1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 * 26 * Copyright (c) 2010, Intel Corporation. 27 * All rights reserved. 28 * 29 * Copyright 2020 Joyent, Inc. 30 */ 31 32 /* 33 * This file contains the functionality that mimics the boot operations 34 * on SPARC systems or the old boot.bin/multiboot programs on x86 systems. 35 * The x86 kernel now does everything on its own. 36 */ 37 38 #include <sys/types.h> 39 #include <sys/bootconf.h> 40 #include <sys/bootsvcs.h> 41 #include <sys/bootinfo.h> 42 #include <sys/multiboot.h> 43 #include <sys/multiboot2.h> 44 #include <sys/multiboot2_impl.h> 45 #include <sys/bootvfs.h> 46 #include <sys/bootprops.h> 47 #include <sys/varargs.h> 48 #include <sys/param.h> 49 #include <sys/machparam.h> 50 #include <sys/machsystm.h> 51 #include <sys/archsystm.h> 52 #include <sys/boot_console.h> 53 #include <sys/framebuffer.h> 54 #include <sys/cmn_err.h> 55 #include <sys/systm.h> 56 #include <sys/promif.h> 57 #include <sys/archsystm.h> 58 #include <sys/x86_archext.h> 59 #include <sys/kobj.h> 60 #include <sys/privregs.h> 61 #include <sys/sysmacros.h> 62 #include <sys/ctype.h> 63 #include <sys/fastboot.h> 64 #ifdef __xpv 65 #include <sys/hypervisor.h> 66 #include <net/if.h> 67 #endif 68 #include <vm/kboot_mmu.h> 69 #include <vm/hat_pte.h> 70 #include <sys/kobj.h> 71 #include <sys/kobj_lex.h> 72 #include <sys/pci_cfgspace_impl.h> 73 #include <sys/fastboot_impl.h> 74 #include <sys/acpi/acconfig.h> 75 #include <sys/acpi/acpi.h> 76 #include <sys/ddipropdefs.h> /* For DDI prop types */ 77 78 static int have_console = 0; /* set once primitive console is initialized */ 79 static char *boot_args = ""; 80 81 /* 82 * Debugging macros 83 */ 84 static uint_t kbm_debug = 0; 85 #define DBG_MSG(s) { if (kbm_debug) bop_printf(NULL, "%s", s); } 86 #define DBG(x) { if (kbm_debug) \ 87 bop_printf(NULL, "%s is %" PRIx64 "\n", #x, (uint64_t)(x)); \ 88 } 89 90 #define PUT_STRING(s) { \ 91 char *cp; \ 92 for (cp = (s); *cp; ++cp) \ 93 bcons_putchar(*cp); \ 94 } 95 96 /* callback to boot_fb to set shadow frame buffer */ 97 extern void boot_fb_shadow_init(bootops_t *); 98 99 bootops_t bootop; /* simple bootops we'll pass on to kernel */ 100 struct bsys_mem bm; 101 102 /* 103 * Boot info from "glue" code in low memory. xbootp is used by: 104 * do_bop_phys_alloc(), do_bsys_alloc() and read_bootenvrc(). 105 */ 106 static struct xboot_info *xbootp; 107 static uintptr_t next_virt; /* next available virtual address */ 108 static paddr_t next_phys; /* next available physical address from dboot */ 109 static paddr_t high_phys = -(paddr_t)1; /* last used physical address */ 110 111 /* 112 * buffer for vsnprintf for console I/O 113 */ 114 #define BUFFERSIZE 512 115 static char buffer[BUFFERSIZE]; 116 117 /* 118 * stuff to store/report/manipulate boot property settings. 119 */ 120 typedef struct bootprop { 121 struct bootprop *bp_next; 122 char *bp_name; 123 int bp_flags; /* DDI prop type */ 124 uint_t bp_vlen; /* 0 for boolean */ 125 char *bp_value; 126 } bootprop_t; 127 128 static bootprop_t *bprops = NULL; 129 static char *curr_page = NULL; /* ptr to avail bprop memory */ 130 static int curr_space = 0; /* amount of memory at curr_page */ 131 132 #ifdef __xpv 133 extern start_info_t *xen_info; 134 extern shared_info_t *HYPERVISOR_shared_info; 135 #endif 136 137 /* 138 * some allocator statistics 139 */ 140 static ulong_t total_bop_alloc_scratch = 0; 141 static ulong_t total_bop_alloc_kernel = 0; 142 143 static void build_firmware_properties(struct xboot_info *); 144 145 static int early_allocation = 1; 146 147 int force_fastreboot = 0; 148 volatile int fastreboot_onpanic = 0; 149 int post_fastreboot = 0; 150 #ifdef __xpv 151 volatile int fastreboot_capable = 0; 152 #else 153 volatile int fastreboot_capable = 1; 154 #endif 155 156 /* 157 * Information saved from current boot for fast reboot. 158 * If the information size exceeds what we have allocated, fast reboot 159 * will not be supported. 160 */ 161 multiboot_info_t saved_mbi; 162 mb_memory_map_t saved_mmap[FASTBOOT_SAVED_MMAP_COUNT]; 163 uint8_t saved_drives[FASTBOOT_SAVED_DRIVES_SIZE]; 164 char saved_cmdline[FASTBOOT_SAVED_CMDLINE_LEN]; 165 int saved_cmdline_len = 0; 166 size_t saved_file_size[FASTBOOT_MAX_FILES_MAP]; 167 168 /* 169 * Turn off fastreboot_onpanic to avoid panic loop. 170 */ 171 char fastreboot_onpanic_cmdline[FASTBOOT_SAVED_CMDLINE_LEN]; 172 static const char fastreboot_onpanic_args[] = " -B fastreboot_onpanic=0"; 173 174 /* 175 * Pointers to where System Resource Affinity Table (SRAT), System Locality 176 * Information Table (SLIT) and Maximum System Capability Table (MSCT) 177 * are mapped into virtual memory 178 */ 179 ACPI_TABLE_SRAT *srat_ptr = NULL; 180 ACPI_TABLE_SLIT *slit_ptr = NULL; 181 ACPI_TABLE_MSCT *msct_ptr = NULL; 182 183 /* 184 * Arbitrary limit on number of localities we handle; if 185 * this limit is raised to more than UINT16_MAX, make sure 186 * process_slit() knows how to handle it. 187 */ 188 #define SLIT_LOCALITIES_MAX (4096) 189 190 #define SLIT_NUM_PROPNAME "acpi-slit-localities" 191 #define SLIT_PROPNAME "acpi-slit" 192 193 /* 194 * Allocate aligned physical memory at boot time. This allocator allocates 195 * from the highest possible addresses. This avoids exhausting memory that 196 * would be useful for DMA buffers. 197 */ 198 paddr_t 199 do_bop_phys_alloc(uint64_t size, uint64_t align) 200 { 201 paddr_t pa = 0; 202 paddr_t start; 203 paddr_t end; 204 struct memlist *ml = (struct memlist *)xbootp->bi_phys_install; 205 206 /* 207 * Be careful if high memory usage is limited in startup.c 208 * Since there are holes in the low part of the physical address 209 * space we can treat physmem as a pfn (not just a pgcnt) and 210 * get a conservative upper limit. 211 */ 212 if (physmem != 0 && high_phys > pfn_to_pa(physmem)) 213 high_phys = pfn_to_pa(physmem); 214 215 /* 216 * find the highest available memory in physinstalled 217 */ 218 size = P2ROUNDUP(size, align); 219 for (; ml; ml = ml->ml_next) { 220 start = P2ROUNDUP(ml->ml_address, align); 221 end = P2ALIGN(ml->ml_address + ml->ml_size, align); 222 if (start < next_phys) 223 start = P2ROUNDUP(next_phys, align); 224 if (end > high_phys) 225 end = P2ALIGN(high_phys, align); 226 227 if (end <= start) 228 continue; 229 if (end - start < size) 230 continue; 231 232 /* 233 * Early allocations need to use low memory, since 234 * physmem might be further limited by bootenv.rc 235 */ 236 if (early_allocation) { 237 if (pa == 0 || start < pa) 238 pa = start; 239 } else { 240 if (end - size > pa) 241 pa = end - size; 242 } 243 } 244 if (pa != 0) { 245 if (early_allocation) 246 next_phys = pa + size; 247 else 248 high_phys = pa; 249 return (pa); 250 } 251 bop_panic("do_bop_phys_alloc(0x%" PRIx64 ", 0x%" PRIx64 252 ") Out of memory\n", size, align); 253 /*NOTREACHED*/ 254 } 255 256 uintptr_t 257 alloc_vaddr(size_t size, paddr_t align) 258 { 259 uintptr_t rv; 260 261 next_virt = P2ROUNDUP(next_virt, (uintptr_t)align); 262 rv = (uintptr_t)next_virt; 263 next_virt += size; 264 return (rv); 265 } 266 267 /* 268 * Allocate virtual memory. The size is always rounded up to a multiple 269 * of base pagesize. 270 */ 271 272 /*ARGSUSED*/ 273 static caddr_t 274 do_bsys_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align) 275 { 276 paddr_t a = align; /* same type as pa for masking */ 277 uint_t pgsize; 278 paddr_t pa; 279 uintptr_t va; 280 ssize_t s; /* the aligned size */ 281 uint_t level; 282 uint_t is_kernel = (virthint != 0); 283 284 if (a < MMU_PAGESIZE) 285 a = MMU_PAGESIZE; 286 else if (!ISP2(a)) 287 prom_panic("do_bsys_alloc() incorrect alignment"); 288 size = P2ROUNDUP(size, MMU_PAGESIZE); 289 290 /* 291 * Use the next aligned virtual address if we weren't given one. 292 */ 293 if (virthint == NULL) { 294 virthint = (caddr_t)alloc_vaddr(size, a); 295 total_bop_alloc_scratch += size; 296 } else { 297 total_bop_alloc_kernel += size; 298 } 299 300 /* 301 * allocate the physical memory 302 */ 303 pa = do_bop_phys_alloc(size, a); 304 305 /* 306 * Add the mappings to the page tables, try large pages first. 307 */ 308 va = (uintptr_t)virthint; 309 s = size; 310 level = 1; 311 pgsize = xbootp->bi_use_pae ? TWO_MEG : FOUR_MEG; 312 if (xbootp->bi_use_largepage && a == pgsize) { 313 while (IS_P2ALIGNED(pa, pgsize) && IS_P2ALIGNED(va, pgsize) && 314 s >= pgsize) { 315 kbm_map(va, pa, level, is_kernel); 316 va += pgsize; 317 pa += pgsize; 318 s -= pgsize; 319 } 320 } 321 322 /* 323 * Map remaining pages use small mappings 324 */ 325 level = 0; 326 pgsize = MMU_PAGESIZE; 327 while (s > 0) { 328 kbm_map(va, pa, level, is_kernel); 329 va += pgsize; 330 pa += pgsize; 331 s -= pgsize; 332 } 333 return (virthint); 334 } 335 336 /* 337 * Free virtual memory - we'll just ignore these. 338 */ 339 /*ARGSUSED*/ 340 static void 341 do_bsys_free(bootops_t *bop, caddr_t virt, size_t size) 342 { 343 bop_printf(NULL, "do_bsys_free(virt=0x%p, size=0x%lx) ignored\n", 344 (void *)virt, size); 345 } 346 347 /* 348 * Old interface 349 */ 350 /*ARGSUSED*/ 351 static caddr_t 352 do_bsys_ealloc(bootops_t *bop, caddr_t virthint, size_t size, 353 int align, int flags) 354 { 355 prom_panic("unsupported call to BOP_EALLOC()\n"); 356 return (0); 357 } 358 359 360 static void 361 bsetprop(int flags, char *name, int nlen, void *value, int vlen) 362 { 363 uint_t size; 364 uint_t need_size; 365 bootprop_t *b; 366 367 /* 368 * align the size to 16 byte boundary 369 */ 370 size = sizeof (bootprop_t) + nlen + 1 + vlen; 371 size = (size + 0xf) & ~0xf; 372 if (size > curr_space) { 373 need_size = (size + (MMU_PAGEOFFSET)) & MMU_PAGEMASK; 374 curr_page = do_bsys_alloc(NULL, 0, need_size, MMU_PAGESIZE); 375 curr_space = need_size; 376 } 377 378 /* 379 * use a bootprop_t at curr_page and link into list 380 */ 381 b = (bootprop_t *)curr_page; 382 curr_page += sizeof (bootprop_t); 383 curr_space -= sizeof (bootprop_t); 384 b->bp_next = bprops; 385 bprops = b; 386 387 /* 388 * follow by name and ending zero byte 389 */ 390 b->bp_name = curr_page; 391 bcopy(name, curr_page, nlen); 392 curr_page += nlen; 393 *curr_page++ = 0; 394 curr_space -= nlen + 1; 395 396 /* 397 * set the property type 398 */ 399 b->bp_flags = flags & DDI_PROP_TYPE_MASK; 400 401 /* 402 * copy in value, but no ending zero byte 403 */ 404 b->bp_value = curr_page; 405 b->bp_vlen = vlen; 406 if (vlen > 0) { 407 bcopy(value, curr_page, vlen); 408 curr_page += vlen; 409 curr_space -= vlen; 410 } 411 412 /* 413 * align new values of curr_page, curr_space 414 */ 415 while (curr_space & 0xf) { 416 ++curr_page; 417 --curr_space; 418 } 419 } 420 421 static void 422 bsetprops(char *name, char *value) 423 { 424 bsetprop(DDI_PROP_TYPE_STRING, name, strlen(name), 425 value, strlen(value) + 1); 426 } 427 428 static void 429 bsetprop32(char *name, uint32_t value) 430 { 431 bsetprop(DDI_PROP_TYPE_INT, name, strlen(name), 432 (void *)&value, sizeof (value)); 433 } 434 435 static void 436 bsetprop64(char *name, uint64_t value) 437 { 438 bsetprop(DDI_PROP_TYPE_INT64, name, strlen(name), 439 (void *)&value, sizeof (value)); 440 } 441 442 static void 443 bsetpropsi(char *name, int value) 444 { 445 char prop_val[32]; 446 447 (void) snprintf(prop_val, sizeof (prop_val), "%d", value); 448 bsetprops(name, prop_val); 449 } 450 451 /* 452 * to find the type of the value associated with this name 453 */ 454 /*ARGSUSED*/ 455 int 456 do_bsys_getproptype(bootops_t *bop, const char *name) 457 { 458 bootprop_t *b; 459 460 for (b = bprops; b != NULL; b = b->bp_next) { 461 if (strcmp(name, b->bp_name) != 0) 462 continue; 463 return (b->bp_flags); 464 } 465 return (-1); 466 } 467 468 /* 469 * to find the size of the buffer to allocate 470 */ 471 /*ARGSUSED*/ 472 int 473 do_bsys_getproplen(bootops_t *bop, const char *name) 474 { 475 bootprop_t *b; 476 477 for (b = bprops; b; b = b->bp_next) { 478 if (strcmp(name, b->bp_name) != 0) 479 continue; 480 return (b->bp_vlen); 481 } 482 return (-1); 483 } 484 485 /* 486 * get the value associated with this name 487 */ 488 /*ARGSUSED*/ 489 int 490 do_bsys_getprop(bootops_t *bop, const char *name, void *value) 491 { 492 bootprop_t *b; 493 494 for (b = bprops; b; b = b->bp_next) { 495 if (strcmp(name, b->bp_name) != 0) 496 continue; 497 bcopy(b->bp_value, value, b->bp_vlen); 498 return (0); 499 } 500 return (-1); 501 } 502 503 /* 504 * get the name of the next property in succession from the standalone 505 */ 506 /*ARGSUSED*/ 507 static char * 508 do_bsys_nextprop(bootops_t *bop, char *name) 509 { 510 bootprop_t *b; 511 512 /* 513 * A null name is a special signal for the 1st boot property 514 */ 515 if (name == NULL || strlen(name) == 0) { 516 if (bprops == NULL) 517 return (NULL); 518 return (bprops->bp_name); 519 } 520 521 for (b = bprops; b; b = b->bp_next) { 522 if (name != b->bp_name) 523 continue; 524 b = b->bp_next; 525 if (b == NULL) 526 return (NULL); 527 return (b->bp_name); 528 } 529 return (NULL); 530 } 531 532 /* 533 * Parse numeric value from a string. Understands decimal, hex, octal, - and ~ 534 */ 535 static int 536 parse_value(char *p, uint64_t *retval) 537 { 538 int adjust = 0; 539 uint64_t tmp = 0; 540 int digit; 541 int radix = 10; 542 543 *retval = 0; 544 if (*p == '-' || *p == '~') 545 adjust = *p++; 546 547 if (*p == '0') { 548 ++p; 549 if (*p == 0) 550 return (0); 551 if (*p == 'x' || *p == 'X') { 552 radix = 16; 553 ++p; 554 } else { 555 radix = 8; 556 ++p; 557 } 558 } 559 while (*p) { 560 if ('0' <= *p && *p <= '9') 561 digit = *p - '0'; 562 else if ('a' <= *p && *p <= 'f') 563 digit = 10 + *p - 'a'; 564 else if ('A' <= *p && *p <= 'F') 565 digit = 10 + *p - 'A'; 566 else 567 return (-1); 568 if (digit >= radix) 569 return (-1); 570 tmp = tmp * radix + digit; 571 ++p; 572 } 573 if (adjust == '-') 574 tmp = -tmp; 575 else if (adjust == '~') 576 tmp = ~tmp; 577 *retval = tmp; 578 return (0); 579 } 580 581 static boolean_t 582 unprintable(char *value, int size) 583 { 584 int i; 585 586 if (size <= 0 || value[0] == '\0') 587 return (B_TRUE); 588 589 for (i = 0; i < size; i++) { 590 if (value[i] == '\0') 591 return (i != (size - 1)); 592 593 if (!isprint(value[i])) 594 return (B_TRUE); 595 } 596 return (B_FALSE); 597 } 598 599 /* 600 * Print out information about all boot properties. 601 * buffer is pointer to pre-allocated space to be used as temporary 602 * space for property values. 603 */ 604 static void 605 boot_prop_display(char *buffer) 606 { 607 char *name = ""; 608 int i, len, flags, *buf32; 609 int64_t *buf64; 610 611 bop_printf(NULL, "\nBoot properties:\n"); 612 613 while ((name = do_bsys_nextprop(NULL, name)) != NULL) { 614 bop_printf(NULL, "\t0x%p %s = ", (void *)name, name); 615 (void) do_bsys_getprop(NULL, name, buffer); 616 len = do_bsys_getproplen(NULL, name); 617 flags = do_bsys_getproptype(NULL, name); 618 bop_printf(NULL, "len=%d ", len); 619 620 switch (flags) { 621 case DDI_PROP_TYPE_INT: 622 len = len / sizeof (int); 623 buf32 = (int *)buffer; 624 for (i = 0; i < len; i++) { 625 bop_printf(NULL, "%08x", buf32[i]); 626 if (i < len - 1) 627 bop_printf(NULL, "."); 628 } 629 break; 630 case DDI_PROP_TYPE_STRING: 631 bop_printf(NULL, "%s", buffer); 632 break; 633 case DDI_PROP_TYPE_INT64: 634 len = len / sizeof (int64_t); 635 buf64 = (int64_t *)buffer; 636 for (i = 0; i < len; i++) { 637 bop_printf(NULL, "%016" PRIx64, buf64[i]); 638 if (i < len - 1) 639 bop_printf(NULL, "."); 640 } 641 break; 642 default: 643 if (!unprintable(buffer, len)) { 644 buffer[len] = 0; 645 bop_printf(NULL, "%s", buffer); 646 break; 647 } 648 for (i = 0; i < len; i++) { 649 bop_printf(NULL, "%02x", buffer[i] & 0xff); 650 if (i < len - 1) 651 bop_printf(NULL, "."); 652 } 653 break; 654 } 655 bop_printf(NULL, "\n"); 656 } 657 } 658 659 /* 660 * 2nd part of building the table of boot properties. This includes: 661 * - values from /boot/solaris/bootenv.rc (ie. eeprom(8) values) 662 * 663 * lines look like one of: 664 * ^$ 665 * ^# comment till end of line 666 * setprop name 'value' 667 * setprop name value 668 * setprop name "value" 669 * 670 * we do single character I/O since this is really just looking at memory 671 */ 672 void 673 read_bootenvrc(void) 674 { 675 int fd; 676 char *line; 677 int c; 678 int bytes_read; 679 char *name; 680 int n_len; 681 char *value; 682 int v_len; 683 char *inputdev; /* these override the command line if serial ports */ 684 char *outputdev; 685 char *consoledev; 686 uint64_t lvalue; 687 int use_xencons = 0; 688 extern int bootrd_debug; 689 690 #ifdef __xpv 691 if (!DOMAIN_IS_INITDOMAIN(xen_info)) 692 use_xencons = 1; 693 #endif /* __xpv */ 694 695 DBG_MSG("Opening /boot/solaris/bootenv.rc\n"); 696 fd = BRD_OPEN(bfs_ops, "/boot/solaris/bootenv.rc", 0); 697 DBG(fd); 698 699 line = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE); 700 while (fd >= 0) { 701 702 /* 703 * get a line 704 */ 705 for (c = 0; ; ++c) { 706 bytes_read = BRD_READ(bfs_ops, fd, line + c, 1); 707 if (bytes_read == 0) { 708 if (c == 0) 709 goto done; 710 break; 711 } 712 if (line[c] == '\n') 713 break; 714 } 715 line[c] = 0; 716 717 /* 718 * ignore comment lines 719 */ 720 c = 0; 721 while (ISSPACE(line[c])) 722 ++c; 723 if (line[c] == '#' || line[c] == 0) 724 continue; 725 726 /* 727 * must have "setprop " or "setprop\t" 728 */ 729 if (strncmp(line + c, "setprop ", 8) != 0 && 730 strncmp(line + c, "setprop\t", 8) != 0) 731 continue; 732 c += 8; 733 while (ISSPACE(line[c])) 734 ++c; 735 if (line[c] == 0) 736 continue; 737 738 /* 739 * gather up the property name 740 */ 741 name = line + c; 742 n_len = 0; 743 while (line[c] && !ISSPACE(line[c])) 744 ++n_len, ++c; 745 746 /* 747 * gather up the value, if any 748 */ 749 value = ""; 750 v_len = 0; 751 while (ISSPACE(line[c])) 752 ++c; 753 if (line[c] != 0) { 754 value = line + c; 755 while (line[c] && !ISSPACE(line[c])) 756 ++v_len, ++c; 757 } 758 759 if (v_len >= 2 && value[0] == value[v_len - 1] && 760 (value[0] == '\'' || value[0] == '"')) { 761 ++value; 762 v_len -= 2; 763 } 764 name[n_len] = 0; 765 if (v_len > 0) 766 value[v_len] = 0; 767 else 768 continue; 769 770 /* 771 * ignore "boot-file" property, it's now meaningless 772 */ 773 if (strcmp(name, "boot-file") == 0) 774 continue; 775 if (strcmp(name, "boot-args") == 0 && 776 strlen(boot_args) > 0) 777 continue; 778 779 /* 780 * If a property was explicitly set on the command line 781 * it will override a setting in bootenv.rc. We make an 782 * exception for a property from the bootloader such as: 783 * 784 * console="text,ttya,ttyb,ttyc,ttyd" 785 * 786 * In such a case, picking the first value here (as 787 * lookup_console_devices() does) is at best a guess; if 788 * bootenv.rc has a value, it's probably better. 789 */ 790 if (strcmp(name, "console") == 0) { 791 char propval[BP_MAX_STRLEN] = ""; 792 793 if (do_bsys_getprop(NULL, name, propval) == -1 || 794 strchr(propval, ',') != NULL) 795 bsetprops(name, value); 796 continue; 797 } 798 799 if (do_bsys_getproplen(NULL, name) == -1) 800 bsetprops(name, value); 801 } 802 done: 803 if (fd >= 0) 804 (void) BRD_CLOSE(bfs_ops, fd); 805 806 807 /* 808 * Check if we have to limit the boot time allocator 809 */ 810 if (do_bsys_getproplen(NULL, "physmem") != -1 && 811 do_bsys_getprop(NULL, "physmem", line) >= 0 && 812 parse_value(line, &lvalue) != -1) { 813 if (0 < lvalue && (lvalue < physmem || physmem == 0)) { 814 physmem = (pgcnt_t)lvalue; 815 DBG(physmem); 816 } 817 } 818 early_allocation = 0; 819 820 /* 821 * Check for bootrd_debug. 822 */ 823 if (find_boot_prop("bootrd_debug")) 824 bootrd_debug = 1; 825 826 /* 827 * check to see if we have to override the default value of the console 828 */ 829 if (!use_xencons) { 830 inputdev = line; 831 v_len = do_bsys_getproplen(NULL, "input-device"); 832 if (v_len > 0) 833 (void) do_bsys_getprop(NULL, "input-device", inputdev); 834 else 835 v_len = 0; 836 inputdev[v_len] = 0; 837 838 outputdev = inputdev + v_len + 1; 839 v_len = do_bsys_getproplen(NULL, "output-device"); 840 if (v_len > 0) 841 (void) do_bsys_getprop(NULL, "output-device", 842 outputdev); 843 else 844 v_len = 0; 845 outputdev[v_len] = 0; 846 847 consoledev = outputdev + v_len + 1; 848 v_len = do_bsys_getproplen(NULL, "console"); 849 if (v_len > 0) { 850 (void) do_bsys_getprop(NULL, "console", consoledev); 851 if (post_fastreboot && 852 strcmp(consoledev, "graphics") == 0) { 853 bsetprops("console", "text"); 854 v_len = strlen("text"); 855 bcopy("text", consoledev, v_len); 856 } 857 } else { 858 v_len = 0; 859 } 860 consoledev[v_len] = 0; 861 bcons_post_bootenvrc(inputdev, outputdev, consoledev); 862 } else { 863 /* 864 * Ensure console property exists 865 * If not create it as "hypervisor" 866 */ 867 v_len = do_bsys_getproplen(NULL, "console"); 868 if (v_len < 0) 869 bsetprops("console", "hypervisor"); 870 inputdev = outputdev = consoledev = "hypervisor"; 871 bcons_post_bootenvrc(inputdev, outputdev, consoledev); 872 } 873 874 if (find_boot_prop("prom_debug") || kbm_debug) 875 boot_prop_display(line); 876 } 877 878 /* 879 * print formatted output 880 */ 881 /*ARGSUSED*/ 882 void 883 vbop_printf(void *ptr, const char *fmt, va_list ap) 884 { 885 if (have_console == 0) 886 return; 887 888 (void) vsnprintf(buffer, BUFFERSIZE, fmt, ap); 889 PUT_STRING(buffer); 890 } 891 892 /*PRINTFLIKE2*/ 893 void 894 bop_printf(void *bop, const char *fmt, ...) 895 { 896 va_list ap; 897 898 va_start(ap, fmt); 899 vbop_printf(bop, fmt, ap); 900 va_end(ap); 901 } 902 903 /* 904 * Another panic() variant; this one can be used even earlier during boot than 905 * prom_panic(). 906 */ 907 /*PRINTFLIKE1*/ 908 void 909 bop_panic(const char *fmt, ...) 910 { 911 va_list ap; 912 913 va_start(ap, fmt); 914 vbop_printf(NULL, fmt, ap); 915 va_end(ap); 916 917 bop_printf(NULL, "\nPress any key to reboot.\n"); 918 (void) bcons_getchar(); 919 bop_printf(NULL, "Resetting...\n"); 920 pc_reset(); 921 } 922 923 /* 924 * Do a real mode interrupt BIOS call 925 */ 926 typedef struct bios_regs { 927 unsigned short ax, bx, cx, dx, si, di, bp, es, ds; 928 } bios_regs_t; 929 typedef int (*bios_func_t)(int, bios_regs_t *); 930 931 /*ARGSUSED*/ 932 static void 933 do_bsys_doint(bootops_t *bop, int intnum, struct bop_regs *rp) 934 { 935 #if defined(__xpv) 936 prom_panic("unsupported call to BOP_DOINT()\n"); 937 #else /* __xpv */ 938 static int firsttime = 1; 939 bios_func_t bios_func = (bios_func_t)(void *)(uintptr_t)0x5000; 940 bios_regs_t br; 941 942 /* 943 * We're about to disable paging; we shouldn't be PCID enabled. 944 */ 945 if (getcr4() & CR4_PCIDE) 946 prom_panic("do_bsys_doint() with PCID enabled\n"); 947 948 /* 949 * The first time we do this, we have to copy the pre-packaged 950 * low memory bios call code image into place. 951 */ 952 if (firsttime) { 953 extern char bios_image[]; 954 extern uint32_t bios_size; 955 956 bcopy(bios_image, (void *)bios_func, bios_size); 957 firsttime = 0; 958 } 959 960 br.ax = rp->eax.word.ax; 961 br.bx = rp->ebx.word.bx; 962 br.cx = rp->ecx.word.cx; 963 br.dx = rp->edx.word.dx; 964 br.bp = rp->ebp.word.bp; 965 br.si = rp->esi.word.si; 966 br.di = rp->edi.word.di; 967 br.ds = rp->ds; 968 br.es = rp->es; 969 970 DBG_MSG("Doing BIOS call..."); 971 DBG(br.ax); 972 DBG(br.bx); 973 DBG(br.dx); 974 rp->eflags = bios_func(intnum, &br); 975 DBG_MSG("done\n"); 976 977 rp->eax.word.ax = br.ax; 978 rp->ebx.word.bx = br.bx; 979 rp->ecx.word.cx = br.cx; 980 rp->edx.word.dx = br.dx; 981 rp->ebp.word.bp = br.bp; 982 rp->esi.word.si = br.si; 983 rp->edi.word.di = br.di; 984 rp->ds = br.ds; 985 rp->es = br.es; 986 #endif /* __xpv */ 987 } 988 989 static struct boot_syscalls bop_sysp = { 990 bcons_getchar, 991 bcons_putchar, 992 bcons_ischar, 993 }; 994 995 static char *whoami; 996 997 #define BUFLEN 64 998 999 #if defined(__xpv) 1000 1001 static char namebuf[32]; 1002 1003 static void 1004 xen_parse_props(char *s, char *prop_map[], int n_prop) 1005 { 1006 char **prop_name = prop_map; 1007 char *cp = s, *scp; 1008 1009 do { 1010 scp = cp; 1011 while ((*cp != '\0') && (*cp != ':')) 1012 cp++; 1013 1014 if ((scp != cp) && (*prop_name != NULL)) { 1015 *cp = '\0'; 1016 bsetprops(*prop_name, scp); 1017 } 1018 1019 cp++; 1020 prop_name++; 1021 n_prop--; 1022 } while (n_prop > 0); 1023 } 1024 1025 #define VBDPATHLEN 64 1026 1027 /* 1028 * parse the 'xpv-root' property to create properties used by 1029 * ufs_mountroot. 1030 */ 1031 static void 1032 xen_vbdroot_props(char *s) 1033 { 1034 char vbdpath[VBDPATHLEN] = "/xpvd/xdf@"; 1035 const char lnamefix[] = "/dev/dsk/c0d"; 1036 char *pnp; 1037 char *prop_p; 1038 char mi; 1039 short minor; 1040 long addr = 0; 1041 1042 mi = '\0'; 1043 pnp = vbdpath + strlen(vbdpath); 1044 prop_p = s + strlen(lnamefix); 1045 while ((*prop_p != '\0') && (*prop_p != 's') && (*prop_p != 'p')) 1046 addr = addr * 10 + *prop_p++ - '0'; 1047 (void) snprintf(pnp, VBDPATHLEN, "%lx", addr); 1048 pnp = vbdpath + strlen(vbdpath); 1049 if (*prop_p == 's') 1050 mi = 'a'; 1051 else if (*prop_p == 'p') 1052 mi = 'q'; 1053 else 1054 ASSERT(0); /* shouldn't be here */ 1055 prop_p++; 1056 ASSERT(*prop_p != '\0'); 1057 if (ISDIGIT(*prop_p)) { 1058 minor = *prop_p - '0'; 1059 prop_p++; 1060 if (ISDIGIT(*prop_p)) { 1061 minor = minor * 10 + *prop_p - '0'; 1062 } 1063 } else { 1064 /* malformed root path, use 0 as default */ 1065 minor = 0; 1066 } 1067 ASSERT(minor < 16); /* at most 16 partitions */ 1068 mi += minor; 1069 *pnp++ = ':'; 1070 *pnp++ = mi; 1071 *pnp++ = '\0'; 1072 bsetprops("fstype", "ufs"); 1073 bsetprops("bootpath", vbdpath); 1074 1075 DBG_MSG("VBD bootpath set to "); 1076 DBG_MSG(vbdpath); 1077 DBG_MSG("\n"); 1078 } 1079 1080 /* 1081 * parse the xpv-nfsroot property to create properties used by 1082 * nfs_mountroot. 1083 */ 1084 static void 1085 xen_nfsroot_props(char *s) 1086 { 1087 char *prop_map[] = { 1088 BP_SERVER_IP, /* server IP address */ 1089 BP_SERVER_NAME, /* server hostname */ 1090 BP_SERVER_PATH, /* root path */ 1091 }; 1092 int n_prop = sizeof (prop_map) / sizeof (prop_map[0]); 1093 1094 bsetprops("fstype", "nfs"); 1095 1096 xen_parse_props(s, prop_map, n_prop); 1097 1098 /* 1099 * If a server name wasn't specified, use a default. 1100 */ 1101 if (do_bsys_getproplen(NULL, BP_SERVER_NAME) == -1) 1102 bsetprops(BP_SERVER_NAME, "unknown"); 1103 } 1104 1105 /* 1106 * Extract our IP address, etc. from the "xpv-ip" property. 1107 */ 1108 static void 1109 xen_ip_props(char *s) 1110 { 1111 char *prop_map[] = { 1112 BP_HOST_IP, /* IP address */ 1113 NULL, /* NFS server IP address (ignored in */ 1114 /* favour of xpv-nfsroot) */ 1115 BP_ROUTER_IP, /* IP gateway */ 1116 BP_SUBNET_MASK, /* IP subnet mask */ 1117 "xpv-hostname", /* hostname (ignored) */ 1118 BP_NETWORK_INTERFACE, /* interface name */ 1119 "xpv-hcp", /* host configuration protocol */ 1120 }; 1121 int n_prop = sizeof (prop_map) / sizeof (prop_map[0]); 1122 char ifname[IFNAMSIZ]; 1123 1124 xen_parse_props(s, prop_map, n_prop); 1125 1126 /* 1127 * A Linux dom0 administrator expects all interfaces to be 1128 * called "ethX", which is not the case here. 1129 * 1130 * If the interface name specified is "eth0", presume that 1131 * this is really intended to be "xnf0" (the first domU -> 1132 * dom0 interface for this domain). 1133 */ 1134 if ((do_bsys_getprop(NULL, BP_NETWORK_INTERFACE, ifname) == 0) && 1135 (strcmp("eth0", ifname) == 0)) { 1136 bsetprops(BP_NETWORK_INTERFACE, "xnf0"); 1137 bop_printf(NULL, 1138 "network interface name 'eth0' replaced with 'xnf0'\n"); 1139 } 1140 } 1141 1142 #else /* __xpv */ 1143 1144 static void 1145 setup_rarp_props(struct sol_netinfo *sip) 1146 { 1147 char buf[BUFLEN]; /* to hold ip/mac addrs */ 1148 uint8_t *val; 1149 1150 val = (uint8_t *)&sip->sn_ciaddr; 1151 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d", 1152 val[0], val[1], val[2], val[3]); 1153 bsetprops(BP_HOST_IP, buf); 1154 1155 val = (uint8_t *)&sip->sn_siaddr; 1156 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d", 1157 val[0], val[1], val[2], val[3]); 1158 bsetprops(BP_SERVER_IP, buf); 1159 1160 if (sip->sn_giaddr != 0) { 1161 val = (uint8_t *)&sip->sn_giaddr; 1162 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d", 1163 val[0], val[1], val[2], val[3]); 1164 bsetprops(BP_ROUTER_IP, buf); 1165 } 1166 1167 if (sip->sn_netmask != 0) { 1168 val = (uint8_t *)&sip->sn_netmask; 1169 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d", 1170 val[0], val[1], val[2], val[3]); 1171 bsetprops(BP_SUBNET_MASK, buf); 1172 } 1173 1174 if (sip->sn_mactype != 4 || sip->sn_maclen != 6) { 1175 bop_printf(NULL, "unsupported mac type %d, mac len %d\n", 1176 sip->sn_mactype, sip->sn_maclen); 1177 } else { 1178 val = sip->sn_macaddr; 1179 (void) snprintf(buf, BUFLEN, "%x:%x:%x:%x:%x:%x", 1180 val[0], val[1], val[2], val[3], val[4], val[5]); 1181 bsetprops(BP_BOOT_MAC, buf); 1182 } 1183 } 1184 1185 #endif /* __xpv */ 1186 1187 static void 1188 build_panic_cmdline(const char *cmd, int cmdlen) 1189 { 1190 int proplen; 1191 size_t arglen; 1192 1193 arglen = sizeof (fastreboot_onpanic_args); 1194 /* 1195 * If we allready have fastreboot-onpanic set to zero, 1196 * don't add them again. 1197 */ 1198 if ((proplen = do_bsys_getproplen(NULL, FASTREBOOT_ONPANIC)) > 0 && 1199 proplen <= sizeof (fastreboot_onpanic_cmdline)) { 1200 (void) do_bsys_getprop(NULL, FASTREBOOT_ONPANIC, 1201 fastreboot_onpanic_cmdline); 1202 if (FASTREBOOT_ONPANIC_NOTSET(fastreboot_onpanic_cmdline)) 1203 arglen = 1; 1204 } 1205 1206 /* 1207 * construct fastreboot_onpanic_cmdline 1208 */ 1209 if (cmdlen + arglen > sizeof (fastreboot_onpanic_cmdline)) { 1210 DBG_MSG("Command line too long: clearing " 1211 FASTREBOOT_ONPANIC "\n"); 1212 fastreboot_onpanic = 0; 1213 } else { 1214 bcopy(cmd, fastreboot_onpanic_cmdline, cmdlen); 1215 if (arglen != 1) 1216 bcopy(fastreboot_onpanic_args, 1217 fastreboot_onpanic_cmdline + cmdlen, arglen); 1218 else 1219 fastreboot_onpanic_cmdline[cmdlen] = 0; 1220 } 1221 } 1222 1223 1224 #ifndef __xpv 1225 /* 1226 * Construct boot command line for Fast Reboot. The saved_cmdline 1227 * is also reported by "eeprom bootcmd". 1228 */ 1229 static void 1230 build_fastboot_cmdline(struct xboot_info *xbp) 1231 { 1232 saved_cmdline_len = strlen(xbp->bi_cmdline) + 1; 1233 if (saved_cmdline_len > FASTBOOT_SAVED_CMDLINE_LEN) { 1234 DBG(saved_cmdline_len); 1235 DBG_MSG("Command line too long: clearing fastreboot_capable\n"); 1236 fastreboot_capable = 0; 1237 } else { 1238 bcopy((void *)(xbp->bi_cmdline), (void *)saved_cmdline, 1239 saved_cmdline_len); 1240 saved_cmdline[saved_cmdline_len - 1] = '\0'; 1241 build_panic_cmdline(saved_cmdline, saved_cmdline_len - 1); 1242 } 1243 } 1244 1245 /* 1246 * Save memory layout, disk drive information, unix and boot archive sizes for 1247 * Fast Reboot. 1248 */ 1249 static void 1250 save_boot_info(struct xboot_info *xbi) 1251 { 1252 multiboot_info_t *mbi = xbi->bi_mb_info; 1253 struct boot_modules *modp; 1254 int i; 1255 1256 bcopy(mbi, &saved_mbi, sizeof (multiboot_info_t)); 1257 if (mbi->mmap_length > sizeof (saved_mmap)) { 1258 DBG_MSG("mbi->mmap_length too big: clearing " 1259 "fastreboot_capable\n"); 1260 fastreboot_capable = 0; 1261 } else { 1262 bcopy((void *)(uintptr_t)mbi->mmap_addr, (void *)saved_mmap, 1263 mbi->mmap_length); 1264 } 1265 1266 if ((mbi->flags & MB_INFO_DRIVE_INFO) != 0) { 1267 if (mbi->drives_length > sizeof (saved_drives)) { 1268 DBG(mbi->drives_length); 1269 DBG_MSG("mbi->drives_length too big: clearing " 1270 "fastreboot_capable\n"); 1271 fastreboot_capable = 0; 1272 } else { 1273 bcopy((void *)(uintptr_t)mbi->drives_addr, 1274 (void *)saved_drives, mbi->drives_length); 1275 } 1276 } else { 1277 saved_mbi.drives_length = 0; 1278 saved_mbi.drives_addr = 0; 1279 } 1280 1281 /* 1282 * Current file sizes. Used by fastboot.c to figure out how much 1283 * memory to reserve for panic reboot. 1284 * Use the module list from the dboot-constructed xboot_info 1285 * instead of the list referenced by the multiboot structure 1286 * because that structure may not be addressable now. 1287 */ 1288 saved_file_size[FASTBOOT_NAME_UNIX] = FOUR_MEG - PAGESIZE; 1289 for (i = 0, modp = (struct boot_modules *)(uintptr_t)xbi->bi_modules; 1290 i < xbi->bi_module_cnt; i++, modp++) { 1291 saved_file_size[FASTBOOT_NAME_BOOTARCHIVE] += modp->bm_size; 1292 } 1293 } 1294 #endif /* __xpv */ 1295 1296 /* 1297 * Import boot environment module variables as properties, applying 1298 * blacklist filter for variables we know we will not use. 1299 * 1300 * Since the environment can be relatively large, containing many variables 1301 * used only for boot loader purposes, we will use a blacklist based filter. 1302 * To keep the blacklist from growing too large, we use prefix based filtering. 1303 * This is possible because in many cases, the loader variable names are 1304 * using a structured layout. 1305 * 1306 * We will not overwrite already set properties. 1307 * 1308 * Note that the menu items in particular can contain characters not 1309 * well-handled as bootparams, such as spaces, brackets, and the like, so that's 1310 * another reason. 1311 */ 1312 static struct bop_blacklist { 1313 const char *bl_name; 1314 int bl_name_len; 1315 } bop_prop_blacklist[] = { 1316 { "ISADIR", sizeof ("ISADIR") }, 1317 { "acpi", sizeof ("acpi") }, 1318 { "autoboot_delay", sizeof ("autoboot_delay") }, 1319 { "beansi_", sizeof ("beansi_") }, 1320 { "beastie", sizeof ("beastie") }, 1321 { "bemenu", sizeof ("bemenu") }, 1322 { "boot.", sizeof ("boot.") }, 1323 { "bootenv", sizeof ("bootenv") }, 1324 { "currdev", sizeof ("currdev") }, 1325 { "dhcp.", sizeof ("dhcp.") }, 1326 { "interpret", sizeof ("interpret") }, 1327 { "kernel", sizeof ("kernel") }, 1328 { "loaddev", sizeof ("loaddev") }, 1329 { "loader_", sizeof ("loader_") }, 1330 { "mainansi_", sizeof ("mainansi_") }, 1331 { "mainmenu_", sizeof ("mainmenu_") }, 1332 { "maintoggled_", sizeof ("maintoggled_") }, 1333 { "menu_timeout_command", sizeof ("menu_timeout_command") }, 1334 { "menuset_", sizeof ("menuset_") }, 1335 { "module_path", sizeof ("module_path") }, 1336 { "nfs.", sizeof ("nfs.") }, 1337 { "optionsansi_", sizeof ("optionsansi_") }, 1338 { "optionsmenu_", sizeof ("optionsmenu_") }, 1339 { "optionstoggled_", sizeof ("optionstoggled_") }, 1340 { "pcibios", sizeof ("pcibios") }, 1341 { "prompt", sizeof ("prompt") }, 1342 { "smbios", sizeof ("smbios") }, 1343 { "tem", sizeof ("tem") }, 1344 { "twiddle_divisor", sizeof ("twiddle_divisor") }, 1345 { "zfs_be", sizeof ("zfs_be") }, 1346 }; 1347 1348 /* 1349 * Match the name against prefixes in above blacklist. If the match was 1350 * found, this name is blacklisted. 1351 */ 1352 static boolean_t 1353 name_is_blacklisted(const char *name) 1354 { 1355 int i, n; 1356 1357 n = sizeof (bop_prop_blacklist) / sizeof (bop_prop_blacklist[0]); 1358 for (i = 0; i < n; i++) { 1359 if (strncmp(bop_prop_blacklist[i].bl_name, name, 1360 bop_prop_blacklist[i].bl_name_len - 1) == 0) { 1361 return (B_TRUE); 1362 } 1363 } 1364 return (B_FALSE); 1365 } 1366 1367 static void 1368 process_boot_environment(struct boot_modules *benv) 1369 { 1370 char *env, *ptr, *name, *value; 1371 uint32_t size, name_len, value_len; 1372 1373 if (benv == NULL || benv->bm_type != BMT_ENV) 1374 return; 1375 ptr = env = benv->bm_addr; 1376 size = benv->bm_size; 1377 do { 1378 name = ptr; 1379 /* find '=' */ 1380 while (*ptr != '=') { 1381 ptr++; 1382 if (ptr > env + size) /* Something is very wrong. */ 1383 return; 1384 } 1385 name_len = ptr - name; 1386 if (sizeof (buffer) <= name_len) 1387 continue; 1388 1389 (void) strncpy(buffer, name, sizeof (buffer)); 1390 buffer[name_len] = '\0'; 1391 name = buffer; 1392 1393 value_len = 0; 1394 value = ++ptr; 1395 while ((uintptr_t)ptr - (uintptr_t)env < size) { 1396 if (*ptr == '\0') { 1397 ptr++; 1398 value_len = (uintptr_t)ptr - (uintptr_t)env; 1399 break; 1400 } 1401 ptr++; 1402 } 1403 1404 /* Did we reach the end of the module? */ 1405 if (value_len == 0) 1406 return; 1407 1408 if (*value == '\0') 1409 continue; 1410 1411 /* Is this property already set? */ 1412 if (do_bsys_getproplen(NULL, name) >= 0) 1413 continue; 1414 1415 /* Translate netboot variables */ 1416 if (strcmp(name, "boot.netif.gateway") == 0) { 1417 bsetprops(BP_ROUTER_IP, value); 1418 continue; 1419 } 1420 if (strcmp(name, "boot.netif.hwaddr") == 0) { 1421 bsetprops(BP_BOOT_MAC, value); 1422 continue; 1423 } 1424 if (strcmp(name, "boot.netif.ip") == 0) { 1425 bsetprops(BP_HOST_IP, value); 1426 continue; 1427 } 1428 if (strcmp(name, "boot.netif.netmask") == 0) { 1429 bsetprops(BP_SUBNET_MASK, value); 1430 continue; 1431 } 1432 if (strcmp(name, "boot.netif.server") == 0) { 1433 bsetprops(BP_SERVER_IP, value); 1434 continue; 1435 } 1436 if (strcmp(name, "boot.netif.server") == 0) { 1437 if (do_bsys_getproplen(NULL, BP_SERVER_IP) < 0) 1438 bsetprops(BP_SERVER_IP, value); 1439 continue; 1440 } 1441 if (strcmp(name, "boot.nfsroot.server") == 0) { 1442 if (do_bsys_getproplen(NULL, BP_SERVER_IP) < 0) 1443 bsetprops(BP_SERVER_IP, value); 1444 continue; 1445 } 1446 if (strcmp(name, "boot.nfsroot.path") == 0) { 1447 bsetprops(BP_SERVER_PATH, value); 1448 continue; 1449 } 1450 1451 /* 1452 * The loader allows multiple console devices to be specified 1453 * as a comma-separated list, but the kernel does not yet 1454 * support multiple console devices. If a list is provided, 1455 * ignore all but the first entry: 1456 */ 1457 if (strcmp(name, "console") == 0) { 1458 char propval[BP_MAX_STRLEN]; 1459 1460 for (uint32_t i = 0; i < BP_MAX_STRLEN; i++) { 1461 propval[i] = value[i]; 1462 if (value[i] == ' ' || 1463 value[i] == ',' || 1464 value[i] == '\0') { 1465 propval[i] = '\0'; 1466 break; 1467 } 1468 1469 if (i + 1 == BP_MAX_STRLEN) 1470 propval[i] = '\0'; 1471 } 1472 bsetprops(name, propval); 1473 continue; 1474 } 1475 if (name_is_blacklisted(name) == B_TRUE) 1476 continue; 1477 1478 /* Create new property. */ 1479 bsetprops(name, value); 1480 1481 /* Avoid reading past the module end. */ 1482 if (size <= (uintptr_t)ptr - (uintptr_t)env) 1483 return; 1484 } while (*ptr != '\0'); 1485 } 1486 1487 /* 1488 * 1st pass at building the table of boot properties. This includes: 1489 * - values set on the command line: -B a=x,b=y,c=z .... 1490 * - known values we just compute (ie. from xbp) 1491 * - values from /boot/solaris/bootenv.rc (ie. eeprom(8) values) 1492 * 1493 * the grub command line looked like: 1494 * kernel boot-file [-B prop=value[,prop=value]...] [boot-args] 1495 * 1496 * whoami is the same as boot-file 1497 */ 1498 static void 1499 build_boot_properties(struct xboot_info *xbp) 1500 { 1501 char *name; 1502 int name_len; 1503 char *value; 1504 int value_len; 1505 struct boot_modules *bm, *rdbm, *benv = NULL; 1506 char *propbuf; 1507 int quoted = 0; 1508 int boot_arg_len; 1509 uint_t i, midx; 1510 char modid[32]; 1511 #ifndef __xpv 1512 static int stdout_val = 0; 1513 uchar_t boot_device; 1514 char str[3]; 1515 #endif 1516 1517 /* 1518 * These have to be done first, so that kobj_mount_root() works 1519 */ 1520 DBG_MSG("Building boot properties\n"); 1521 propbuf = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, 0); 1522 DBG((uintptr_t)propbuf); 1523 if (xbp->bi_module_cnt > 0) { 1524 bm = xbp->bi_modules; 1525 rdbm = NULL; 1526 for (midx = i = 0; i < xbp->bi_module_cnt; i++) { 1527 if (bm[i].bm_type == BMT_ROOTFS) { 1528 rdbm = &bm[i]; 1529 continue; 1530 } 1531 if (bm[i].bm_type == BMT_HASH || 1532 bm[i].bm_type == BMT_FONT || 1533 bm[i].bm_name == NULL) 1534 continue; 1535 1536 if (bm[i].bm_type == BMT_ENV) { 1537 if (benv == NULL) 1538 benv = &bm[i]; 1539 else 1540 continue; 1541 } 1542 1543 (void) snprintf(modid, sizeof (modid), 1544 "module-name-%u", midx); 1545 bsetprops(modid, (char *)bm[i].bm_name); 1546 (void) snprintf(modid, sizeof (modid), 1547 "module-addr-%u", midx); 1548 bsetprop64(modid, (uint64_t)(uintptr_t)bm[i].bm_addr); 1549 (void) snprintf(modid, sizeof (modid), 1550 "module-size-%u", midx); 1551 bsetprop64(modid, (uint64_t)bm[i].bm_size); 1552 ++midx; 1553 } 1554 if (rdbm != NULL) { 1555 bsetprop64("ramdisk_start", 1556 (uint64_t)(uintptr_t)rdbm->bm_addr); 1557 bsetprop64("ramdisk_end", 1558 (uint64_t)(uintptr_t)rdbm->bm_addr + rdbm->bm_size); 1559 } 1560 } 1561 1562 /* 1563 * If there are any boot time modules or hashes present, then disable 1564 * fast reboot. 1565 */ 1566 if (xbp->bi_module_cnt > 1) { 1567 fastreboot_disable(FBNS_BOOTMOD); 1568 } 1569 1570 #ifndef __xpv 1571 /* 1572 * Disable fast reboot if we're using the Multiboot 2 boot protocol, 1573 * since we don't currently support MB2 info and module relocation. 1574 * Note that fast reboot will have already been disabled if multiple 1575 * modules are present, since the current implementation assumes that 1576 * we only have a single module, the boot_archive. 1577 */ 1578 if (xbp->bi_mb_version != 1) { 1579 fastreboot_disable(FBNS_MULTIBOOT2); 1580 } 1581 #endif 1582 1583 DBG_MSG("Parsing command line for boot properties\n"); 1584 value = xbp->bi_cmdline; 1585 1586 /* 1587 * allocate memory to collect boot_args into 1588 */ 1589 boot_arg_len = strlen(xbp->bi_cmdline) + 1; 1590 boot_args = do_bsys_alloc(NULL, NULL, boot_arg_len, MMU_PAGESIZE); 1591 boot_args[0] = 0; 1592 boot_arg_len = 0; 1593 1594 #ifdef __xpv 1595 /* 1596 * Xen puts a lot of device information in front of the kernel name 1597 * let's grab them and make them boot properties. The first 1598 * string w/o an "=" in it will be the boot-file property. 1599 */ 1600 (void) strcpy(namebuf, "xpv-"); 1601 for (;;) { 1602 /* 1603 * get to next property 1604 */ 1605 while (ISSPACE(*value)) 1606 ++value; 1607 name = value; 1608 /* 1609 * look for an "=" 1610 */ 1611 while (*value && !ISSPACE(*value) && *value != '=') { 1612 value++; 1613 } 1614 if (*value != '=') { /* no "=" in the property */ 1615 value = name; 1616 break; 1617 } 1618 name_len = value - name; 1619 value_len = 0; 1620 /* 1621 * skip over the "=" 1622 */ 1623 value++; 1624 while (value[value_len] && !ISSPACE(value[value_len])) { 1625 ++value_len; 1626 } 1627 /* 1628 * build property name with "xpv-" prefix 1629 */ 1630 if (name_len + 4 > 32) { /* skip if name too long */ 1631 value += value_len; 1632 continue; 1633 } 1634 bcopy(name, &namebuf[4], name_len); 1635 name_len += 4; 1636 namebuf[name_len] = 0; 1637 bcopy(value, propbuf, value_len); 1638 propbuf[value_len] = 0; 1639 bsetprops(namebuf, propbuf); 1640 1641 /* 1642 * xpv-root is set to the logical disk name of the xen 1643 * VBD when booting from a disk-based filesystem. 1644 */ 1645 if (strcmp(namebuf, "xpv-root") == 0) 1646 xen_vbdroot_props(propbuf); 1647 /* 1648 * While we're here, if we have a "xpv-nfsroot" property 1649 * then we need to set "fstype" to "nfs" so we mount 1650 * our root from the nfs server. Also parse the xpv-nfsroot 1651 * property to create the properties that nfs_mountroot will 1652 * need to find the root and mount it. 1653 */ 1654 if (strcmp(namebuf, "xpv-nfsroot") == 0) 1655 xen_nfsroot_props(propbuf); 1656 1657 if (strcmp(namebuf, "xpv-ip") == 0) 1658 xen_ip_props(propbuf); 1659 value += value_len; 1660 } 1661 #endif 1662 1663 while (ISSPACE(*value)) 1664 ++value; 1665 /* 1666 * value now points at the boot-file 1667 */ 1668 value_len = 0; 1669 while (value[value_len] && !ISSPACE(value[value_len])) 1670 ++value_len; 1671 if (value_len > 0) { 1672 whoami = propbuf; 1673 bcopy(value, whoami, value_len); 1674 whoami[value_len] = 0; 1675 bsetprops("boot-file", whoami); 1676 /* 1677 * strip leading path stuff from whoami, so running from 1678 * PXE/miniroot makes sense. 1679 */ 1680 if (strstr(whoami, "/platform/") != NULL) 1681 whoami = strstr(whoami, "/platform/"); 1682 bsetprops("whoami", whoami); 1683 } 1684 1685 /* 1686 * Values forcibly set boot properties on the command line via -B. 1687 * Allow use of quotes in values. Other stuff goes on kernel 1688 * command line. 1689 */ 1690 name = value + value_len; 1691 while (*name != 0) { 1692 /* 1693 * anything not " -B" is copied to the command line 1694 */ 1695 if (!ISSPACE(name[0]) || name[1] != '-' || name[2] != 'B') { 1696 boot_args[boot_arg_len++] = *name; 1697 boot_args[boot_arg_len] = 0; 1698 ++name; 1699 continue; 1700 } 1701 1702 /* 1703 * skip the " -B" and following white space 1704 */ 1705 name += 3; 1706 while (ISSPACE(*name)) 1707 ++name; 1708 while (*name && !ISSPACE(*name)) { 1709 value = strstr(name, "="); 1710 if (value == NULL) 1711 break; 1712 name_len = value - name; 1713 ++value; 1714 value_len = 0; 1715 quoted = 0; 1716 for (; ; ++value_len) { 1717 if (!value[value_len]) 1718 break; 1719 1720 /* 1721 * is this value quoted? 1722 */ 1723 if (value_len == 0 && 1724 (value[0] == '\'' || value[0] == '"')) { 1725 quoted = value[0]; 1726 ++value_len; 1727 } 1728 1729 /* 1730 * In the quote accept any character, 1731 * but look for ending quote. 1732 */ 1733 if (quoted) { 1734 if (value[value_len] == quoted) 1735 quoted = 0; 1736 continue; 1737 } 1738 1739 /* 1740 * a comma or white space ends the value 1741 */ 1742 if (value[value_len] == ',' || 1743 ISSPACE(value[value_len])) 1744 break; 1745 } 1746 1747 if (value_len == 0) { 1748 bsetprop(DDI_PROP_TYPE_ANY, name, name_len, 1749 NULL, 0); 1750 } else { 1751 char *v = value; 1752 int l = value_len; 1753 if (v[0] == v[l - 1] && 1754 (v[0] == '\'' || v[0] == '"')) { 1755 ++v; 1756 l -= 2; 1757 } 1758 bcopy(v, propbuf, l); 1759 propbuf[l] = '\0'; 1760 bsetprop(DDI_PROP_TYPE_STRING, name, name_len, 1761 propbuf, l + 1); 1762 } 1763 name = value + value_len; 1764 while (*name == ',') 1765 ++name; 1766 } 1767 } 1768 1769 /* 1770 * set boot-args property 1771 * 1275 name is bootargs, so set 1772 * that too 1773 */ 1774 bsetprops("boot-args", boot_args); 1775 bsetprops("bootargs", boot_args); 1776 1777 process_boot_environment(benv); 1778 1779 #ifndef __xpv 1780 /* 1781 * Build boot command line for Fast Reboot 1782 */ 1783 build_fastboot_cmdline(xbp); 1784 1785 if (xbp->bi_mb_version == 1) { 1786 multiboot_info_t *mbi = xbp->bi_mb_info; 1787 int netboot; 1788 struct sol_netinfo *sip; 1789 1790 /* 1791 * set the BIOS boot device from GRUB 1792 */ 1793 netboot = 0; 1794 1795 /* 1796 * Save various boot information for Fast Reboot 1797 */ 1798 save_boot_info(xbp); 1799 1800 if (mbi != NULL && mbi->flags & MB_INFO_BOOTDEV) { 1801 boot_device = mbi->boot_device >> 24; 1802 if (boot_device == 0x20) 1803 netboot++; 1804 str[0] = (boot_device >> 4) + '0'; 1805 str[1] = (boot_device & 0xf) + '0'; 1806 str[2] = 0; 1807 bsetprops("bios-boot-device", str); 1808 } else { 1809 netboot = 1; 1810 } 1811 1812 /* 1813 * In the netboot case, drives_info is overloaded with the 1814 * dhcp ack. This is not multiboot compliant and requires 1815 * special pxegrub! 1816 */ 1817 if (netboot && mbi->drives_length != 0) { 1818 sip = (struct sol_netinfo *)(uintptr_t)mbi->drives_addr; 1819 if (sip->sn_infotype == SN_TYPE_BOOTP) 1820 bsetprop(DDI_PROP_TYPE_BYTE, 1821 "bootp-response", 1822 sizeof ("bootp-response"), 1823 (void *)(uintptr_t)mbi->drives_addr, 1824 mbi->drives_length); 1825 else if (sip->sn_infotype == SN_TYPE_RARP) 1826 setup_rarp_props(sip); 1827 } 1828 } else { 1829 multiboot2_info_header_t *mbi = xbp->bi_mb_info; 1830 multiboot_tag_bootdev_t *bootdev = NULL; 1831 multiboot_tag_network_t *netdev = NULL; 1832 1833 if (mbi != NULL) { 1834 bootdev = dboot_multiboot2_find_tag(mbi, 1835 MULTIBOOT_TAG_TYPE_BOOTDEV); 1836 netdev = dboot_multiboot2_find_tag(mbi, 1837 MULTIBOOT_TAG_TYPE_NETWORK); 1838 } 1839 if (bootdev != NULL) { 1840 DBG(bootdev->mb_biosdev); 1841 boot_device = bootdev->mb_biosdev; 1842 str[0] = (boot_device >> 4) + '0'; 1843 str[1] = (boot_device & 0xf) + '0'; 1844 str[2] = 0; 1845 bsetprops("bios-boot-device", str); 1846 } 1847 if (netdev != NULL) { 1848 bsetprop(DDI_PROP_TYPE_BYTE, 1849 "bootp-response", sizeof ("bootp-response"), 1850 (void *)(uintptr_t)netdev->mb_dhcpack, 1851 netdev->mb_size - 1852 sizeof (multiboot_tag_network_t)); 1853 } 1854 } 1855 1856 bsetprop32("stdout", stdout_val); 1857 #endif /* __xpv */ 1858 1859 /* 1860 * more conjured up values for made up things.... 1861 */ 1862 #if defined(__xpv) 1863 bsetprops("mfg-name", "i86xpv"); 1864 bsetprops("impl-arch-name", "i86xpv"); 1865 #else 1866 bsetprops("mfg-name", "i86pc"); 1867 bsetprops("impl-arch-name", "i86pc"); 1868 #endif 1869 1870 /* 1871 * Build firmware-provided system properties 1872 */ 1873 build_firmware_properties(xbp); 1874 1875 /* 1876 * XXPV 1877 * 1878 * Find out what these are: 1879 * - cpuid_feature_ecx_include 1880 * - cpuid_feature_ecx_exclude 1881 * - cpuid_feature_edx_include 1882 * - cpuid_feature_edx_exclude 1883 * 1884 * Find out what these are in multiboot: 1885 * - netdev-path 1886 * - fstype 1887 */ 1888 } 1889 1890 #ifdef __xpv 1891 /* 1892 * Under the Hypervisor, memory usable for DMA may be scarce. One 1893 * very likely large pool of DMA friendly memory is occupied by 1894 * the boot_archive, as it was loaded by grub into low MFNs. 1895 * 1896 * Here we free up that memory by copying the boot archive to what are 1897 * likely higher MFN pages and then swapping the mfn/pfn mappings. 1898 */ 1899 #define PFN_2GIG 0x80000 1900 static void 1901 relocate_boot_archive(struct xboot_info *xbp) 1902 { 1903 mfn_t max_mfn = HYPERVISOR_memory_op(XENMEM_maximum_ram_page, NULL); 1904 struct boot_modules *bm = xbp->bi_modules; 1905 uintptr_t va; 1906 pfn_t va_pfn; 1907 mfn_t va_mfn; 1908 caddr_t copy; 1909 pfn_t copy_pfn; 1910 mfn_t copy_mfn; 1911 size_t len; 1912 int slop; 1913 int total = 0; 1914 int relocated = 0; 1915 int mmu_update_return; 1916 mmu_update_t t[2]; 1917 x86pte_t pte; 1918 1919 /* 1920 * If all MFN's are below 2Gig, don't bother doing this. 1921 */ 1922 if (max_mfn < PFN_2GIG) 1923 return; 1924 if (xbp->bi_module_cnt < 1) { 1925 DBG_MSG("no boot_archive!"); 1926 return; 1927 } 1928 1929 DBG_MSG("moving boot_archive to high MFN memory\n"); 1930 va = (uintptr_t)bm->bm_addr; 1931 len = bm->bm_size; 1932 slop = va & MMU_PAGEOFFSET; 1933 if (slop) { 1934 va += MMU_PAGESIZE - slop; 1935 len -= MMU_PAGESIZE - slop; 1936 } 1937 len = P2ALIGN(len, MMU_PAGESIZE); 1938 1939 /* 1940 * Go through all boot_archive pages, swapping any low MFN pages 1941 * with memory at next_phys. 1942 */ 1943 while (len != 0) { 1944 ++total; 1945 va_pfn = mmu_btop(va - ONE_GIG); 1946 va_mfn = mfn_list[va_pfn]; 1947 if (mfn_list[va_pfn] < PFN_2GIG) { 1948 copy = kbm_remap_window(next_phys, 1); 1949 bcopy((void *)va, copy, MMU_PAGESIZE); 1950 copy_pfn = mmu_btop(next_phys); 1951 copy_mfn = mfn_list[copy_pfn]; 1952 1953 pte = mfn_to_ma(copy_mfn) | PT_NOCONSIST | PT_VALID; 1954 if (HYPERVISOR_update_va_mapping(va, pte, 1955 UVMF_INVLPG | UVMF_LOCAL)) 1956 bop_panic("relocate_boot_archive(): " 1957 "HYPERVISOR_update_va_mapping() failed"); 1958 1959 mfn_list[va_pfn] = copy_mfn; 1960 mfn_list[copy_pfn] = va_mfn; 1961 1962 t[0].ptr = mfn_to_ma(copy_mfn) | MMU_MACHPHYS_UPDATE; 1963 t[0].val = va_pfn; 1964 t[1].ptr = mfn_to_ma(va_mfn) | MMU_MACHPHYS_UPDATE; 1965 t[1].val = copy_pfn; 1966 if (HYPERVISOR_mmu_update(t, 2, &mmu_update_return, 1967 DOMID_SELF) != 0 || mmu_update_return != 2) 1968 bop_panic("relocate_boot_archive(): " 1969 "HYPERVISOR_mmu_update() failed"); 1970 1971 next_phys += MMU_PAGESIZE; 1972 ++relocated; 1973 } 1974 len -= MMU_PAGESIZE; 1975 va += MMU_PAGESIZE; 1976 } 1977 DBG_MSG("Relocated pages:\n"); 1978 DBG(relocated); 1979 DBG_MSG("Out of total pages:\n"); 1980 DBG(total); 1981 } 1982 #endif /* __xpv */ 1983 1984 #if !defined(__xpv) 1985 /* 1986 * simple description of a stack frame (args are 32 bit only currently) 1987 */ 1988 typedef struct bop_frame { 1989 struct bop_frame *old_frame; 1990 pc_t retaddr; 1991 long arg[1]; 1992 } bop_frame_t; 1993 1994 void 1995 bop_traceback(bop_frame_t *frame) 1996 { 1997 pc_t pc; 1998 int cnt; 1999 char *ksym; 2000 ulong_t off; 2001 2002 bop_printf(NULL, "Stack traceback:\n"); 2003 for (cnt = 0; cnt < 30; ++cnt) { /* up to 30 frames */ 2004 pc = frame->retaddr; 2005 if (pc == 0) 2006 break; 2007 ksym = kobj_getsymname(pc, &off); 2008 if (ksym) 2009 bop_printf(NULL, " %s+%lx", ksym, off); 2010 else 2011 bop_printf(NULL, " 0x%lx", pc); 2012 2013 frame = frame->old_frame; 2014 if (frame == 0) { 2015 bop_printf(NULL, "\n"); 2016 break; 2017 } 2018 bop_printf(NULL, "\n"); 2019 } 2020 } 2021 2022 struct trapframe { 2023 ulong_t error_code; /* optional */ 2024 ulong_t inst_ptr; 2025 ulong_t code_seg; 2026 ulong_t flags_reg; 2027 ulong_t stk_ptr; 2028 ulong_t stk_seg; 2029 }; 2030 2031 void 2032 bop_trap(ulong_t *tfp) 2033 { 2034 struct trapframe *tf = (struct trapframe *)tfp; 2035 bop_frame_t fakeframe; 2036 static int depth = 0; 2037 2038 /* 2039 * Check for an infinite loop of traps. 2040 */ 2041 if (++depth > 2) 2042 bop_panic("Nested trap"); 2043 2044 bop_printf(NULL, "Unexpected trap\n"); 2045 2046 /* 2047 * adjust the tf for optional error_code by detecting the code selector 2048 */ 2049 if (tf->code_seg != B64CODE_SEL) 2050 tf = (struct trapframe *)(tfp - 1); 2051 else 2052 bop_printf(NULL, "error code 0x%lx\n", 2053 tf->error_code & 0xffffffff); 2054 2055 bop_printf(NULL, "instruction pointer 0x%lx\n", tf->inst_ptr); 2056 bop_printf(NULL, "code segment 0x%lx\n", tf->code_seg & 0xffff); 2057 bop_printf(NULL, "flags register 0x%lx\n", tf->flags_reg); 2058 bop_printf(NULL, "return %%rsp 0x%lx\n", tf->stk_ptr); 2059 bop_printf(NULL, "return %%ss 0x%lx\n", tf->stk_seg & 0xffff); 2060 bop_printf(NULL, "%%cr2 0x%lx\n", getcr2()); 2061 2062 /* grab %[er]bp pushed by our code from the stack */ 2063 fakeframe.old_frame = (bop_frame_t *)*(tfp - 3); 2064 fakeframe.retaddr = (pc_t)tf->inst_ptr; 2065 bop_printf(NULL, "Attempting stack backtrace:\n"); 2066 bop_traceback(&fakeframe); 2067 bop_panic("unexpected trap in early boot"); 2068 } 2069 2070 extern void bop_trap_handler(void); 2071 2072 static gate_desc_t *bop_idt; 2073 2074 static desctbr_t bop_idt_info; 2075 2076 /* 2077 * Install a temporary IDT that lets us catch errors in the boot time code. 2078 * We shouldn't get any faults at all while this is installed, so we'll 2079 * just generate a traceback and exit. 2080 */ 2081 static void 2082 bop_idt_init(void) 2083 { 2084 int t; 2085 2086 bop_idt = (gate_desc_t *) 2087 do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE); 2088 bzero(bop_idt, MMU_PAGESIZE); 2089 for (t = 0; t < NIDT; ++t) { 2090 /* 2091 * Note that since boot runs without a TSS, the 2092 * double fault handler cannot use an alternate stack (64-bit). 2093 */ 2094 set_gatesegd(&bop_idt[t], &bop_trap_handler, B64CODE_SEL, 2095 SDT_SYSIGT, TRP_KPL, 0); 2096 } 2097 bop_idt_info.dtr_limit = (NIDT * sizeof (gate_desc_t)) - 1; 2098 bop_idt_info.dtr_base = (uintptr_t)bop_idt; 2099 wr_idtr(&bop_idt_info); 2100 } 2101 #endif /* !defined(__xpv) */ 2102 2103 /* 2104 * This is where we enter the kernel. It dummies up the boot_ops and 2105 * boot_syscalls vectors and jumps off to _kobj_boot() 2106 */ 2107 void 2108 _start(struct xboot_info *xbp) 2109 { 2110 bootops_t *bops = &bootop; 2111 extern void _kobj_boot(); 2112 2113 /* 2114 * 1st off - initialize the console for any error messages 2115 */ 2116 xbootp = xbp; 2117 #ifdef __xpv 2118 HYPERVISOR_shared_info = (void *)xbp->bi_shared_info; 2119 xen_info = xbp->bi_xen_start_info; 2120 #endif 2121 2122 #ifndef __xpv 2123 if (*((uint32_t *)(FASTBOOT_SWTCH_PA + FASTBOOT_STACK_OFFSET)) == 2124 FASTBOOT_MAGIC) { 2125 post_fastreboot = 1; 2126 *((uint32_t *)(FASTBOOT_SWTCH_PA + FASTBOOT_STACK_OFFSET)) = 0; 2127 } 2128 #endif 2129 2130 bcons_init(xbp); 2131 have_console = 1; 2132 2133 /* 2134 * enable debugging 2135 */ 2136 if (find_boot_prop("kbm_debug") != NULL) 2137 kbm_debug = 1; 2138 2139 DBG_MSG("\n\n*** Entered Solaris in _start() cmdline is: "); 2140 DBG_MSG((char *)xbp->bi_cmdline); 2141 DBG_MSG("\n\n\n"); 2142 2143 /* 2144 * physavail is no longer used by startup 2145 */ 2146 bm.physinstalled = xbp->bi_phys_install; 2147 bm.pcimem = xbp->bi_pcimem; 2148 bm.rsvdmem = xbp->bi_rsvdmem; 2149 bm.physavail = NULL; 2150 2151 /* 2152 * initialize the boot time allocator 2153 */ 2154 next_phys = xbp->bi_next_paddr; 2155 DBG(next_phys); 2156 next_virt = (uintptr_t)xbp->bi_next_vaddr; 2157 DBG(next_virt); 2158 DBG_MSG("Initializing boot time memory management..."); 2159 #ifdef __xpv 2160 { 2161 xen_platform_parameters_t p; 2162 2163 /* This call shouldn't fail, dboot already did it once. */ 2164 (void) HYPERVISOR_xen_version(XENVER_platform_parameters, &p); 2165 mfn_to_pfn_mapping = (pfn_t *)(xen_virt_start = p.virt_start); 2166 DBG(xen_virt_start); 2167 } 2168 #endif 2169 kbm_init(xbp); 2170 DBG_MSG("done\n"); 2171 2172 /* 2173 * Fill in the bootops vector 2174 */ 2175 bops->bsys_version = BO_VERSION; 2176 bops->boot_mem = &bm; 2177 bops->bsys_alloc = do_bsys_alloc; 2178 bops->bsys_free = do_bsys_free; 2179 bops->bsys_getproplen = do_bsys_getproplen; 2180 bops->bsys_getprop = do_bsys_getprop; 2181 bops->bsys_nextprop = do_bsys_nextprop; 2182 bops->bsys_printf = bop_printf; 2183 bops->bsys_doint = do_bsys_doint; 2184 2185 /* 2186 * BOP_EALLOC() is no longer needed 2187 */ 2188 bops->bsys_ealloc = do_bsys_ealloc; 2189 2190 #ifdef __xpv 2191 /* 2192 * On domain 0 we need to free up some physical memory that is 2193 * usable for DMA. Since GRUB loaded the boot_archive, it is 2194 * sitting in low MFN memory. We'll relocated the boot archive 2195 * pages to high PFN memory. 2196 */ 2197 if (DOMAIN_IS_INITDOMAIN(xen_info)) 2198 relocate_boot_archive(xbp); 2199 #endif 2200 2201 #ifndef __xpv 2202 /* 2203 * Install an IDT to catch early pagefaults (shouldn't have any). 2204 * Also needed for kmdb. 2205 */ 2206 bop_idt_init(); 2207 #endif 2208 /* Set up the shadow fb for framebuffer console */ 2209 boot_fb_shadow_init(bops); 2210 2211 /* 2212 * Start building the boot properties from the command line 2213 */ 2214 DBG_MSG("Initializing boot properties:\n"); 2215 build_boot_properties(xbp); 2216 2217 if (find_boot_prop("prom_debug") || kbm_debug) { 2218 char *value; 2219 2220 value = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE); 2221 boot_prop_display(value); 2222 } 2223 2224 /* 2225 * jump into krtld... 2226 */ 2227 _kobj_boot(&bop_sysp, NULL, bops, NULL); 2228 } 2229 2230 2231 /*ARGSUSED*/ 2232 static caddr_t 2233 no_more_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align) 2234 { 2235 panic("Attempt to bsys_alloc() too late\n"); 2236 return (NULL); 2237 } 2238 2239 /*ARGSUSED*/ 2240 static void 2241 no_more_free(bootops_t *bop, caddr_t virt, size_t size) 2242 { 2243 panic("Attempt to bsys_free() too late\n"); 2244 } 2245 2246 void 2247 bop_no_more_mem(void) 2248 { 2249 DBG(total_bop_alloc_scratch); 2250 DBG(total_bop_alloc_kernel); 2251 bootops->bsys_alloc = no_more_alloc; 2252 bootops->bsys_free = no_more_free; 2253 } 2254 2255 2256 /* 2257 * Set ACPI firmware properties 2258 */ 2259 2260 static caddr_t 2261 vmap_phys(size_t length, paddr_t pa) 2262 { 2263 paddr_t start, end; 2264 caddr_t va; 2265 size_t len, page; 2266 2267 #ifdef __xpv 2268 pa = pfn_to_pa(xen_assign_pfn(mmu_btop(pa))) | (pa & MMU_PAGEOFFSET); 2269 #endif 2270 start = P2ALIGN(pa, MMU_PAGESIZE); 2271 end = P2ROUNDUP(pa + length, MMU_PAGESIZE); 2272 len = end - start; 2273 va = (caddr_t)alloc_vaddr(len, MMU_PAGESIZE); 2274 for (page = 0; page < len; page += MMU_PAGESIZE) 2275 kbm_map((uintptr_t)va + page, start + page, 0, 0); 2276 return (va + (pa & MMU_PAGEOFFSET)); 2277 } 2278 2279 static uint8_t 2280 checksum_table(uint8_t *tp, size_t len) 2281 { 2282 uint8_t sum = 0; 2283 2284 while (len-- > 0) 2285 sum += *tp++; 2286 2287 return (sum); 2288 } 2289 2290 static int 2291 valid_rsdp(ACPI_TABLE_RSDP *rp) 2292 { 2293 2294 /* validate the V1.x checksum */ 2295 if (checksum_table((uint8_t *)rp, ACPI_RSDP_CHECKSUM_LENGTH) != 0) 2296 return (0); 2297 2298 /* If pre-ACPI 2.0, this is a valid RSDP */ 2299 if (rp->Revision < 2) 2300 return (1); 2301 2302 /* validate the V2.x checksum */ 2303 if (checksum_table((uint8_t *)rp, ACPI_RSDP_XCHECKSUM_LENGTH) != 0) 2304 return (0); 2305 2306 return (1); 2307 } 2308 2309 /* 2310 * Scan memory range for an RSDP; 2311 * see ACPI 3.0 Spec, 5.2.5.1 2312 */ 2313 static ACPI_TABLE_RSDP * 2314 scan_rsdp(paddr_t *paddrp, size_t len) 2315 { 2316 paddr_t paddr = *paddrp; 2317 caddr_t ptr; 2318 2319 ptr = vmap_phys(len, paddr); 2320 2321 while (len > 0) { 2322 if (strncmp(ptr, ACPI_SIG_RSDP, strlen(ACPI_SIG_RSDP)) == 0 && 2323 valid_rsdp((ACPI_TABLE_RSDP *)ptr)) { 2324 *paddrp = paddr; 2325 return ((ACPI_TABLE_RSDP *)ptr); 2326 } 2327 2328 ptr += ACPI_RSDP_SCAN_STEP; 2329 paddr += ACPI_RSDP_SCAN_STEP; 2330 len -= ACPI_RSDP_SCAN_STEP; 2331 } 2332 2333 return (NULL); 2334 } 2335 2336 /* 2337 * Locate the ACPI RSDP. We search in a particular order: 2338 * 2339 * - If the bootloader told us the location of the RSDP (via the EFI system 2340 * table), try that first. 2341 * - Otherwise, look in the EBDA and BIOS memory as per ACPI 5.2.5.1 (legacy 2342 * case). 2343 * - Finally, our bootloader may have a copy of the RSDP in its info: this might 2344 * get freed after boot, so we always prefer to find the original RSDP first. 2345 * 2346 * Once found, we set acpi-root-tab property (a physical address) for the 2347 * benefit of acpica, acpidump etc. 2348 */ 2349 2350 static ACPI_TABLE_RSDP * 2351 find_rsdp(struct xboot_info *xbp) 2352 { 2353 ACPI_TABLE_RSDP *rsdp = NULL; 2354 paddr_t paddr = 0; 2355 2356 if (do_bsys_getproplen(NULL, "acpi-root-tab") == sizeof (uint64_t)) { 2357 (void) do_bsys_getprop(NULL, "acpi-root-tab", &paddr); 2358 rsdp = scan_rsdp(&paddr, sizeof (*rsdp)); 2359 } 2360 2361 #ifndef __xpv 2362 if (rsdp == NULL && xbp->bi_acpi_rsdp != NULL) { 2363 paddr = (uintptr_t)xbp->bi_acpi_rsdp; 2364 rsdp = scan_rsdp(&paddr, sizeof (*rsdp)); 2365 } 2366 #endif 2367 2368 if (rsdp == NULL) { 2369 uint16_t *ebda_seg = (uint16_t *)vmap_phys(sizeof (uint16_t), 2370 ACPI_EBDA_PTR_LOCATION); 2371 paddr = *ebda_seg << 4; 2372 rsdp = scan_rsdp(&paddr, ACPI_EBDA_WINDOW_SIZE); 2373 } 2374 2375 if (rsdp == NULL) { 2376 paddr = ACPI_HI_RSDP_WINDOW_BASE; 2377 rsdp = scan_rsdp(&paddr, ACPI_HI_RSDP_WINDOW_SIZE); 2378 } 2379 2380 #ifndef __xpv 2381 if (rsdp == NULL && xbp->bi_acpi_rsdp_copy != NULL) { 2382 paddr = (uintptr_t)xbp->bi_acpi_rsdp_copy; 2383 rsdp = scan_rsdp(&paddr, sizeof (*rsdp)); 2384 } 2385 #endif 2386 2387 if (rsdp == NULL) { 2388 bop_printf(NULL, "no RSDP found!\n"); 2389 return (NULL); 2390 } 2391 2392 if (kbm_debug) 2393 bop_printf(NULL, "RSDP found at physical 0x%lx\n", paddr); 2394 2395 if (do_bsys_getproplen(NULL, "acpi-root-tab") != sizeof (uint64_t)) 2396 bsetprop64("acpi-root-tab", paddr); 2397 2398 return (rsdp); 2399 } 2400 2401 static ACPI_TABLE_HEADER * 2402 map_fw_table(paddr_t table_addr) 2403 { 2404 ACPI_TABLE_HEADER *tp; 2405 size_t len = MAX(sizeof (*tp), MMU_PAGESIZE); 2406 2407 /* 2408 * Map at least a page; if the table is larger than this, remap it 2409 */ 2410 tp = (ACPI_TABLE_HEADER *)vmap_phys(len, table_addr); 2411 if (tp->Length > len) 2412 tp = (ACPI_TABLE_HEADER *)vmap_phys(tp->Length, table_addr); 2413 return (tp); 2414 } 2415 2416 static ACPI_TABLE_HEADER * 2417 find_fw_table(ACPI_TABLE_RSDP *rsdp, char *signature) 2418 { 2419 static int revision = 0; 2420 static ACPI_TABLE_XSDT *xsdt; 2421 static int len; 2422 paddr_t xsdt_addr; 2423 ACPI_TABLE_HEADER *tp; 2424 paddr_t table_addr; 2425 int n; 2426 2427 if (strlen(signature) != ACPI_NAME_SIZE) 2428 return (NULL); 2429 2430 /* 2431 * Reading the ACPI 3.0 Spec, section 5.2.5.3 will help 2432 * understand this code. If we haven't already found the RSDT/XSDT, 2433 * revision will be 0. Find the RSDP and check the revision 2434 * to find out whether to use the RSDT or XSDT. If revision is 2435 * 0 or 1, use the RSDT and set internal revision to 1; if it is 2, 2436 * use the XSDT. If the XSDT address is 0, though, fall back to 2437 * revision 1 and use the RSDT. 2438 */ 2439 xsdt_addr = 0; 2440 if (revision == 0) { 2441 if (rsdp == NULL) 2442 return (NULL); 2443 2444 revision = rsdp->Revision; 2445 /* 2446 * ACPI 6.0 states that current revision is 2 2447 * from acpi_table_rsdp definition: 2448 * Must be (0) for ACPI 1.0 or (2) for ACPI 2.0+ 2449 */ 2450 if (revision > 2) 2451 revision = 2; 2452 switch (revision) { 2453 case 2: 2454 /* 2455 * Use the XSDT unless BIOS is buggy and 2456 * claims to be rev 2 but has a null XSDT 2457 * address 2458 */ 2459 xsdt_addr = rsdp->XsdtPhysicalAddress; 2460 if (xsdt_addr != 0) 2461 break; 2462 /* FALLTHROUGH */ 2463 case 0: 2464 /* treat RSDP rev 0 as revision 1 internally */ 2465 revision = 1; 2466 /* FALLTHROUGH */ 2467 case 1: 2468 /* use the RSDT for rev 0/1 */ 2469 xsdt_addr = rsdp->RsdtPhysicalAddress; 2470 break; 2471 default: 2472 /* unknown revision */ 2473 revision = 0; 2474 break; 2475 } 2476 2477 if (revision == 0) 2478 return (NULL); 2479 2480 /* cache the XSDT info */ 2481 xsdt = (ACPI_TABLE_XSDT *)map_fw_table(xsdt_addr); 2482 len = (xsdt->Header.Length - sizeof (xsdt->Header)) / 2483 ((revision == 1) ? sizeof (uint32_t) : sizeof (uint64_t)); 2484 } 2485 2486 /* 2487 * Scan the table headers looking for a signature match 2488 */ 2489 for (n = 0; n < len; n++) { 2490 ACPI_TABLE_RSDT *rsdt = (ACPI_TABLE_RSDT *)xsdt; 2491 table_addr = (revision == 1) ? rsdt->TableOffsetEntry[n] : 2492 xsdt->TableOffsetEntry[n]; 2493 2494 if (table_addr == 0) 2495 continue; 2496 tp = map_fw_table(table_addr); 2497 if (strncmp(tp->Signature, signature, ACPI_NAME_SIZE) == 0) { 2498 return (tp); 2499 } 2500 } 2501 return (NULL); 2502 } 2503 2504 static void 2505 process_mcfg(ACPI_TABLE_MCFG *tp) 2506 { 2507 ACPI_MCFG_ALLOCATION *cfg_baap; 2508 char *cfg_baa_endp; 2509 int64_t ecfginfo[4]; 2510 2511 cfg_baap = (ACPI_MCFG_ALLOCATION *)((uintptr_t)tp + sizeof (*tp)); 2512 cfg_baa_endp = ((char *)tp) + tp->Header.Length; 2513 while ((char *)cfg_baap < cfg_baa_endp) { 2514 if (cfg_baap->Address != 0 && cfg_baap->PciSegment == 0) { 2515 ecfginfo[0] = cfg_baap->Address; 2516 ecfginfo[1] = cfg_baap->PciSegment; 2517 ecfginfo[2] = cfg_baap->StartBusNumber; 2518 ecfginfo[3] = cfg_baap->EndBusNumber; 2519 bsetprop(DDI_PROP_TYPE_INT64, 2520 MCFG_PROPNAME, strlen(MCFG_PROPNAME), 2521 ecfginfo, sizeof (ecfginfo)); 2522 break; 2523 } 2524 cfg_baap++; 2525 } 2526 } 2527 2528 #ifndef __xpv 2529 static void 2530 process_madt_entries(ACPI_TABLE_MADT *tp, uint32_t *cpu_countp, 2531 uint32_t *cpu_possible_countp, uint32_t *cpu_apicid_array) 2532 { 2533 ACPI_SUBTABLE_HEADER *item, *end; 2534 uint32_t cpu_count = 0; 2535 uint32_t cpu_possible_count = 0; 2536 2537 /* 2538 * Determine number of CPUs and keep track of "final" APIC ID 2539 * for each CPU by walking through ACPI MADT processor list 2540 */ 2541 end = (ACPI_SUBTABLE_HEADER *)(tp->Header.Length + (uintptr_t)tp); 2542 item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)tp + sizeof (*tp)); 2543 2544 while (item < end) { 2545 switch (item->Type) { 2546 case ACPI_MADT_TYPE_LOCAL_APIC: { 2547 ACPI_MADT_LOCAL_APIC *cpu = 2548 (ACPI_MADT_LOCAL_APIC *) item; 2549 2550 if (cpu->LapicFlags & ACPI_MADT_ENABLED) { 2551 if (cpu_apicid_array != NULL) 2552 cpu_apicid_array[cpu_count] = cpu->Id; 2553 cpu_count++; 2554 } 2555 cpu_possible_count++; 2556 break; 2557 } 2558 case ACPI_MADT_TYPE_LOCAL_X2APIC: { 2559 ACPI_MADT_LOCAL_X2APIC *cpu = 2560 (ACPI_MADT_LOCAL_X2APIC *) item; 2561 2562 if (cpu->LapicFlags & ACPI_MADT_ENABLED) { 2563 if (cpu_apicid_array != NULL) 2564 cpu_apicid_array[cpu_count] = 2565 cpu->LocalApicId; 2566 cpu_count++; 2567 } 2568 cpu_possible_count++; 2569 break; 2570 } 2571 default: 2572 if (kbm_debug) 2573 bop_printf(NULL, "MADT type %d\n", item->Type); 2574 break; 2575 } 2576 2577 item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)item + item->Length); 2578 } 2579 if (cpu_countp) 2580 *cpu_countp = cpu_count; 2581 if (cpu_possible_countp) 2582 *cpu_possible_countp = cpu_possible_count; 2583 } 2584 2585 static void 2586 process_madt(ACPI_TABLE_MADT *tp) 2587 { 2588 uint32_t cpu_count = 0; 2589 uint32_t cpu_possible_count = 0; 2590 uint32_t *cpu_apicid_array; /* x2APIC ID is 32bit! */ 2591 2592 if (tp != NULL) { 2593 /* count cpu's */ 2594 process_madt_entries(tp, &cpu_count, &cpu_possible_count, NULL); 2595 2596 cpu_apicid_array = (uint32_t *)do_bsys_alloc(NULL, NULL, 2597 cpu_count * sizeof (*cpu_apicid_array), MMU_PAGESIZE); 2598 if (cpu_apicid_array == NULL) 2599 bop_panic("Not enough memory for APIC ID array"); 2600 2601 /* copy IDs */ 2602 process_madt_entries(tp, NULL, NULL, cpu_apicid_array); 2603 2604 /* 2605 * Make boot property for array of "final" APIC IDs for each 2606 * CPU 2607 */ 2608 bsetprop(DDI_PROP_TYPE_INT, 2609 BP_CPU_APICID_ARRAY, strlen(BP_CPU_APICID_ARRAY), 2610 cpu_apicid_array, cpu_count * sizeof (*cpu_apicid_array)); 2611 } 2612 2613 /* 2614 * Check whether property plat-max-ncpus is already set. 2615 */ 2616 if (do_bsys_getproplen(NULL, PLAT_MAX_NCPUS_NAME) < 0) { 2617 /* 2618 * Set plat-max-ncpus to number of maximum possible CPUs given 2619 * in MADT if it hasn't been set. 2620 * There's no formal way to detect max possible CPUs supported 2621 * by platform according to ACPI spec3.0b. So current CPU 2622 * hotplug implementation expects that all possible CPUs will 2623 * have an entry in MADT table and set plat-max-ncpus to number 2624 * of entries in MADT. 2625 * With introducing of ACPI4.0, Maximum System Capability Table 2626 * (MSCT) provides maximum number of CPUs supported by platform. 2627 * If MSCT is unavailable, fall back to old way. 2628 */ 2629 if (tp != NULL) 2630 bsetpropsi(PLAT_MAX_NCPUS_NAME, cpu_possible_count); 2631 } 2632 2633 /* 2634 * Set boot property boot-max-ncpus to number of CPUs existing at 2635 * boot time. boot-max-ncpus is mainly used for optimization. 2636 */ 2637 if (tp != NULL) 2638 bsetpropsi(BOOT_MAX_NCPUS_NAME, cpu_count); 2639 2640 /* 2641 * User-set boot-ncpus overrides firmware count 2642 */ 2643 if (do_bsys_getproplen(NULL, BOOT_NCPUS_NAME) >= 0) 2644 return; 2645 2646 /* 2647 * Set boot property boot-ncpus to number of active CPUs given in MADT 2648 * if it hasn't been set yet. 2649 */ 2650 if (tp != NULL) 2651 bsetpropsi(BOOT_NCPUS_NAME, cpu_count); 2652 } 2653 2654 static void 2655 process_srat(ACPI_TABLE_SRAT *tp) 2656 { 2657 ACPI_SUBTABLE_HEADER *item, *end; 2658 int i; 2659 int proc_num, mem_num; 2660 #pragma pack(1) 2661 struct { 2662 uint32_t domain; 2663 uint32_t apic_id; 2664 uint32_t sapic_id; 2665 } processor; 2666 struct { 2667 uint32_t domain; 2668 uint32_t x2apic_id; 2669 } x2apic; 2670 struct { 2671 uint32_t domain; 2672 uint64_t addr; 2673 uint64_t length; 2674 uint32_t flags; 2675 } memory; 2676 #pragma pack() 2677 char prop_name[30]; 2678 uint64_t maxmem = 0; 2679 2680 if (tp == NULL) 2681 return; 2682 2683 proc_num = mem_num = 0; 2684 end = (ACPI_SUBTABLE_HEADER *)(tp->Header.Length + (uintptr_t)tp); 2685 item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)tp + sizeof (*tp)); 2686 while (item < end) { 2687 switch (item->Type) { 2688 case ACPI_SRAT_TYPE_CPU_AFFINITY: { 2689 ACPI_SRAT_CPU_AFFINITY *cpu = 2690 (ACPI_SRAT_CPU_AFFINITY *) item; 2691 2692 if (!(cpu->Flags & ACPI_SRAT_CPU_ENABLED)) 2693 break; 2694 processor.domain = cpu->ProximityDomainLo; 2695 for (i = 0; i < 3; i++) 2696 processor.domain += 2697 cpu->ProximityDomainHi[i] << ((i + 1) * 8); 2698 processor.apic_id = cpu->ApicId; 2699 processor.sapic_id = cpu->LocalSapicEid; 2700 (void) snprintf(prop_name, 30, "acpi-srat-processor-%d", 2701 proc_num); 2702 bsetprop(DDI_PROP_TYPE_INT, 2703 prop_name, strlen(prop_name), &processor, 2704 sizeof (processor)); 2705 proc_num++; 2706 break; 2707 } 2708 case ACPI_SRAT_TYPE_MEMORY_AFFINITY: { 2709 ACPI_SRAT_MEM_AFFINITY *mem = 2710 (ACPI_SRAT_MEM_AFFINITY *)item; 2711 2712 if (!(mem->Flags & ACPI_SRAT_MEM_ENABLED)) 2713 break; 2714 memory.domain = mem->ProximityDomain; 2715 memory.addr = mem->BaseAddress; 2716 memory.length = mem->Length; 2717 memory.flags = mem->Flags; 2718 (void) snprintf(prop_name, 30, "acpi-srat-memory-%d", 2719 mem_num); 2720 bsetprop(DDI_PROP_TYPE_INT, 2721 prop_name, strlen(prop_name), &memory, 2722 sizeof (memory)); 2723 if ((mem->Flags & ACPI_SRAT_MEM_HOT_PLUGGABLE) && 2724 (memory.addr + memory.length > maxmem)) { 2725 maxmem = memory.addr + memory.length; 2726 } 2727 mem_num++; 2728 break; 2729 } 2730 case ACPI_SRAT_TYPE_X2APIC_CPU_AFFINITY: { 2731 ACPI_SRAT_X2APIC_CPU_AFFINITY *x2cpu = 2732 (ACPI_SRAT_X2APIC_CPU_AFFINITY *) item; 2733 2734 if (!(x2cpu->Flags & ACPI_SRAT_CPU_ENABLED)) 2735 break; 2736 x2apic.domain = x2cpu->ProximityDomain; 2737 x2apic.x2apic_id = x2cpu->ApicId; 2738 (void) snprintf(prop_name, 30, "acpi-srat-processor-%d", 2739 proc_num); 2740 bsetprop(DDI_PROP_TYPE_INT, 2741 prop_name, strlen(prop_name), &x2apic, 2742 sizeof (x2apic)); 2743 proc_num++; 2744 break; 2745 } 2746 default: 2747 if (kbm_debug) 2748 bop_printf(NULL, "SRAT type %d\n", item->Type); 2749 break; 2750 } 2751 2752 item = (ACPI_SUBTABLE_HEADER *) 2753 (item->Length + (uintptr_t)item); 2754 } 2755 2756 /* 2757 * The maximum physical address calculated from the SRAT table is more 2758 * accurate than that calculated from the MSCT table. 2759 */ 2760 if (maxmem != 0) { 2761 plat_dr_physmax = btop(maxmem); 2762 } 2763 } 2764 2765 static void 2766 process_slit(ACPI_TABLE_SLIT *tp) 2767 { 2768 2769 /* 2770 * Check the number of localities; if it's too huge, we just 2771 * return and locality enumeration code will handle this later, 2772 * if possible. 2773 * 2774 * Note that the size of the table is the square of the 2775 * number of localities; if the number of localities exceeds 2776 * UINT16_MAX, the table size may overflow an int when being 2777 * passed to bsetprop() below. 2778 */ 2779 if (tp->LocalityCount >= SLIT_LOCALITIES_MAX) 2780 return; 2781 2782 bsetprop64(SLIT_NUM_PROPNAME, tp->LocalityCount); 2783 bsetprop(DDI_PROP_TYPE_BYTE, 2784 SLIT_PROPNAME, strlen(SLIT_PROPNAME), &tp->Entry, 2785 tp->LocalityCount * tp->LocalityCount); 2786 } 2787 2788 static ACPI_TABLE_MSCT * 2789 process_msct(ACPI_TABLE_MSCT *tp) 2790 { 2791 int last_seen = 0; 2792 int proc_num = 0; 2793 ACPI_MSCT_PROXIMITY *item, *end; 2794 extern uint64_t plat_dr_options; 2795 2796 ASSERT(tp != NULL); 2797 2798 end = (ACPI_MSCT_PROXIMITY *)(tp->Header.Length + (uintptr_t)tp); 2799 for (item = (void *)((uintptr_t)tp + tp->ProximityOffset); 2800 item < end; 2801 item = (void *)(item->Length + (uintptr_t)item)) { 2802 /* 2803 * Sanity check according to section 5.2.19.1 of ACPI 4.0. 2804 * Revision 1 2805 * Length 22 2806 */ 2807 if (item->Revision != 1 || item->Length != 22) { 2808 cmn_err(CE_CONT, 2809 "?boot: unknown proximity domain structure in MSCT " 2810 "with Revision(%d), Length(%d).\n", 2811 (int)item->Revision, (int)item->Length); 2812 return (NULL); 2813 } else if (item->RangeStart > item->RangeEnd) { 2814 cmn_err(CE_CONT, 2815 "?boot: invalid proximity domain structure in MSCT " 2816 "with RangeStart(%u), RangeEnd(%u).\n", 2817 item->RangeStart, item->RangeEnd); 2818 return (NULL); 2819 } else if (item->RangeStart != last_seen) { 2820 /* 2821 * Items must be organized in ascending order of the 2822 * proximity domain enumerations. 2823 */ 2824 cmn_err(CE_CONT, 2825 "?boot: invalid proximity domain structure in MSCT," 2826 " items are not orginized in ascending order.\n"); 2827 return (NULL); 2828 } 2829 2830 /* 2831 * If ProcessorCapacity is 0 then there would be no CPUs in this 2832 * domain. 2833 */ 2834 if (item->ProcessorCapacity != 0) { 2835 proc_num += (item->RangeEnd - item->RangeStart + 1) * 2836 item->ProcessorCapacity; 2837 } 2838 2839 last_seen = item->RangeEnd - item->RangeStart + 1; 2840 /* 2841 * Break out if all proximity domains have been processed. 2842 * Some BIOSes may have unused items at the end of MSCT table. 2843 */ 2844 if (last_seen > tp->MaxProximityDomains) { 2845 break; 2846 } 2847 } 2848 if (last_seen != tp->MaxProximityDomains + 1) { 2849 cmn_err(CE_CONT, 2850 "?boot: invalid proximity domain structure in MSCT, " 2851 "proximity domain count doesn't match.\n"); 2852 return (NULL); 2853 } 2854 2855 /* 2856 * Set plat-max-ncpus property if it hasn't been set yet. 2857 */ 2858 if (do_bsys_getproplen(NULL, PLAT_MAX_NCPUS_NAME) < 0) { 2859 if (proc_num != 0) { 2860 bsetpropsi(PLAT_MAX_NCPUS_NAME, proc_num); 2861 } 2862 } 2863 2864 /* 2865 * Use Maximum Physical Address from the MSCT table as upper limit for 2866 * memory hot-adding by default. It may be overridden by value from 2867 * the SRAT table or the "plat-dr-physmax" boot option. 2868 */ 2869 plat_dr_physmax = btop(tp->MaxAddress + 1); 2870 2871 /* 2872 * Existence of MSCT implies CPU/memory hotplug-capability for the 2873 * platform. 2874 */ 2875 plat_dr_options |= PLAT_DR_FEATURE_CPU; 2876 plat_dr_options |= PLAT_DR_FEATURE_MEMORY; 2877 2878 return (tp); 2879 } 2880 2881 #else /* __xpv */ 2882 static void 2883 enumerate_xen_cpus() 2884 { 2885 processorid_t id, max_id; 2886 2887 /* 2888 * User-set boot-ncpus overrides enumeration 2889 */ 2890 if (do_bsys_getproplen(NULL, BOOT_NCPUS_NAME) >= 0) 2891 return; 2892 2893 /* 2894 * Probe every possible virtual CPU id and remember the 2895 * highest id present; the count of CPUs is one greater 2896 * than this. This tacitly assumes at least cpu 0 is present. 2897 */ 2898 max_id = 0; 2899 for (id = 0; id < MAX_VIRT_CPUS; id++) 2900 if (HYPERVISOR_vcpu_op(VCPUOP_is_up, id, NULL) == 0) 2901 max_id = id; 2902 2903 bsetpropsi(BOOT_NCPUS_NAME, max_id+1); 2904 2905 } 2906 #endif /* __xpv */ 2907 2908 /*ARGSUSED*/ 2909 static void 2910 build_firmware_properties(struct xboot_info *xbp) 2911 { 2912 ACPI_TABLE_HEADER *tp = NULL; 2913 ACPI_TABLE_RSDP *rsdp; 2914 2915 #ifndef __xpv 2916 if (xbp->bi_uefi_arch == XBI_UEFI_ARCH_64) { 2917 bsetprops("efi-systype", "64"); 2918 bsetprop64("efi-systab", 2919 (uint64_t)(uintptr_t)xbp->bi_uefi_systab); 2920 if (kbm_debug) 2921 bop_printf(NULL, "64-bit UEFI detected.\n"); 2922 } else if (xbp->bi_uefi_arch == XBI_UEFI_ARCH_32) { 2923 bsetprops("efi-systype", "32"); 2924 bsetprop64("efi-systab", 2925 (uint64_t)(uintptr_t)xbp->bi_uefi_systab); 2926 if (kbm_debug) 2927 bop_printf(NULL, "32-bit UEFI detected.\n"); 2928 } 2929 2930 if (xbp->bi_smbios != NULL) { 2931 bsetprop64("smbios-address", 2932 (uint64_t)(uintptr_t)xbp->bi_smbios); 2933 } 2934 2935 rsdp = find_rsdp(xbp); 2936 2937 if ((tp = find_fw_table(rsdp, ACPI_SIG_MSCT)) != NULL) 2938 msct_ptr = process_msct((ACPI_TABLE_MSCT *)tp); 2939 else 2940 msct_ptr = NULL; 2941 2942 if ((tp = find_fw_table(rsdp, ACPI_SIG_MADT)) != NULL) 2943 process_madt((ACPI_TABLE_MADT *)tp); 2944 2945 if ((srat_ptr = (ACPI_TABLE_SRAT *) 2946 find_fw_table(rsdp, ACPI_SIG_SRAT)) != NULL) 2947 process_srat(srat_ptr); 2948 2949 if ((slit_ptr = (ACPI_TABLE_SLIT *)find_fw_table(rsdp, 2950 ACPI_SIG_SLIT)) != NULL) 2951 process_slit(slit_ptr); 2952 2953 tp = find_fw_table(rsdp, ACPI_SIG_MCFG); 2954 #else /* __xpv */ 2955 enumerate_xen_cpus(); 2956 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 2957 rsdp = find_rsdp(xbp); 2958 tp = find_fw_table(rsdp, ACPI_SIG_MCFG); 2959 } 2960 #endif /* __xpv */ 2961 if (tp != NULL) 2962 process_mcfg((ACPI_TABLE_MCFG *)tp); 2963 2964 /* 2965 * Map the first HPET table (if it exists) and save the address. 2966 * If the HPET is required to calibrate the TSC, we require the 2967 * HPET table prior to being able to load modules, so we cannot use 2968 * the acpica module (and thus AcpiGetTable()) to locate it. 2969 */ 2970 if ((tp = find_fw_table(rsdp, ACPI_SIG_HPET)) != NULL) 2971 bsetprop64("hpet-table", (uint64_t)(uintptr_t)tp); 2972 } 2973 2974 /* 2975 * fake up a boot property for deferred early console output 2976 * this is used by both graphical boot and the (developer only) 2977 * USB serial console 2978 */ 2979 void * 2980 defcons_init(size_t size) 2981 { 2982 static char *p = NULL; 2983 2984 p = do_bsys_alloc(NULL, NULL, size, MMU_PAGESIZE); 2985 *p = 0; 2986 bsetprop32("deferred-console-buf", (uint32_t)((uintptr_t)&p)); 2987 return (p); 2988 } 2989 2990 /*ARGSUSED*/ 2991 int 2992 boot_compinfo(int fd, struct compinfo *cbp) 2993 { 2994 cbp->iscmp = 0; 2995 cbp->blksize = MAXBSIZE; 2996 return (0); 2997 } 2998 2999 /* 3000 * Get an integer value for given boot property 3001 */ 3002 int 3003 bootprop_getval(const char *prop_name, u_longlong_t *prop_value) 3004 { 3005 int boot_prop_len; 3006 char str[BP_MAX_STRLEN]; 3007 u_longlong_t value; 3008 3009 boot_prop_len = BOP_GETPROPLEN(bootops, prop_name); 3010 if (boot_prop_len < 0 || boot_prop_len >= sizeof (str) || 3011 BOP_GETPROP(bootops, prop_name, str) < 0 || 3012 kobj_getvalue(str, &value) == -1) 3013 return (-1); 3014 3015 if (prop_value) 3016 *prop_value = value; 3017 3018 return (0); 3019 } 3020 3021 int 3022 bootprop_getstr(const char *prop_name, char *buf, size_t buflen) 3023 { 3024 int boot_prop_len = BOP_GETPROPLEN(bootops, prop_name); 3025 3026 if (boot_prop_len < 0 || boot_prop_len >= buflen || 3027 BOP_GETPROP(bootops, prop_name, buf) < 0) 3028 return (-1); 3029 3030 return (0); 3031 } 3032