1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 * 26 * Copyright (c) 2010, Intel Corporation. 27 * All rights reserved. 28 * 29 * Copyright 2020 Joyent, Inc. 30 */ 31 32 /* 33 * This file contains the functionality that mimics the boot operations 34 * on SPARC systems or the old boot.bin/multiboot programs on x86 systems. 35 * The x86 kernel now does everything on its own. 36 */ 37 38 #include <sys/types.h> 39 #include <sys/bootconf.h> 40 #include <sys/bootsvcs.h> 41 #include <sys/bootinfo.h> 42 #include <sys/multiboot.h> 43 #include <sys/multiboot2.h> 44 #include <sys/multiboot2_impl.h> 45 #include <sys/bootvfs.h> 46 #include <sys/bootprops.h> 47 #include <sys/varargs.h> 48 #include <sys/param.h> 49 #include <sys/machparam.h> 50 #include <sys/machsystm.h> 51 #include <sys/archsystm.h> 52 #include <sys/boot_console.h> 53 #include <sys/framebuffer.h> 54 #include <sys/cmn_err.h> 55 #include <sys/systm.h> 56 #include <sys/promif.h> 57 #include <sys/archsystm.h> 58 #include <sys/x86_archext.h> 59 #include <sys/kobj.h> 60 #include <sys/privregs.h> 61 #include <sys/sysmacros.h> 62 #include <sys/ctype.h> 63 #include <sys/fastboot.h> 64 #ifdef __xpv 65 #include <sys/hypervisor.h> 66 #include <net/if.h> 67 #endif 68 #include <vm/kboot_mmu.h> 69 #include <vm/hat_pte.h> 70 #include <sys/kobj.h> 71 #include <sys/kobj_lex.h> 72 #include <sys/pci_cfgspace_impl.h> 73 #include <sys/fastboot_impl.h> 74 #include <sys/acpi/acconfig.h> 75 #include <sys/acpi/acpi.h> 76 #include <sys/ddipropdefs.h> /* For DDI prop types */ 77 78 static int have_console = 0; /* set once primitive console is initialized */ 79 static char *boot_args = ""; 80 81 /* 82 * Debugging macros 83 */ 84 static uint_t kbm_debug = 0; 85 #define DBG_MSG(s) { if (kbm_debug) bop_printf(NULL, "%s", s); } 86 #define DBG(x) { if (kbm_debug) \ 87 bop_printf(NULL, "%s is %" PRIx64 "\n", #x, (uint64_t)(x)); \ 88 } 89 90 #define PUT_STRING(s) { \ 91 char *cp; \ 92 for (cp = (s); *cp; ++cp) \ 93 bcons_putchar(*cp); \ 94 } 95 96 /* callback to boot_fb to set shadow frame buffer */ 97 extern void boot_fb_shadow_init(bootops_t *); 98 99 bootops_t bootop; /* simple bootops we'll pass on to kernel */ 100 struct bsys_mem bm; 101 102 /* 103 * Boot info from "glue" code in low memory. xbootp is used by: 104 * do_bop_phys_alloc(), do_bsys_alloc() and read_bootenvrc(). 105 */ 106 static struct xboot_info *xbootp; 107 static uintptr_t next_virt; /* next available virtual address */ 108 static paddr_t next_phys; /* next available physical address from dboot */ 109 static paddr_t high_phys = -(paddr_t)1; /* last used physical address */ 110 111 /* 112 * buffer for vsnprintf for console I/O 113 */ 114 #define BUFFERSIZE 512 115 static char buffer[BUFFERSIZE]; 116 117 /* 118 * stuff to store/report/manipulate boot property settings. 119 */ 120 typedef struct bootprop { 121 struct bootprop *bp_next; 122 char *bp_name; 123 int bp_flags; /* DDI prop type */ 124 uint_t bp_vlen; /* 0 for boolean */ 125 char *bp_value; 126 } bootprop_t; 127 128 static bootprop_t *bprops = NULL; 129 static char *curr_page = NULL; /* ptr to avail bprop memory */ 130 static int curr_space = 0; /* amount of memory at curr_page */ 131 132 #ifdef __xpv 133 extern start_info_t *xen_info; 134 extern shared_info_t *HYPERVISOR_shared_info; 135 #endif 136 137 /* 138 * some allocator statistics 139 */ 140 static ulong_t total_bop_alloc_scratch = 0; 141 static ulong_t total_bop_alloc_kernel = 0; 142 143 static void build_firmware_properties(struct xboot_info *); 144 145 static int early_allocation = 1; 146 147 int force_fastreboot = 0; 148 volatile int fastreboot_onpanic = 0; 149 int post_fastreboot = 0; 150 #ifdef __xpv 151 volatile int fastreboot_capable = 0; 152 #else 153 volatile int fastreboot_capable = 1; 154 #endif 155 156 /* 157 * Information saved from current boot for fast reboot. 158 * If the information size exceeds what we have allocated, fast reboot 159 * will not be supported. 160 */ 161 multiboot_info_t saved_mbi; 162 mb_memory_map_t saved_mmap[FASTBOOT_SAVED_MMAP_COUNT]; 163 uint8_t saved_drives[FASTBOOT_SAVED_DRIVES_SIZE]; 164 char saved_cmdline[FASTBOOT_SAVED_CMDLINE_LEN]; 165 int saved_cmdline_len = 0; 166 size_t saved_file_size[FASTBOOT_MAX_FILES_MAP]; 167 168 /* 169 * Turn off fastreboot_onpanic to avoid panic loop. 170 */ 171 char fastreboot_onpanic_cmdline[FASTBOOT_SAVED_CMDLINE_LEN]; 172 static const char fastreboot_onpanic_args[] = " -B fastreboot_onpanic=0"; 173 174 /* 175 * Pointers to where System Resource Affinity Table (SRAT), System Locality 176 * Information Table (SLIT) and Maximum System Capability Table (MSCT) 177 * are mapped into virtual memory 178 */ 179 ACPI_TABLE_SRAT *srat_ptr = NULL; 180 ACPI_TABLE_SLIT *slit_ptr = NULL; 181 ACPI_TABLE_MSCT *msct_ptr = NULL; 182 183 /* 184 * Arbitrary limit on number of localities we handle; if 185 * this limit is raised to more than UINT16_MAX, make sure 186 * process_slit() knows how to handle it. 187 */ 188 #define SLIT_LOCALITIES_MAX (4096) 189 190 #define SLIT_NUM_PROPNAME "acpi-slit-localities" 191 #define SLIT_PROPNAME "acpi-slit" 192 193 /* 194 * Allocate aligned physical memory at boot time. This allocator allocates 195 * from the highest possible addresses. This avoids exhausting memory that 196 * would be useful for DMA buffers. 197 */ 198 paddr_t 199 do_bop_phys_alloc(uint64_t size, uint64_t align) 200 { 201 paddr_t pa = 0; 202 paddr_t start; 203 paddr_t end; 204 struct memlist *ml = (struct memlist *)xbootp->bi_phys_install; 205 206 /* 207 * Be careful if high memory usage is limited in startup.c 208 * Since there are holes in the low part of the physical address 209 * space we can treat physmem as a pfn (not just a pgcnt) and 210 * get a conservative upper limit. 211 */ 212 if (physmem != 0 && high_phys > pfn_to_pa(physmem)) 213 high_phys = pfn_to_pa(physmem); 214 215 /* 216 * find the highest available memory in physinstalled 217 */ 218 size = P2ROUNDUP(size, align); 219 for (; ml; ml = ml->ml_next) { 220 start = P2ROUNDUP(ml->ml_address, align); 221 end = P2ALIGN(ml->ml_address + ml->ml_size, align); 222 if (start < next_phys) 223 start = P2ROUNDUP(next_phys, align); 224 if (end > high_phys) 225 end = P2ALIGN(high_phys, align); 226 227 if (end <= start) 228 continue; 229 if (end - start < size) 230 continue; 231 232 /* 233 * Early allocations need to use low memory, since 234 * physmem might be further limited by bootenv.rc 235 */ 236 if (early_allocation) { 237 if (pa == 0 || start < pa) 238 pa = start; 239 } else { 240 if (end - size > pa) 241 pa = end - size; 242 } 243 } 244 if (pa != 0) { 245 if (early_allocation) 246 next_phys = pa + size; 247 else 248 high_phys = pa; 249 return (pa); 250 } 251 bop_panic("do_bop_phys_alloc(0x%" PRIx64 ", 0x%" PRIx64 252 ") Out of memory\n", size, align); 253 /*NOTREACHED*/ 254 } 255 256 uintptr_t 257 alloc_vaddr(size_t size, paddr_t align) 258 { 259 uintptr_t rv; 260 261 next_virt = P2ROUNDUP(next_virt, (uintptr_t)align); 262 rv = (uintptr_t)next_virt; 263 next_virt += size; 264 return (rv); 265 } 266 267 /* 268 * Allocate virtual memory. The size is always rounded up to a multiple 269 * of base pagesize. 270 */ 271 272 /*ARGSUSED*/ 273 static caddr_t 274 do_bsys_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align) 275 { 276 paddr_t a = align; /* same type as pa for masking */ 277 uint_t pgsize; 278 paddr_t pa; 279 uintptr_t va; 280 ssize_t s; /* the aligned size */ 281 uint_t level; 282 uint_t is_kernel = (virthint != 0); 283 284 if (a < MMU_PAGESIZE) 285 a = MMU_PAGESIZE; 286 else if (!ISP2(a)) 287 prom_panic("do_bsys_alloc() incorrect alignment"); 288 size = P2ROUNDUP(size, MMU_PAGESIZE); 289 290 /* 291 * Use the next aligned virtual address if we weren't given one. 292 */ 293 if (virthint == NULL) { 294 virthint = (caddr_t)alloc_vaddr(size, a); 295 total_bop_alloc_scratch += size; 296 } else { 297 total_bop_alloc_kernel += size; 298 } 299 300 /* 301 * allocate the physical memory 302 */ 303 pa = do_bop_phys_alloc(size, a); 304 305 /* 306 * Add the mappings to the page tables, try large pages first. 307 */ 308 va = (uintptr_t)virthint; 309 s = size; 310 level = 1; 311 pgsize = xbootp->bi_use_pae ? TWO_MEG : FOUR_MEG; 312 if (xbootp->bi_use_largepage && a == pgsize) { 313 while (IS_P2ALIGNED(pa, pgsize) && IS_P2ALIGNED(va, pgsize) && 314 s >= pgsize) { 315 kbm_map(va, pa, level, is_kernel); 316 va += pgsize; 317 pa += pgsize; 318 s -= pgsize; 319 } 320 } 321 322 /* 323 * Map remaining pages use small mappings 324 */ 325 level = 0; 326 pgsize = MMU_PAGESIZE; 327 while (s > 0) { 328 kbm_map(va, pa, level, is_kernel); 329 va += pgsize; 330 pa += pgsize; 331 s -= pgsize; 332 } 333 return (virthint); 334 } 335 336 /* 337 * Free virtual memory - we'll just ignore these. 338 */ 339 /*ARGSUSED*/ 340 static void 341 do_bsys_free(bootops_t *bop, caddr_t virt, size_t size) 342 { 343 bop_printf(NULL, "do_bsys_free(virt=0x%p, size=0x%lx) ignored\n", 344 (void *)virt, size); 345 } 346 347 /* 348 * Old interface 349 */ 350 /*ARGSUSED*/ 351 static caddr_t 352 do_bsys_ealloc(bootops_t *bop, caddr_t virthint, size_t size, 353 int align, int flags) 354 { 355 prom_panic("unsupported call to BOP_EALLOC()\n"); 356 return (0); 357 } 358 359 360 static void 361 bsetprop(int flags, char *name, int nlen, void *value, int vlen) 362 { 363 uint_t size; 364 uint_t need_size; 365 bootprop_t *b; 366 367 /* 368 * align the size to 16 byte boundary 369 */ 370 size = sizeof (bootprop_t) + nlen + 1 + vlen; 371 size = (size + 0xf) & ~0xf; 372 if (size > curr_space) { 373 need_size = (size + (MMU_PAGEOFFSET)) & MMU_PAGEMASK; 374 curr_page = do_bsys_alloc(NULL, 0, need_size, MMU_PAGESIZE); 375 curr_space = need_size; 376 } 377 378 /* 379 * use a bootprop_t at curr_page and link into list 380 */ 381 b = (bootprop_t *)curr_page; 382 curr_page += sizeof (bootprop_t); 383 curr_space -= sizeof (bootprop_t); 384 b->bp_next = bprops; 385 bprops = b; 386 387 /* 388 * follow by name and ending zero byte 389 */ 390 b->bp_name = curr_page; 391 bcopy(name, curr_page, nlen); 392 curr_page += nlen; 393 *curr_page++ = 0; 394 curr_space -= nlen + 1; 395 396 /* 397 * set the property type 398 */ 399 b->bp_flags = flags & DDI_PROP_TYPE_MASK; 400 401 /* 402 * copy in value, but no ending zero byte 403 */ 404 b->bp_value = curr_page; 405 b->bp_vlen = vlen; 406 if (vlen > 0) { 407 bcopy(value, curr_page, vlen); 408 curr_page += vlen; 409 curr_space -= vlen; 410 } 411 412 /* 413 * align new values of curr_page, curr_space 414 */ 415 while (curr_space & 0xf) { 416 ++curr_page; 417 --curr_space; 418 } 419 } 420 421 static void 422 bsetprops(char *name, char *value) 423 { 424 bsetprop(DDI_PROP_TYPE_STRING, name, strlen(name), 425 value, strlen(value) + 1); 426 } 427 428 static void 429 bsetprop32(char *name, uint32_t value) 430 { 431 bsetprop(DDI_PROP_TYPE_INT, name, strlen(name), 432 (void *)&value, sizeof (value)); 433 } 434 435 static void 436 bsetprop64(char *name, uint64_t value) 437 { 438 bsetprop(DDI_PROP_TYPE_INT64, name, strlen(name), 439 (void *)&value, sizeof (value)); 440 } 441 442 static void 443 bsetpropsi(char *name, int value) 444 { 445 char prop_val[32]; 446 447 (void) snprintf(prop_val, sizeof (prop_val), "%d", value); 448 bsetprops(name, prop_val); 449 } 450 451 /* 452 * to find the type of the value associated with this name 453 */ 454 /*ARGSUSED*/ 455 int 456 do_bsys_getproptype(bootops_t *bop, const char *name) 457 { 458 bootprop_t *b; 459 460 for (b = bprops; b != NULL; b = b->bp_next) { 461 if (strcmp(name, b->bp_name) != 0) 462 continue; 463 return (b->bp_flags); 464 } 465 return (-1); 466 } 467 468 /* 469 * to find the size of the buffer to allocate 470 */ 471 /*ARGSUSED*/ 472 int 473 do_bsys_getproplen(bootops_t *bop, const char *name) 474 { 475 bootprop_t *b; 476 477 for (b = bprops; b; b = b->bp_next) { 478 if (strcmp(name, b->bp_name) != 0) 479 continue; 480 return (b->bp_vlen); 481 } 482 return (-1); 483 } 484 485 /* 486 * get the value associated with this name 487 */ 488 /*ARGSUSED*/ 489 int 490 do_bsys_getprop(bootops_t *bop, const char *name, void *value) 491 { 492 bootprop_t *b; 493 494 for (b = bprops; b; b = b->bp_next) { 495 if (strcmp(name, b->bp_name) != 0) 496 continue; 497 bcopy(b->bp_value, value, b->bp_vlen); 498 return (0); 499 } 500 return (-1); 501 } 502 503 /* 504 * get the name of the next property in succession from the standalone 505 */ 506 /*ARGSUSED*/ 507 static char * 508 do_bsys_nextprop(bootops_t *bop, char *name) 509 { 510 bootprop_t *b; 511 512 /* 513 * A null name is a special signal for the 1st boot property 514 */ 515 if (name == NULL || strlen(name) == 0) { 516 if (bprops == NULL) 517 return (NULL); 518 return (bprops->bp_name); 519 } 520 521 for (b = bprops; b; b = b->bp_next) { 522 if (name != b->bp_name) 523 continue; 524 b = b->bp_next; 525 if (b == NULL) 526 return (NULL); 527 return (b->bp_name); 528 } 529 return (NULL); 530 } 531 532 /* 533 * Parse numeric value from a string. Understands decimal, hex, octal, - and ~ 534 */ 535 static int 536 parse_value(char *p, uint64_t *retval) 537 { 538 int adjust = 0; 539 uint64_t tmp = 0; 540 int digit; 541 int radix = 10; 542 543 *retval = 0; 544 if (*p == '-' || *p == '~') 545 adjust = *p++; 546 547 if (*p == '0') { 548 ++p; 549 if (*p == 0) 550 return (0); 551 if (*p == 'x' || *p == 'X') { 552 radix = 16; 553 ++p; 554 } else { 555 radix = 8; 556 ++p; 557 } 558 } 559 while (*p) { 560 if ('0' <= *p && *p <= '9') 561 digit = *p - '0'; 562 else if ('a' <= *p && *p <= 'f') 563 digit = 10 + *p - 'a'; 564 else if ('A' <= *p && *p <= 'F') 565 digit = 10 + *p - 'A'; 566 else 567 return (-1); 568 if (digit >= radix) 569 return (-1); 570 tmp = tmp * radix + digit; 571 ++p; 572 } 573 if (adjust == '-') 574 tmp = -tmp; 575 else if (adjust == '~') 576 tmp = ~tmp; 577 *retval = tmp; 578 return (0); 579 } 580 581 static boolean_t 582 unprintable(char *value, int size) 583 { 584 int i; 585 586 if (size <= 0 || value[0] == '\0') 587 return (B_TRUE); 588 589 for (i = 0; i < size; i++) { 590 if (value[i] == '\0') 591 return (i != (size - 1)); 592 593 if (!isprint(value[i])) 594 return (B_TRUE); 595 } 596 return (B_FALSE); 597 } 598 599 /* 600 * Print out information about all boot properties. 601 * buffer is pointer to pre-allocated space to be used as temporary 602 * space for property values. 603 */ 604 static void 605 boot_prop_display(char *buffer) 606 { 607 char *name = ""; 608 int i, len, flags, *buf32; 609 int64_t *buf64; 610 611 bop_printf(NULL, "\nBoot properties:\n"); 612 613 while ((name = do_bsys_nextprop(NULL, name)) != NULL) { 614 bop_printf(NULL, "\t0x%p %s = ", (void *)name, name); 615 (void) do_bsys_getprop(NULL, name, buffer); 616 len = do_bsys_getproplen(NULL, name); 617 flags = do_bsys_getproptype(NULL, name); 618 bop_printf(NULL, "len=%d ", len); 619 620 switch (flags) { 621 case DDI_PROP_TYPE_INT: 622 len = len / sizeof (int); 623 buf32 = (int *)buffer; 624 for (i = 0; i < len; i++) { 625 bop_printf(NULL, "%08x", buf32[i]); 626 if (i < len - 1) 627 bop_printf(NULL, "."); 628 } 629 break; 630 case DDI_PROP_TYPE_STRING: 631 bop_printf(NULL, "%s", buffer); 632 break; 633 case DDI_PROP_TYPE_INT64: 634 len = len / sizeof (int64_t); 635 buf64 = (int64_t *)buffer; 636 for (i = 0; i < len; i++) { 637 bop_printf(NULL, "%016" PRIx64, buf64[i]); 638 if (i < len - 1) 639 bop_printf(NULL, "."); 640 } 641 break; 642 default: 643 if (!unprintable(buffer, len)) { 644 buffer[len] = 0; 645 bop_printf(NULL, "%s", buffer); 646 break; 647 } 648 for (i = 0; i < len; i++) { 649 bop_printf(NULL, "%02x", buffer[i] & 0xff); 650 if (i < len - 1) 651 bop_printf(NULL, "."); 652 } 653 break; 654 } 655 bop_printf(NULL, "\n"); 656 } 657 } 658 659 /* 660 * 2nd part of building the table of boot properties. This includes: 661 * - values from /boot/solaris/bootenv.rc (ie. eeprom(1m) values) 662 * 663 * lines look like one of: 664 * ^$ 665 * ^# comment till end of line 666 * setprop name 'value' 667 * setprop name value 668 * setprop name "value" 669 * 670 * we do single character I/O since this is really just looking at memory 671 */ 672 void 673 read_bootenvrc(void) 674 { 675 int fd; 676 char *line; 677 int c; 678 int bytes_read; 679 char *name; 680 int n_len; 681 char *value; 682 int v_len; 683 char *inputdev; /* these override the command line if serial ports */ 684 char *outputdev; 685 char *consoledev; 686 uint64_t lvalue; 687 int use_xencons = 0; 688 extern int bootrd_debug; 689 690 #ifdef __xpv 691 if (!DOMAIN_IS_INITDOMAIN(xen_info)) 692 use_xencons = 1; 693 #endif /* __xpv */ 694 695 DBG_MSG("Opening /boot/solaris/bootenv.rc\n"); 696 fd = BRD_OPEN(bfs_ops, "/boot/solaris/bootenv.rc", 0); 697 DBG(fd); 698 699 line = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE); 700 while (fd >= 0) { 701 702 /* 703 * get a line 704 */ 705 for (c = 0; ; ++c) { 706 bytes_read = BRD_READ(bfs_ops, fd, line + c, 1); 707 if (bytes_read == 0) { 708 if (c == 0) 709 goto done; 710 break; 711 } 712 if (line[c] == '\n') 713 break; 714 } 715 line[c] = 0; 716 717 /* 718 * ignore comment lines 719 */ 720 c = 0; 721 while (ISSPACE(line[c])) 722 ++c; 723 if (line[c] == '#' || line[c] == 0) 724 continue; 725 726 /* 727 * must have "setprop " or "setprop\t" 728 */ 729 if (strncmp(line + c, "setprop ", 8) != 0 && 730 strncmp(line + c, "setprop\t", 8) != 0) 731 continue; 732 c += 8; 733 while (ISSPACE(line[c])) 734 ++c; 735 if (line[c] == 0) 736 continue; 737 738 /* 739 * gather up the property name 740 */ 741 name = line + c; 742 n_len = 0; 743 while (line[c] && !ISSPACE(line[c])) 744 ++n_len, ++c; 745 746 /* 747 * gather up the value, if any 748 */ 749 value = ""; 750 v_len = 0; 751 while (ISSPACE(line[c])) 752 ++c; 753 if (line[c] != 0) { 754 value = line + c; 755 while (line[c] && !ISSPACE(line[c])) 756 ++v_len, ++c; 757 } 758 759 if (v_len >= 2 && value[0] == value[v_len - 1] && 760 (value[0] == '\'' || value[0] == '"')) { 761 ++value; 762 v_len -= 2; 763 } 764 name[n_len] = 0; 765 if (v_len > 0) 766 value[v_len] = 0; 767 else 768 continue; 769 770 /* 771 * ignore "boot-file" property, it's now meaningless 772 */ 773 if (strcmp(name, "boot-file") == 0) 774 continue; 775 if (strcmp(name, "boot-args") == 0 && 776 strlen(boot_args) > 0) 777 continue; 778 779 /* 780 * If a property was explicitly set on the command line 781 * it will override a setting in bootenv.rc. We make an 782 * exception for a property from the bootloader such as: 783 * 784 * console="text,ttya,ttyb,ttyc,ttyd" 785 * 786 * In such a case, picking the first value here (as 787 * lookup_console_devices() does) is at best a guess; if 788 * bootenv.rc has a value, it's probably better. 789 */ 790 if (strcmp(name, "console") == 0) { 791 char propval[BP_MAX_STRLEN] = ""; 792 793 if (do_bsys_getprop(NULL, name, propval) == -1 || 794 strchr(propval, ',') != NULL) 795 bsetprops(name, value); 796 continue; 797 } 798 799 if (do_bsys_getproplen(NULL, name) == -1) 800 bsetprops(name, value); 801 } 802 done: 803 if (fd >= 0) 804 (void) BRD_CLOSE(bfs_ops, fd); 805 806 807 /* 808 * Check if we have to limit the boot time allocator 809 */ 810 if (do_bsys_getproplen(NULL, "physmem") != -1 && 811 do_bsys_getprop(NULL, "physmem", line) >= 0 && 812 parse_value(line, &lvalue) != -1) { 813 if (0 < lvalue && (lvalue < physmem || physmem == 0)) { 814 physmem = (pgcnt_t)lvalue; 815 DBG(physmem); 816 } 817 } 818 early_allocation = 0; 819 820 /* 821 * Check for bootrd_debug. 822 */ 823 if (find_boot_prop("bootrd_debug")) 824 bootrd_debug = 1; 825 826 /* 827 * check to see if we have to override the default value of the console 828 */ 829 if (!use_xencons) { 830 inputdev = line; 831 v_len = do_bsys_getproplen(NULL, "input-device"); 832 if (v_len > 0) 833 (void) do_bsys_getprop(NULL, "input-device", inputdev); 834 else 835 v_len = 0; 836 inputdev[v_len] = 0; 837 838 outputdev = inputdev + v_len + 1; 839 v_len = do_bsys_getproplen(NULL, "output-device"); 840 if (v_len > 0) 841 (void) do_bsys_getprop(NULL, "output-device", 842 outputdev); 843 else 844 v_len = 0; 845 outputdev[v_len] = 0; 846 847 consoledev = outputdev + v_len + 1; 848 v_len = do_bsys_getproplen(NULL, "console"); 849 if (v_len > 0) { 850 (void) do_bsys_getprop(NULL, "console", consoledev); 851 if (post_fastreboot && 852 strcmp(consoledev, "graphics") == 0) { 853 bsetprops("console", "text"); 854 v_len = strlen("text"); 855 bcopy("text", consoledev, v_len); 856 } 857 } else { 858 v_len = 0; 859 } 860 consoledev[v_len] = 0; 861 bcons_post_bootenvrc(inputdev, outputdev, consoledev); 862 } else { 863 /* 864 * Ensure console property exists 865 * If not create it as "hypervisor" 866 */ 867 v_len = do_bsys_getproplen(NULL, "console"); 868 if (v_len < 0) 869 bsetprops("console", "hypervisor"); 870 inputdev = outputdev = consoledev = "hypervisor"; 871 bcons_post_bootenvrc(inputdev, outputdev, consoledev); 872 } 873 874 if (find_boot_prop("prom_debug") || kbm_debug) 875 boot_prop_display(line); 876 } 877 878 /* 879 * print formatted output 880 */ 881 /*ARGSUSED*/ 882 void 883 vbop_printf(void *ptr, const char *fmt, va_list ap) 884 { 885 if (have_console == 0) 886 return; 887 888 (void) vsnprintf(buffer, BUFFERSIZE, fmt, ap); 889 PUT_STRING(buffer); 890 } 891 892 /*PRINTFLIKE2*/ 893 void 894 bop_printf(void *bop, const char *fmt, ...) 895 { 896 va_list ap; 897 898 va_start(ap, fmt); 899 vbop_printf(bop, fmt, ap); 900 va_end(ap); 901 } 902 903 /* 904 * Another panic() variant; this one can be used even earlier during boot than 905 * prom_panic(). 906 */ 907 /*PRINTFLIKE1*/ 908 void 909 bop_panic(const char *fmt, ...) 910 { 911 va_list ap; 912 913 va_start(ap, fmt); 914 bop_printf(NULL, fmt, ap); 915 va_end(ap); 916 917 bop_printf(NULL, "\nPress any key to reboot.\n"); 918 (void) bcons_getchar(); 919 bop_printf(NULL, "Resetting...\n"); 920 pc_reset(); 921 } 922 923 /* 924 * Do a real mode interrupt BIOS call 925 */ 926 typedef struct bios_regs { 927 unsigned short ax, bx, cx, dx, si, di, bp, es, ds; 928 } bios_regs_t; 929 typedef int (*bios_func_t)(int, bios_regs_t *); 930 931 /*ARGSUSED*/ 932 static void 933 do_bsys_doint(bootops_t *bop, int intnum, struct bop_regs *rp) 934 { 935 #if defined(__xpv) 936 prom_panic("unsupported call to BOP_DOINT()\n"); 937 #else /* __xpv */ 938 static int firsttime = 1; 939 bios_func_t bios_func = (bios_func_t)(void *)(uintptr_t)0x5000; 940 bios_regs_t br; 941 942 /* 943 * We're about to disable paging; we shouldn't be PCID enabled. 944 */ 945 if (getcr4() & CR4_PCIDE) 946 prom_panic("do_bsys_doint() with PCID enabled\n"); 947 948 /* 949 * The first time we do this, we have to copy the pre-packaged 950 * low memory bios call code image into place. 951 */ 952 if (firsttime) { 953 extern char bios_image[]; 954 extern uint32_t bios_size; 955 956 bcopy(bios_image, (void *)bios_func, bios_size); 957 firsttime = 0; 958 } 959 960 br.ax = rp->eax.word.ax; 961 br.bx = rp->ebx.word.bx; 962 br.cx = rp->ecx.word.cx; 963 br.dx = rp->edx.word.dx; 964 br.bp = rp->ebp.word.bp; 965 br.si = rp->esi.word.si; 966 br.di = rp->edi.word.di; 967 br.ds = rp->ds; 968 br.es = rp->es; 969 970 DBG_MSG("Doing BIOS call..."); 971 DBG(br.ax); 972 DBG(br.bx); 973 DBG(br.dx); 974 rp->eflags = bios_func(intnum, &br); 975 DBG_MSG("done\n"); 976 977 rp->eax.word.ax = br.ax; 978 rp->ebx.word.bx = br.bx; 979 rp->ecx.word.cx = br.cx; 980 rp->edx.word.dx = br.dx; 981 rp->ebp.word.bp = br.bp; 982 rp->esi.word.si = br.si; 983 rp->edi.word.di = br.di; 984 rp->ds = br.ds; 985 rp->es = br.es; 986 #endif /* __xpv */ 987 } 988 989 static struct boot_syscalls bop_sysp = { 990 bcons_getchar, 991 bcons_putchar, 992 bcons_ischar, 993 }; 994 995 static char *whoami; 996 997 #define BUFLEN 64 998 999 #if defined(__xpv) 1000 1001 static char namebuf[32]; 1002 1003 static void 1004 xen_parse_props(char *s, char *prop_map[], int n_prop) 1005 { 1006 char **prop_name = prop_map; 1007 char *cp = s, *scp; 1008 1009 do { 1010 scp = cp; 1011 while ((*cp != '\0') && (*cp != ':')) 1012 cp++; 1013 1014 if ((scp != cp) && (*prop_name != NULL)) { 1015 *cp = '\0'; 1016 bsetprops(*prop_name, scp); 1017 } 1018 1019 cp++; 1020 prop_name++; 1021 n_prop--; 1022 } while (n_prop > 0); 1023 } 1024 1025 #define VBDPATHLEN 64 1026 1027 /* 1028 * parse the 'xpv-root' property to create properties used by 1029 * ufs_mountroot. 1030 */ 1031 static void 1032 xen_vbdroot_props(char *s) 1033 { 1034 char vbdpath[VBDPATHLEN] = "/xpvd/xdf@"; 1035 const char lnamefix[] = "/dev/dsk/c0d"; 1036 char *pnp; 1037 char *prop_p; 1038 char mi; 1039 short minor; 1040 long addr = 0; 1041 1042 mi = '\0'; 1043 pnp = vbdpath + strlen(vbdpath); 1044 prop_p = s + strlen(lnamefix); 1045 while ((*prop_p != '\0') && (*prop_p != 's') && (*prop_p != 'p')) 1046 addr = addr * 10 + *prop_p++ - '0'; 1047 (void) snprintf(pnp, VBDPATHLEN, "%lx", addr); 1048 pnp = vbdpath + strlen(vbdpath); 1049 if (*prop_p == 's') 1050 mi = 'a'; 1051 else if (*prop_p == 'p') 1052 mi = 'q'; 1053 else 1054 ASSERT(0); /* shouldn't be here */ 1055 prop_p++; 1056 ASSERT(*prop_p != '\0'); 1057 if (ISDIGIT(*prop_p)) { 1058 minor = *prop_p - '0'; 1059 prop_p++; 1060 if (ISDIGIT(*prop_p)) { 1061 minor = minor * 10 + *prop_p - '0'; 1062 } 1063 } else { 1064 /* malformed root path, use 0 as default */ 1065 minor = 0; 1066 } 1067 ASSERT(minor < 16); /* at most 16 partitions */ 1068 mi += minor; 1069 *pnp++ = ':'; 1070 *pnp++ = mi; 1071 *pnp++ = '\0'; 1072 bsetprops("fstype", "ufs"); 1073 bsetprops("bootpath", vbdpath); 1074 1075 DBG_MSG("VBD bootpath set to "); 1076 DBG_MSG(vbdpath); 1077 DBG_MSG("\n"); 1078 } 1079 1080 /* 1081 * parse the xpv-nfsroot property to create properties used by 1082 * nfs_mountroot. 1083 */ 1084 static void 1085 xen_nfsroot_props(char *s) 1086 { 1087 char *prop_map[] = { 1088 BP_SERVER_IP, /* server IP address */ 1089 BP_SERVER_NAME, /* server hostname */ 1090 BP_SERVER_PATH, /* root path */ 1091 }; 1092 int n_prop = sizeof (prop_map) / sizeof (prop_map[0]); 1093 1094 bsetprops("fstype", "nfs"); 1095 1096 xen_parse_props(s, prop_map, n_prop); 1097 1098 /* 1099 * If a server name wasn't specified, use a default. 1100 */ 1101 if (do_bsys_getproplen(NULL, BP_SERVER_NAME) == -1) 1102 bsetprops(BP_SERVER_NAME, "unknown"); 1103 } 1104 1105 /* 1106 * Extract our IP address, etc. from the "xpv-ip" property. 1107 */ 1108 static void 1109 xen_ip_props(char *s) 1110 { 1111 char *prop_map[] = { 1112 BP_HOST_IP, /* IP address */ 1113 NULL, /* NFS server IP address (ignored in */ 1114 /* favour of xpv-nfsroot) */ 1115 BP_ROUTER_IP, /* IP gateway */ 1116 BP_SUBNET_MASK, /* IP subnet mask */ 1117 "xpv-hostname", /* hostname (ignored) */ 1118 BP_NETWORK_INTERFACE, /* interface name */ 1119 "xpv-hcp", /* host configuration protocol */ 1120 }; 1121 int n_prop = sizeof (prop_map) / sizeof (prop_map[0]); 1122 char ifname[IFNAMSIZ]; 1123 1124 xen_parse_props(s, prop_map, n_prop); 1125 1126 /* 1127 * A Linux dom0 administrator expects all interfaces to be 1128 * called "ethX", which is not the case here. 1129 * 1130 * If the interface name specified is "eth0", presume that 1131 * this is really intended to be "xnf0" (the first domU -> 1132 * dom0 interface for this domain). 1133 */ 1134 if ((do_bsys_getprop(NULL, BP_NETWORK_INTERFACE, ifname) == 0) && 1135 (strcmp("eth0", ifname) == 0)) { 1136 bsetprops(BP_NETWORK_INTERFACE, "xnf0"); 1137 bop_printf(NULL, 1138 "network interface name 'eth0' replaced with 'xnf0'\n"); 1139 } 1140 } 1141 1142 #else /* __xpv */ 1143 1144 static void 1145 setup_rarp_props(struct sol_netinfo *sip) 1146 { 1147 char buf[BUFLEN]; /* to hold ip/mac addrs */ 1148 uint8_t *val; 1149 1150 val = (uint8_t *)&sip->sn_ciaddr; 1151 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d", 1152 val[0], val[1], val[2], val[3]); 1153 bsetprops(BP_HOST_IP, buf); 1154 1155 val = (uint8_t *)&sip->sn_siaddr; 1156 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d", 1157 val[0], val[1], val[2], val[3]); 1158 bsetprops(BP_SERVER_IP, buf); 1159 1160 if (sip->sn_giaddr != 0) { 1161 val = (uint8_t *)&sip->sn_giaddr; 1162 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d", 1163 val[0], val[1], val[2], val[3]); 1164 bsetprops(BP_ROUTER_IP, buf); 1165 } 1166 1167 if (sip->sn_netmask != 0) { 1168 val = (uint8_t *)&sip->sn_netmask; 1169 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d", 1170 val[0], val[1], val[2], val[3]); 1171 bsetprops(BP_SUBNET_MASK, buf); 1172 } 1173 1174 if (sip->sn_mactype != 4 || sip->sn_maclen != 6) { 1175 bop_printf(NULL, "unsupported mac type %d, mac len %d\n", 1176 sip->sn_mactype, sip->sn_maclen); 1177 } else { 1178 val = sip->sn_macaddr; 1179 (void) snprintf(buf, BUFLEN, "%x:%x:%x:%x:%x:%x", 1180 val[0], val[1], val[2], val[3], val[4], val[5]); 1181 bsetprops(BP_BOOT_MAC, buf); 1182 } 1183 } 1184 1185 #endif /* __xpv */ 1186 1187 static void 1188 build_panic_cmdline(const char *cmd, int cmdlen) 1189 { 1190 int proplen; 1191 size_t arglen; 1192 1193 arglen = sizeof (fastreboot_onpanic_args); 1194 /* 1195 * If we allready have fastreboot-onpanic set to zero, 1196 * don't add them again. 1197 */ 1198 if ((proplen = do_bsys_getproplen(NULL, FASTREBOOT_ONPANIC)) > 0 && 1199 proplen <= sizeof (fastreboot_onpanic_cmdline)) { 1200 (void) do_bsys_getprop(NULL, FASTREBOOT_ONPANIC, 1201 fastreboot_onpanic_cmdline); 1202 if (FASTREBOOT_ONPANIC_NOTSET(fastreboot_onpanic_cmdline)) 1203 arglen = 1; 1204 } 1205 1206 /* 1207 * construct fastreboot_onpanic_cmdline 1208 */ 1209 if (cmdlen + arglen > sizeof (fastreboot_onpanic_cmdline)) { 1210 DBG_MSG("Command line too long: clearing " 1211 FASTREBOOT_ONPANIC "\n"); 1212 fastreboot_onpanic = 0; 1213 } else { 1214 bcopy(cmd, fastreboot_onpanic_cmdline, cmdlen); 1215 if (arglen != 1) 1216 bcopy(fastreboot_onpanic_args, 1217 fastreboot_onpanic_cmdline + cmdlen, arglen); 1218 else 1219 fastreboot_onpanic_cmdline[cmdlen] = 0; 1220 } 1221 } 1222 1223 1224 #ifndef __xpv 1225 /* 1226 * Construct boot command line for Fast Reboot. The saved_cmdline 1227 * is also reported by "eeprom bootcmd". 1228 */ 1229 static void 1230 build_fastboot_cmdline(struct xboot_info *xbp) 1231 { 1232 saved_cmdline_len = strlen(xbp->bi_cmdline) + 1; 1233 if (saved_cmdline_len > FASTBOOT_SAVED_CMDLINE_LEN) { 1234 DBG(saved_cmdline_len); 1235 DBG_MSG("Command line too long: clearing fastreboot_capable\n"); 1236 fastreboot_capable = 0; 1237 } else { 1238 bcopy((void *)(xbp->bi_cmdline), (void *)saved_cmdline, 1239 saved_cmdline_len); 1240 saved_cmdline[saved_cmdline_len - 1] = '\0'; 1241 build_panic_cmdline(saved_cmdline, saved_cmdline_len - 1); 1242 } 1243 } 1244 1245 /* 1246 * Save memory layout, disk drive information, unix and boot archive sizes for 1247 * Fast Reboot. 1248 */ 1249 static void 1250 save_boot_info(struct xboot_info *xbi) 1251 { 1252 multiboot_info_t *mbi = xbi->bi_mb_info; 1253 struct boot_modules *modp; 1254 int i; 1255 1256 bcopy(mbi, &saved_mbi, sizeof (multiboot_info_t)); 1257 if (mbi->mmap_length > sizeof (saved_mmap)) { 1258 DBG_MSG("mbi->mmap_length too big: clearing " 1259 "fastreboot_capable\n"); 1260 fastreboot_capable = 0; 1261 } else { 1262 bcopy((void *)(uintptr_t)mbi->mmap_addr, (void *)saved_mmap, 1263 mbi->mmap_length); 1264 } 1265 1266 if ((mbi->flags & MB_INFO_DRIVE_INFO) != 0) { 1267 if (mbi->drives_length > sizeof (saved_drives)) { 1268 DBG(mbi->drives_length); 1269 DBG_MSG("mbi->drives_length too big: clearing " 1270 "fastreboot_capable\n"); 1271 fastreboot_capable = 0; 1272 } else { 1273 bcopy((void *)(uintptr_t)mbi->drives_addr, 1274 (void *)saved_drives, mbi->drives_length); 1275 } 1276 } else { 1277 saved_mbi.drives_length = 0; 1278 saved_mbi.drives_addr = 0; 1279 } 1280 1281 /* 1282 * Current file sizes. Used by fastboot.c to figure out how much 1283 * memory to reserve for panic reboot. 1284 * Use the module list from the dboot-constructed xboot_info 1285 * instead of the list referenced by the multiboot structure 1286 * because that structure may not be addressable now. 1287 */ 1288 saved_file_size[FASTBOOT_NAME_UNIX] = FOUR_MEG - PAGESIZE; 1289 for (i = 0, modp = (struct boot_modules *)(uintptr_t)xbi->bi_modules; 1290 i < xbi->bi_module_cnt; i++, modp++) { 1291 saved_file_size[FASTBOOT_NAME_BOOTARCHIVE] += modp->bm_size; 1292 } 1293 } 1294 #endif /* __xpv */ 1295 1296 /* 1297 * Import boot environment module variables as properties, applying 1298 * blacklist filter for variables we know we will not use. 1299 * 1300 * Since the environment can be relatively large, containing many variables 1301 * used only for boot loader purposes, we will use a blacklist based filter. 1302 * To keep the blacklist from growing too large, we use prefix based filtering. 1303 * This is possible because in many cases, the loader variable names are 1304 * using a structured layout. 1305 * 1306 * We will not overwrite already set properties. 1307 * 1308 * Note that the menu items in particular can contain characters not 1309 * well-handled as bootparams, such as spaces, brackets, and the like, so that's 1310 * another reason. 1311 */ 1312 static struct bop_blacklist { 1313 const char *bl_name; 1314 int bl_name_len; 1315 } bop_prop_blacklist[] = { 1316 { "ISADIR", sizeof ("ISADIR") }, 1317 { "acpi", sizeof ("acpi") }, 1318 { "autoboot_delay", sizeof ("autoboot_delay") }, 1319 { "beansi_", sizeof ("beansi_") }, 1320 { "beastie", sizeof ("beastie") }, 1321 { "bemenu", sizeof ("bemenu") }, 1322 { "boot.", sizeof ("boot.") }, 1323 { "bootenv", sizeof ("bootenv") }, 1324 { "currdev", sizeof ("currdev") }, 1325 { "dhcp.", sizeof ("dhcp.") }, 1326 { "interpret", sizeof ("interpret") }, 1327 { "kernel", sizeof ("kernel") }, 1328 { "loaddev", sizeof ("loaddev") }, 1329 { "loader_", sizeof ("loader_") }, 1330 { "mainansi_", sizeof ("mainansi_") }, 1331 { "mainmenu_", sizeof ("mainmenu_") }, 1332 { "maintoggled_", sizeof ("maintoggled_") }, 1333 { "menu_timeout_command", sizeof ("menu_timeout_command") }, 1334 { "menuset_", sizeof ("menuset_") }, 1335 { "module_path", sizeof ("module_path") }, 1336 { "nfs.", sizeof ("nfs.") }, 1337 { "optionsansi_", sizeof ("optionsansi_") }, 1338 { "optionsmenu_", sizeof ("optionsmenu_") }, 1339 { "optionstoggled_", sizeof ("optionstoggled_") }, 1340 { "pcibios", sizeof ("pcibios") }, 1341 { "prompt", sizeof ("prompt") }, 1342 { "smbios", sizeof ("smbios") }, 1343 { "tem", sizeof ("tem") }, 1344 { "twiddle_divisor", sizeof ("twiddle_divisor") }, 1345 { "zfs_be", sizeof ("zfs_be") }, 1346 }; 1347 1348 /* 1349 * Match the name against prefixes in above blacklist. If the match was 1350 * found, this name is blacklisted. 1351 */ 1352 static boolean_t 1353 name_is_blacklisted(const char *name) 1354 { 1355 int i, n; 1356 1357 n = sizeof (bop_prop_blacklist) / sizeof (bop_prop_blacklist[0]); 1358 for (i = 0; i < n; i++) { 1359 if (strncmp(bop_prop_blacklist[i].bl_name, name, 1360 bop_prop_blacklist[i].bl_name_len - 1) == 0) { 1361 return (B_TRUE); 1362 } 1363 } 1364 return (B_FALSE); 1365 } 1366 1367 static void 1368 process_boot_environment(struct boot_modules *benv) 1369 { 1370 char *env, *ptr, *name, *value; 1371 uint32_t size, name_len, value_len; 1372 1373 if (benv == NULL || benv->bm_type != BMT_ENV) 1374 return; 1375 ptr = env = benv->bm_addr; 1376 size = benv->bm_size; 1377 do { 1378 name = ptr; 1379 /* find '=' */ 1380 while (*ptr != '=') { 1381 ptr++; 1382 if (ptr > env + size) /* Something is very wrong. */ 1383 return; 1384 } 1385 name_len = ptr - name; 1386 if (sizeof (buffer) <= name_len) 1387 continue; 1388 1389 (void) strncpy(buffer, name, sizeof (buffer)); 1390 buffer[name_len] = '\0'; 1391 name = buffer; 1392 1393 value_len = 0; 1394 value = ++ptr; 1395 while ((uintptr_t)ptr - (uintptr_t)env < size) { 1396 if (*ptr == '\0') { 1397 ptr++; 1398 value_len = (uintptr_t)ptr - (uintptr_t)env; 1399 break; 1400 } 1401 ptr++; 1402 } 1403 1404 /* Did we reach the end of the module? */ 1405 if (value_len == 0) 1406 return; 1407 1408 if (*value == '\0') 1409 continue; 1410 1411 /* Is this property already set? */ 1412 if (do_bsys_getproplen(NULL, name) >= 0) 1413 continue; 1414 1415 /* Translate netboot variables */ 1416 if (strcmp(name, "boot.netif.gateway") == 0) { 1417 bsetprops(BP_ROUTER_IP, value); 1418 continue; 1419 } 1420 if (strcmp(name, "boot.netif.hwaddr") == 0) { 1421 bsetprops(BP_BOOT_MAC, value); 1422 continue; 1423 } 1424 if (strcmp(name, "boot.netif.ip") == 0) { 1425 bsetprops(BP_HOST_IP, value); 1426 continue; 1427 } 1428 if (strcmp(name, "boot.netif.netmask") == 0) { 1429 bsetprops(BP_SUBNET_MASK, value); 1430 continue; 1431 } 1432 if (strcmp(name, "boot.netif.server") == 0) { 1433 bsetprops(BP_SERVER_IP, value); 1434 continue; 1435 } 1436 if (strcmp(name, "boot.netif.server") == 0) { 1437 if (do_bsys_getproplen(NULL, BP_SERVER_IP) < 0) 1438 bsetprops(BP_SERVER_IP, value); 1439 continue; 1440 } 1441 if (strcmp(name, "boot.nfsroot.server") == 0) { 1442 if (do_bsys_getproplen(NULL, BP_SERVER_IP) < 0) 1443 bsetprops(BP_SERVER_IP, value); 1444 continue; 1445 } 1446 if (strcmp(name, "boot.nfsroot.path") == 0) { 1447 bsetprops(BP_SERVER_PATH, value); 1448 continue; 1449 } 1450 1451 if (name_is_blacklisted(name) == B_TRUE) 1452 continue; 1453 1454 /* Create new property. */ 1455 bsetprops(name, value); 1456 1457 /* Avoid reading past the module end. */ 1458 if (size <= (uintptr_t)ptr - (uintptr_t)env) 1459 return; 1460 } while (*ptr != '\0'); 1461 } 1462 1463 /* 1464 * 1st pass at building the table of boot properties. This includes: 1465 * - values set on the command line: -B a=x,b=y,c=z .... 1466 * - known values we just compute (ie. from xbp) 1467 * - values from /boot/solaris/bootenv.rc (ie. eeprom(1m) values) 1468 * 1469 * the grub command line looked like: 1470 * kernel boot-file [-B prop=value[,prop=value]...] [boot-args] 1471 * 1472 * whoami is the same as boot-file 1473 */ 1474 static void 1475 build_boot_properties(struct xboot_info *xbp) 1476 { 1477 char *name; 1478 int name_len; 1479 char *value; 1480 int value_len; 1481 struct boot_modules *bm, *rdbm, *benv = NULL; 1482 char *propbuf; 1483 int quoted = 0; 1484 int boot_arg_len; 1485 uint_t i, midx; 1486 char modid[32]; 1487 #ifndef __xpv 1488 static int stdout_val = 0; 1489 uchar_t boot_device; 1490 char str[3]; 1491 #endif 1492 1493 /* 1494 * These have to be done first, so that kobj_mount_root() works 1495 */ 1496 DBG_MSG("Building boot properties\n"); 1497 propbuf = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, 0); 1498 DBG((uintptr_t)propbuf); 1499 if (xbp->bi_module_cnt > 0) { 1500 bm = xbp->bi_modules; 1501 rdbm = NULL; 1502 for (midx = i = 0; i < xbp->bi_module_cnt; i++) { 1503 if (bm[i].bm_type == BMT_ROOTFS) { 1504 rdbm = &bm[i]; 1505 continue; 1506 } 1507 if (bm[i].bm_type == BMT_HASH || 1508 bm[i].bm_type == BMT_FONT || 1509 bm[i].bm_name == NULL) 1510 continue; 1511 1512 if (bm[i].bm_type == BMT_ENV) { 1513 if (benv == NULL) 1514 benv = &bm[i]; 1515 else 1516 continue; 1517 } 1518 1519 (void) snprintf(modid, sizeof (modid), 1520 "module-name-%u", midx); 1521 bsetprops(modid, (char *)bm[i].bm_name); 1522 (void) snprintf(modid, sizeof (modid), 1523 "module-addr-%u", midx); 1524 bsetprop64(modid, (uint64_t)(uintptr_t)bm[i].bm_addr); 1525 (void) snprintf(modid, sizeof (modid), 1526 "module-size-%u", midx); 1527 bsetprop64(modid, (uint64_t)bm[i].bm_size); 1528 ++midx; 1529 } 1530 if (rdbm != NULL) { 1531 bsetprop64("ramdisk_start", 1532 (uint64_t)(uintptr_t)rdbm->bm_addr); 1533 bsetprop64("ramdisk_end", 1534 (uint64_t)(uintptr_t)rdbm->bm_addr + rdbm->bm_size); 1535 } 1536 } 1537 1538 /* 1539 * If there are any boot time modules or hashes present, then disable 1540 * fast reboot. 1541 */ 1542 if (xbp->bi_module_cnt > 1) { 1543 fastreboot_disable(FBNS_BOOTMOD); 1544 } 1545 1546 #ifndef __xpv 1547 /* 1548 * Disable fast reboot if we're using the Multiboot 2 boot protocol, 1549 * since we don't currently support MB2 info and module relocation. 1550 * Note that fast reboot will have already been disabled if multiple 1551 * modules are present, since the current implementation assumes that 1552 * we only have a single module, the boot_archive. 1553 */ 1554 if (xbp->bi_mb_version != 1) { 1555 fastreboot_disable(FBNS_MULTIBOOT2); 1556 } 1557 #endif 1558 1559 DBG_MSG("Parsing command line for boot properties\n"); 1560 value = xbp->bi_cmdline; 1561 1562 /* 1563 * allocate memory to collect boot_args into 1564 */ 1565 boot_arg_len = strlen(xbp->bi_cmdline) + 1; 1566 boot_args = do_bsys_alloc(NULL, NULL, boot_arg_len, MMU_PAGESIZE); 1567 boot_args[0] = 0; 1568 boot_arg_len = 0; 1569 1570 #ifdef __xpv 1571 /* 1572 * Xen puts a lot of device information in front of the kernel name 1573 * let's grab them and make them boot properties. The first 1574 * string w/o an "=" in it will be the boot-file property. 1575 */ 1576 (void) strcpy(namebuf, "xpv-"); 1577 for (;;) { 1578 /* 1579 * get to next property 1580 */ 1581 while (ISSPACE(*value)) 1582 ++value; 1583 name = value; 1584 /* 1585 * look for an "=" 1586 */ 1587 while (*value && !ISSPACE(*value) && *value != '=') { 1588 value++; 1589 } 1590 if (*value != '=') { /* no "=" in the property */ 1591 value = name; 1592 break; 1593 } 1594 name_len = value - name; 1595 value_len = 0; 1596 /* 1597 * skip over the "=" 1598 */ 1599 value++; 1600 while (value[value_len] && !ISSPACE(value[value_len])) { 1601 ++value_len; 1602 } 1603 /* 1604 * build property name with "xpv-" prefix 1605 */ 1606 if (name_len + 4 > 32) { /* skip if name too long */ 1607 value += value_len; 1608 continue; 1609 } 1610 bcopy(name, &namebuf[4], name_len); 1611 name_len += 4; 1612 namebuf[name_len] = 0; 1613 bcopy(value, propbuf, value_len); 1614 propbuf[value_len] = 0; 1615 bsetprops(namebuf, propbuf); 1616 1617 /* 1618 * xpv-root is set to the logical disk name of the xen 1619 * VBD when booting from a disk-based filesystem. 1620 */ 1621 if (strcmp(namebuf, "xpv-root") == 0) 1622 xen_vbdroot_props(propbuf); 1623 /* 1624 * While we're here, if we have a "xpv-nfsroot" property 1625 * then we need to set "fstype" to "nfs" so we mount 1626 * our root from the nfs server. Also parse the xpv-nfsroot 1627 * property to create the properties that nfs_mountroot will 1628 * need to find the root and mount it. 1629 */ 1630 if (strcmp(namebuf, "xpv-nfsroot") == 0) 1631 xen_nfsroot_props(propbuf); 1632 1633 if (strcmp(namebuf, "xpv-ip") == 0) 1634 xen_ip_props(propbuf); 1635 value += value_len; 1636 } 1637 #endif 1638 1639 while (ISSPACE(*value)) 1640 ++value; 1641 /* 1642 * value now points at the boot-file 1643 */ 1644 value_len = 0; 1645 while (value[value_len] && !ISSPACE(value[value_len])) 1646 ++value_len; 1647 if (value_len > 0) { 1648 whoami = propbuf; 1649 bcopy(value, whoami, value_len); 1650 whoami[value_len] = 0; 1651 bsetprops("boot-file", whoami); 1652 /* 1653 * strip leading path stuff from whoami, so running from 1654 * PXE/miniroot makes sense. 1655 */ 1656 if (strstr(whoami, "/platform/") != NULL) 1657 whoami = strstr(whoami, "/platform/"); 1658 bsetprops("whoami", whoami); 1659 } 1660 1661 /* 1662 * Values forcibly set boot properties on the command line via -B. 1663 * Allow use of quotes in values. Other stuff goes on kernel 1664 * command line. 1665 */ 1666 name = value + value_len; 1667 while (*name != 0) { 1668 /* 1669 * anything not " -B" is copied to the command line 1670 */ 1671 if (!ISSPACE(name[0]) || name[1] != '-' || name[2] != 'B') { 1672 boot_args[boot_arg_len++] = *name; 1673 boot_args[boot_arg_len] = 0; 1674 ++name; 1675 continue; 1676 } 1677 1678 /* 1679 * skip the " -B" and following white space 1680 */ 1681 name += 3; 1682 while (ISSPACE(*name)) 1683 ++name; 1684 while (*name && !ISSPACE(*name)) { 1685 value = strstr(name, "="); 1686 if (value == NULL) 1687 break; 1688 name_len = value - name; 1689 ++value; 1690 value_len = 0; 1691 quoted = 0; 1692 for (; ; ++value_len) { 1693 if (!value[value_len]) 1694 break; 1695 1696 /* 1697 * is this value quoted? 1698 */ 1699 if (value_len == 0 && 1700 (value[0] == '\'' || value[0] == '"')) { 1701 quoted = value[0]; 1702 ++value_len; 1703 } 1704 1705 /* 1706 * In the quote accept any character, 1707 * but look for ending quote. 1708 */ 1709 if (quoted) { 1710 if (value[value_len] == quoted) 1711 quoted = 0; 1712 continue; 1713 } 1714 1715 /* 1716 * a comma or white space ends the value 1717 */ 1718 if (value[value_len] == ',' || 1719 ISSPACE(value[value_len])) 1720 break; 1721 } 1722 1723 if (value_len == 0) { 1724 bsetprop(DDI_PROP_TYPE_ANY, name, name_len, 1725 NULL, 0); 1726 } else { 1727 char *v = value; 1728 int l = value_len; 1729 if (v[0] == v[l - 1] && 1730 (v[0] == '\'' || v[0] == '"')) { 1731 ++v; 1732 l -= 2; 1733 } 1734 bcopy(v, propbuf, l); 1735 propbuf[l] = '\0'; 1736 bsetprop(DDI_PROP_TYPE_STRING, name, name_len, 1737 propbuf, l + 1); 1738 } 1739 name = value + value_len; 1740 while (*name == ',') 1741 ++name; 1742 } 1743 } 1744 1745 /* 1746 * set boot-args property 1747 * 1275 name is bootargs, so set 1748 * that too 1749 */ 1750 bsetprops("boot-args", boot_args); 1751 bsetprops("bootargs", boot_args); 1752 1753 process_boot_environment(benv); 1754 1755 #ifndef __xpv 1756 /* 1757 * Build boot command line for Fast Reboot 1758 */ 1759 build_fastboot_cmdline(xbp); 1760 1761 if (xbp->bi_mb_version == 1) { 1762 multiboot_info_t *mbi = xbp->bi_mb_info; 1763 int netboot; 1764 struct sol_netinfo *sip; 1765 1766 /* 1767 * set the BIOS boot device from GRUB 1768 */ 1769 netboot = 0; 1770 1771 /* 1772 * Save various boot information for Fast Reboot 1773 */ 1774 save_boot_info(xbp); 1775 1776 if (mbi != NULL && mbi->flags & MB_INFO_BOOTDEV) { 1777 boot_device = mbi->boot_device >> 24; 1778 if (boot_device == 0x20) 1779 netboot++; 1780 str[0] = (boot_device >> 4) + '0'; 1781 str[1] = (boot_device & 0xf) + '0'; 1782 str[2] = 0; 1783 bsetprops("bios-boot-device", str); 1784 } else { 1785 netboot = 1; 1786 } 1787 1788 /* 1789 * In the netboot case, drives_info is overloaded with the 1790 * dhcp ack. This is not multiboot compliant and requires 1791 * special pxegrub! 1792 */ 1793 if (netboot && mbi->drives_length != 0) { 1794 sip = (struct sol_netinfo *)(uintptr_t)mbi->drives_addr; 1795 if (sip->sn_infotype == SN_TYPE_BOOTP) 1796 bsetprop(DDI_PROP_TYPE_BYTE, 1797 "bootp-response", 1798 sizeof ("bootp-response"), 1799 (void *)(uintptr_t)mbi->drives_addr, 1800 mbi->drives_length); 1801 else if (sip->sn_infotype == SN_TYPE_RARP) 1802 setup_rarp_props(sip); 1803 } 1804 } else { 1805 multiboot2_info_header_t *mbi = xbp->bi_mb_info; 1806 multiboot_tag_bootdev_t *bootdev = NULL; 1807 multiboot_tag_network_t *netdev = NULL; 1808 1809 if (mbi != NULL) { 1810 bootdev = dboot_multiboot2_find_tag(mbi, 1811 MULTIBOOT_TAG_TYPE_BOOTDEV); 1812 netdev = dboot_multiboot2_find_tag(mbi, 1813 MULTIBOOT_TAG_TYPE_NETWORK); 1814 } 1815 if (bootdev != NULL) { 1816 DBG(bootdev->mb_biosdev); 1817 boot_device = bootdev->mb_biosdev; 1818 str[0] = (boot_device >> 4) + '0'; 1819 str[1] = (boot_device & 0xf) + '0'; 1820 str[2] = 0; 1821 bsetprops("bios-boot-device", str); 1822 } 1823 if (netdev != NULL) { 1824 bsetprop(DDI_PROP_TYPE_BYTE, 1825 "bootp-response", sizeof ("bootp-response"), 1826 (void *)(uintptr_t)netdev->mb_dhcpack, 1827 netdev->mb_size - 1828 sizeof (multiboot_tag_network_t)); 1829 } 1830 } 1831 1832 bsetprop32("stdout", stdout_val); 1833 #endif /* __xpv */ 1834 1835 /* 1836 * more conjured up values for made up things.... 1837 */ 1838 #if defined(__xpv) 1839 bsetprops("mfg-name", "i86xpv"); 1840 bsetprops("impl-arch-name", "i86xpv"); 1841 #else 1842 bsetprops("mfg-name", "i86pc"); 1843 bsetprops("impl-arch-name", "i86pc"); 1844 #endif 1845 1846 /* 1847 * Build firmware-provided system properties 1848 */ 1849 build_firmware_properties(xbp); 1850 1851 /* 1852 * XXPV 1853 * 1854 * Find out what these are: 1855 * - cpuid_feature_ecx_include 1856 * - cpuid_feature_ecx_exclude 1857 * - cpuid_feature_edx_include 1858 * - cpuid_feature_edx_exclude 1859 * 1860 * Find out what these are in multiboot: 1861 * - netdev-path 1862 * - fstype 1863 */ 1864 } 1865 1866 #ifdef __xpv 1867 /* 1868 * Under the Hypervisor, memory usable for DMA may be scarce. One 1869 * very likely large pool of DMA friendly memory is occupied by 1870 * the boot_archive, as it was loaded by grub into low MFNs. 1871 * 1872 * Here we free up that memory by copying the boot archive to what are 1873 * likely higher MFN pages and then swapping the mfn/pfn mappings. 1874 */ 1875 #define PFN_2GIG 0x80000 1876 static void 1877 relocate_boot_archive(struct xboot_info *xbp) 1878 { 1879 mfn_t max_mfn = HYPERVISOR_memory_op(XENMEM_maximum_ram_page, NULL); 1880 struct boot_modules *bm = xbp->bi_modules; 1881 uintptr_t va; 1882 pfn_t va_pfn; 1883 mfn_t va_mfn; 1884 caddr_t copy; 1885 pfn_t copy_pfn; 1886 mfn_t copy_mfn; 1887 size_t len; 1888 int slop; 1889 int total = 0; 1890 int relocated = 0; 1891 int mmu_update_return; 1892 mmu_update_t t[2]; 1893 x86pte_t pte; 1894 1895 /* 1896 * If all MFN's are below 2Gig, don't bother doing this. 1897 */ 1898 if (max_mfn < PFN_2GIG) 1899 return; 1900 if (xbp->bi_module_cnt < 1) { 1901 DBG_MSG("no boot_archive!"); 1902 return; 1903 } 1904 1905 DBG_MSG("moving boot_archive to high MFN memory\n"); 1906 va = (uintptr_t)bm->bm_addr; 1907 len = bm->bm_size; 1908 slop = va & MMU_PAGEOFFSET; 1909 if (slop) { 1910 va += MMU_PAGESIZE - slop; 1911 len -= MMU_PAGESIZE - slop; 1912 } 1913 len = P2ALIGN(len, MMU_PAGESIZE); 1914 1915 /* 1916 * Go through all boot_archive pages, swapping any low MFN pages 1917 * with memory at next_phys. 1918 */ 1919 while (len != 0) { 1920 ++total; 1921 va_pfn = mmu_btop(va - ONE_GIG); 1922 va_mfn = mfn_list[va_pfn]; 1923 if (mfn_list[va_pfn] < PFN_2GIG) { 1924 copy = kbm_remap_window(next_phys, 1); 1925 bcopy((void *)va, copy, MMU_PAGESIZE); 1926 copy_pfn = mmu_btop(next_phys); 1927 copy_mfn = mfn_list[copy_pfn]; 1928 1929 pte = mfn_to_ma(copy_mfn) | PT_NOCONSIST | PT_VALID; 1930 if (HYPERVISOR_update_va_mapping(va, pte, 1931 UVMF_INVLPG | UVMF_LOCAL)) 1932 bop_panic("relocate_boot_archive(): " 1933 "HYPERVISOR_update_va_mapping() failed"); 1934 1935 mfn_list[va_pfn] = copy_mfn; 1936 mfn_list[copy_pfn] = va_mfn; 1937 1938 t[0].ptr = mfn_to_ma(copy_mfn) | MMU_MACHPHYS_UPDATE; 1939 t[0].val = va_pfn; 1940 t[1].ptr = mfn_to_ma(va_mfn) | MMU_MACHPHYS_UPDATE; 1941 t[1].val = copy_pfn; 1942 if (HYPERVISOR_mmu_update(t, 2, &mmu_update_return, 1943 DOMID_SELF) != 0 || mmu_update_return != 2) 1944 bop_panic("relocate_boot_archive(): " 1945 "HYPERVISOR_mmu_update() failed"); 1946 1947 next_phys += MMU_PAGESIZE; 1948 ++relocated; 1949 } 1950 len -= MMU_PAGESIZE; 1951 va += MMU_PAGESIZE; 1952 } 1953 DBG_MSG("Relocated pages:\n"); 1954 DBG(relocated); 1955 DBG_MSG("Out of total pages:\n"); 1956 DBG(total); 1957 } 1958 #endif /* __xpv */ 1959 1960 #if !defined(__xpv) 1961 /* 1962 * simple description of a stack frame (args are 32 bit only currently) 1963 */ 1964 typedef struct bop_frame { 1965 struct bop_frame *old_frame; 1966 pc_t retaddr; 1967 long arg[1]; 1968 } bop_frame_t; 1969 1970 void 1971 bop_traceback(bop_frame_t *frame) 1972 { 1973 pc_t pc; 1974 int cnt; 1975 char *ksym; 1976 ulong_t off; 1977 1978 bop_printf(NULL, "Stack traceback:\n"); 1979 for (cnt = 0; cnt < 30; ++cnt) { /* up to 30 frames */ 1980 pc = frame->retaddr; 1981 if (pc == 0) 1982 break; 1983 ksym = kobj_getsymname(pc, &off); 1984 if (ksym) 1985 bop_printf(NULL, " %s+%lx", ksym, off); 1986 else 1987 bop_printf(NULL, " 0x%lx", pc); 1988 1989 frame = frame->old_frame; 1990 if (frame == 0) { 1991 bop_printf(NULL, "\n"); 1992 break; 1993 } 1994 bop_printf(NULL, "\n"); 1995 } 1996 } 1997 1998 struct trapframe { 1999 ulong_t error_code; /* optional */ 2000 ulong_t inst_ptr; 2001 ulong_t code_seg; 2002 ulong_t flags_reg; 2003 ulong_t stk_ptr; 2004 ulong_t stk_seg; 2005 }; 2006 2007 void 2008 bop_trap(ulong_t *tfp) 2009 { 2010 struct trapframe *tf = (struct trapframe *)tfp; 2011 bop_frame_t fakeframe; 2012 static int depth = 0; 2013 2014 /* 2015 * Check for an infinite loop of traps. 2016 */ 2017 if (++depth > 2) 2018 bop_panic("Nested trap"); 2019 2020 bop_printf(NULL, "Unexpected trap\n"); 2021 2022 /* 2023 * adjust the tf for optional error_code by detecting the code selector 2024 */ 2025 if (tf->code_seg != B64CODE_SEL) 2026 tf = (struct trapframe *)(tfp - 1); 2027 else 2028 bop_printf(NULL, "error code 0x%lx\n", 2029 tf->error_code & 0xffffffff); 2030 2031 bop_printf(NULL, "instruction pointer 0x%lx\n", tf->inst_ptr); 2032 bop_printf(NULL, "code segment 0x%lx\n", tf->code_seg & 0xffff); 2033 bop_printf(NULL, "flags register 0x%lx\n", tf->flags_reg); 2034 bop_printf(NULL, "return %%rsp 0x%lx\n", tf->stk_ptr); 2035 bop_printf(NULL, "return %%ss 0x%lx\n", tf->stk_seg & 0xffff); 2036 bop_printf(NULL, "%%cr2 0x%lx\n", getcr2()); 2037 2038 /* grab %[er]bp pushed by our code from the stack */ 2039 fakeframe.old_frame = (bop_frame_t *)*(tfp - 3); 2040 fakeframe.retaddr = (pc_t)tf->inst_ptr; 2041 bop_printf(NULL, "Attempting stack backtrace:\n"); 2042 bop_traceback(&fakeframe); 2043 bop_panic("unexpected trap in early boot"); 2044 } 2045 2046 extern void bop_trap_handler(void); 2047 2048 static gate_desc_t *bop_idt; 2049 2050 static desctbr_t bop_idt_info; 2051 2052 /* 2053 * Install a temporary IDT that lets us catch errors in the boot time code. 2054 * We shouldn't get any faults at all while this is installed, so we'll 2055 * just generate a traceback and exit. 2056 */ 2057 static void 2058 bop_idt_init(void) 2059 { 2060 int t; 2061 2062 bop_idt = (gate_desc_t *) 2063 do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE); 2064 bzero(bop_idt, MMU_PAGESIZE); 2065 for (t = 0; t < NIDT; ++t) { 2066 /* 2067 * Note that since boot runs without a TSS, the 2068 * double fault handler cannot use an alternate stack (64-bit). 2069 */ 2070 set_gatesegd(&bop_idt[t], &bop_trap_handler, B64CODE_SEL, 2071 SDT_SYSIGT, TRP_KPL, 0); 2072 } 2073 bop_idt_info.dtr_limit = (NIDT * sizeof (gate_desc_t)) - 1; 2074 bop_idt_info.dtr_base = (uintptr_t)bop_idt; 2075 wr_idtr(&bop_idt_info); 2076 } 2077 #endif /* !defined(__xpv) */ 2078 2079 /* 2080 * This is where we enter the kernel. It dummies up the boot_ops and 2081 * boot_syscalls vectors and jumps off to _kobj_boot() 2082 */ 2083 void 2084 _start(struct xboot_info *xbp) 2085 { 2086 bootops_t *bops = &bootop; 2087 extern void _kobj_boot(); 2088 2089 /* 2090 * 1st off - initialize the console for any error messages 2091 */ 2092 xbootp = xbp; 2093 #ifdef __xpv 2094 HYPERVISOR_shared_info = (void *)xbp->bi_shared_info; 2095 xen_info = xbp->bi_xen_start_info; 2096 #endif 2097 2098 #ifndef __xpv 2099 if (*((uint32_t *)(FASTBOOT_SWTCH_PA + FASTBOOT_STACK_OFFSET)) == 2100 FASTBOOT_MAGIC) { 2101 post_fastreboot = 1; 2102 *((uint32_t *)(FASTBOOT_SWTCH_PA + FASTBOOT_STACK_OFFSET)) = 0; 2103 } 2104 #endif 2105 2106 bcons_init(xbp); 2107 have_console = 1; 2108 2109 /* 2110 * enable debugging 2111 */ 2112 if (find_boot_prop("kbm_debug") != NULL) 2113 kbm_debug = 1; 2114 2115 DBG_MSG("\n\n*** Entered Solaris in _start() cmdline is: "); 2116 DBG_MSG((char *)xbp->bi_cmdline); 2117 DBG_MSG("\n\n\n"); 2118 2119 /* 2120 * physavail is no longer used by startup 2121 */ 2122 bm.physinstalled = xbp->bi_phys_install; 2123 bm.pcimem = xbp->bi_pcimem; 2124 bm.rsvdmem = xbp->bi_rsvdmem; 2125 bm.physavail = NULL; 2126 2127 /* 2128 * initialize the boot time allocator 2129 */ 2130 next_phys = xbp->bi_next_paddr; 2131 DBG(next_phys); 2132 next_virt = (uintptr_t)xbp->bi_next_vaddr; 2133 DBG(next_virt); 2134 DBG_MSG("Initializing boot time memory management..."); 2135 #ifdef __xpv 2136 { 2137 xen_platform_parameters_t p; 2138 2139 /* This call shouldn't fail, dboot already did it once. */ 2140 (void) HYPERVISOR_xen_version(XENVER_platform_parameters, &p); 2141 mfn_to_pfn_mapping = (pfn_t *)(xen_virt_start = p.virt_start); 2142 DBG(xen_virt_start); 2143 } 2144 #endif 2145 kbm_init(xbp); 2146 DBG_MSG("done\n"); 2147 2148 /* 2149 * Fill in the bootops vector 2150 */ 2151 bops->bsys_version = BO_VERSION; 2152 bops->boot_mem = &bm; 2153 bops->bsys_alloc = do_bsys_alloc; 2154 bops->bsys_free = do_bsys_free; 2155 bops->bsys_getproplen = do_bsys_getproplen; 2156 bops->bsys_getprop = do_bsys_getprop; 2157 bops->bsys_nextprop = do_bsys_nextprop; 2158 bops->bsys_printf = bop_printf; 2159 bops->bsys_doint = do_bsys_doint; 2160 2161 /* 2162 * BOP_EALLOC() is no longer needed 2163 */ 2164 bops->bsys_ealloc = do_bsys_ealloc; 2165 2166 #ifdef __xpv 2167 /* 2168 * On domain 0 we need to free up some physical memory that is 2169 * usable for DMA. Since GRUB loaded the boot_archive, it is 2170 * sitting in low MFN memory. We'll relocated the boot archive 2171 * pages to high PFN memory. 2172 */ 2173 if (DOMAIN_IS_INITDOMAIN(xen_info)) 2174 relocate_boot_archive(xbp); 2175 #endif 2176 2177 #ifndef __xpv 2178 /* 2179 * Install an IDT to catch early pagefaults (shouldn't have any). 2180 * Also needed for kmdb. 2181 */ 2182 bop_idt_init(); 2183 #endif 2184 /* Set up the shadow fb for framebuffer console */ 2185 boot_fb_shadow_init(bops); 2186 2187 /* 2188 * Start building the boot properties from the command line 2189 */ 2190 DBG_MSG("Initializing boot properties:\n"); 2191 build_boot_properties(xbp); 2192 2193 if (find_boot_prop("prom_debug") || kbm_debug) { 2194 char *value; 2195 2196 value = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE); 2197 boot_prop_display(value); 2198 } 2199 2200 /* 2201 * jump into krtld... 2202 */ 2203 _kobj_boot(&bop_sysp, NULL, bops, NULL); 2204 } 2205 2206 2207 /*ARGSUSED*/ 2208 static caddr_t 2209 no_more_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align) 2210 { 2211 panic("Attempt to bsys_alloc() too late\n"); 2212 return (NULL); 2213 } 2214 2215 /*ARGSUSED*/ 2216 static void 2217 no_more_free(bootops_t *bop, caddr_t virt, size_t size) 2218 { 2219 panic("Attempt to bsys_free() too late\n"); 2220 } 2221 2222 void 2223 bop_no_more_mem(void) 2224 { 2225 DBG(total_bop_alloc_scratch); 2226 DBG(total_bop_alloc_kernel); 2227 bootops->bsys_alloc = no_more_alloc; 2228 bootops->bsys_free = no_more_free; 2229 } 2230 2231 2232 /* 2233 * Set ACPI firmware properties 2234 */ 2235 2236 static caddr_t 2237 vmap_phys(size_t length, paddr_t pa) 2238 { 2239 paddr_t start, end; 2240 caddr_t va; 2241 size_t len, page; 2242 2243 #ifdef __xpv 2244 pa = pfn_to_pa(xen_assign_pfn(mmu_btop(pa))) | (pa & MMU_PAGEOFFSET); 2245 #endif 2246 start = P2ALIGN(pa, MMU_PAGESIZE); 2247 end = P2ROUNDUP(pa + length, MMU_PAGESIZE); 2248 len = end - start; 2249 va = (caddr_t)alloc_vaddr(len, MMU_PAGESIZE); 2250 for (page = 0; page < len; page += MMU_PAGESIZE) 2251 kbm_map((uintptr_t)va + page, start + page, 0, 0); 2252 return (va + (pa & MMU_PAGEOFFSET)); 2253 } 2254 2255 static uint8_t 2256 checksum_table(uint8_t *tp, size_t len) 2257 { 2258 uint8_t sum = 0; 2259 2260 while (len-- > 0) 2261 sum += *tp++; 2262 2263 return (sum); 2264 } 2265 2266 static int 2267 valid_rsdp(ACPI_TABLE_RSDP *rp) 2268 { 2269 2270 /* validate the V1.x checksum */ 2271 if (checksum_table((uint8_t *)rp, ACPI_RSDP_CHECKSUM_LENGTH) != 0) 2272 return (0); 2273 2274 /* If pre-ACPI 2.0, this is a valid RSDP */ 2275 if (rp->Revision < 2) 2276 return (1); 2277 2278 /* validate the V2.x checksum */ 2279 if (checksum_table((uint8_t *)rp, ACPI_RSDP_XCHECKSUM_LENGTH) != 0) 2280 return (0); 2281 2282 return (1); 2283 } 2284 2285 /* 2286 * Scan memory range for an RSDP; 2287 * see ACPI 3.0 Spec, 5.2.5.1 2288 */ 2289 static ACPI_TABLE_RSDP * 2290 scan_rsdp(paddr_t *paddrp, size_t len) 2291 { 2292 paddr_t paddr = *paddrp; 2293 caddr_t ptr; 2294 2295 ptr = vmap_phys(len, paddr); 2296 2297 while (len > 0) { 2298 if (strncmp(ptr, ACPI_SIG_RSDP, strlen(ACPI_SIG_RSDP)) == 0 && 2299 valid_rsdp((ACPI_TABLE_RSDP *)ptr)) { 2300 *paddrp = paddr; 2301 return ((ACPI_TABLE_RSDP *)ptr); 2302 } 2303 2304 ptr += ACPI_RSDP_SCAN_STEP; 2305 paddr += ACPI_RSDP_SCAN_STEP; 2306 len -= ACPI_RSDP_SCAN_STEP; 2307 } 2308 2309 return (NULL); 2310 } 2311 2312 /* 2313 * Locate the ACPI RSDP. We search in a particular order: 2314 * 2315 * - If the bootloader told us the location of the RSDP (via the EFI system 2316 * table), try that first. 2317 * - Otherwise, look in the EBDA and BIOS memory as per ACPI 5.2.5.1 (legacy 2318 * case). 2319 * - Finally, our bootloader may have a copy of the RSDP in its info: this might 2320 * get freed after boot, so we always prefer to find the original RSDP first. 2321 * 2322 * Once found, we set acpi-root-tab property (a physical address) for the 2323 * benefit of acpica, acpidump etc. 2324 */ 2325 2326 static ACPI_TABLE_RSDP * 2327 find_rsdp(struct xboot_info *xbp) 2328 { 2329 ACPI_TABLE_RSDP *rsdp = NULL; 2330 paddr_t paddr = 0; 2331 2332 if (do_bsys_getproplen(NULL, "acpi-root-tab") == sizeof (uint64_t)) { 2333 (void) do_bsys_getprop(NULL, "acpi-root-tab", &paddr); 2334 rsdp = scan_rsdp(&paddr, sizeof (*rsdp)); 2335 } 2336 2337 #ifndef __xpv 2338 if (rsdp == NULL && xbp->bi_acpi_rsdp != NULL) { 2339 paddr = (uintptr_t)xbp->bi_acpi_rsdp; 2340 rsdp = scan_rsdp(&paddr, sizeof (*rsdp)); 2341 } 2342 #endif 2343 2344 if (rsdp == NULL) { 2345 uint16_t *ebda_seg = (uint16_t *)vmap_phys(sizeof (uint16_t), 2346 ACPI_EBDA_PTR_LOCATION); 2347 paddr = *ebda_seg << 4; 2348 rsdp = scan_rsdp(&paddr, ACPI_EBDA_WINDOW_SIZE); 2349 } 2350 2351 if (rsdp == NULL) { 2352 paddr = ACPI_HI_RSDP_WINDOW_BASE; 2353 rsdp = scan_rsdp(&paddr, ACPI_HI_RSDP_WINDOW_SIZE); 2354 } 2355 2356 #ifndef __xpv 2357 if (rsdp == NULL && xbp->bi_acpi_rsdp_copy != NULL) { 2358 paddr = (uintptr_t)xbp->bi_acpi_rsdp_copy; 2359 rsdp = scan_rsdp(&paddr, sizeof (*rsdp)); 2360 } 2361 #endif 2362 2363 if (rsdp == NULL) { 2364 bop_printf(NULL, "no RSDP found!\n"); 2365 return (NULL); 2366 } 2367 2368 if (kbm_debug) 2369 bop_printf(NULL, "RSDP found at physical 0x%lx\n", paddr); 2370 2371 if (do_bsys_getproplen(NULL, "acpi-root-tab") != sizeof (uint64_t)) 2372 bsetprop64("acpi-root-tab", paddr); 2373 2374 return (rsdp); 2375 } 2376 2377 static ACPI_TABLE_HEADER * 2378 map_fw_table(paddr_t table_addr) 2379 { 2380 ACPI_TABLE_HEADER *tp; 2381 size_t len = MAX(sizeof (*tp), MMU_PAGESIZE); 2382 2383 /* 2384 * Map at least a page; if the table is larger than this, remap it 2385 */ 2386 tp = (ACPI_TABLE_HEADER *)vmap_phys(len, table_addr); 2387 if (tp->Length > len) 2388 tp = (ACPI_TABLE_HEADER *)vmap_phys(tp->Length, table_addr); 2389 return (tp); 2390 } 2391 2392 static ACPI_TABLE_HEADER * 2393 find_fw_table(ACPI_TABLE_RSDP *rsdp, char *signature) 2394 { 2395 static int revision = 0; 2396 static ACPI_TABLE_XSDT *xsdt; 2397 static int len; 2398 paddr_t xsdt_addr; 2399 ACPI_TABLE_HEADER *tp; 2400 paddr_t table_addr; 2401 int n; 2402 2403 if (strlen(signature) != ACPI_NAME_SIZE) 2404 return (NULL); 2405 2406 /* 2407 * Reading the ACPI 3.0 Spec, section 5.2.5.3 will help 2408 * understand this code. If we haven't already found the RSDT/XSDT, 2409 * revision will be 0. Find the RSDP and check the revision 2410 * to find out whether to use the RSDT or XSDT. If revision is 2411 * 0 or 1, use the RSDT and set internal revision to 1; if it is 2, 2412 * use the XSDT. If the XSDT address is 0, though, fall back to 2413 * revision 1 and use the RSDT. 2414 */ 2415 xsdt_addr = 0; 2416 if (revision == 0) { 2417 if (rsdp == NULL) 2418 return (NULL); 2419 2420 revision = rsdp->Revision; 2421 /* 2422 * ACPI 6.0 states that current revision is 2 2423 * from acpi_table_rsdp definition: 2424 * Must be (0) for ACPI 1.0 or (2) for ACPI 2.0+ 2425 */ 2426 if (revision > 2) 2427 revision = 2; 2428 switch (revision) { 2429 case 2: 2430 /* 2431 * Use the XSDT unless BIOS is buggy and 2432 * claims to be rev 2 but has a null XSDT 2433 * address 2434 */ 2435 xsdt_addr = rsdp->XsdtPhysicalAddress; 2436 if (xsdt_addr != 0) 2437 break; 2438 /* FALLTHROUGH */ 2439 case 0: 2440 /* treat RSDP rev 0 as revision 1 internally */ 2441 revision = 1; 2442 /* FALLTHROUGH */ 2443 case 1: 2444 /* use the RSDT for rev 0/1 */ 2445 xsdt_addr = rsdp->RsdtPhysicalAddress; 2446 break; 2447 default: 2448 /* unknown revision */ 2449 revision = 0; 2450 break; 2451 } 2452 2453 if (revision == 0) 2454 return (NULL); 2455 2456 /* cache the XSDT info */ 2457 xsdt = (ACPI_TABLE_XSDT *)map_fw_table(xsdt_addr); 2458 len = (xsdt->Header.Length - sizeof (xsdt->Header)) / 2459 ((revision == 1) ? sizeof (uint32_t) : sizeof (uint64_t)); 2460 } 2461 2462 /* 2463 * Scan the table headers looking for a signature match 2464 */ 2465 for (n = 0; n < len; n++) { 2466 ACPI_TABLE_RSDT *rsdt = (ACPI_TABLE_RSDT *)xsdt; 2467 table_addr = (revision == 1) ? rsdt->TableOffsetEntry[n] : 2468 xsdt->TableOffsetEntry[n]; 2469 2470 if (table_addr == 0) 2471 continue; 2472 tp = map_fw_table(table_addr); 2473 if (strncmp(tp->Signature, signature, ACPI_NAME_SIZE) == 0) { 2474 return (tp); 2475 } 2476 } 2477 return (NULL); 2478 } 2479 2480 static void 2481 process_mcfg(ACPI_TABLE_MCFG *tp) 2482 { 2483 ACPI_MCFG_ALLOCATION *cfg_baap; 2484 char *cfg_baa_endp; 2485 int64_t ecfginfo[4]; 2486 2487 cfg_baap = (ACPI_MCFG_ALLOCATION *)((uintptr_t)tp + sizeof (*tp)); 2488 cfg_baa_endp = ((char *)tp) + tp->Header.Length; 2489 while ((char *)cfg_baap < cfg_baa_endp) { 2490 if (cfg_baap->Address != 0 && cfg_baap->PciSegment == 0) { 2491 ecfginfo[0] = cfg_baap->Address; 2492 ecfginfo[1] = cfg_baap->PciSegment; 2493 ecfginfo[2] = cfg_baap->StartBusNumber; 2494 ecfginfo[3] = cfg_baap->EndBusNumber; 2495 bsetprop(DDI_PROP_TYPE_INT64, 2496 MCFG_PROPNAME, strlen(MCFG_PROPNAME), 2497 ecfginfo, sizeof (ecfginfo)); 2498 break; 2499 } 2500 cfg_baap++; 2501 } 2502 } 2503 2504 #ifndef __xpv 2505 static void 2506 process_madt_entries(ACPI_TABLE_MADT *tp, uint32_t *cpu_countp, 2507 uint32_t *cpu_possible_countp, uint32_t *cpu_apicid_array) 2508 { 2509 ACPI_SUBTABLE_HEADER *item, *end; 2510 uint32_t cpu_count = 0; 2511 uint32_t cpu_possible_count = 0; 2512 2513 /* 2514 * Determine number of CPUs and keep track of "final" APIC ID 2515 * for each CPU by walking through ACPI MADT processor list 2516 */ 2517 end = (ACPI_SUBTABLE_HEADER *)(tp->Header.Length + (uintptr_t)tp); 2518 item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)tp + sizeof (*tp)); 2519 2520 while (item < end) { 2521 switch (item->Type) { 2522 case ACPI_MADT_TYPE_LOCAL_APIC: { 2523 ACPI_MADT_LOCAL_APIC *cpu = 2524 (ACPI_MADT_LOCAL_APIC *) item; 2525 2526 if (cpu->LapicFlags & ACPI_MADT_ENABLED) { 2527 if (cpu_apicid_array != NULL) 2528 cpu_apicid_array[cpu_count] = cpu->Id; 2529 cpu_count++; 2530 } 2531 cpu_possible_count++; 2532 break; 2533 } 2534 case ACPI_MADT_TYPE_LOCAL_X2APIC: { 2535 ACPI_MADT_LOCAL_X2APIC *cpu = 2536 (ACPI_MADT_LOCAL_X2APIC *) item; 2537 2538 if (cpu->LapicFlags & ACPI_MADT_ENABLED) { 2539 if (cpu_apicid_array != NULL) 2540 cpu_apicid_array[cpu_count] = 2541 cpu->LocalApicId; 2542 cpu_count++; 2543 } 2544 cpu_possible_count++; 2545 break; 2546 } 2547 default: 2548 if (kbm_debug) 2549 bop_printf(NULL, "MADT type %d\n", item->Type); 2550 break; 2551 } 2552 2553 item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)item + item->Length); 2554 } 2555 if (cpu_countp) 2556 *cpu_countp = cpu_count; 2557 if (cpu_possible_countp) 2558 *cpu_possible_countp = cpu_possible_count; 2559 } 2560 2561 static void 2562 process_madt(ACPI_TABLE_MADT *tp) 2563 { 2564 uint32_t cpu_count = 0; 2565 uint32_t cpu_possible_count = 0; 2566 uint32_t *cpu_apicid_array; /* x2APIC ID is 32bit! */ 2567 2568 if (tp != NULL) { 2569 /* count cpu's */ 2570 process_madt_entries(tp, &cpu_count, &cpu_possible_count, NULL); 2571 2572 cpu_apicid_array = (uint32_t *)do_bsys_alloc(NULL, NULL, 2573 cpu_count * sizeof (*cpu_apicid_array), MMU_PAGESIZE); 2574 if (cpu_apicid_array == NULL) 2575 bop_panic("Not enough memory for APIC ID array"); 2576 2577 /* copy IDs */ 2578 process_madt_entries(tp, NULL, NULL, cpu_apicid_array); 2579 2580 /* 2581 * Make boot property for array of "final" APIC IDs for each 2582 * CPU 2583 */ 2584 bsetprop(DDI_PROP_TYPE_INT, 2585 BP_CPU_APICID_ARRAY, strlen(BP_CPU_APICID_ARRAY), 2586 cpu_apicid_array, cpu_count * sizeof (*cpu_apicid_array)); 2587 } 2588 2589 /* 2590 * Check whether property plat-max-ncpus is already set. 2591 */ 2592 if (do_bsys_getproplen(NULL, PLAT_MAX_NCPUS_NAME) < 0) { 2593 /* 2594 * Set plat-max-ncpus to number of maximum possible CPUs given 2595 * in MADT if it hasn't been set. 2596 * There's no formal way to detect max possible CPUs supported 2597 * by platform according to ACPI spec3.0b. So current CPU 2598 * hotplug implementation expects that all possible CPUs will 2599 * have an entry in MADT table and set plat-max-ncpus to number 2600 * of entries in MADT. 2601 * With introducing of ACPI4.0, Maximum System Capability Table 2602 * (MSCT) provides maximum number of CPUs supported by platform. 2603 * If MSCT is unavailable, fall back to old way. 2604 */ 2605 if (tp != NULL) 2606 bsetpropsi(PLAT_MAX_NCPUS_NAME, cpu_possible_count); 2607 } 2608 2609 /* 2610 * Set boot property boot-max-ncpus to number of CPUs existing at 2611 * boot time. boot-max-ncpus is mainly used for optimization. 2612 */ 2613 if (tp != NULL) 2614 bsetpropsi(BOOT_MAX_NCPUS_NAME, cpu_count); 2615 2616 /* 2617 * User-set boot-ncpus overrides firmware count 2618 */ 2619 if (do_bsys_getproplen(NULL, BOOT_NCPUS_NAME) >= 0) 2620 return; 2621 2622 /* 2623 * Set boot property boot-ncpus to number of active CPUs given in MADT 2624 * if it hasn't been set yet. 2625 */ 2626 if (tp != NULL) 2627 bsetpropsi(BOOT_NCPUS_NAME, cpu_count); 2628 } 2629 2630 static void 2631 process_srat(ACPI_TABLE_SRAT *tp) 2632 { 2633 ACPI_SUBTABLE_HEADER *item, *end; 2634 int i; 2635 int proc_num, mem_num; 2636 #pragma pack(1) 2637 struct { 2638 uint32_t domain; 2639 uint32_t apic_id; 2640 uint32_t sapic_id; 2641 } processor; 2642 struct { 2643 uint32_t domain; 2644 uint32_t x2apic_id; 2645 } x2apic; 2646 struct { 2647 uint32_t domain; 2648 uint64_t addr; 2649 uint64_t length; 2650 uint32_t flags; 2651 } memory; 2652 #pragma pack() 2653 char prop_name[30]; 2654 uint64_t maxmem = 0; 2655 2656 if (tp == NULL) 2657 return; 2658 2659 proc_num = mem_num = 0; 2660 end = (ACPI_SUBTABLE_HEADER *)(tp->Header.Length + (uintptr_t)tp); 2661 item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)tp + sizeof (*tp)); 2662 while (item < end) { 2663 switch (item->Type) { 2664 case ACPI_SRAT_TYPE_CPU_AFFINITY: { 2665 ACPI_SRAT_CPU_AFFINITY *cpu = 2666 (ACPI_SRAT_CPU_AFFINITY *) item; 2667 2668 if (!(cpu->Flags & ACPI_SRAT_CPU_ENABLED)) 2669 break; 2670 processor.domain = cpu->ProximityDomainLo; 2671 for (i = 0; i < 3; i++) 2672 processor.domain += 2673 cpu->ProximityDomainHi[i] << ((i + 1) * 8); 2674 processor.apic_id = cpu->ApicId; 2675 processor.sapic_id = cpu->LocalSapicEid; 2676 (void) snprintf(prop_name, 30, "acpi-srat-processor-%d", 2677 proc_num); 2678 bsetprop(DDI_PROP_TYPE_INT, 2679 prop_name, strlen(prop_name), &processor, 2680 sizeof (processor)); 2681 proc_num++; 2682 break; 2683 } 2684 case ACPI_SRAT_TYPE_MEMORY_AFFINITY: { 2685 ACPI_SRAT_MEM_AFFINITY *mem = 2686 (ACPI_SRAT_MEM_AFFINITY *)item; 2687 2688 if (!(mem->Flags & ACPI_SRAT_MEM_ENABLED)) 2689 break; 2690 memory.domain = mem->ProximityDomain; 2691 memory.addr = mem->BaseAddress; 2692 memory.length = mem->Length; 2693 memory.flags = mem->Flags; 2694 (void) snprintf(prop_name, 30, "acpi-srat-memory-%d", 2695 mem_num); 2696 bsetprop(DDI_PROP_TYPE_INT, 2697 prop_name, strlen(prop_name), &memory, 2698 sizeof (memory)); 2699 if ((mem->Flags & ACPI_SRAT_MEM_HOT_PLUGGABLE) && 2700 (memory.addr + memory.length > maxmem)) { 2701 maxmem = memory.addr + memory.length; 2702 } 2703 mem_num++; 2704 break; 2705 } 2706 case ACPI_SRAT_TYPE_X2APIC_CPU_AFFINITY: { 2707 ACPI_SRAT_X2APIC_CPU_AFFINITY *x2cpu = 2708 (ACPI_SRAT_X2APIC_CPU_AFFINITY *) item; 2709 2710 if (!(x2cpu->Flags & ACPI_SRAT_CPU_ENABLED)) 2711 break; 2712 x2apic.domain = x2cpu->ProximityDomain; 2713 x2apic.x2apic_id = x2cpu->ApicId; 2714 (void) snprintf(prop_name, 30, "acpi-srat-processor-%d", 2715 proc_num); 2716 bsetprop(DDI_PROP_TYPE_INT, 2717 prop_name, strlen(prop_name), &x2apic, 2718 sizeof (x2apic)); 2719 proc_num++; 2720 break; 2721 } 2722 default: 2723 if (kbm_debug) 2724 bop_printf(NULL, "SRAT type %d\n", item->Type); 2725 break; 2726 } 2727 2728 item = (ACPI_SUBTABLE_HEADER *) 2729 (item->Length + (uintptr_t)item); 2730 } 2731 2732 /* 2733 * The maximum physical address calculated from the SRAT table is more 2734 * accurate than that calculated from the MSCT table. 2735 */ 2736 if (maxmem != 0) { 2737 plat_dr_physmax = btop(maxmem); 2738 } 2739 } 2740 2741 static void 2742 process_slit(ACPI_TABLE_SLIT *tp) 2743 { 2744 2745 /* 2746 * Check the number of localities; if it's too huge, we just 2747 * return and locality enumeration code will handle this later, 2748 * if possible. 2749 * 2750 * Note that the size of the table is the square of the 2751 * number of localities; if the number of localities exceeds 2752 * UINT16_MAX, the table size may overflow an int when being 2753 * passed to bsetprop() below. 2754 */ 2755 if (tp->LocalityCount >= SLIT_LOCALITIES_MAX) 2756 return; 2757 2758 bsetprop64(SLIT_NUM_PROPNAME, tp->LocalityCount); 2759 bsetprop(DDI_PROP_TYPE_BYTE, 2760 SLIT_PROPNAME, strlen(SLIT_PROPNAME), &tp->Entry, 2761 tp->LocalityCount * tp->LocalityCount); 2762 } 2763 2764 static ACPI_TABLE_MSCT * 2765 process_msct(ACPI_TABLE_MSCT *tp) 2766 { 2767 int last_seen = 0; 2768 int proc_num = 0; 2769 ACPI_MSCT_PROXIMITY *item, *end; 2770 extern uint64_t plat_dr_options; 2771 2772 ASSERT(tp != NULL); 2773 2774 end = (ACPI_MSCT_PROXIMITY *)(tp->Header.Length + (uintptr_t)tp); 2775 for (item = (void *)((uintptr_t)tp + tp->ProximityOffset); 2776 item < end; 2777 item = (void *)(item->Length + (uintptr_t)item)) { 2778 /* 2779 * Sanity check according to section 5.2.19.1 of ACPI 4.0. 2780 * Revision 1 2781 * Length 22 2782 */ 2783 if (item->Revision != 1 || item->Length != 22) { 2784 cmn_err(CE_CONT, 2785 "?boot: unknown proximity domain structure in MSCT " 2786 "with Revision(%d), Length(%d).\n", 2787 (int)item->Revision, (int)item->Length); 2788 return (NULL); 2789 } else if (item->RangeStart > item->RangeEnd) { 2790 cmn_err(CE_CONT, 2791 "?boot: invalid proximity domain structure in MSCT " 2792 "with RangeStart(%u), RangeEnd(%u).\n", 2793 item->RangeStart, item->RangeEnd); 2794 return (NULL); 2795 } else if (item->RangeStart != last_seen) { 2796 /* 2797 * Items must be organized in ascending order of the 2798 * proximity domain enumerations. 2799 */ 2800 cmn_err(CE_CONT, 2801 "?boot: invalid proximity domain structure in MSCT," 2802 " items are not orginized in ascending order.\n"); 2803 return (NULL); 2804 } 2805 2806 /* 2807 * If ProcessorCapacity is 0 then there would be no CPUs in this 2808 * domain. 2809 */ 2810 if (item->ProcessorCapacity != 0) { 2811 proc_num += (item->RangeEnd - item->RangeStart + 1) * 2812 item->ProcessorCapacity; 2813 } 2814 2815 last_seen = item->RangeEnd - item->RangeStart + 1; 2816 /* 2817 * Break out if all proximity domains have been processed. 2818 * Some BIOSes may have unused items at the end of MSCT table. 2819 */ 2820 if (last_seen > tp->MaxProximityDomains) { 2821 break; 2822 } 2823 } 2824 if (last_seen != tp->MaxProximityDomains + 1) { 2825 cmn_err(CE_CONT, 2826 "?boot: invalid proximity domain structure in MSCT, " 2827 "proximity domain count doesn't match.\n"); 2828 return (NULL); 2829 } 2830 2831 /* 2832 * Set plat-max-ncpus property if it hasn't been set yet. 2833 */ 2834 if (do_bsys_getproplen(NULL, PLAT_MAX_NCPUS_NAME) < 0) { 2835 if (proc_num != 0) { 2836 bsetpropsi(PLAT_MAX_NCPUS_NAME, proc_num); 2837 } 2838 } 2839 2840 /* 2841 * Use Maximum Physical Address from the MSCT table as upper limit for 2842 * memory hot-adding by default. It may be overridden by value from 2843 * the SRAT table or the "plat-dr-physmax" boot option. 2844 */ 2845 plat_dr_physmax = btop(tp->MaxAddress + 1); 2846 2847 /* 2848 * Existence of MSCT implies CPU/memory hotplug-capability for the 2849 * platform. 2850 */ 2851 plat_dr_options |= PLAT_DR_FEATURE_CPU; 2852 plat_dr_options |= PLAT_DR_FEATURE_MEMORY; 2853 2854 return (tp); 2855 } 2856 2857 #else /* __xpv */ 2858 static void 2859 enumerate_xen_cpus() 2860 { 2861 processorid_t id, max_id; 2862 2863 /* 2864 * User-set boot-ncpus overrides enumeration 2865 */ 2866 if (do_bsys_getproplen(NULL, BOOT_NCPUS_NAME) >= 0) 2867 return; 2868 2869 /* 2870 * Probe every possible virtual CPU id and remember the 2871 * highest id present; the count of CPUs is one greater 2872 * than this. This tacitly assumes at least cpu 0 is present. 2873 */ 2874 max_id = 0; 2875 for (id = 0; id < MAX_VIRT_CPUS; id++) 2876 if (HYPERVISOR_vcpu_op(VCPUOP_is_up, id, NULL) == 0) 2877 max_id = id; 2878 2879 bsetpropsi(BOOT_NCPUS_NAME, max_id+1); 2880 2881 } 2882 #endif /* __xpv */ 2883 2884 /*ARGSUSED*/ 2885 static void 2886 build_firmware_properties(struct xboot_info *xbp) 2887 { 2888 ACPI_TABLE_HEADER *tp = NULL; 2889 ACPI_TABLE_RSDP *rsdp; 2890 2891 #ifndef __xpv 2892 if (xbp->bi_uefi_arch == XBI_UEFI_ARCH_64) { 2893 bsetprops("efi-systype", "64"); 2894 bsetprop64("efi-systab", 2895 (uint64_t)(uintptr_t)xbp->bi_uefi_systab); 2896 if (kbm_debug) 2897 bop_printf(NULL, "64-bit UEFI detected.\n"); 2898 } else if (xbp->bi_uefi_arch == XBI_UEFI_ARCH_32) { 2899 bsetprops("efi-systype", "32"); 2900 bsetprop64("efi-systab", 2901 (uint64_t)(uintptr_t)xbp->bi_uefi_systab); 2902 if (kbm_debug) 2903 bop_printf(NULL, "32-bit UEFI detected.\n"); 2904 } 2905 2906 if (xbp->bi_smbios != NULL) { 2907 bsetprop64("smbios-address", 2908 (uint64_t)(uintptr_t)xbp->bi_smbios); 2909 } 2910 2911 rsdp = find_rsdp(xbp); 2912 2913 if ((tp = find_fw_table(rsdp, ACPI_SIG_MSCT)) != NULL) 2914 msct_ptr = process_msct((ACPI_TABLE_MSCT *)tp); 2915 else 2916 msct_ptr = NULL; 2917 2918 if ((tp = find_fw_table(rsdp, ACPI_SIG_MADT)) != NULL) 2919 process_madt((ACPI_TABLE_MADT *)tp); 2920 2921 if ((srat_ptr = (ACPI_TABLE_SRAT *) 2922 find_fw_table(rsdp, ACPI_SIG_SRAT)) != NULL) 2923 process_srat(srat_ptr); 2924 2925 if (slit_ptr = (ACPI_TABLE_SLIT *)find_fw_table(rsdp, ACPI_SIG_SLIT)) 2926 process_slit(slit_ptr); 2927 2928 tp = find_fw_table(rsdp, ACPI_SIG_MCFG); 2929 #else /* __xpv */ 2930 enumerate_xen_cpus(); 2931 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 2932 rsdp = find_rsdp(xbp); 2933 tp = find_fw_table(rsdp, ACPI_SIG_MCFG); 2934 } 2935 #endif /* __xpv */ 2936 if (tp != NULL) 2937 process_mcfg((ACPI_TABLE_MCFG *)tp); 2938 } 2939 2940 /* 2941 * fake up a boot property for deferred early console output 2942 * this is used by both graphical boot and the (developer only) 2943 * USB serial console 2944 */ 2945 void * 2946 defcons_init(size_t size) 2947 { 2948 static char *p = NULL; 2949 2950 p = do_bsys_alloc(NULL, NULL, size, MMU_PAGESIZE); 2951 *p = 0; 2952 bsetprop32("deferred-console-buf", (uint32_t)((uintptr_t)&p)); 2953 return (p); 2954 } 2955 2956 /*ARGSUSED*/ 2957 int 2958 boot_compinfo(int fd, struct compinfo *cbp) 2959 { 2960 cbp->iscmp = 0; 2961 cbp->blksize = MAXBSIZE; 2962 return (0); 2963 } 2964 2965 /* 2966 * Get an integer value for given boot property 2967 */ 2968 int 2969 bootprop_getval(const char *prop_name, u_longlong_t *prop_value) 2970 { 2971 int boot_prop_len; 2972 char str[BP_MAX_STRLEN]; 2973 u_longlong_t value; 2974 2975 boot_prop_len = BOP_GETPROPLEN(bootops, prop_name); 2976 if (boot_prop_len < 0 || boot_prop_len >= sizeof (str) || 2977 BOP_GETPROP(bootops, prop_name, str) < 0 || 2978 kobj_getvalue(str, &value) == -1) 2979 return (-1); 2980 2981 if (prop_value) 2982 *prop_value = value; 2983 2984 return (0); 2985 } 2986 2987 int 2988 bootprop_getstr(const char *prop_name, char *buf, size_t buflen) 2989 { 2990 int boot_prop_len = BOP_GETPROPLEN(bootops, prop_name); 2991 2992 if (boot_prop_len < 0 || boot_prop_len >= buflen || 2993 BOP_GETPROP(bootops, prop_name, buf) < 0) 2994 return (-1); 2995 2996 return (0); 2997 } 2998