 return; 900 901 if (newkernel.fi_valid) 902 fastboot_free_newkernel(&newkernel); 903 904 saved_kernelbase = postbootkernelbase; 905 906 postbootkernelbase = 0; 907 908 /* 909 * Initialize various HAT related fields in the data structure 910 */ 911 fastboot_init_fields(&newkernel); 912 913 bzero(kern_bootpath, OBP_MAXPATHLEN); 914 915 /* 916 * Process the boot argument 917 */ 918 bzero(fastboot_args, OBP_MAXPATHLEN); 919 fastboot_parse_mdep(mdep, kern_bootpath, &bootpath_len, fastboot_args); 920 921 /* 922 * Make sure we get the null character 923 */ 924 bcopy(kern_bootpath, fastboot_filename[FASTBOOT_NAME_UNIX], 925 bootpath_len); 926 bcopy(kern_bootfile, 927 &fastboot_filename[FASTBOOT_NAME_UNIX][bootpath_len], 928 strlen(kern_bootfile) + 1); 929 930 bcopy(kern_bootpath, fastboot_filename[FASTBOOT_NAME_BOOTARCHIVE], 931 bootpath_len); 932 933 if (bcmp(kern_bootfile, FAILSAFE_BOOTFILE32, 934 (sizeof (FAILSAFE_BOOTFILE32) - 1)) == 0 || 935 bcmp(kern_bootfile, FAILSAFE_BOOTFILE64, 936 (sizeof (FAILSAFE_BOOTFILE64) - 1)) == 0) { 937 is_failsafe = 1; 938 } 939 940 load_kernel_retry: 941 /* 942 * Read in unix and boot_archive 943 */ 944 end_addr = DBOOT_ENTRY_ADDRESS; 945 for (i = 0; i < FASTBOOT_MAX_FILES_MAP; i++) { 946 struct _buf *file; 947 uintptr_t va; 948 uint64_t fsize; 949 size_t fsize_roundup, pt_size; 950 int page_index; 951 uintptr_t offset; 952 ddi_dma_attr_t dma_attr = fastboot_dma_attr; 953 954 955 dprintf("fastboot_filename[%d] = %s\n", 956 i, fastboot_filename[i]); 957 958 if ((file = kobj_open_file(fastboot_filename[i])) == 959 (struct _buf *)-1) { 960 cmn_err(CE_NOTE, "!Fastboot: Couldn't open %s", 961 fastboot_filename[i]); 962 goto err_out; 963 } 964 965 if (kobj_get_filesize(file, &fsize) != 0) { 966 cmn_err(CE_NOTE, 967 "!Fastboot: Couldn't get filesize for %s", 968 fastboot_filename[i]); 969 goto err_out; 970 } 971 972 fsize_roundup = P2ROUNDUP_TYPED(fsize, PAGESIZE, size_t); 973 974 /* 975 * Where the files end in physical memory after being 976 * relocated by the fast boot switcher. 977 */ 978 end_addr += fsize_roundup; 979 if (end_addr > fastboot_below_1G_dma_attr.dma_attr_addr_hi) { 980 cmn_err(CE_NOTE, "!Fastboot: boot archive is too big"); 981 goto err_out; 982 } 983 984 /* 985 * Adjust dma_attr_addr_lo so that the new kernel and boot 986 * archive will not be overridden during relocation. 987 */ 988 if (end_addr > fastboot_dma_attr.dma_attr_addr_lo || 989 end_addr > fastboot_below_1G_dma_attr.dma_attr_addr_lo) { 990 991 if (is_retry) { 992 /* 993 * If we have already tried and didn't succeed, 994 * just give up. 995 */ 996 cmn_err(CE_NOTE, 997 "!Fastboot: boot archive is too big"); 998 goto err_out; 999 } else { 1000 /* Set the flag so we don't keep retrying */ 1001 is_retry++; 1002 1003 /* Adjust dma_attr_addr_lo */ 1004 fastboot_dma_attr.dma_attr_addr_lo = end_addr; 1005 fastboot_below_1G_dma_attr.dma_attr_addr_lo = 1006 end_addr; 1007 1008 /* 1009 * Free the memory we have already allocated 1010 * whose physical addresses might not fit 1011 * the new lo and hi constraints. 1012 */ 1013 fastboot_free_mem(&newkernel, end_addr); 1014 goto load_kernel_retry; 1015 } 1016 } 1017 1018 1019 if (!fastboot_contig) 1020 dma_attr.dma_attr_sgllen = (fsize / PAGESIZE) + 1021 (((fsize % PAGESIZE) == 0) ? 0 : 1); 1022 1023 if ((buf = contig_alloc(fsize, &dma_attr, PAGESIZE, 0)) 1024 == NULL) { 1025 cmn_err(CE_NOTE, fastboot_enomem_msg, fsize, "64G"); 1026 goto err_out; 1027 } 1028 1029 va = P2ROUNDUP_TYPED((uintptr_t)buf, PAGESIZE, uintptr_t); 1030 1031 if (kobj_read_file(file, (char *)va, fsize, 0) < 0) { 1032 cmn_err(CE_NOTE, "!Fastboot: Couldn't read %s", 1033 fastboot_filename[i]); 1034 goto err_out; 1035 } 1036 1037 fb = &newkernel.fi_files[i]; 1038 fb->fb_va = va; 1039 fb->fb_size = fsize; 1040 fb->fb_sectcnt = 0; 1041 1042 pt_size = FASTBOOT_PTE_LIST_SIZE(fsize_roundup); 1043 1044 /* 1045 * If we have reserved memory but it not enough, free it. 1046 */ 1047 if (fb->fb_pte_list_size && fb->fb_pte_list_size < pt_size) { 1048 contig_free((void *)fb->fb_pte_list_va, 1049 fb->fb_pte_list_size); 1050 fb->fb_pte_list_size = 0; 1051 } 1052 1053 if (fb->fb_pte_list_size == 0) { 1054 if ((fb->fb_pte_list_va = 1055 (x86pte_t *)contig_alloc(pt_size, 1056 &fastboot_below_1G_dma_attr, PAGESIZE, 0)) 1057 == NULL) { 1058 cmn_err(CE_NOTE, fastboot_enomem_msg, 1059 (uint64_t)pt_size, "1G"); 1060 goto err_out; 1061 } 1062 /* 1063 * fb_pte_list_size must be set after the allocation 1064 * succeeds as it's used to determine how much memory to 1065 * free. 1066 */ 1067 fb->fb_pte_list_size = pt_size; 1068 } 1069 1070 bzero((void *)(fb->fb_pte_list_va), fb->fb_pte_list_size); 1071 1072 fb->fb_pte_list_pa = mmu_ptob((uint64_t)hat_getpfnum(kas.a_hat, 1073 (caddr_t)fb->fb_pte_list_va)); 1074 1075 for (page_index = 0, offset = 0; offset < fb->fb_size; 1076 offset += PAGESIZE) { 1077 uint64_t paddr; 1078 1079 paddr = mmu_ptob((uint64_t)hat_getpfnum(kas.a_hat, 1080 (caddr_t)fb->fb_va + offset)); 1081 1082 ASSERT(paddr >= fastboot_dma_attr.dma_attr_addr_lo); 1083 1084 /* 1085 * Include the pte_bits so we don't have to make 1086 * it in assembly. 1087 */ 1088 fb->fb_pte_list_va[page_index++] = (x86pte_t) 1089 (paddr | pte_bits); 1090 } 1091 1092 fb->fb_pte_list_va[page_index] = FASTBOOT_TERMINATE; 1093 1094 if (i == FASTBOOT_UNIX) { 1095 Ehdr *ehdr = (Ehdr *)va; 1096 int j; 1097 1098 /* 1099 * Sanity checks: 1100 */ 1101 for (j = 0; j < SELFMAG; j++) { 1102 if (ehdr->e_ident[j] != ELFMAG[j]) { 1103 cmn_err(CE_NOTE, "!Fastboot: Bad ELF " 1104 "signature"); 1105 goto err_out; 1106 } 1107 } 1108 1109 if (ehdr->e_ident[EI_CLASS] == ELFCLASS32 && 1110 ehdr->e_ident[EI_DATA] == ELFDATA2LSB && 1111 ehdr->e_machine == EM_386) { 1112 1113 fb->fb_sectcnt = sizeof (fb->fb_sections) / 1114 sizeof (fb->fb_sections[0]); 1115 1116 if (fastboot_elf32_find_loadables((void *)va, 1117 fsize, &fb->fb_sections[0], 1118 &fb->fb_sectcnt, &dboot_start_offset) < 0) { 1119 cmn_err(CE_NOTE, "!Fastboot: ELF32 " 1120 "program section failure"); 1121 goto err_out; 1122 } 1123 1124 if (fb->fb_sectcnt == 0) { 1125 cmn_err(CE_NOTE, "!Fastboot: No ELF32 " 1126 "program sections found"); 1127 goto err_out; 1128 } 1129 1130 if (is_failsafe) { 1131 /* Failsafe boot_archive */ 1132 bcopy(BOOTARCHIVE32_FAILSAFE, 1133 &fastboot_filename 1134 [FASTBOOT_NAME_BOOTARCHIVE] 1135 [bootpath_len], 1136 sizeof (BOOTARCHIVE32_FAILSAFE)); 1137 } else { 1138 bcopy(BOOTARCHIVE32, 1139 &fastboot_filename 1140 [FASTBOOT_NAME_BOOTARCHIVE] 1141 [bootpath_len], 1142 sizeof (BOOTARCHIVE32)); 1143 } 1144 1145 } else if (ehdr->e_ident[EI_CLASS] == ELFCLASS64 && 1146 ehdr->e_ident[EI_DATA] == ELFDATA2LSB && 1147 ehdr->e_machine == EM_AMD64) { 1148 1149 if (fastboot_elf64_find_dboot_load_offset( 1150 (void *)va, fsize, &dboot_start_offset) 1151 != 0) { 1152 cmn_err(CE_NOTE, "!Fastboot: Couldn't " 1153 "find ELF64 dboot entry offset"); 1154 goto err_out; 1155 } 1156 1157 if (!is_x86_feature(x86_featureset, 1158 X86FSET_64) || 1159 !is_x86_feature(x86_featureset, 1160 X86FSET_PAE)) { 1161 cmn_err(CE_NOTE, "Fastboot: Cannot " 1162 "reboot to %s: " 1163 "not a 64-bit capable system", 1164 kern_bootfile); 1165 goto err_out; 1166 } 1167 1168 if (is_failsafe) { 1169 /* Failsafe boot_archive */ 1170 bcopy(BOOTARCHIVE64_FAILSAFE, 1171 &fastboot_filename 1172 [FASTBOOT_NAME_BOOTARCHIVE] 1173 [bootpath_len], 1174 sizeof (BOOTARCHIVE64_FAILSAFE)); 1175 } else { 1176 bcopy(BOOTARCHIVE64, 1177 &fastboot_filename 1178 [FASTBOOT_NAME_BOOTARCHIVE] 1179 [bootpath_len], 1180 sizeof (BOOTARCHIVE64)); 1181 } 1182 } else { 1183 cmn_err(CE_NOTE, "!Fastboot: Unknown ELF type"); 1184 goto err_out; 1185 } 1186 1187 fb->fb_dest_pa = DBOOT_ENTRY_ADDRESS - 1188 dboot_start_offset; 1189 1190 fb->fb_next_pa = DBOOT_ENTRY_ADDRESS + fsize_roundup; 1191 } else { 1192 fb->fb_dest_pa = newkernel.fi_files[i - 1].fb_next_pa; 1193 fb->fb_next_pa = fb->fb_dest_pa + fsize_roundup; 1194 } 1195 1196 kobj_close_file(file); 1197 1198 } 1199 1200 /* 1201 * Add the function that will switch us to 32-bit protected mode 1202 */ 1203 fb = &newkernel.fi_files[FASTBOOT_SWTCH]; 1204 fb->fb_va = fb->fb_dest_pa = FASTBOOT_SWTCH_PA; 1205 fb->fb_size = MMU_PAGESIZE; 1206 1207 hat_devload(kas.a_hat, (caddr_t)fb->fb_va, 1208 MMU_PAGESIZE, mmu_btop(fb->fb_dest_pa), 1209 PROT_READ | PROT_WRITE | PROT_EXEC, 1210 HAT_LOAD_NOCONSIST | HAT_LOAD_LOCK); 1211 1212 /* 1213 * Build the new multiboot_info structure 1214 */ 1215 if (fastboot_build_mbi(fastboot_args, &newkernel) != 0) { 1216 goto err_out; 1217 } 1218 1219 /* 1220 * Build page table for low 1G physical memory. Use big pages. 1221 * Allocate 4 (5 for amd64) pages for the page tables. 1222 * 1 page for PML4 (amd64) 1223 * 1 page for Page-Directory-Pointer Table 1224 * 2 pages for Page Directory 1225 * 1 page for Page Table. 1226 * The page table entry will be rewritten to map the physical 1227 * address as we do the copying. 1228 */ 1229 if (newkernel.fi_has_pae) { 1230 #ifdef __amd64 1231 size_t size = MMU_PAGESIZE * 5; 1232 #else 1233 size_t size = MMU_PAGESIZE * 4; 1234 #endif /* __amd64 */ 1235 1236 if (newkernel.fi_pagetable_size && newkernel.fi_pagetable_size 1237 < size) { 1238 contig_free((void *)newkernel.fi_pagetable_va, 1239 newkernel.fi_pagetable_size); 1240 newkernel.fi_pagetable_size = 0; 1241 } 1242 1243 if (newkernel.fi_pagetable_size == 0) { 1244 if ((newkernel.fi_pagetable_va = (uintptr_t) 1245 contig_alloc(size, &fastboot_below_1G_dma_attr, 1246 MMU_PAGESIZE, 0)) == 0) { 1247 cmn_err(CE_NOTE, fastboot_enomem_msg, 1248 (uint64_t)size, "1G"); 1249 goto err_out; 1250 } 1251 /* 1252 * fi_pagetable_size must be set after the allocation 1253 * succeeds as it's used to determine how much memory to 1254 * free. 1255 */ 1256 newkernel.fi_pagetable_size = size; 1257 } 1258 1259 bzero((void *)(newkernel.fi_pagetable_va), size); 1260 1261 newkernel.fi_pagetable_pa = 1262 mmu_ptob((uint64_t)hat_getpfnum(kas.a_hat, 1263 (caddr_t)newkernel.fi_pagetable_va)); 1264 1265 newkernel.fi_last_table_pa = newkernel.fi_pagetable_pa + 1266 size - MMU_PAGESIZE; 1267 1268 newkernel.fi_next_table_va = newkernel.fi_pagetable_va + 1269 MMU_PAGESIZE; 1270 newkernel.fi_next_table_pa = newkernel.fi_pagetable_pa + 1271 MMU_PAGESIZE; 1272 1273 fastboot_build_pagetables(&newkernel); 1274 } 1275 1276 1277 /* Generate MD5 checksums */ 1278 fastboot_cksum_generate(&newkernel); 1279 1280 /* Mark it as valid */ 1281 newkernel.fi_valid = 1; 1282 newkernel.fi_magic = FASTBOOT_MAGIC; 1283 1284 postbootkernelbase = saved_kernelbase; 1285 return; 1286 1287 err_out: 1288 postbootkernelbase = saved_kernelbase; 1289 newkernel.fi_valid = 0; 1290 fastboot_free_newkernel(&newkernel); 1291 } 1292 1293 1294 /* ARGSUSED */ 1295 static int 1296 fastboot_xc_func(fastboot_info_t *nk, xc_arg_t unused2, xc_arg_t unused3) 1297 { 1298 void (*fastboot_func)(fastboot_info_t *); 1299 fastboot_file_t *fb = &nk->fi_files[FASTBOOT_SWTCH]; 1300 fastboot_func = (void (*)())(fb->fb_va); 1301 kthread_t *t_intr = curthread->t_intr; 1302 1303 if (&kas != curproc->p_as) { 1304 hat_devload(curproc->p_as->a_hat, (caddr_t)fb->fb_va, 1305 MMU_PAGESIZE, mmu_btop(fb->fb_dest_pa), 1306 PROT_READ | PROT_WRITE | PROT_EXEC, 1307 HAT_LOAD_NOCONSIST | HAT_LOAD_LOCK); 1308 } 1309 1310 /* 1311 * If we have pinned a thread, make sure the address is mapped 1312 * in the address space of the pinned thread. 1313 */ 1314 if (t_intr && t_intr->t_procp->p_as->a_hat != curproc->p_as->a_hat && 1315 t_intr->t_procp->p_as != &kas) 1316 hat_devload(t_intr->t_procp->p_as->a_hat, (caddr_t)fb->fb_va, 1317 MMU_PAGESIZE, mmu_btop(fb->fb_dest_pa), 1318 PROT_READ | PROT_WRITE | PROT_EXEC, 1319 HAT_LOAD_NOCONSIST | HAT_LOAD_LOCK); 1320 1321 (*psm_shutdownf)(A_SHUTDOWN, AD_FASTREBOOT); 1322 (*fastboot_func)(nk); 1323 1324 /*NOTREACHED*/ 1325 return (0); 1326 } 1327 1328 /* 1329 * Jump to the fast reboot switcher. This function never returns. 1330 */ 1331 void 1332 fast_reboot() 1333 { 1334 processorid_t bootcpuid = 0; 1335 extern uintptr_t postbootkernelbase; 1336 extern char fb_swtch_image[]; 1337 fastboot_file_t *fb; 1338 int i; 1339 1340 postbootkernelbase = 0; 1341 1342 fb = &newkernel.fi_files[FASTBOOT_SWTCH]; 1343 1344 /* 1345 * Map the address into both the current proc's address 1346 * space and the kernel's address space in case the panic 1347 * is forced by kmdb. 1348 */ 1349 if (&kas != curproc->p_as) { 1350 hat_devload(curproc->p_as->a_hat, (caddr_t)fb->fb_va, 1351 MMU_PAGESIZE, mmu_btop(fb->fb_dest_pa), 1352 PROT_READ | PROT_WRITE | PROT_EXEC, 1353 HAT_LOAD_NOCONSIST | HAT_LOAD_LOCK); 1354 } 1355 1356 bcopy((void *)fb_swtch_image, (void *)fb->fb_va, fb->fb_size); 1357 1358 1359 /* 1360 * Set fb_va to fake_va 1361 */ 1362 for (i = 0; i < FASTBOOT_MAX_FILES_MAP; i++) { 1363 newkernel.fi_files[i].fb_va = fake_va; 1364 1365 } 1366 1367 if (panicstr && CPU->cpu_id != bootcpuid && 1368 CPU_ACTIVE(cpu_get(bootcpuid))) { 1369 extern void panic_idle(void); 1370 cpuset_t cpuset; 1371 1372 CPUSET_ZERO(cpuset); 1373 CPUSET_ADD(cpuset, bootcpuid); 1374 xc_priority((xc_arg_t)&newkernel, 0, 0, CPUSET2BV(cpuset), 1375 (xc_func_t)fastboot_xc_func); 1376 1377 panic_idle(); 1378 } else 1379 (void) fastboot_xc_func(&newkernel, 0, 0); 1380 } 1381 1382 1383 /* 1384 * Get boot property value for fastreboot_onpanic. 1385 * 1386 * NOTE: If fastreboot_onpanic is set to non-zero in /etc/system, 1387 * new setting passed in via "-B fastreboot_onpanic" is ignored. 1388 * This order of precedence is to enable developers debugging panics 1389 * that occur early in boot to utilize Fast Reboot on panic. 1390 */ 1391 static void 1392 fastboot_get_bootprop(void) 1393 { 1394 int val = 0xaa, len, ret; 1395 dev_info_t *devi; 1396 char *propstr = NULL; 1397 1398 devi = ddi_root_node(); 1399 1400 ret = ddi_prop_lookup_string(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS, 1401 FASTREBOOT_ONPANIC, &propstr); 1402 1403 if (ret == DDI_PROP_SUCCESS) { 1404 if (FASTREBOOT_ONPANIC_NOTSET(propstr)) 1405 val = 0; 1406 else if (FASTREBOOT_ONPANIC_ISSET(propstr)) 1407 val = UA_FASTREBOOT_ONPANIC; 1408 1409 /* 1410 * Only set fastreboot_onpanic to the value passed in 1411 * if it's not already set to non-zero, and the value 1412 * has indeed been passed in via command line. 1413 */ 1414 if (!fastreboot_onpanic && val != 0xaa) 1415 fastreboot_onpanic = val; 1416 ddi_prop_free(propstr); 1417 } else if (ret != DDI_PROP_NOT_FOUND && ret != DDI_PROP_UNDEFINED) { 1418 cmn_err(CE_NOTE, "!%s value is invalid, will be ignored", 1419 FASTREBOOT_ONPANIC); 1420 } 1421 1422 len = sizeof (fastreboot_onpanic_cmdline); 1423 ret = ddi_getlongprop_buf(DDI_DEV_T_ANY, devi, DDI_PROP_DONTPASS, 1424 FASTREBOOT_ONPANIC_CMDLINE, fastreboot_onpanic_cmdline, &len); 1425 1426 if (ret == DDI_PROP_BUF_TOO_SMALL) 1427 cmn_err(CE_NOTE, "!%s value is too long, will be ignored", 1428 FASTREBOOT_ONPANIC_CMDLINE); 1429 } 1430 1431 /* 1432 * This function is called by main() to either load the backup kernel for panic 1433 * fast reboot, or to reserve low physical memory for fast reboot. 1434 */ 1435 void 1436 fastboot_post_startup() 1437 { 1438 lbolt_at_boot = ddi_get_lbolt(); 1439 1440 /* Default to 10 minutes */ 1441 if (fastreboot_onpanic_uptime == LONG_MAX) 1442 fastreboot_onpanic_uptime = SEC_TO_TICK(10 * 60); 1443 1444 if (!fastreboot_capable) 1445 return; 1446 1447 mutex_enter(&fastreboot_config_mutex); 1448 1449 fastboot_get_bootprop(); 1450 1451 if (fastreboot_onpanic) 1452 fastboot_load_kernel(fastreboot_onpanic_cmdline); 1453 else if (reserve_mem_enabled) 1454 fastboot_reserve_mem(&newkernel); 1455 1456 mutex_exit(&fastreboot_config_mutex); 1457 } 1458 1459 /* 1460 * Update boot configuration settings. 1461 * If the new fastreboot_onpanic setting is false, and a kernel has 1462 * been preloaded, free the memory; 1463 * if the new fastreboot_onpanic setting is true and newkernel is 1464 * not valid, load the new kernel. 1465 */ 1466 void 1467 fastboot_update_config(const char *mdep) 1468 { 1469 uint8_t boot_config = (uint8_t)*mdep; 1470 int cur_fastreboot_onpanic; 1471 1472 if (!fastreboot_capable) 1473 return; 1474 1475 mutex_enter(&fastreboot_config_mutex); 1476 1477 cur_fastreboot_onpanic = fastreboot_onpanic; 1478 fastreboot_onpanic = boot_config & UA_FASTREBOOT_ONPANIC; 1479 1480 if (fastreboot_onpanic && (!cur_fastreboot_onpanic || 1481 !newkernel.fi_valid)) 1482 fastboot_load_kernel(fastreboot_onpanic_cmdline); 1483 if (cur_fastreboot_onpanic && !fastreboot_onpanic) 1484 fastboot_free_newkernel(&newkernel); 1485 1486 mutex_exit(&fastreboot_config_mutex); 1487 } 1488 1489 /* 1490 * This is an internal interface to disable Fast Reboot on Panic. 1491 * It frees up memory allocated for the backup kernel and sets 1492 * fastreboot_onpanic to zero. 1493 */ 1494 static void 1495 fastreboot_onpanic_disable(void) 1496 { 1497 uint8_t boot_config = (uint8_t)(~UA_FASTREBOOT_ONPANIC); 1498 fastboot_update_config((const char *)&boot_config); 1499 } 1500 1501 /* 1502 * This is the interface to be called by fm_panic() in case FMA has diagnosed 1503 * a terminal machine check exception. It does not free up memory allocated 1504 * for the backup kernel. General disabling fastreboot_onpanic in a 1505 * non-panicking situation must go through fastboot_onpanic_disable(). 1506 */ 1507 void 1508 fastreboot_disable_highpil(void) 1509 { 1510 fastreboot_onpanic = 0; 1511 } 1512 1513 /* 1514 * This is an internal interface to disable Fast Reboot by Default. 1515 * It does not free up memory allocated for the backup kernel. 1516 */ 1517 static void 1518 fastreboot_capable_disable(uint32_t msgid) 1519 { 1520 if (fastreboot_capable != 0) { 1521 fastreboot_capable = 0; 1522 if (msgid < sizeof (fastreboot_nosup_desc) / 1523 sizeof (fastreboot_nosup_desc[0])) 1524 fastreboot_nosup_id = msgid; 1525 else 1526 fastreboot_nosup_id = FBNS_DEFAULT; 1527 } 1528 } 1529 1530 /* 1531 * This is the kernel interface for disabling 1532 * Fast Reboot by Default and Fast Reboot on Panic. 1533 * Frees up memory allocated for the backup kernel. 1534 * General disabling of the Fast Reboot by Default feature should be done 1535 * via the userland interface scf_fastreboot_default_set_transient(). 1536 */ 1537 void 1538 fastreboot_disable(uint32_t msgid) 1539 { 1540 fastreboot_capable_disable(msgid); 1541 fastreboot_onpanic_disable(); 1542 } 1543 1544 /* 1545 * Returns Fast Reboot not support message for fastreboot_nosup_id. 1546 * If fastreboot_nosup_id contains invalid index, default 1547 * Fast Reboot not support message is returned. 1548 */ 1549 const char * 1550 fastreboot_nosup_message(void) 1551 { 1552 uint32_t msgid; 1553 1554 msgid = fastreboot_nosup_id; 1555 if (msgid >= sizeof (fastreboot_nosup_desc) / 1556 sizeof (fastreboot_nosup_desc[0])) 1557 msgid = FBNS_DEFAULT; 1558 1559 return (fastreboot_nosup_desc[msgid]); 1560 } 1561 1562 /* 1563 * A simplified interface for uadmin to call to update the configuration 1564 * setting and load a new kernel if necessary. 1565 */ 1566 void 1567 fastboot_update_and_load(int fcn, char *mdep) 1568 { 1569 if (fcn != AD_FASTREBOOT) { 1570 /* 1571 * If user has explicitly requested reboot to prom, 1572 * or uadmin(1M) was invoked with other functions, 1573 * don't try to fast reboot after dumping. 1574 */ 1575 fastreboot_onpanic_disable(); 1576 } 1577 1578 mutex_enter(&fastreboot_config_mutex); 1579 1580 if (fastreboot_onpanic) 1581 fastboot_load_kernel(mdep); 1582 1583 mutex_exit(&fastreboot_config_mutex); 1584 } 1585