1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 * 26 * Copyright (c) 2010, Intel Corporation. 27 * All rights reserved. 28 * 29 * Copyright 2018 Joyent, Inc. All rights reserved. 30 */ 31 32 /* 33 * This file contains the functionality that mimics the boot operations 34 * on SPARC systems or the old boot.bin/multiboot programs on x86 systems. 35 * The x86 kernel now does everything on its own. 36 */ 37 38 #include <sys/types.h> 39 #include <sys/bootconf.h> 40 #include <sys/bootsvcs.h> 41 #include <sys/bootinfo.h> 42 #include <sys/multiboot.h> 43 #include <sys/multiboot2.h> 44 #include <sys/multiboot2_impl.h> 45 #include <sys/bootvfs.h> 46 #include <sys/bootprops.h> 47 #include <sys/varargs.h> 48 #include <sys/param.h> 49 #include <sys/machparam.h> 50 #include <sys/machsystm.h> 51 #include <sys/archsystm.h> 52 #include <sys/boot_console.h> 53 #include <sys/cmn_err.h> 54 #include <sys/systm.h> 55 #include <sys/promif.h> 56 #include <sys/archsystm.h> 57 #include <sys/x86_archext.h> 58 #include <sys/kobj.h> 59 #include <sys/privregs.h> 60 #include <sys/sysmacros.h> 61 #include <sys/ctype.h> 62 #include <sys/fastboot.h> 63 #ifdef __xpv 64 #include <sys/hypervisor.h> 65 #include <net/if.h> 66 #endif 67 #include <vm/kboot_mmu.h> 68 #include <vm/hat_pte.h> 69 #include <sys/kobj.h> 70 #include <sys/kobj_lex.h> 71 #include <sys/pci_cfgspace_impl.h> 72 #include <sys/fastboot_impl.h> 73 #include <sys/acpi/acconfig.h> 74 #include <sys/acpi/acpi.h> 75 #include <sys/ddipropdefs.h> /* For DDI prop types */ 76 77 static int have_console = 0; /* set once primitive console is initialized */ 78 static char *boot_args = ""; 79 80 /* 81 * Debugging macros 82 */ 83 static uint_t kbm_debug = 0; 84 #define DBG_MSG(s) { if (kbm_debug) bop_printf(NULL, "%s", s); } 85 #define DBG(x) { if (kbm_debug) \ 86 bop_printf(NULL, "%s is %" PRIx64 "\n", #x, (uint64_t)(x)); \ 87 } 88 89 #define PUT_STRING(s) { \ 90 char *cp; \ 91 for (cp = (s); *cp; ++cp) \ 92 bcons_putchar(*cp); \ 93 } 94 95 bootops_t bootop; /* simple bootops we'll pass on to kernel */ 96 struct bsys_mem bm; 97 98 /* 99 * Boot info from "glue" code in low memory. xbootp is used by: 100 * do_bop_phys_alloc(), do_bsys_alloc() and boot_prop_finish(). 101 */ 102 static struct xboot_info *xbootp; 103 static uintptr_t next_virt; /* next available virtual address */ 104 static paddr_t next_phys; /* next available physical address from dboot */ 105 static paddr_t high_phys = -(paddr_t)1; /* last used physical address */ 106 107 /* 108 * buffer for vsnprintf for console I/O 109 */ 110 #define BUFFERSIZE 512 111 static char buffer[BUFFERSIZE]; 112 113 /* 114 * stuff to store/report/manipulate boot property settings. 115 */ 116 typedef struct bootprop { 117 struct bootprop *bp_next; 118 char *bp_name; 119 int bp_flags; /* DDI prop type */ 120 uint_t bp_vlen; /* 0 for boolean */ 121 char *bp_value; 122 } bootprop_t; 123 124 static bootprop_t *bprops = NULL; 125 static char *curr_page = NULL; /* ptr to avail bprop memory */ 126 static int curr_space = 0; /* amount of memory at curr_page */ 127 128 #ifdef __xpv 129 start_info_t *xen_info; 130 shared_info_t *HYPERVISOR_shared_info; 131 #endif 132 133 /* 134 * some allocator statistics 135 */ 136 static ulong_t total_bop_alloc_scratch = 0; 137 static ulong_t total_bop_alloc_kernel = 0; 138 139 static void build_firmware_properties(struct xboot_info *); 140 141 static int early_allocation = 1; 142 143 int force_fastreboot = 0; 144 volatile int fastreboot_onpanic = 0; 145 int post_fastreboot = 0; 146 #ifdef __xpv 147 volatile int fastreboot_capable = 0; 148 #else 149 volatile int fastreboot_capable = 1; 150 #endif 151 152 /* 153 * Information saved from current boot for fast reboot. 154 * If the information size exceeds what we have allocated, fast reboot 155 * will not be supported. 156 */ 157 multiboot_info_t saved_mbi; 158 mb_memory_map_t saved_mmap[FASTBOOT_SAVED_MMAP_COUNT]; 159 uint8_t saved_drives[FASTBOOT_SAVED_DRIVES_SIZE]; 160 char saved_cmdline[FASTBOOT_SAVED_CMDLINE_LEN]; 161 int saved_cmdline_len = 0; 162 size_t saved_file_size[FASTBOOT_MAX_FILES_MAP]; 163 164 /* 165 * Turn off fastreboot_onpanic to avoid panic loop. 166 */ 167 char fastreboot_onpanic_cmdline[FASTBOOT_SAVED_CMDLINE_LEN]; 168 static const char fastreboot_onpanic_args[] = " -B fastreboot_onpanic=0"; 169 170 /* 171 * Pointers to where System Resource Affinity Table (SRAT), System Locality 172 * Information Table (SLIT) and Maximum System Capability Table (MSCT) 173 * are mapped into virtual memory 174 */ 175 ACPI_TABLE_SRAT *srat_ptr = NULL; 176 ACPI_TABLE_SLIT *slit_ptr = NULL; 177 ACPI_TABLE_MSCT *msct_ptr = NULL; 178 179 /* 180 * Arbitrary limit on number of localities we handle; if 181 * this limit is raised to more than UINT16_MAX, make sure 182 * process_slit() knows how to handle it. 183 */ 184 #define SLIT_LOCALITIES_MAX (4096) 185 186 #define SLIT_NUM_PROPNAME "acpi-slit-localities" 187 #define SLIT_PROPNAME "acpi-slit" 188 189 /* 190 * Allocate aligned physical memory at boot time. This allocator allocates 191 * from the highest possible addresses. This avoids exhausting memory that 192 * would be useful for DMA buffers. 193 */ 194 paddr_t 195 do_bop_phys_alloc(uint64_t size, uint64_t align) 196 { 197 paddr_t pa = 0; 198 paddr_t start; 199 paddr_t end; 200 struct memlist *ml = (struct memlist *)xbootp->bi_phys_install; 201 202 /* 203 * Be careful if high memory usage is limited in startup.c 204 * Since there are holes in the low part of the physical address 205 * space we can treat physmem as a pfn (not just a pgcnt) and 206 * get a conservative upper limit. 207 */ 208 if (physmem != 0 && high_phys > pfn_to_pa(physmem)) 209 high_phys = pfn_to_pa(physmem); 210 211 /* 212 * find the highest available memory in physinstalled 213 */ 214 size = P2ROUNDUP(size, align); 215 for (; ml; ml = ml->ml_next) { 216 start = P2ROUNDUP(ml->ml_address, align); 217 end = P2ALIGN(ml->ml_address + ml->ml_size, align); 218 if (start < next_phys) 219 start = P2ROUNDUP(next_phys, align); 220 if (end > high_phys) 221 end = P2ALIGN(high_phys, align); 222 223 if (end <= start) 224 continue; 225 if (end - start < size) 226 continue; 227 228 /* 229 * Early allocations need to use low memory, since 230 * physmem might be further limited by bootenv.rc 231 */ 232 if (early_allocation) { 233 if (pa == 0 || start < pa) 234 pa = start; 235 } else { 236 if (end - size > pa) 237 pa = end - size; 238 } 239 } 240 if (pa != 0) { 241 if (early_allocation) 242 next_phys = pa + size; 243 else 244 high_phys = pa; 245 return (pa); 246 } 247 bop_panic("do_bop_phys_alloc(0x%" PRIx64 ", 0x%" PRIx64 248 ") Out of memory\n", size, align); 249 /*NOTREACHED*/ 250 } 251 252 uintptr_t 253 alloc_vaddr(size_t size, paddr_t align) 254 { 255 uintptr_t rv; 256 257 next_virt = P2ROUNDUP(next_virt, (uintptr_t)align); 258 rv = (uintptr_t)next_virt; 259 next_virt += size; 260 return (rv); 261 } 262 263 /* 264 * Allocate virtual memory. The size is always rounded up to a multiple 265 * of base pagesize. 266 */ 267 268 /*ARGSUSED*/ 269 static caddr_t 270 do_bsys_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align) 271 { 272 paddr_t a = align; /* same type as pa for masking */ 273 uint_t pgsize; 274 paddr_t pa; 275 uintptr_t va; 276 ssize_t s; /* the aligned size */ 277 uint_t level; 278 uint_t is_kernel = (virthint != 0); 279 280 if (a < MMU_PAGESIZE) 281 a = MMU_PAGESIZE; 282 else if (!ISP2(a)) 283 prom_panic("do_bsys_alloc() incorrect alignment"); 284 size = P2ROUNDUP(size, MMU_PAGESIZE); 285 286 /* 287 * Use the next aligned virtual address if we weren't given one. 288 */ 289 if (virthint == NULL) { 290 virthint = (caddr_t)alloc_vaddr(size, a); 291 total_bop_alloc_scratch += size; 292 } else { 293 total_bop_alloc_kernel += size; 294 } 295 296 /* 297 * allocate the physical memory 298 */ 299 pa = do_bop_phys_alloc(size, a); 300 301 /* 302 * Add the mappings to the page tables, try large pages first. 303 */ 304 va = (uintptr_t)virthint; 305 s = size; 306 level = 1; 307 pgsize = xbootp->bi_use_pae ? TWO_MEG : FOUR_MEG; 308 if (xbootp->bi_use_largepage && a == pgsize) { 309 while (IS_P2ALIGNED(pa, pgsize) && IS_P2ALIGNED(va, pgsize) && 310 s >= pgsize) { 311 kbm_map(va, pa, level, is_kernel); 312 va += pgsize; 313 pa += pgsize; 314 s -= pgsize; 315 } 316 } 317 318 /* 319 * Map remaining pages use small mappings 320 */ 321 level = 0; 322 pgsize = MMU_PAGESIZE; 323 while (s > 0) { 324 kbm_map(va, pa, level, is_kernel); 325 va += pgsize; 326 pa += pgsize; 327 s -= pgsize; 328 } 329 return (virthint); 330 } 331 332 /* 333 * Free virtual memory - we'll just ignore these. 334 */ 335 /*ARGSUSED*/ 336 static void 337 do_bsys_free(bootops_t *bop, caddr_t virt, size_t size) 338 { 339 bop_printf(NULL, "do_bsys_free(virt=0x%p, size=0x%lx) ignored\n", 340 (void *)virt, size); 341 } 342 343 /* 344 * Old interface 345 */ 346 /*ARGSUSED*/ 347 static caddr_t 348 do_bsys_ealloc(bootops_t *bop, caddr_t virthint, size_t size, 349 int align, int flags) 350 { 351 prom_panic("unsupported call to BOP_EALLOC()\n"); 352 return (0); 353 } 354 355 356 static void 357 bsetprop(int flags, char *name, int nlen, void *value, int vlen) 358 { 359 uint_t size; 360 uint_t need_size; 361 bootprop_t *b; 362 363 /* 364 * align the size to 16 byte boundary 365 */ 366 size = sizeof (bootprop_t) + nlen + 1 + vlen; 367 size = (size + 0xf) & ~0xf; 368 if (size > curr_space) { 369 need_size = (size + (MMU_PAGEOFFSET)) & MMU_PAGEMASK; 370 curr_page = do_bsys_alloc(NULL, 0, need_size, MMU_PAGESIZE); 371 curr_space = need_size; 372 } 373 374 /* 375 * use a bootprop_t at curr_page and link into list 376 */ 377 b = (bootprop_t *)curr_page; 378 curr_page += sizeof (bootprop_t); 379 curr_space -= sizeof (bootprop_t); 380 b->bp_next = bprops; 381 bprops = b; 382 383 /* 384 * follow by name and ending zero byte 385 */ 386 b->bp_name = curr_page; 387 bcopy(name, curr_page, nlen); 388 curr_page += nlen; 389 *curr_page++ = 0; 390 curr_space -= nlen + 1; 391 392 /* 393 * set the property type 394 */ 395 b->bp_flags = flags & DDI_PROP_TYPE_MASK; 396 397 /* 398 * copy in value, but no ending zero byte 399 */ 400 b->bp_value = curr_page; 401 b->bp_vlen = vlen; 402 if (vlen > 0) { 403 bcopy(value, curr_page, vlen); 404 curr_page += vlen; 405 curr_space -= vlen; 406 } 407 408 /* 409 * align new values of curr_page, curr_space 410 */ 411 while (curr_space & 0xf) { 412 ++curr_page; 413 --curr_space; 414 } 415 } 416 417 static void 418 bsetprops(char *name, char *value) 419 { 420 bsetprop(DDI_PROP_TYPE_STRING, name, strlen(name), 421 value, strlen(value) + 1); 422 } 423 424 static void 425 bsetprop32(char *name, uint32_t value) 426 { 427 bsetprop(DDI_PROP_TYPE_INT, name, strlen(name), 428 (void *)&value, sizeof (value)); 429 } 430 431 static void 432 bsetprop64(char *name, uint64_t value) 433 { 434 bsetprop(DDI_PROP_TYPE_INT64, name, strlen(name), 435 (void *)&value, sizeof (value)); 436 } 437 438 static void 439 bsetpropsi(char *name, int value) 440 { 441 char prop_val[32]; 442 443 (void) snprintf(prop_val, sizeof (prop_val), "%d", value); 444 bsetprops(name, prop_val); 445 } 446 447 /* 448 * to find the type of the value associated with this name 449 */ 450 /*ARGSUSED*/ 451 int 452 do_bsys_getproptype(bootops_t *bop, const char *name) 453 { 454 bootprop_t *b; 455 456 for (b = bprops; b != NULL; b = b->bp_next) { 457 if (strcmp(name, b->bp_name) != 0) 458 continue; 459 return (b->bp_flags); 460 } 461 return (-1); 462 } 463 464 /* 465 * to find the size of the buffer to allocate 466 */ 467 /*ARGSUSED*/ 468 int 469 do_bsys_getproplen(bootops_t *bop, const char *name) 470 { 471 bootprop_t *b; 472 473 for (b = bprops; b; b = b->bp_next) { 474 if (strcmp(name, b->bp_name) != 0) 475 continue; 476 return (b->bp_vlen); 477 } 478 return (-1); 479 } 480 481 /* 482 * get the value associated with this name 483 */ 484 /*ARGSUSED*/ 485 int 486 do_bsys_getprop(bootops_t *bop, const char *name, void *value) 487 { 488 bootprop_t *b; 489 490 for (b = bprops; b; b = b->bp_next) { 491 if (strcmp(name, b->bp_name) != 0) 492 continue; 493 bcopy(b->bp_value, value, b->bp_vlen); 494 return (0); 495 } 496 return (-1); 497 } 498 499 /* 500 * get the name of the next property in succession from the standalone 501 */ 502 /*ARGSUSED*/ 503 static char * 504 do_bsys_nextprop(bootops_t *bop, char *name) 505 { 506 bootprop_t *b; 507 508 /* 509 * A null name is a special signal for the 1st boot property 510 */ 511 if (name == NULL || strlen(name) == 0) { 512 if (bprops == NULL) 513 return (NULL); 514 return (bprops->bp_name); 515 } 516 517 for (b = bprops; b; b = b->bp_next) { 518 if (name != b->bp_name) 519 continue; 520 b = b->bp_next; 521 if (b == NULL) 522 return (NULL); 523 return (b->bp_name); 524 } 525 return (NULL); 526 } 527 528 /* 529 * Parse numeric value from a string. Understands decimal, hex, octal, - and ~ 530 */ 531 static int 532 parse_value(char *p, uint64_t *retval) 533 { 534 int adjust = 0; 535 uint64_t tmp = 0; 536 int digit; 537 int radix = 10; 538 539 *retval = 0; 540 if (*p == '-' || *p == '~') 541 adjust = *p++; 542 543 if (*p == '0') { 544 ++p; 545 if (*p == 0) 546 return (0); 547 if (*p == 'x' || *p == 'X') { 548 radix = 16; 549 ++p; 550 } else { 551 radix = 8; 552 ++p; 553 } 554 } 555 while (*p) { 556 if ('0' <= *p && *p <= '9') 557 digit = *p - '0'; 558 else if ('a' <= *p && *p <= 'f') 559 digit = 10 + *p - 'a'; 560 else if ('A' <= *p && *p <= 'F') 561 digit = 10 + *p - 'A'; 562 else 563 return (-1); 564 if (digit >= radix) 565 return (-1); 566 tmp = tmp * radix + digit; 567 ++p; 568 } 569 if (adjust == '-') 570 tmp = -tmp; 571 else if (adjust == '~') 572 tmp = ~tmp; 573 *retval = tmp; 574 return (0); 575 } 576 577 static boolean_t 578 unprintable(char *value, int size) 579 { 580 int i; 581 582 if (size <= 0 || value[0] == '\0') 583 return (B_TRUE); 584 585 for (i = 0; i < size; i++) { 586 if (value[i] == '\0') 587 return (i != (size - 1)); 588 589 if (!isprint(value[i])) 590 return (B_TRUE); 591 } 592 return (B_FALSE); 593 } 594 595 /* 596 * Print out information about all boot properties. 597 * buffer is pointer to pre-allocated space to be used as temporary 598 * space for property values. 599 */ 600 static void 601 boot_prop_display(char *buffer) 602 { 603 char *name = ""; 604 int i, len, flags, *buf32; 605 int64_t *buf64; 606 607 bop_printf(NULL, "\nBoot properties:\n"); 608 609 while ((name = do_bsys_nextprop(NULL, name)) != NULL) { 610 bop_printf(NULL, "\t0x%p %s = ", (void *)name, name); 611 (void) do_bsys_getprop(NULL, name, buffer); 612 len = do_bsys_getproplen(NULL, name); 613 flags = do_bsys_getproptype(NULL, name); 614 bop_printf(NULL, "len=%d ", len); 615 616 switch (flags) { 617 case DDI_PROP_TYPE_INT: 618 len = len / sizeof (int); 619 buf32 = (int *)buffer; 620 for (i = 0; i < len; i++) { 621 bop_printf(NULL, "%08x", buf32[i]); 622 if (i < len - 1) 623 bop_printf(NULL, "."); 624 } 625 break; 626 case DDI_PROP_TYPE_STRING: 627 bop_printf(NULL, "%s", buffer); 628 break; 629 case DDI_PROP_TYPE_INT64: 630 len = len / sizeof (int64_t); 631 buf64 = (int64_t *)buffer; 632 for (i = 0; i < len; i++) { 633 bop_printf(NULL, "%016" PRIx64, buf64[i]); 634 if (i < len - 1) 635 bop_printf(NULL, "."); 636 } 637 break; 638 default: 639 if (!unprintable(buffer, len)) { 640 buffer[len] = 0; 641 bop_printf(NULL, "%s", buffer); 642 break; 643 } 644 for (i = 0; i < len; i++) { 645 bop_printf(NULL, "%02x", buffer[i] & 0xff); 646 if (i < len - 1) 647 bop_printf(NULL, "."); 648 } 649 break; 650 } 651 bop_printf(NULL, "\n"); 652 } 653 } 654 655 /* 656 * 2nd part of building the table of boot properties. This includes: 657 * - values from /boot/solaris/bootenv.rc (ie. eeprom(1m) values) 658 * 659 * lines look like one of: 660 * ^$ 661 * ^# comment till end of line 662 * setprop name 'value' 663 * setprop name value 664 * setprop name "value" 665 * 666 * we do single character I/O since this is really just looking at memory 667 */ 668 void 669 boot_prop_finish(void) 670 { 671 int fd; 672 char *line; 673 int c; 674 int bytes_read; 675 char *name; 676 int n_len; 677 char *value; 678 int v_len; 679 char *inputdev; /* these override the command line if serial ports */ 680 char *outputdev; 681 char *consoledev; 682 uint64_t lvalue; 683 int use_xencons = 0; 684 extern int bootrd_debug; 685 686 #ifdef __xpv 687 if (!DOMAIN_IS_INITDOMAIN(xen_info)) 688 use_xencons = 1; 689 #endif /* __xpv */ 690 691 DBG_MSG("Opening /boot/solaris/bootenv.rc\n"); 692 fd = BRD_OPEN(bfs_ops, "/boot/solaris/bootenv.rc", 0); 693 DBG(fd); 694 695 line = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE); 696 while (fd >= 0) { 697 698 /* 699 * get a line 700 */ 701 for (c = 0; ; ++c) { 702 bytes_read = BRD_READ(bfs_ops, fd, line + c, 1); 703 if (bytes_read == 0) { 704 if (c == 0) 705 goto done; 706 break; 707 } 708 if (line[c] == '\n') 709 break; 710 } 711 line[c] = 0; 712 713 /* 714 * ignore comment lines 715 */ 716 c = 0; 717 while (ISSPACE(line[c])) 718 ++c; 719 if (line[c] == '#' || line[c] == 0) 720 continue; 721 722 /* 723 * must have "setprop " or "setprop\t" 724 */ 725 if (strncmp(line + c, "setprop ", 8) != 0 && 726 strncmp(line + c, "setprop\t", 8) != 0) 727 continue; 728 c += 8; 729 while (ISSPACE(line[c])) 730 ++c; 731 if (line[c] == 0) 732 continue; 733 734 /* 735 * gather up the property name 736 */ 737 name = line + c; 738 n_len = 0; 739 while (line[c] && !ISSPACE(line[c])) 740 ++n_len, ++c; 741 742 /* 743 * gather up the value, if any 744 */ 745 value = ""; 746 v_len = 0; 747 while (ISSPACE(line[c])) 748 ++c; 749 if (line[c] != 0) { 750 value = line + c; 751 while (line[c] && !ISSPACE(line[c])) 752 ++v_len, ++c; 753 } 754 755 if (v_len >= 2 && value[0] == value[v_len - 1] && 756 (value[0] == '\'' || value[0] == '"')) { 757 ++value; 758 v_len -= 2; 759 } 760 name[n_len] = 0; 761 if (v_len > 0) 762 value[v_len] = 0; 763 else 764 continue; 765 766 /* 767 * ignore "boot-file" property, it's now meaningless 768 */ 769 if (strcmp(name, "boot-file") == 0) 770 continue; 771 if (strcmp(name, "boot-args") == 0 && 772 strlen(boot_args) > 0) 773 continue; 774 775 /* 776 * If a property was explicitly set on the command line 777 * it will override a setting in bootenv.rc 778 */ 779 if (do_bsys_getproplen(NULL, name) >= 0) 780 continue; 781 782 bsetprops(name, value); 783 } 784 done: 785 if (fd >= 0) 786 (void) BRD_CLOSE(bfs_ops, fd); 787 788 /* 789 * Check if we have to limit the boot time allocator 790 */ 791 if (do_bsys_getproplen(NULL, "physmem") != -1 && 792 do_bsys_getprop(NULL, "physmem", line) >= 0 && 793 parse_value(line, &lvalue) != -1) { 794 if (0 < lvalue && (lvalue < physmem || physmem == 0)) { 795 physmem = (pgcnt_t)lvalue; 796 DBG(physmem); 797 } 798 } 799 early_allocation = 0; 800 801 /* 802 * Check for bootrd_debug. 803 */ 804 if (find_boot_prop("bootrd_debug")) 805 bootrd_debug = 1; 806 807 /* 808 * check to see if we have to override the default value of the console 809 */ 810 if (!use_xencons) { 811 inputdev = line; 812 v_len = do_bsys_getproplen(NULL, "input-device"); 813 if (v_len > 0) 814 (void) do_bsys_getprop(NULL, "input-device", inputdev); 815 else 816 v_len = 0; 817 inputdev[v_len] = 0; 818 819 outputdev = inputdev + v_len + 1; 820 v_len = do_bsys_getproplen(NULL, "output-device"); 821 if (v_len > 0) 822 (void) do_bsys_getprop(NULL, "output-device", 823 outputdev); 824 else 825 v_len = 0; 826 outputdev[v_len] = 0; 827 828 consoledev = outputdev + v_len + 1; 829 v_len = do_bsys_getproplen(NULL, "console"); 830 if (v_len > 0) { 831 (void) do_bsys_getprop(NULL, "console", consoledev); 832 if (post_fastreboot && 833 strcmp(consoledev, "graphics") == 0) { 834 bsetprops("console", "text"); 835 v_len = strlen("text"); 836 bcopy("text", consoledev, v_len); 837 } 838 } else { 839 v_len = 0; 840 } 841 consoledev[v_len] = 0; 842 bcons_init2(inputdev, outputdev, consoledev); 843 } else { 844 /* 845 * Ensure console property exists 846 * If not create it as "hypervisor" 847 */ 848 v_len = do_bsys_getproplen(NULL, "console"); 849 if (v_len < 0) 850 bsetprops("console", "hypervisor"); 851 inputdev = outputdev = consoledev = "hypervisor"; 852 bcons_init2(inputdev, outputdev, consoledev); 853 } 854 855 if (find_boot_prop("prom_debug") || kbm_debug) 856 boot_prop_display(line); 857 } 858 859 /* 860 * print formatted output 861 */ 862 /*PRINTFLIKE2*/ 863 /*ARGSUSED*/ 864 void 865 bop_printf(bootops_t *bop, const char *fmt, ...) 866 { 867 va_list ap; 868 869 if (have_console == 0) 870 return; 871 872 va_start(ap, fmt); 873 (void) vsnprintf(buffer, BUFFERSIZE, fmt, ap); 874 va_end(ap); 875 PUT_STRING(buffer); 876 } 877 878 /* 879 * Another panic() variant; this one can be used even earlier during boot than 880 * prom_panic(). 881 */ 882 /*PRINTFLIKE1*/ 883 void 884 bop_panic(const char *fmt, ...) 885 { 886 va_list ap; 887 888 va_start(ap, fmt); 889 bop_printf(NULL, fmt, ap); 890 va_end(ap); 891 892 bop_printf(NULL, "\nPress any key to reboot.\n"); 893 (void) bcons_getchar(); 894 bop_printf(NULL, "Resetting...\n"); 895 pc_reset(); 896 } 897 898 /* 899 * Do a real mode interrupt BIOS call 900 */ 901 typedef struct bios_regs { 902 unsigned short ax, bx, cx, dx, si, di, bp, es, ds; 903 } bios_regs_t; 904 typedef int (*bios_func_t)(int, bios_regs_t *); 905 906 /*ARGSUSED*/ 907 static void 908 do_bsys_doint(bootops_t *bop, int intnum, struct bop_regs *rp) 909 { 910 #if defined(__xpv) 911 prom_panic("unsupported call to BOP_DOINT()\n"); 912 #else /* __xpv */ 913 static int firsttime = 1; 914 bios_func_t bios_func = (bios_func_t)(void *)(uintptr_t)0x5000; 915 bios_regs_t br; 916 917 /* 918 * We're about to disable paging; we shouldn't be PCID enabled. 919 */ 920 if (getcr4() & CR4_PCIDE) 921 prom_panic("do_bsys_doint() with PCID enabled\n"); 922 923 /* 924 * The first time we do this, we have to copy the pre-packaged 925 * low memory bios call code image into place. 926 */ 927 if (firsttime) { 928 extern char bios_image[]; 929 extern uint32_t bios_size; 930 931 bcopy(bios_image, (void *)bios_func, bios_size); 932 firsttime = 0; 933 } 934 935 br.ax = rp->eax.word.ax; 936 br.bx = rp->ebx.word.bx; 937 br.cx = rp->ecx.word.cx; 938 br.dx = rp->edx.word.dx; 939 br.bp = rp->ebp.word.bp; 940 br.si = rp->esi.word.si; 941 br.di = rp->edi.word.di; 942 br.ds = rp->ds; 943 br.es = rp->es; 944 945 DBG_MSG("Doing BIOS call..."); 946 DBG(br.ax); 947 DBG(br.bx); 948 DBG(br.dx); 949 rp->eflags = bios_func(intnum, &br); 950 DBG_MSG("done\n"); 951 952 rp->eax.word.ax = br.ax; 953 rp->ebx.word.bx = br.bx; 954 rp->ecx.word.cx = br.cx; 955 rp->edx.word.dx = br.dx; 956 rp->ebp.word.bp = br.bp; 957 rp->esi.word.si = br.si; 958 rp->edi.word.di = br.di; 959 rp->ds = br.ds; 960 rp->es = br.es; 961 #endif /* __xpv */ 962 } 963 964 static struct boot_syscalls bop_sysp = { 965 bcons_getchar, 966 bcons_putchar, 967 bcons_ischar, 968 }; 969 970 static char *whoami; 971 972 #define BUFLEN 64 973 974 #if defined(__xpv) 975 976 static char namebuf[32]; 977 978 static void 979 xen_parse_props(char *s, char *prop_map[], int n_prop) 980 { 981 char **prop_name = prop_map; 982 char *cp = s, *scp; 983 984 do { 985 scp = cp; 986 while ((*cp != NULL) && (*cp != ':')) 987 cp++; 988 989 if ((scp != cp) && (*prop_name != NULL)) { 990 *cp = NULL; 991 bsetprops(*prop_name, scp); 992 } 993 994 cp++; 995 prop_name++; 996 n_prop--; 997 } while (n_prop > 0); 998 } 999 1000 #define VBDPATHLEN 64 1001 1002 /* 1003 * parse the 'xpv-root' property to create properties used by 1004 * ufs_mountroot. 1005 */ 1006 static void 1007 xen_vbdroot_props(char *s) 1008 { 1009 char vbdpath[VBDPATHLEN] = "/xpvd/xdf@"; 1010 const char lnamefix[] = "/dev/dsk/c0d"; 1011 char *pnp; 1012 char *prop_p; 1013 char mi; 1014 short minor; 1015 long addr = 0; 1016 1017 pnp = vbdpath + strlen(vbdpath); 1018 prop_p = s + strlen(lnamefix); 1019 while ((*prop_p != '\0') && (*prop_p != 's') && (*prop_p != 'p')) 1020 addr = addr * 10 + *prop_p++ - '0'; 1021 (void) snprintf(pnp, VBDPATHLEN, "%lx", addr); 1022 pnp = vbdpath + strlen(vbdpath); 1023 if (*prop_p == 's') 1024 mi = 'a'; 1025 else if (*prop_p == 'p') 1026 mi = 'q'; 1027 else 1028 ASSERT(0); /* shouldn't be here */ 1029 prop_p++; 1030 ASSERT(*prop_p != '\0'); 1031 if (ISDIGIT(*prop_p)) { 1032 minor = *prop_p - '0'; 1033 prop_p++; 1034 if (ISDIGIT(*prop_p)) { 1035 minor = minor * 10 + *prop_p - '0'; 1036 } 1037 } else { 1038 /* malformed root path, use 0 as default */ 1039 minor = 0; 1040 } 1041 ASSERT(minor < 16); /* at most 16 partitions */ 1042 mi += minor; 1043 *pnp++ = ':'; 1044 *pnp++ = mi; 1045 *pnp++ = '\0'; 1046 bsetprops("fstype", "ufs"); 1047 bsetprops("bootpath", vbdpath); 1048 1049 DBG_MSG("VBD bootpath set to "); 1050 DBG_MSG(vbdpath); 1051 DBG_MSG("\n"); 1052 } 1053 1054 /* 1055 * parse the xpv-nfsroot property to create properties used by 1056 * nfs_mountroot. 1057 */ 1058 static void 1059 xen_nfsroot_props(char *s) 1060 { 1061 char *prop_map[] = { 1062 BP_SERVER_IP, /* server IP address */ 1063 BP_SERVER_NAME, /* server hostname */ 1064 BP_SERVER_PATH, /* root path */ 1065 }; 1066 int n_prop = sizeof (prop_map) / sizeof (prop_map[0]); 1067 1068 bsetprops("fstype", "nfs"); 1069 1070 xen_parse_props(s, prop_map, n_prop); 1071 1072 /* 1073 * If a server name wasn't specified, use a default. 1074 */ 1075 if (do_bsys_getproplen(NULL, BP_SERVER_NAME) == -1) 1076 bsetprops(BP_SERVER_NAME, "unknown"); 1077 } 1078 1079 /* 1080 * Extract our IP address, etc. from the "xpv-ip" property. 1081 */ 1082 static void 1083 xen_ip_props(char *s) 1084 { 1085 char *prop_map[] = { 1086 BP_HOST_IP, /* IP address */ 1087 NULL, /* NFS server IP address (ignored in */ 1088 /* favour of xpv-nfsroot) */ 1089 BP_ROUTER_IP, /* IP gateway */ 1090 BP_SUBNET_MASK, /* IP subnet mask */ 1091 "xpv-hostname", /* hostname (ignored) */ 1092 BP_NETWORK_INTERFACE, /* interface name */ 1093 "xpv-hcp", /* host configuration protocol */ 1094 }; 1095 int n_prop = sizeof (prop_map) / sizeof (prop_map[0]); 1096 char ifname[IFNAMSIZ]; 1097 1098 xen_parse_props(s, prop_map, n_prop); 1099 1100 /* 1101 * A Linux dom0 administrator expects all interfaces to be 1102 * called "ethX", which is not the case here. 1103 * 1104 * If the interface name specified is "eth0", presume that 1105 * this is really intended to be "xnf0" (the first domU -> 1106 * dom0 interface for this domain). 1107 */ 1108 if ((do_bsys_getprop(NULL, BP_NETWORK_INTERFACE, ifname) == 0) && 1109 (strcmp("eth0", ifname) == 0)) { 1110 bsetprops(BP_NETWORK_INTERFACE, "xnf0"); 1111 bop_printf(NULL, 1112 "network interface name 'eth0' replaced with 'xnf0'\n"); 1113 } 1114 } 1115 1116 #else /* __xpv */ 1117 1118 static void 1119 setup_rarp_props(struct sol_netinfo *sip) 1120 { 1121 char buf[BUFLEN]; /* to hold ip/mac addrs */ 1122 uint8_t *val; 1123 1124 val = (uint8_t *)&sip->sn_ciaddr; 1125 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d", 1126 val[0], val[1], val[2], val[3]); 1127 bsetprops(BP_HOST_IP, buf); 1128 1129 val = (uint8_t *)&sip->sn_siaddr; 1130 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d", 1131 val[0], val[1], val[2], val[3]); 1132 bsetprops(BP_SERVER_IP, buf); 1133 1134 if (sip->sn_giaddr != 0) { 1135 val = (uint8_t *)&sip->sn_giaddr; 1136 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d", 1137 val[0], val[1], val[2], val[3]); 1138 bsetprops(BP_ROUTER_IP, buf); 1139 } 1140 1141 if (sip->sn_netmask != 0) { 1142 val = (uint8_t *)&sip->sn_netmask; 1143 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d", 1144 val[0], val[1], val[2], val[3]); 1145 bsetprops(BP_SUBNET_MASK, buf); 1146 } 1147 1148 if (sip->sn_mactype != 4 || sip->sn_maclen != 6) { 1149 bop_printf(NULL, "unsupported mac type %d, mac len %d\n", 1150 sip->sn_mactype, sip->sn_maclen); 1151 } else { 1152 val = sip->sn_macaddr; 1153 (void) snprintf(buf, BUFLEN, "%x:%x:%x:%x:%x:%x", 1154 val[0], val[1], val[2], val[3], val[4], val[5]); 1155 bsetprops(BP_BOOT_MAC, buf); 1156 } 1157 } 1158 1159 #endif /* __xpv */ 1160 1161 static void 1162 build_panic_cmdline(const char *cmd, int cmdlen) 1163 { 1164 int proplen; 1165 size_t arglen; 1166 1167 arglen = sizeof (fastreboot_onpanic_args); 1168 /* 1169 * If we allready have fastreboot-onpanic set to zero, 1170 * don't add them again. 1171 */ 1172 if ((proplen = do_bsys_getproplen(NULL, FASTREBOOT_ONPANIC)) > 0 && 1173 proplen <= sizeof (fastreboot_onpanic_cmdline)) { 1174 (void) do_bsys_getprop(NULL, FASTREBOOT_ONPANIC, 1175 fastreboot_onpanic_cmdline); 1176 if (FASTREBOOT_ONPANIC_NOTSET(fastreboot_onpanic_cmdline)) 1177 arglen = 1; 1178 } 1179 1180 /* 1181 * construct fastreboot_onpanic_cmdline 1182 */ 1183 if (cmdlen + arglen > sizeof (fastreboot_onpanic_cmdline)) { 1184 DBG_MSG("Command line too long: clearing " 1185 FASTREBOOT_ONPANIC "\n"); 1186 fastreboot_onpanic = 0; 1187 } else { 1188 bcopy(cmd, fastreboot_onpanic_cmdline, cmdlen); 1189 if (arglen != 1) 1190 bcopy(fastreboot_onpanic_args, 1191 fastreboot_onpanic_cmdline + cmdlen, arglen); 1192 else 1193 fastreboot_onpanic_cmdline[cmdlen] = 0; 1194 } 1195 } 1196 1197 1198 #ifndef __xpv 1199 /* 1200 * Construct boot command line for Fast Reboot. The saved_cmdline 1201 * is also reported by "eeprom bootcmd". 1202 */ 1203 static void 1204 build_fastboot_cmdline(struct xboot_info *xbp) 1205 { 1206 saved_cmdline_len = strlen(xbp->bi_cmdline) + 1; 1207 if (saved_cmdline_len > FASTBOOT_SAVED_CMDLINE_LEN) { 1208 DBG(saved_cmdline_len); 1209 DBG_MSG("Command line too long: clearing fastreboot_capable\n"); 1210 fastreboot_capable = 0; 1211 } else { 1212 bcopy((void *)(xbp->bi_cmdline), (void *)saved_cmdline, 1213 saved_cmdline_len); 1214 saved_cmdline[saved_cmdline_len - 1] = '\0'; 1215 build_panic_cmdline(saved_cmdline, saved_cmdline_len - 1); 1216 } 1217 } 1218 1219 /* 1220 * Save memory layout, disk drive information, unix and boot archive sizes for 1221 * Fast Reboot. 1222 */ 1223 static void 1224 save_boot_info(struct xboot_info *xbi) 1225 { 1226 multiboot_info_t *mbi = xbi->bi_mb_info; 1227 struct boot_modules *modp; 1228 int i; 1229 1230 bcopy(mbi, &saved_mbi, sizeof (multiboot_info_t)); 1231 if (mbi->mmap_length > sizeof (saved_mmap)) { 1232 DBG_MSG("mbi->mmap_length too big: clearing " 1233 "fastreboot_capable\n"); 1234 fastreboot_capable = 0; 1235 } else { 1236 bcopy((void *)(uintptr_t)mbi->mmap_addr, (void *)saved_mmap, 1237 mbi->mmap_length); 1238 } 1239 1240 if ((mbi->flags & MB_INFO_DRIVE_INFO) != 0) { 1241 if (mbi->drives_length > sizeof (saved_drives)) { 1242 DBG(mbi->drives_length); 1243 DBG_MSG("mbi->drives_length too big: clearing " 1244 "fastreboot_capable\n"); 1245 fastreboot_capable = 0; 1246 } else { 1247 bcopy((void *)(uintptr_t)mbi->drives_addr, 1248 (void *)saved_drives, mbi->drives_length); 1249 } 1250 } else { 1251 saved_mbi.drives_length = 0; 1252 saved_mbi.drives_addr = NULL; 1253 } 1254 1255 /* 1256 * Current file sizes. Used by fastboot.c to figure out how much 1257 * memory to reserve for panic reboot. 1258 * Use the module list from the dboot-constructed xboot_info 1259 * instead of the list referenced by the multiboot structure 1260 * because that structure may not be addressable now. 1261 */ 1262 saved_file_size[FASTBOOT_NAME_UNIX] = FOUR_MEG - PAGESIZE; 1263 for (i = 0, modp = (struct boot_modules *)(uintptr_t)xbi->bi_modules; 1264 i < xbi->bi_module_cnt; i++, modp++) { 1265 saved_file_size[FASTBOOT_NAME_BOOTARCHIVE] += modp->bm_size; 1266 } 1267 } 1268 #endif /* __xpv */ 1269 1270 /* 1271 * Import boot environment module variables as properties, applying 1272 * blacklist filter for variables we know we will not use. 1273 * 1274 * Since the environment can be relatively large, containing many variables 1275 * used only for boot loader purposes, we will use a blacklist based filter. 1276 * To keep the blacklist from growing too large, we use prefix based filtering. 1277 * This is possible because in many cases, the loader variable names are 1278 * using a structured layout. 1279 * 1280 * We will not overwrite already set properties. 1281 */ 1282 static struct bop_blacklist { 1283 const char *bl_name; 1284 int bl_name_len; 1285 } bop_prop_blacklist[] = { 1286 { "ISADIR", sizeof ("ISADIR") }, 1287 { "acpi", sizeof ("acpi") }, 1288 { "autoboot_delay", sizeof ("autoboot_delay") }, 1289 { "autoboot_delay", sizeof ("autoboot_delay") }, 1290 { "beansi_", sizeof ("beansi_") }, 1291 { "beastie", sizeof ("beastie") }, 1292 { "bemenu", sizeof ("bemenu") }, 1293 { "boot.", sizeof ("boot.") }, 1294 { "bootenv", sizeof ("bootenv") }, 1295 { "currdev", sizeof ("currdev") }, 1296 { "dhcp.", sizeof ("dhcp.") }, 1297 { "interpret", sizeof ("interpret") }, 1298 { "kernel", sizeof ("kernel") }, 1299 { "loaddev", sizeof ("loaddev") }, 1300 { "loader_", sizeof ("loader_") }, 1301 { "module_path", sizeof ("module_path") }, 1302 { "nfs.", sizeof ("nfs.") }, 1303 { "pcibios", sizeof ("pcibios") }, 1304 { "prompt", sizeof ("prompt") }, 1305 { "smbios", sizeof ("smbios") }, 1306 { "tem", sizeof ("tem") }, 1307 { "twiddle_divisor", sizeof ("twiddle_divisor") }, 1308 { "zfs_be", sizeof ("zfs_be") }, 1309 }; 1310 1311 /* 1312 * Match the name against prefixes in above blacklist. If the match was 1313 * found, this name is blacklisted. 1314 */ 1315 static boolean_t 1316 name_is_blacklisted(const char *name) 1317 { 1318 int i, n; 1319 1320 n = sizeof (bop_prop_blacklist) / sizeof (bop_prop_blacklist[0]); 1321 for (i = 0; i < n; i++) { 1322 if (strncmp(bop_prop_blacklist[i].bl_name, name, 1323 bop_prop_blacklist[i].bl_name_len - 1) == 0) { 1324 return (B_TRUE); 1325 } 1326 } 1327 return (B_FALSE); 1328 } 1329 1330 static void 1331 process_boot_environment(struct boot_modules *benv) 1332 { 1333 char *env, *ptr, *name, *value; 1334 uint32_t size, name_len, value_len; 1335 1336 if (benv == NULL || benv->bm_type != BMT_ENV) 1337 return; 1338 ptr = env = benv->bm_addr; 1339 size = benv->bm_size; 1340 do { 1341 name = ptr; 1342 /* find '=' */ 1343 while (*ptr != '=') { 1344 ptr++; 1345 if (ptr > env + size) /* Something is very wrong. */ 1346 return; 1347 } 1348 name_len = ptr - name; 1349 if (sizeof (buffer) <= name_len) 1350 continue; 1351 1352 (void) strncpy(buffer, name, sizeof (buffer)); 1353 buffer[name_len] = '\0'; 1354 name = buffer; 1355 1356 value_len = 0; 1357 value = ++ptr; 1358 while ((uintptr_t)ptr - (uintptr_t)env < size) { 1359 if (*ptr == '\0') { 1360 ptr++; 1361 value_len = (uintptr_t)ptr - (uintptr_t)env; 1362 break; 1363 } 1364 ptr++; 1365 } 1366 1367 /* Did we reach the end of the module? */ 1368 if (value_len == 0) 1369 return; 1370 1371 if (*value == '\0') 1372 continue; 1373 1374 /* Is this property already set? */ 1375 if (do_bsys_getproplen(NULL, name) >= 0) 1376 continue; 1377 1378 /* Translate netboot variables */ 1379 if (strcmp(name, "boot.netif.gateway") == 0) { 1380 bsetprops(BP_ROUTER_IP, value); 1381 continue; 1382 } 1383 if (strcmp(name, "boot.netif.hwaddr") == 0) { 1384 bsetprops(BP_BOOT_MAC, value); 1385 continue; 1386 } 1387 if (strcmp(name, "boot.netif.ip") == 0) { 1388 bsetprops(BP_HOST_IP, value); 1389 continue; 1390 } 1391 if (strcmp(name, "boot.netif.netmask") == 0) { 1392 bsetprops(BP_SUBNET_MASK, value); 1393 continue; 1394 } 1395 if (strcmp(name, "boot.netif.server") == 0) { 1396 bsetprops(BP_SERVER_IP, value); 1397 continue; 1398 } 1399 if (strcmp(name, "boot.netif.server") == 0) { 1400 if (do_bsys_getproplen(NULL, BP_SERVER_IP) < 0) 1401 bsetprops(BP_SERVER_IP, value); 1402 continue; 1403 } 1404 if (strcmp(name, "boot.nfsroot.server") == 0) { 1405 if (do_bsys_getproplen(NULL, BP_SERVER_IP) < 0) 1406 bsetprops(BP_SERVER_IP, value); 1407 continue; 1408 } 1409 if (strcmp(name, "boot.nfsroot.path") == 0) { 1410 bsetprops(BP_SERVER_PATH, value); 1411 continue; 1412 } 1413 1414 if (name_is_blacklisted(name) == B_TRUE) 1415 continue; 1416 1417 /* Create new property. */ 1418 bsetprops(name, value); 1419 1420 /* Avoid reading past the module end. */ 1421 if (size <= (uintptr_t)ptr - (uintptr_t)env) 1422 return; 1423 } while (*ptr != '\0'); 1424 } 1425 1426 /* 1427 * 1st pass at building the table of boot properties. This includes: 1428 * - values set on the command line: -B a=x,b=y,c=z .... 1429 * - known values we just compute (ie. from xbp) 1430 * - values from /boot/solaris/bootenv.rc (ie. eeprom(1m) values) 1431 * 1432 * the grub command line looked like: 1433 * kernel boot-file [-B prop=value[,prop=value]...] [boot-args] 1434 * 1435 * whoami is the same as boot-file 1436 */ 1437 static void 1438 build_boot_properties(struct xboot_info *xbp) 1439 { 1440 char *name; 1441 int name_len; 1442 char *value; 1443 int value_len; 1444 struct boot_modules *bm, *rdbm, *benv = NULL; 1445 char *propbuf; 1446 int quoted = 0; 1447 int boot_arg_len; 1448 uint_t i, midx; 1449 char modid[32]; 1450 #ifndef __xpv 1451 static int stdout_val = 0; 1452 uchar_t boot_device; 1453 char str[3]; 1454 #endif 1455 1456 /* 1457 * These have to be done first, so that kobj_mount_root() works 1458 */ 1459 DBG_MSG("Building boot properties\n"); 1460 propbuf = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, 0); 1461 DBG((uintptr_t)propbuf); 1462 if (xbp->bi_module_cnt > 0) { 1463 bm = xbp->bi_modules; 1464 rdbm = NULL; 1465 for (midx = i = 0; i < xbp->bi_module_cnt; i++) { 1466 if (bm[i].bm_type == BMT_ROOTFS) { 1467 rdbm = &bm[i]; 1468 continue; 1469 } 1470 if (bm[i].bm_type == BMT_HASH || bm[i].bm_name == NULL) 1471 continue; 1472 1473 if (bm[i].bm_type == BMT_ENV) { 1474 if (benv == NULL) 1475 benv = &bm[i]; 1476 else 1477 continue; 1478 } 1479 1480 (void) snprintf(modid, sizeof (modid), 1481 "module-name-%u", midx); 1482 bsetprops(modid, (char *)bm[i].bm_name); 1483 (void) snprintf(modid, sizeof (modid), 1484 "module-addr-%u", midx); 1485 bsetprop64(modid, (uint64_t)(uintptr_t)bm[i].bm_addr); 1486 (void) snprintf(modid, sizeof (modid), 1487 "module-size-%u", midx); 1488 bsetprop64(modid, (uint64_t)bm[i].bm_size); 1489 ++midx; 1490 } 1491 if (rdbm != NULL) { 1492 bsetprop64("ramdisk_start", 1493 (uint64_t)(uintptr_t)rdbm->bm_addr); 1494 bsetprop64("ramdisk_end", 1495 (uint64_t)(uintptr_t)rdbm->bm_addr + rdbm->bm_size); 1496 } 1497 } 1498 1499 /* 1500 * If there are any boot time modules or hashes present, then disable 1501 * fast reboot. 1502 */ 1503 if (xbp->bi_module_cnt > 1) { 1504 fastreboot_disable(FBNS_BOOTMOD); 1505 } 1506 1507 #ifndef __xpv 1508 /* 1509 * Disable fast reboot if we're using the Multiboot 2 boot protocol, 1510 * since we don't currently support MB2 info and module relocation. 1511 * Note that fast reboot will have already been disabled if multiple 1512 * modules are present, since the current implementation assumes that 1513 * we only have a single module, the boot_archive. 1514 */ 1515 if (xbp->bi_mb_version != 1) { 1516 fastreboot_disable(FBNS_MULTIBOOT2); 1517 } 1518 #endif 1519 1520 DBG_MSG("Parsing command line for boot properties\n"); 1521 value = xbp->bi_cmdline; 1522 1523 /* 1524 * allocate memory to collect boot_args into 1525 */ 1526 boot_arg_len = strlen(xbp->bi_cmdline) + 1; 1527 boot_args = do_bsys_alloc(NULL, NULL, boot_arg_len, MMU_PAGESIZE); 1528 boot_args[0] = 0; 1529 boot_arg_len = 0; 1530 1531 #ifdef __xpv 1532 /* 1533 * Xen puts a lot of device information in front of the kernel name 1534 * let's grab them and make them boot properties. The first 1535 * string w/o an "=" in it will be the boot-file property. 1536 */ 1537 (void) strcpy(namebuf, "xpv-"); 1538 for (;;) { 1539 /* 1540 * get to next property 1541 */ 1542 while (ISSPACE(*value)) 1543 ++value; 1544 name = value; 1545 /* 1546 * look for an "=" 1547 */ 1548 while (*value && !ISSPACE(*value) && *value != '=') { 1549 value++; 1550 } 1551 if (*value != '=') { /* no "=" in the property */ 1552 value = name; 1553 break; 1554 } 1555 name_len = value - name; 1556 value_len = 0; 1557 /* 1558 * skip over the "=" 1559 */ 1560 value++; 1561 while (value[value_len] && !ISSPACE(value[value_len])) { 1562 ++value_len; 1563 } 1564 /* 1565 * build property name with "xpv-" prefix 1566 */ 1567 if (name_len + 4 > 32) { /* skip if name too long */ 1568 value += value_len; 1569 continue; 1570 } 1571 bcopy(name, &namebuf[4], name_len); 1572 name_len += 4; 1573 namebuf[name_len] = 0; 1574 bcopy(value, propbuf, value_len); 1575 propbuf[value_len] = 0; 1576 bsetprops(namebuf, propbuf); 1577 1578 /* 1579 * xpv-root is set to the logical disk name of the xen 1580 * VBD when booting from a disk-based filesystem. 1581 */ 1582 if (strcmp(namebuf, "xpv-root") == 0) 1583 xen_vbdroot_props(propbuf); 1584 /* 1585 * While we're here, if we have a "xpv-nfsroot" property 1586 * then we need to set "fstype" to "nfs" so we mount 1587 * our root from the nfs server. Also parse the xpv-nfsroot 1588 * property to create the properties that nfs_mountroot will 1589 * need to find the root and mount it. 1590 */ 1591 if (strcmp(namebuf, "xpv-nfsroot") == 0) 1592 xen_nfsroot_props(propbuf); 1593 1594 if (strcmp(namebuf, "xpv-ip") == 0) 1595 xen_ip_props(propbuf); 1596 value += value_len; 1597 } 1598 #endif 1599 1600 while (ISSPACE(*value)) 1601 ++value; 1602 /* 1603 * value now points at the boot-file 1604 */ 1605 value_len = 0; 1606 while (value[value_len] && !ISSPACE(value[value_len])) 1607 ++value_len; 1608 if (value_len > 0) { 1609 whoami = propbuf; 1610 bcopy(value, whoami, value_len); 1611 whoami[value_len] = 0; 1612 bsetprops("boot-file", whoami); 1613 /* 1614 * strip leading path stuff from whoami, so running from 1615 * PXE/miniroot makes sense. 1616 */ 1617 if (strstr(whoami, "/platform/") != NULL) 1618 whoami = strstr(whoami, "/platform/"); 1619 bsetprops("whoami", whoami); 1620 } 1621 1622 /* 1623 * Values forcibly set boot properties on the command line via -B. 1624 * Allow use of quotes in values. Other stuff goes on kernel 1625 * command line. 1626 */ 1627 name = value + value_len; 1628 while (*name != 0) { 1629 /* 1630 * anything not " -B" is copied to the command line 1631 */ 1632 if (!ISSPACE(name[0]) || name[1] != '-' || name[2] != 'B') { 1633 boot_args[boot_arg_len++] = *name; 1634 boot_args[boot_arg_len] = 0; 1635 ++name; 1636 continue; 1637 } 1638 1639 /* 1640 * skip the " -B" and following white space 1641 */ 1642 name += 3; 1643 while (ISSPACE(*name)) 1644 ++name; 1645 while (*name && !ISSPACE(*name)) { 1646 value = strstr(name, "="); 1647 if (value == NULL) 1648 break; 1649 name_len = value - name; 1650 ++value; 1651 value_len = 0; 1652 quoted = 0; 1653 for (; ; ++value_len) { 1654 if (!value[value_len]) 1655 break; 1656 1657 /* 1658 * is this value quoted? 1659 */ 1660 if (value_len == 0 && 1661 (value[0] == '\'' || value[0] == '"')) { 1662 quoted = value[0]; 1663 ++value_len; 1664 } 1665 1666 /* 1667 * In the quote accept any character, 1668 * but look for ending quote. 1669 */ 1670 if (quoted) { 1671 if (value[value_len] == quoted) 1672 quoted = 0; 1673 continue; 1674 } 1675 1676 /* 1677 * a comma or white space ends the value 1678 */ 1679 if (value[value_len] == ',' || 1680 ISSPACE(value[value_len])) 1681 break; 1682 } 1683 1684 if (value_len == 0) { 1685 bsetprop(DDI_PROP_TYPE_ANY, name, name_len, 1686 NULL, 0); 1687 } else { 1688 char *v = value; 1689 int l = value_len; 1690 if (v[0] == v[l - 1] && 1691 (v[0] == '\'' || v[0] == '"')) { 1692 ++v; 1693 l -= 2; 1694 } 1695 bcopy(v, propbuf, l); 1696 propbuf[l] = '\0'; 1697 bsetprop(DDI_PROP_TYPE_STRING, name, name_len, 1698 propbuf, l + 1); 1699 } 1700 name = value + value_len; 1701 while (*name == ',') 1702 ++name; 1703 } 1704 } 1705 1706 /* 1707 * set boot-args property 1708 * 1275 name is bootargs, so set 1709 * that too 1710 */ 1711 bsetprops("boot-args", boot_args); 1712 bsetprops("bootargs", boot_args); 1713 1714 process_boot_environment(benv); 1715 1716 #ifndef __xpv 1717 /* 1718 * Build boot command line for Fast Reboot 1719 */ 1720 build_fastboot_cmdline(xbp); 1721 1722 if (xbp->bi_mb_version == 1) { 1723 multiboot_info_t *mbi = xbp->bi_mb_info; 1724 int netboot; 1725 struct sol_netinfo *sip; 1726 1727 /* 1728 * set the BIOS boot device from GRUB 1729 */ 1730 netboot = 0; 1731 1732 /* 1733 * Save various boot information for Fast Reboot 1734 */ 1735 save_boot_info(xbp); 1736 1737 if (mbi != NULL && mbi->flags & MB_INFO_BOOTDEV) { 1738 boot_device = mbi->boot_device >> 24; 1739 if (boot_device == 0x20) 1740 netboot++; 1741 str[0] = (boot_device >> 4) + '0'; 1742 str[1] = (boot_device & 0xf) + '0'; 1743 str[2] = 0; 1744 bsetprops("bios-boot-device", str); 1745 } else { 1746 netboot = 1; 1747 } 1748 1749 /* 1750 * In the netboot case, drives_info is overloaded with the 1751 * dhcp ack. This is not multiboot compliant and requires 1752 * special pxegrub! 1753 */ 1754 if (netboot && mbi->drives_length != 0) { 1755 sip = (struct sol_netinfo *)(uintptr_t)mbi->drives_addr; 1756 if (sip->sn_infotype == SN_TYPE_BOOTP) 1757 bsetprop(DDI_PROP_TYPE_BYTE, 1758 "bootp-response", 1759 sizeof ("bootp-response"), 1760 (void *)(uintptr_t)mbi->drives_addr, 1761 mbi->drives_length); 1762 else if (sip->sn_infotype == SN_TYPE_RARP) 1763 setup_rarp_props(sip); 1764 } 1765 } else { 1766 multiboot2_info_header_t *mbi = xbp->bi_mb_info; 1767 multiboot_tag_bootdev_t *bootdev = NULL; 1768 multiboot_tag_network_t *netdev = NULL; 1769 1770 if (mbi != NULL) { 1771 bootdev = dboot_multiboot2_find_tag(mbi, 1772 MULTIBOOT_TAG_TYPE_BOOTDEV); 1773 netdev = dboot_multiboot2_find_tag(mbi, 1774 MULTIBOOT_TAG_TYPE_NETWORK); 1775 } 1776 if (bootdev != NULL) { 1777 DBG(bootdev->mb_biosdev); 1778 boot_device = bootdev->mb_biosdev; 1779 str[0] = (boot_device >> 4) + '0'; 1780 str[1] = (boot_device & 0xf) + '0'; 1781 str[2] = 0; 1782 bsetprops("bios-boot-device", str); 1783 } 1784 if (netdev != NULL) { 1785 bsetprop(DDI_PROP_TYPE_BYTE, 1786 "bootp-response", sizeof ("bootp-response"), 1787 (void *)(uintptr_t)netdev->mb_dhcpack, 1788 netdev->mb_size - 1789 sizeof (multiboot_tag_network_t)); 1790 } 1791 } 1792 1793 bsetprop32("stdout", stdout_val); 1794 #endif /* __xpv */ 1795 1796 /* 1797 * more conjured up values for made up things.... 1798 */ 1799 #if defined(__xpv) 1800 bsetprops("mfg-name", "i86xpv"); 1801 bsetprops("impl-arch-name", "i86xpv"); 1802 #else 1803 bsetprops("mfg-name", "i86pc"); 1804 bsetprops("impl-arch-name", "i86pc"); 1805 #endif 1806 1807 /* 1808 * Build firmware-provided system properties 1809 */ 1810 build_firmware_properties(xbp); 1811 1812 /* 1813 * XXPV 1814 * 1815 * Find out what these are: 1816 * - cpuid_feature_ecx_include 1817 * - cpuid_feature_ecx_exclude 1818 * - cpuid_feature_edx_include 1819 * - cpuid_feature_edx_exclude 1820 * 1821 * Find out what these are in multiboot: 1822 * - netdev-path 1823 * - fstype 1824 */ 1825 } 1826 1827 #ifdef __xpv 1828 /* 1829 * Under the Hypervisor, memory usable for DMA may be scarce. One 1830 * very likely large pool of DMA friendly memory is occupied by 1831 * the boot_archive, as it was loaded by grub into low MFNs. 1832 * 1833 * Here we free up that memory by copying the boot archive to what are 1834 * likely higher MFN pages and then swapping the mfn/pfn mappings. 1835 */ 1836 #define PFN_2GIG 0x80000 1837 static void 1838 relocate_boot_archive(struct xboot_info *xbp) 1839 { 1840 mfn_t max_mfn = HYPERVISOR_memory_op(XENMEM_maximum_ram_page, NULL); 1841 struct boot_modules *bm = xbp->bi_modules; 1842 uintptr_t va; 1843 pfn_t va_pfn; 1844 mfn_t va_mfn; 1845 caddr_t copy; 1846 pfn_t copy_pfn; 1847 mfn_t copy_mfn; 1848 size_t len; 1849 int slop; 1850 int total = 0; 1851 int relocated = 0; 1852 int mmu_update_return; 1853 mmu_update_t t[2]; 1854 x86pte_t pte; 1855 1856 /* 1857 * If all MFN's are below 2Gig, don't bother doing this. 1858 */ 1859 if (max_mfn < PFN_2GIG) 1860 return; 1861 if (xbp->bi_module_cnt < 1) { 1862 DBG_MSG("no boot_archive!"); 1863 return; 1864 } 1865 1866 DBG_MSG("moving boot_archive to high MFN memory\n"); 1867 va = (uintptr_t)bm->bm_addr; 1868 len = bm->bm_size; 1869 slop = va & MMU_PAGEOFFSET; 1870 if (slop) { 1871 va += MMU_PAGESIZE - slop; 1872 len -= MMU_PAGESIZE - slop; 1873 } 1874 len = P2ALIGN(len, MMU_PAGESIZE); 1875 1876 /* 1877 * Go through all boot_archive pages, swapping any low MFN pages 1878 * with memory at next_phys. 1879 */ 1880 while (len != 0) { 1881 ++total; 1882 va_pfn = mmu_btop(va - ONE_GIG); 1883 va_mfn = mfn_list[va_pfn]; 1884 if (mfn_list[va_pfn] < PFN_2GIG) { 1885 copy = kbm_remap_window(next_phys, 1); 1886 bcopy((void *)va, copy, MMU_PAGESIZE); 1887 copy_pfn = mmu_btop(next_phys); 1888 copy_mfn = mfn_list[copy_pfn]; 1889 1890 pte = mfn_to_ma(copy_mfn) | PT_NOCONSIST | PT_VALID; 1891 if (HYPERVISOR_update_va_mapping(va, pte, 1892 UVMF_INVLPG | UVMF_LOCAL)) 1893 bop_panic("relocate_boot_archive(): " 1894 "HYPERVISOR_update_va_mapping() failed"); 1895 1896 mfn_list[va_pfn] = copy_mfn; 1897 mfn_list[copy_pfn] = va_mfn; 1898 1899 t[0].ptr = mfn_to_ma(copy_mfn) | MMU_MACHPHYS_UPDATE; 1900 t[0].val = va_pfn; 1901 t[1].ptr = mfn_to_ma(va_mfn) | MMU_MACHPHYS_UPDATE; 1902 t[1].val = copy_pfn; 1903 if (HYPERVISOR_mmu_update(t, 2, &mmu_update_return, 1904 DOMID_SELF) != 0 || mmu_update_return != 2) 1905 bop_panic("relocate_boot_archive(): " 1906 "HYPERVISOR_mmu_update() failed"); 1907 1908 next_phys += MMU_PAGESIZE; 1909 ++relocated; 1910 } 1911 len -= MMU_PAGESIZE; 1912 va += MMU_PAGESIZE; 1913 } 1914 DBG_MSG("Relocated pages:\n"); 1915 DBG(relocated); 1916 DBG_MSG("Out of total pages:\n"); 1917 DBG(total); 1918 } 1919 #endif /* __xpv */ 1920 1921 #if !defined(__xpv) 1922 /* 1923 * simple description of a stack frame (args are 32 bit only currently) 1924 */ 1925 typedef struct bop_frame { 1926 struct bop_frame *old_frame; 1927 pc_t retaddr; 1928 long arg[1]; 1929 } bop_frame_t; 1930 1931 void 1932 bop_traceback(bop_frame_t *frame) 1933 { 1934 pc_t pc; 1935 int cnt; 1936 char *ksym; 1937 ulong_t off; 1938 1939 bop_printf(NULL, "Stack traceback:\n"); 1940 for (cnt = 0; cnt < 30; ++cnt) { /* up to 30 frames */ 1941 pc = frame->retaddr; 1942 if (pc == 0) 1943 break; 1944 ksym = kobj_getsymname(pc, &off); 1945 if (ksym) 1946 bop_printf(NULL, " %s+%lx", ksym, off); 1947 else 1948 bop_printf(NULL, " 0x%lx", pc); 1949 1950 frame = frame->old_frame; 1951 if (frame == 0) { 1952 bop_printf(NULL, "\n"); 1953 break; 1954 } 1955 bop_printf(NULL, "\n"); 1956 } 1957 } 1958 1959 struct trapframe { 1960 ulong_t error_code; /* optional */ 1961 ulong_t inst_ptr; 1962 ulong_t code_seg; 1963 ulong_t flags_reg; 1964 ulong_t stk_ptr; 1965 ulong_t stk_seg; 1966 }; 1967 1968 void 1969 bop_trap(ulong_t *tfp) 1970 { 1971 struct trapframe *tf = (struct trapframe *)tfp; 1972 bop_frame_t fakeframe; 1973 static int depth = 0; 1974 1975 /* 1976 * Check for an infinite loop of traps. 1977 */ 1978 if (++depth > 2) 1979 bop_panic("Nested trap"); 1980 1981 bop_printf(NULL, "Unexpected trap\n"); 1982 1983 /* 1984 * adjust the tf for optional error_code by detecting the code selector 1985 */ 1986 if (tf->code_seg != B64CODE_SEL) 1987 tf = (struct trapframe *)(tfp - 1); 1988 else 1989 bop_printf(NULL, "error code 0x%lx\n", 1990 tf->error_code & 0xffffffff); 1991 1992 bop_printf(NULL, "instruction pointer 0x%lx\n", tf->inst_ptr); 1993 bop_printf(NULL, "code segment 0x%lx\n", tf->code_seg & 0xffff); 1994 bop_printf(NULL, "flags register 0x%lx\n", tf->flags_reg); 1995 bop_printf(NULL, "return %%rsp 0x%lx\n", tf->stk_ptr); 1996 bop_printf(NULL, "return %%ss 0x%lx\n", tf->stk_seg & 0xffff); 1997 1998 /* grab %[er]bp pushed by our code from the stack */ 1999 fakeframe.old_frame = (bop_frame_t *)*(tfp - 3); 2000 fakeframe.retaddr = (pc_t)tf->inst_ptr; 2001 bop_printf(NULL, "Attempting stack backtrace:\n"); 2002 bop_traceback(&fakeframe); 2003 bop_panic("unexpected trap in early boot"); 2004 } 2005 2006 extern void bop_trap_handler(void); 2007 2008 static gate_desc_t *bop_idt; 2009 2010 static desctbr_t bop_idt_info; 2011 2012 /* 2013 * Install a temporary IDT that lets us catch errors in the boot time code. 2014 * We shouldn't get any faults at all while this is installed, so we'll 2015 * just generate a traceback and exit. 2016 */ 2017 static void 2018 bop_idt_init(void) 2019 { 2020 int t; 2021 2022 bop_idt = (gate_desc_t *) 2023 do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE); 2024 bzero(bop_idt, MMU_PAGESIZE); 2025 for (t = 0; t < NIDT; ++t) { 2026 /* 2027 * Note that since boot runs without a TSS, the 2028 * double fault handler cannot use an alternate stack (64-bit). 2029 */ 2030 set_gatesegd(&bop_idt[t], &bop_trap_handler, B64CODE_SEL, 2031 SDT_SYSIGT, TRP_KPL, 0); 2032 } 2033 bop_idt_info.dtr_limit = (NIDT * sizeof (gate_desc_t)) - 1; 2034 bop_idt_info.dtr_base = (uintptr_t)bop_idt; 2035 wr_idtr(&bop_idt_info); 2036 } 2037 #endif /* !defined(__xpv) */ 2038 2039 /* 2040 * This is where we enter the kernel. It dummies up the boot_ops and 2041 * boot_syscalls vectors and jumps off to _kobj_boot() 2042 */ 2043 void 2044 _start(struct xboot_info *xbp) 2045 { 2046 bootops_t *bops = &bootop; 2047 extern void _kobj_boot(); 2048 2049 /* 2050 * 1st off - initialize the console for any error messages 2051 */ 2052 xbootp = xbp; 2053 #ifdef __xpv 2054 HYPERVISOR_shared_info = (void *)xbp->bi_shared_info; 2055 xen_info = xbp->bi_xen_start_info; 2056 #endif 2057 2058 #ifndef __xpv 2059 if (*((uint32_t *)(FASTBOOT_SWTCH_PA + FASTBOOT_STACK_OFFSET)) == 2060 FASTBOOT_MAGIC) { 2061 post_fastreboot = 1; 2062 *((uint32_t *)(FASTBOOT_SWTCH_PA + FASTBOOT_STACK_OFFSET)) = 0; 2063 } 2064 #endif 2065 2066 bcons_init(xbp); 2067 have_console = 1; 2068 2069 /* 2070 * enable debugging 2071 */ 2072 if (find_boot_prop("kbm_debug") != NULL) 2073 kbm_debug = 1; 2074 2075 DBG_MSG("\n\n*** Entered Solaris in _start() cmdline is: "); 2076 DBG_MSG((char *)xbp->bi_cmdline); 2077 DBG_MSG("\n\n\n"); 2078 2079 /* 2080 * physavail is no longer used by startup 2081 */ 2082 bm.physinstalled = xbp->bi_phys_install; 2083 bm.pcimem = xbp->bi_pcimem; 2084 bm.rsvdmem = xbp->bi_rsvdmem; 2085 bm.physavail = NULL; 2086 2087 /* 2088 * initialize the boot time allocator 2089 */ 2090 next_phys = xbp->bi_next_paddr; 2091 DBG(next_phys); 2092 next_virt = (uintptr_t)xbp->bi_next_vaddr; 2093 DBG(next_virt); 2094 DBG_MSG("Initializing boot time memory management..."); 2095 #ifdef __xpv 2096 { 2097 xen_platform_parameters_t p; 2098 2099 /* This call shouldn't fail, dboot already did it once. */ 2100 (void) HYPERVISOR_xen_version(XENVER_platform_parameters, &p); 2101 mfn_to_pfn_mapping = (pfn_t *)(xen_virt_start = p.virt_start); 2102 DBG(xen_virt_start); 2103 } 2104 #endif 2105 kbm_init(xbp); 2106 DBG_MSG("done\n"); 2107 2108 /* 2109 * Fill in the bootops vector 2110 */ 2111 bops->bsys_version = BO_VERSION; 2112 bops->boot_mem = &bm; 2113 bops->bsys_alloc = do_bsys_alloc; 2114 bops->bsys_free = do_bsys_free; 2115 bops->bsys_getproplen = do_bsys_getproplen; 2116 bops->bsys_getprop = do_bsys_getprop; 2117 bops->bsys_nextprop = do_bsys_nextprop; 2118 bops->bsys_printf = bop_printf; 2119 bops->bsys_doint = do_bsys_doint; 2120 2121 /* 2122 * BOP_EALLOC() is no longer needed 2123 */ 2124 bops->bsys_ealloc = do_bsys_ealloc; 2125 2126 #ifdef __xpv 2127 /* 2128 * On domain 0 we need to free up some physical memory that is 2129 * usable for DMA. Since GRUB loaded the boot_archive, it is 2130 * sitting in low MFN memory. We'll relocated the boot archive 2131 * pages to high PFN memory. 2132 */ 2133 if (DOMAIN_IS_INITDOMAIN(xen_info)) 2134 relocate_boot_archive(xbp); 2135 #endif 2136 2137 #ifndef __xpv 2138 /* 2139 * Install an IDT to catch early pagefaults (shouldn't have any). 2140 * Also needed for kmdb. 2141 */ 2142 bop_idt_init(); 2143 #endif 2144 2145 /* 2146 * Start building the boot properties from the command line 2147 */ 2148 DBG_MSG("Initializing boot properties:\n"); 2149 build_boot_properties(xbp); 2150 2151 if (find_boot_prop("prom_debug") || kbm_debug) { 2152 char *value; 2153 2154 value = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE); 2155 boot_prop_display(value); 2156 } 2157 2158 /* 2159 * jump into krtld... 2160 */ 2161 _kobj_boot(&bop_sysp, NULL, bops, NULL); 2162 } 2163 2164 2165 /*ARGSUSED*/ 2166 static caddr_t 2167 no_more_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align) 2168 { 2169 panic("Attempt to bsys_alloc() too late\n"); 2170 return (NULL); 2171 } 2172 2173 /*ARGSUSED*/ 2174 static void 2175 no_more_free(bootops_t *bop, caddr_t virt, size_t size) 2176 { 2177 panic("Attempt to bsys_free() too late\n"); 2178 } 2179 2180 void 2181 bop_no_more_mem(void) 2182 { 2183 DBG(total_bop_alloc_scratch); 2184 DBG(total_bop_alloc_kernel); 2185 bootops->bsys_alloc = no_more_alloc; 2186 bootops->bsys_free = no_more_free; 2187 } 2188 2189 2190 /* 2191 * Set ACPI firmware properties 2192 */ 2193 2194 static caddr_t 2195 vmap_phys(size_t length, paddr_t pa) 2196 { 2197 paddr_t start, end; 2198 caddr_t va; 2199 size_t len, page; 2200 2201 #ifdef __xpv 2202 pa = pfn_to_pa(xen_assign_pfn(mmu_btop(pa))) | (pa & MMU_PAGEOFFSET); 2203 #endif 2204 start = P2ALIGN(pa, MMU_PAGESIZE); 2205 end = P2ROUNDUP(pa + length, MMU_PAGESIZE); 2206 len = end - start; 2207 va = (caddr_t)alloc_vaddr(len, MMU_PAGESIZE); 2208 for (page = 0; page < len; page += MMU_PAGESIZE) 2209 kbm_map((uintptr_t)va + page, start + page, 0, 0); 2210 return (va + (pa & MMU_PAGEOFFSET)); 2211 } 2212 2213 static uint8_t 2214 checksum_table(uint8_t *tp, size_t len) 2215 { 2216 uint8_t sum = 0; 2217 2218 while (len-- > 0) 2219 sum += *tp++; 2220 2221 return (sum); 2222 } 2223 2224 static int 2225 valid_rsdp(ACPI_TABLE_RSDP *rp) 2226 { 2227 2228 /* validate the V1.x checksum */ 2229 if (checksum_table((uint8_t *)rp, ACPI_RSDP_CHECKSUM_LENGTH) != 0) 2230 return (0); 2231 2232 /* If pre-ACPI 2.0, this is a valid RSDP */ 2233 if (rp->Revision < 2) 2234 return (1); 2235 2236 /* validate the V2.x checksum */ 2237 if (checksum_table((uint8_t *)rp, ACPI_RSDP_XCHECKSUM_LENGTH) != 0) 2238 return (0); 2239 2240 return (1); 2241 } 2242 2243 /* 2244 * Scan memory range for an RSDP; 2245 * see ACPI 3.0 Spec, 5.2.5.1 2246 */ 2247 static ACPI_TABLE_RSDP * 2248 scan_rsdp(paddr_t start, paddr_t end) 2249 { 2250 ssize_t len = end - start; 2251 caddr_t ptr; 2252 2253 ptr = vmap_phys(len, start); 2254 while (len > 0) { 2255 if (strncmp(ptr, ACPI_SIG_RSDP, strlen(ACPI_SIG_RSDP)) == 0 && 2256 valid_rsdp((ACPI_TABLE_RSDP *)ptr)) 2257 return ((ACPI_TABLE_RSDP *)ptr); 2258 2259 ptr += ACPI_RSDP_SCAN_STEP; 2260 len -= ACPI_RSDP_SCAN_STEP; 2261 } 2262 2263 return (NULL); 2264 } 2265 2266 /* 2267 * Refer to ACPI 3.0 Spec, section 5.2.5.1 to understand this function 2268 */ 2269 static ACPI_TABLE_RSDP * 2270 find_rsdp() 2271 { 2272 ACPI_TABLE_RSDP *rsdp; 2273 uint64_t rsdp_val = 0; 2274 uint16_t *ebda_seg; 2275 paddr_t ebda_addr; 2276 2277 /* check for "acpi-root-tab" property */ 2278 if (do_bsys_getproplen(NULL, "acpi-root-tab") == sizeof (uint64_t)) { 2279 (void) do_bsys_getprop(NULL, "acpi-root-tab", &rsdp_val); 2280 if (rsdp_val != 0) { 2281 rsdp = scan_rsdp(rsdp_val, rsdp_val + sizeof (*rsdp)); 2282 if (rsdp != NULL) { 2283 if (kbm_debug) { 2284 bop_printf(NULL, 2285 "Using RSDP from bootloader: " 2286 "0x%p\n", (void *)rsdp); 2287 } 2288 return (rsdp); 2289 } 2290 } 2291 } 2292 2293 /* 2294 * Get the EBDA segment and scan the first 1K 2295 */ 2296 ebda_seg = (uint16_t *)vmap_phys(sizeof (uint16_t), 2297 ACPI_EBDA_PTR_LOCATION); 2298 ebda_addr = *ebda_seg << 4; 2299 rsdp = scan_rsdp(ebda_addr, ebda_addr + ACPI_EBDA_WINDOW_SIZE); 2300 if (rsdp == NULL) 2301 /* if EBDA doesn't contain RSDP, look in BIOS memory */ 2302 rsdp = scan_rsdp(ACPI_HI_RSDP_WINDOW_BASE, 2303 ACPI_HI_RSDP_WINDOW_BASE + ACPI_HI_RSDP_WINDOW_SIZE); 2304 return (rsdp); 2305 } 2306 2307 static ACPI_TABLE_HEADER * 2308 map_fw_table(paddr_t table_addr) 2309 { 2310 ACPI_TABLE_HEADER *tp; 2311 size_t len = MAX(sizeof (*tp), MMU_PAGESIZE); 2312 2313 /* 2314 * Map at least a page; if the table is larger than this, remap it 2315 */ 2316 tp = (ACPI_TABLE_HEADER *)vmap_phys(len, table_addr); 2317 if (tp->Length > len) 2318 tp = (ACPI_TABLE_HEADER *)vmap_phys(tp->Length, table_addr); 2319 return (tp); 2320 } 2321 2322 static ACPI_TABLE_HEADER * 2323 find_fw_table(char *signature) 2324 { 2325 static int revision = 0; 2326 static ACPI_TABLE_XSDT *xsdt; 2327 static int len; 2328 paddr_t xsdt_addr; 2329 ACPI_TABLE_RSDP *rsdp; 2330 ACPI_TABLE_HEADER *tp; 2331 paddr_t table_addr; 2332 int n; 2333 2334 if (strlen(signature) != ACPI_NAME_SIZE) 2335 return (NULL); 2336 2337 /* 2338 * Reading the ACPI 3.0 Spec, section 5.2.5.3 will help 2339 * understand this code. If we haven't already found the RSDT/XSDT, 2340 * revision will be 0. Find the RSDP and check the revision 2341 * to find out whether to use the RSDT or XSDT. If revision is 2342 * 0 or 1, use the RSDT and set internal revision to 1; if it is 2, 2343 * use the XSDT. If the XSDT address is 0, though, fall back to 2344 * revision 1 and use the RSDT. 2345 */ 2346 if (revision == 0) { 2347 if ((rsdp = find_rsdp()) != NULL) { 2348 revision = rsdp->Revision; 2349 /* 2350 * ACPI 6.0 states that current revision is 2 2351 * from acpi_table_rsdp definition: 2352 * Must be (0) for ACPI 1.0 or (2) for ACPI 2.0+ 2353 */ 2354 if (revision > 2) 2355 revision = 2; 2356 switch (revision) { 2357 case 2: 2358 /* 2359 * Use the XSDT unless BIOS is buggy and 2360 * claims to be rev 2 but has a null XSDT 2361 * address 2362 */ 2363 xsdt_addr = rsdp->XsdtPhysicalAddress; 2364 if (xsdt_addr != 0) 2365 break; 2366 /* FALLTHROUGH */ 2367 case 0: 2368 /* treat RSDP rev 0 as revision 1 internally */ 2369 revision = 1; 2370 /* FALLTHROUGH */ 2371 case 1: 2372 /* use the RSDT for rev 0/1 */ 2373 xsdt_addr = rsdp->RsdtPhysicalAddress; 2374 break; 2375 default: 2376 /* unknown revision */ 2377 revision = 0; 2378 break; 2379 } 2380 } 2381 if (revision == 0) 2382 return (NULL); 2383 2384 /* cache the XSDT info */ 2385 xsdt = (ACPI_TABLE_XSDT *)map_fw_table(xsdt_addr); 2386 len = (xsdt->Header.Length - sizeof (xsdt->Header)) / 2387 ((revision == 1) ? sizeof (uint32_t) : sizeof (uint64_t)); 2388 } 2389 2390 /* 2391 * Scan the table headers looking for a signature match 2392 */ 2393 for (n = 0; n < len; n++) { 2394 ACPI_TABLE_RSDT *rsdt = (ACPI_TABLE_RSDT *)xsdt; 2395 table_addr = (revision == 1) ? rsdt->TableOffsetEntry[n] : 2396 xsdt->TableOffsetEntry[n]; 2397 2398 if (table_addr == 0) 2399 continue; 2400 tp = map_fw_table(table_addr); 2401 if (strncmp(tp->Signature, signature, ACPI_NAME_SIZE) == 0) { 2402 return (tp); 2403 } 2404 } 2405 return (NULL); 2406 } 2407 2408 static void 2409 process_mcfg(ACPI_TABLE_MCFG *tp) 2410 { 2411 ACPI_MCFG_ALLOCATION *cfg_baap; 2412 char *cfg_baa_endp; 2413 int64_t ecfginfo[4]; 2414 2415 cfg_baap = (ACPI_MCFG_ALLOCATION *)((uintptr_t)tp + sizeof (*tp)); 2416 cfg_baa_endp = ((char *)tp) + tp->Header.Length; 2417 while ((char *)cfg_baap < cfg_baa_endp) { 2418 if (cfg_baap->Address != 0 && cfg_baap->PciSegment == 0) { 2419 ecfginfo[0] = cfg_baap->Address; 2420 ecfginfo[1] = cfg_baap->PciSegment; 2421 ecfginfo[2] = cfg_baap->StartBusNumber; 2422 ecfginfo[3] = cfg_baap->EndBusNumber; 2423 bsetprop(DDI_PROP_TYPE_INT64, 2424 MCFG_PROPNAME, strlen(MCFG_PROPNAME), 2425 ecfginfo, sizeof (ecfginfo)); 2426 break; 2427 } 2428 cfg_baap++; 2429 } 2430 } 2431 2432 #ifndef __xpv 2433 static void 2434 process_madt_entries(ACPI_TABLE_MADT *tp, uint32_t *cpu_countp, 2435 uint32_t *cpu_possible_countp, uint32_t *cpu_apicid_array) 2436 { 2437 ACPI_SUBTABLE_HEADER *item, *end; 2438 uint32_t cpu_count = 0; 2439 uint32_t cpu_possible_count = 0; 2440 2441 /* 2442 * Determine number of CPUs and keep track of "final" APIC ID 2443 * for each CPU by walking through ACPI MADT processor list 2444 */ 2445 end = (ACPI_SUBTABLE_HEADER *)(tp->Header.Length + (uintptr_t)tp); 2446 item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)tp + sizeof (*tp)); 2447 2448 while (item < end) { 2449 switch (item->Type) { 2450 case ACPI_MADT_TYPE_LOCAL_APIC: { 2451 ACPI_MADT_LOCAL_APIC *cpu = 2452 (ACPI_MADT_LOCAL_APIC *) item; 2453 2454 if (cpu->LapicFlags & ACPI_MADT_ENABLED) { 2455 if (cpu_apicid_array != NULL) 2456 cpu_apicid_array[cpu_count] = cpu->Id; 2457 cpu_count++; 2458 } 2459 cpu_possible_count++; 2460 break; 2461 } 2462 case ACPI_MADT_TYPE_LOCAL_X2APIC: { 2463 ACPI_MADT_LOCAL_X2APIC *cpu = 2464 (ACPI_MADT_LOCAL_X2APIC *) item; 2465 2466 if (cpu->LapicFlags & ACPI_MADT_ENABLED) { 2467 if (cpu_apicid_array != NULL) 2468 cpu_apicid_array[cpu_count] = 2469 cpu->LocalApicId; 2470 cpu_count++; 2471 } 2472 cpu_possible_count++; 2473 break; 2474 } 2475 default: 2476 if (kbm_debug) 2477 bop_printf(NULL, "MADT type %d\n", item->Type); 2478 break; 2479 } 2480 2481 item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)item + item->Length); 2482 } 2483 if (cpu_countp) 2484 *cpu_countp = cpu_count; 2485 if (cpu_possible_countp) 2486 *cpu_possible_countp = cpu_possible_count; 2487 } 2488 2489 static void 2490 process_madt(ACPI_TABLE_MADT *tp) 2491 { 2492 uint32_t cpu_count = 0; 2493 uint32_t cpu_possible_count = 0; 2494 uint32_t *cpu_apicid_array; /* x2APIC ID is 32bit! */ 2495 2496 if (tp != NULL) { 2497 /* count cpu's */ 2498 process_madt_entries(tp, &cpu_count, &cpu_possible_count, NULL); 2499 2500 cpu_apicid_array = (uint32_t *)do_bsys_alloc(NULL, NULL, 2501 cpu_count * sizeof (*cpu_apicid_array), MMU_PAGESIZE); 2502 if (cpu_apicid_array == NULL) 2503 bop_panic("Not enough memory for APIC ID array"); 2504 2505 /* copy IDs */ 2506 process_madt_entries(tp, NULL, NULL, cpu_apicid_array); 2507 2508 /* 2509 * Make boot property for array of "final" APIC IDs for each 2510 * CPU 2511 */ 2512 bsetprop(DDI_PROP_TYPE_INT, 2513 BP_CPU_APICID_ARRAY, strlen(BP_CPU_APICID_ARRAY), 2514 cpu_apicid_array, cpu_count * sizeof (*cpu_apicid_array)); 2515 } 2516 2517 /* 2518 * Check whether property plat-max-ncpus is already set. 2519 */ 2520 if (do_bsys_getproplen(NULL, PLAT_MAX_NCPUS_NAME) < 0) { 2521 /* 2522 * Set plat-max-ncpus to number of maximum possible CPUs given 2523 * in MADT if it hasn't been set. 2524 * There's no formal way to detect max possible CPUs supported 2525 * by platform according to ACPI spec3.0b. So current CPU 2526 * hotplug implementation expects that all possible CPUs will 2527 * have an entry in MADT table and set plat-max-ncpus to number 2528 * of entries in MADT. 2529 * With introducing of ACPI4.0, Maximum System Capability Table 2530 * (MSCT) provides maximum number of CPUs supported by platform. 2531 * If MSCT is unavailable, fall back to old way. 2532 */ 2533 if (tp != NULL) 2534 bsetpropsi(PLAT_MAX_NCPUS_NAME, cpu_possible_count); 2535 } 2536 2537 /* 2538 * Set boot property boot-max-ncpus to number of CPUs existing at 2539 * boot time. boot-max-ncpus is mainly used for optimization. 2540 */ 2541 if (tp != NULL) 2542 bsetpropsi(BOOT_MAX_NCPUS_NAME, cpu_count); 2543 2544 /* 2545 * User-set boot-ncpus overrides firmware count 2546 */ 2547 if (do_bsys_getproplen(NULL, BOOT_NCPUS_NAME) >= 0) 2548 return; 2549 2550 /* 2551 * Set boot property boot-ncpus to number of active CPUs given in MADT 2552 * if it hasn't been set yet. 2553 */ 2554 if (tp != NULL) 2555 bsetpropsi(BOOT_NCPUS_NAME, cpu_count); 2556 } 2557 2558 static void 2559 process_srat(ACPI_TABLE_SRAT *tp) 2560 { 2561 ACPI_SUBTABLE_HEADER *item, *end; 2562 int i; 2563 int proc_num, mem_num; 2564 #pragma pack(1) 2565 struct { 2566 uint32_t domain; 2567 uint32_t apic_id; 2568 uint32_t sapic_id; 2569 } processor; 2570 struct { 2571 uint32_t domain; 2572 uint32_t x2apic_id; 2573 } x2apic; 2574 struct { 2575 uint32_t domain; 2576 uint64_t addr; 2577 uint64_t length; 2578 uint32_t flags; 2579 } memory; 2580 #pragma pack() 2581 char prop_name[30]; 2582 uint64_t maxmem = 0; 2583 2584 if (tp == NULL) 2585 return; 2586 2587 proc_num = mem_num = 0; 2588 end = (ACPI_SUBTABLE_HEADER *)(tp->Header.Length + (uintptr_t)tp); 2589 item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)tp + sizeof (*tp)); 2590 while (item < end) { 2591 switch (item->Type) { 2592 case ACPI_SRAT_TYPE_CPU_AFFINITY: { 2593 ACPI_SRAT_CPU_AFFINITY *cpu = 2594 (ACPI_SRAT_CPU_AFFINITY *) item; 2595 2596 if (!(cpu->Flags & ACPI_SRAT_CPU_ENABLED)) 2597 break; 2598 processor.domain = cpu->ProximityDomainLo; 2599 for (i = 0; i < 3; i++) 2600 processor.domain += 2601 cpu->ProximityDomainHi[i] << ((i + 1) * 8); 2602 processor.apic_id = cpu->ApicId; 2603 processor.sapic_id = cpu->LocalSapicEid; 2604 (void) snprintf(prop_name, 30, "acpi-srat-processor-%d", 2605 proc_num); 2606 bsetprop(DDI_PROP_TYPE_INT, 2607 prop_name, strlen(prop_name), &processor, 2608 sizeof (processor)); 2609 proc_num++; 2610 break; 2611 } 2612 case ACPI_SRAT_TYPE_MEMORY_AFFINITY: { 2613 ACPI_SRAT_MEM_AFFINITY *mem = 2614 (ACPI_SRAT_MEM_AFFINITY *)item; 2615 2616 if (!(mem->Flags & ACPI_SRAT_MEM_ENABLED)) 2617 break; 2618 memory.domain = mem->ProximityDomain; 2619 memory.addr = mem->BaseAddress; 2620 memory.length = mem->Length; 2621 memory.flags = mem->Flags; 2622 (void) snprintf(prop_name, 30, "acpi-srat-memory-%d", 2623 mem_num); 2624 bsetprop(DDI_PROP_TYPE_INT, 2625 prop_name, strlen(prop_name), &memory, 2626 sizeof (memory)); 2627 if ((mem->Flags & ACPI_SRAT_MEM_HOT_PLUGGABLE) && 2628 (memory.addr + memory.length > maxmem)) { 2629 maxmem = memory.addr + memory.length; 2630 } 2631 mem_num++; 2632 break; 2633 } 2634 case ACPI_SRAT_TYPE_X2APIC_CPU_AFFINITY: { 2635 ACPI_SRAT_X2APIC_CPU_AFFINITY *x2cpu = 2636 (ACPI_SRAT_X2APIC_CPU_AFFINITY *) item; 2637 2638 if (!(x2cpu->Flags & ACPI_SRAT_CPU_ENABLED)) 2639 break; 2640 x2apic.domain = x2cpu->ProximityDomain; 2641 x2apic.x2apic_id = x2cpu->ApicId; 2642 (void) snprintf(prop_name, 30, "acpi-srat-processor-%d", 2643 proc_num); 2644 bsetprop(DDI_PROP_TYPE_INT, 2645 prop_name, strlen(prop_name), &x2apic, 2646 sizeof (x2apic)); 2647 proc_num++; 2648 break; 2649 } 2650 default: 2651 if (kbm_debug) 2652 bop_printf(NULL, "SRAT type %d\n", item->Type); 2653 break; 2654 } 2655 2656 item = (ACPI_SUBTABLE_HEADER *) 2657 (item->Length + (uintptr_t)item); 2658 } 2659 2660 /* 2661 * The maximum physical address calculated from the SRAT table is more 2662 * accurate than that calculated from the MSCT table. 2663 */ 2664 if (maxmem != 0) { 2665 plat_dr_physmax = btop(maxmem); 2666 } 2667 } 2668 2669 static void 2670 process_slit(ACPI_TABLE_SLIT *tp) 2671 { 2672 2673 /* 2674 * Check the number of localities; if it's too huge, we just 2675 * return and locality enumeration code will handle this later, 2676 * if possible. 2677 * 2678 * Note that the size of the table is the square of the 2679 * number of localities; if the number of localities exceeds 2680 * UINT16_MAX, the table size may overflow an int when being 2681 * passed to bsetprop() below. 2682 */ 2683 if (tp->LocalityCount >= SLIT_LOCALITIES_MAX) 2684 return; 2685 2686 bsetprop64(SLIT_NUM_PROPNAME, tp->LocalityCount); 2687 bsetprop(DDI_PROP_TYPE_BYTE, 2688 SLIT_PROPNAME, strlen(SLIT_PROPNAME), &tp->Entry, 2689 tp->LocalityCount * tp->LocalityCount); 2690 } 2691 2692 static ACPI_TABLE_MSCT * 2693 process_msct(ACPI_TABLE_MSCT *tp) 2694 { 2695 int last_seen = 0; 2696 int proc_num = 0; 2697 ACPI_MSCT_PROXIMITY *item, *end; 2698 extern uint64_t plat_dr_options; 2699 2700 ASSERT(tp != NULL); 2701 2702 end = (ACPI_MSCT_PROXIMITY *)(tp->Header.Length + (uintptr_t)tp); 2703 for (item = (void *)((uintptr_t)tp + tp->ProximityOffset); 2704 item < end; 2705 item = (void *)(item->Length + (uintptr_t)item)) { 2706 /* 2707 * Sanity check according to section 5.2.19.1 of ACPI 4.0. 2708 * Revision 1 2709 * Length 22 2710 */ 2711 if (item->Revision != 1 || item->Length != 22) { 2712 cmn_err(CE_CONT, 2713 "?boot: unknown proximity domain structure in MSCT " 2714 "with Revision(%d), Length(%d).\n", 2715 (int)item->Revision, (int)item->Length); 2716 return (NULL); 2717 } else if (item->RangeStart > item->RangeEnd) { 2718 cmn_err(CE_CONT, 2719 "?boot: invalid proximity domain structure in MSCT " 2720 "with RangeStart(%u), RangeEnd(%u).\n", 2721 item->RangeStart, item->RangeEnd); 2722 return (NULL); 2723 } else if (item->RangeStart != last_seen) { 2724 /* 2725 * Items must be organized in ascending order of the 2726 * proximity domain enumerations. 2727 */ 2728 cmn_err(CE_CONT, 2729 "?boot: invalid proximity domain structure in MSCT," 2730 " items are not orginized in ascending order.\n"); 2731 return (NULL); 2732 } 2733 2734 /* 2735 * If ProcessorCapacity is 0 then there would be no CPUs in this 2736 * domain. 2737 */ 2738 if (item->ProcessorCapacity != 0) { 2739 proc_num += (item->RangeEnd - item->RangeStart + 1) * 2740 item->ProcessorCapacity; 2741 } 2742 2743 last_seen = item->RangeEnd - item->RangeStart + 1; 2744 /* 2745 * Break out if all proximity domains have been processed. 2746 * Some BIOSes may have unused items at the end of MSCT table. 2747 */ 2748 if (last_seen > tp->MaxProximityDomains) { 2749 break; 2750 } 2751 } 2752 if (last_seen != tp->MaxProximityDomains + 1) { 2753 cmn_err(CE_CONT, 2754 "?boot: invalid proximity domain structure in MSCT, " 2755 "proximity domain count doesn't match.\n"); 2756 return (NULL); 2757 } 2758 2759 /* 2760 * Set plat-max-ncpus property if it hasn't been set yet. 2761 */ 2762 if (do_bsys_getproplen(NULL, PLAT_MAX_NCPUS_NAME) < 0) { 2763 if (proc_num != 0) { 2764 bsetpropsi(PLAT_MAX_NCPUS_NAME, proc_num); 2765 } 2766 } 2767 2768 /* 2769 * Use Maximum Physical Address from the MSCT table as upper limit for 2770 * memory hot-adding by default. It may be overridden by value from 2771 * the SRAT table or the "plat-dr-physmax" boot option. 2772 */ 2773 plat_dr_physmax = btop(tp->MaxAddress + 1); 2774 2775 /* 2776 * Existence of MSCT implies CPU/memory hotplug-capability for the 2777 * platform. 2778 */ 2779 plat_dr_options |= PLAT_DR_FEATURE_CPU; 2780 plat_dr_options |= PLAT_DR_FEATURE_MEMORY; 2781 2782 return (tp); 2783 } 2784 2785 #else /* __xpv */ 2786 static void 2787 enumerate_xen_cpus() 2788 { 2789 processorid_t id, max_id; 2790 2791 /* 2792 * User-set boot-ncpus overrides enumeration 2793 */ 2794 if (do_bsys_getproplen(NULL, BOOT_NCPUS_NAME) >= 0) 2795 return; 2796 2797 /* 2798 * Probe every possible virtual CPU id and remember the 2799 * highest id present; the count of CPUs is one greater 2800 * than this. This tacitly assumes at least cpu 0 is present. 2801 */ 2802 max_id = 0; 2803 for (id = 0; id < MAX_VIRT_CPUS; id++) 2804 if (HYPERVISOR_vcpu_op(VCPUOP_is_up, id, NULL) == 0) 2805 max_id = id; 2806 2807 bsetpropsi(BOOT_NCPUS_NAME, max_id+1); 2808 2809 } 2810 #endif /* __xpv */ 2811 2812 /*ARGSUSED*/ 2813 static void 2814 build_firmware_properties(struct xboot_info *xbp) 2815 { 2816 ACPI_TABLE_HEADER *tp = NULL; 2817 2818 #ifndef __xpv 2819 if (xbp->bi_uefi_arch == XBI_UEFI_ARCH_64) { 2820 bsetprops("efi-systype", "64"); 2821 bsetprop64("efi-systab", 2822 (uint64_t)(uintptr_t)xbp->bi_uefi_systab); 2823 if (kbm_debug) 2824 bop_printf(NULL, "64-bit UEFI detected.\n"); 2825 } else if (xbp->bi_uefi_arch == XBI_UEFI_ARCH_32) { 2826 bsetprops("efi-systype", "32"); 2827 bsetprop64("efi-systab", 2828 (uint64_t)(uintptr_t)xbp->bi_uefi_systab); 2829 if (kbm_debug) 2830 bop_printf(NULL, "32-bit UEFI detected.\n"); 2831 } 2832 2833 if (xbp->bi_acpi_rsdp != NULL) { 2834 bsetprop64("acpi-root-tab", 2835 (uint64_t)(uintptr_t)xbp->bi_acpi_rsdp); 2836 } 2837 2838 if (xbp->bi_smbios != NULL) { 2839 bsetprop64("smbios-address", 2840 (uint64_t)(uintptr_t)xbp->bi_smbios); 2841 } 2842 2843 if ((tp = find_fw_table(ACPI_SIG_MSCT)) != NULL) 2844 msct_ptr = process_msct((ACPI_TABLE_MSCT *)tp); 2845 else 2846 msct_ptr = NULL; 2847 2848 if ((tp = find_fw_table(ACPI_SIG_MADT)) != NULL) 2849 process_madt((ACPI_TABLE_MADT *)tp); 2850 2851 if ((srat_ptr = (ACPI_TABLE_SRAT *) 2852 find_fw_table(ACPI_SIG_SRAT)) != NULL) 2853 process_srat(srat_ptr); 2854 2855 if (slit_ptr = (ACPI_TABLE_SLIT *)find_fw_table(ACPI_SIG_SLIT)) 2856 process_slit(slit_ptr); 2857 2858 tp = find_fw_table(ACPI_SIG_MCFG); 2859 #else /* __xpv */ 2860 enumerate_xen_cpus(); 2861 if (DOMAIN_IS_INITDOMAIN(xen_info)) 2862 tp = find_fw_table(ACPI_SIG_MCFG); 2863 #endif /* __xpv */ 2864 if (tp != NULL) 2865 process_mcfg((ACPI_TABLE_MCFG *)tp); 2866 } 2867 2868 /* 2869 * fake up a boot property for deferred early console output 2870 * this is used by both graphical boot and the (developer only) 2871 * USB serial console 2872 */ 2873 void * 2874 defcons_init(size_t size) 2875 { 2876 static char *p = NULL; 2877 2878 p = do_bsys_alloc(NULL, NULL, size, MMU_PAGESIZE); 2879 *p = 0; 2880 bsetprop32("deferred-console-buf", (uint32_t)((uintptr_t)&p)); 2881 return (p); 2882 } 2883 2884 /*ARGSUSED*/ 2885 int 2886 boot_compinfo(int fd, struct compinfo *cbp) 2887 { 2888 cbp->iscmp = 0; 2889 cbp->blksize = MAXBSIZE; 2890 return (0); 2891 } 2892 2893 #define BP_MAX_STRLEN 32 2894 2895 /* 2896 * Get value for given boot property 2897 */ 2898 int 2899 bootprop_getval(const char *prop_name, u_longlong_t *prop_value) 2900 { 2901 int boot_prop_len; 2902 char str[BP_MAX_STRLEN]; 2903 u_longlong_t value; 2904 2905 boot_prop_len = BOP_GETPROPLEN(bootops, prop_name); 2906 if (boot_prop_len < 0 || boot_prop_len > sizeof (str) || 2907 BOP_GETPROP(bootops, prop_name, str) < 0 || 2908 kobj_getvalue(str, &value) == -1) 2909 return (-1); 2910 2911 if (prop_value) 2912 *prop_value = value; 2913 2914 return (0); 2915 } 2916