1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 * 26 * Copyright (c) 2010, Intel Corporation. 27 * All rights reserved. 28 * 29 * Copyright 2020 Joyent, Inc. 30 */ 31 32 /* 33 * This file contains the functionality that mimics the boot operations 34 * on SPARC systems or the old boot.bin/multiboot programs on x86 systems. 35 * The x86 kernel now does everything on its own. 36 */ 37 38 #include <sys/types.h> 39 #include <sys/bootconf.h> 40 #include <sys/bootsvcs.h> 41 #include <sys/bootinfo.h> 42 #include <sys/multiboot.h> 43 #include <sys/multiboot2.h> 44 #include <sys/multiboot2_impl.h> 45 #include <sys/bootvfs.h> 46 #include <sys/bootprops.h> 47 #include <sys/varargs.h> 48 #include <sys/param.h> 49 #include <sys/machparam.h> 50 #include <sys/machsystm.h> 51 #include <sys/archsystm.h> 52 #include <sys/boot_console.h> 53 #include <sys/framebuffer.h> 54 #include <sys/cmn_err.h> 55 #include <sys/systm.h> 56 #include <sys/promif.h> 57 #include <sys/archsystm.h> 58 #include <sys/x86_archext.h> 59 #include <sys/kobj.h> 60 #include <sys/privregs.h> 61 #include <sys/sysmacros.h> 62 #include <sys/ctype.h> 63 #include <sys/fastboot.h> 64 #ifdef __xpv 65 #include <sys/hypervisor.h> 66 #include <net/if.h> 67 #endif 68 #include <vm/kboot_mmu.h> 69 #include <vm/hat_pte.h> 70 #include <sys/kobj.h> 71 #include <sys/kobj_lex.h> 72 #include <sys/pci_cfgspace_impl.h> 73 #include <sys/fastboot_impl.h> 74 #include <sys/acpi/acconfig.h> 75 #include <sys/acpi/acpi.h> 76 #include <sys/ddipropdefs.h> /* For DDI prop types */ 77 78 static int have_console = 0; /* set once primitive console is initialized */ 79 static char *boot_args = ""; 80 81 /* 82 * Debugging macros 83 */ 84 static uint_t kbm_debug = 0; 85 #define DBG_MSG(s) { if (kbm_debug) bop_printf(NULL, "%s", s); } 86 #define DBG(x) { if (kbm_debug) \ 87 bop_printf(NULL, "%s is %" PRIx64 "\n", #x, (uint64_t)(x)); \ 88 } 89 90 #define PUT_STRING(s) { \ 91 char *cp; \ 92 for (cp = (s); *cp; ++cp) \ 93 bcons_putchar(*cp); \ 94 } 95 96 /* callback to boot_fb to set shadow frame buffer */ 97 extern void boot_fb_shadow_init(bootops_t *); 98 99 bootops_t bootop; /* simple bootops we'll pass on to kernel */ 100 struct bsys_mem bm; 101 102 /* 103 * Boot info from "glue" code in low memory. xbootp is used by: 104 * do_bop_phys_alloc(), do_bsys_alloc() and read_bootenvrc(). 105 */ 106 static struct xboot_info *xbootp; 107 static uintptr_t next_virt; /* next available virtual address */ 108 static paddr_t next_phys; /* next available physical address from dboot */ 109 static paddr_t high_phys = -(paddr_t)1; /* last used physical address */ 110 111 /* 112 * buffer for vsnprintf for console I/O 113 */ 114 #define BUFFERSIZE 512 115 static char buffer[BUFFERSIZE]; 116 117 /* 118 * stuff to store/report/manipulate boot property settings. 119 */ 120 typedef struct bootprop { 121 struct bootprop *bp_next; 122 char *bp_name; 123 int bp_flags; /* DDI prop type */ 124 uint_t bp_vlen; /* 0 for boolean */ 125 char *bp_value; 126 } bootprop_t; 127 128 static bootprop_t *bprops = NULL; 129 static char *curr_page = NULL; /* ptr to avail bprop memory */ 130 static int curr_space = 0; /* amount of memory at curr_page */ 131 132 #ifdef __xpv 133 start_info_t *xen_info; 134 shared_info_t *HYPERVISOR_shared_info; 135 #endif 136 137 /* 138 * some allocator statistics 139 */ 140 static ulong_t total_bop_alloc_scratch = 0; 141 static ulong_t total_bop_alloc_kernel = 0; 142 143 static void build_firmware_properties(struct xboot_info *); 144 145 static int early_allocation = 1; 146 147 int force_fastreboot = 0; 148 volatile int fastreboot_onpanic = 0; 149 int post_fastreboot = 0; 150 #ifdef __xpv 151 volatile int fastreboot_capable = 0; 152 #else 153 volatile int fastreboot_capable = 1; 154 #endif 155 156 /* 157 * Information saved from current boot for fast reboot. 158 * If the information size exceeds what we have allocated, fast reboot 159 * will not be supported. 160 */ 161 multiboot_info_t saved_mbi; 162 mb_memory_map_t saved_mmap[FASTBOOT_SAVED_MMAP_COUNT]; 163 uint8_t saved_drives[FASTBOOT_SAVED_DRIVES_SIZE]; 164 char saved_cmdline[FASTBOOT_SAVED_CMDLINE_LEN]; 165 int saved_cmdline_len = 0; 166 size_t saved_file_size[FASTBOOT_MAX_FILES_MAP]; 167 168 /* 169 * Turn off fastreboot_onpanic to avoid panic loop. 170 */ 171 char fastreboot_onpanic_cmdline[FASTBOOT_SAVED_CMDLINE_LEN]; 172 static const char fastreboot_onpanic_args[] = " -B fastreboot_onpanic=0"; 173 174 /* 175 * Pointers to where System Resource Affinity Table (SRAT), System Locality 176 * Information Table (SLIT) and Maximum System Capability Table (MSCT) 177 * are mapped into virtual memory 178 */ 179 ACPI_TABLE_SRAT *srat_ptr = NULL; 180 ACPI_TABLE_SLIT *slit_ptr = NULL; 181 ACPI_TABLE_MSCT *msct_ptr = NULL; 182 183 /* 184 * Arbitrary limit on number of localities we handle; if 185 * this limit is raised to more than UINT16_MAX, make sure 186 * process_slit() knows how to handle it. 187 */ 188 #define SLIT_LOCALITIES_MAX (4096) 189 190 #define SLIT_NUM_PROPNAME "acpi-slit-localities" 191 #define SLIT_PROPNAME "acpi-slit" 192 193 /* 194 * Allocate aligned physical memory at boot time. This allocator allocates 195 * from the highest possible addresses. This avoids exhausting memory that 196 * would be useful for DMA buffers. 197 */ 198 paddr_t 199 do_bop_phys_alloc(uint64_t size, uint64_t align) 200 { 201 paddr_t pa = 0; 202 paddr_t start; 203 paddr_t end; 204 struct memlist *ml = (struct memlist *)xbootp->bi_phys_install; 205 206 /* 207 * Be careful if high memory usage is limited in startup.c 208 * Since there are holes in the low part of the physical address 209 * space we can treat physmem as a pfn (not just a pgcnt) and 210 * get a conservative upper limit. 211 */ 212 if (physmem != 0 && high_phys > pfn_to_pa(physmem)) 213 high_phys = pfn_to_pa(physmem); 214 215 /* 216 * find the highest available memory in physinstalled 217 */ 218 size = P2ROUNDUP(size, align); 219 for (; ml; ml = ml->ml_next) { 220 start = P2ROUNDUP(ml->ml_address, align); 221 end = P2ALIGN(ml->ml_address + ml->ml_size, align); 222 if (start < next_phys) 223 start = P2ROUNDUP(next_phys, align); 224 if (end > high_phys) 225 end = P2ALIGN(high_phys, align); 226 227 if (end <= start) 228 continue; 229 if (end - start < size) 230 continue; 231 232 /* 233 * Early allocations need to use low memory, since 234 * physmem might be further limited by bootenv.rc 235 */ 236 if (early_allocation) { 237 if (pa == 0 || start < pa) 238 pa = start; 239 } else { 240 if (end - size > pa) 241 pa = end - size; 242 } 243 } 244 if (pa != 0) { 245 if (early_allocation) 246 next_phys = pa + size; 247 else 248 high_phys = pa; 249 return (pa); 250 } 251 bop_panic("do_bop_phys_alloc(0x%" PRIx64 ", 0x%" PRIx64 252 ") Out of memory\n", size, align); 253 /*NOTREACHED*/ 254 } 255 256 uintptr_t 257 alloc_vaddr(size_t size, paddr_t align) 258 { 259 uintptr_t rv; 260 261 next_virt = P2ROUNDUP(next_virt, (uintptr_t)align); 262 rv = (uintptr_t)next_virt; 263 next_virt += size; 264 return (rv); 265 } 266 267 /* 268 * Allocate virtual memory. The size is always rounded up to a multiple 269 * of base pagesize. 270 */ 271 272 /*ARGSUSED*/ 273 static caddr_t 274 do_bsys_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align) 275 { 276 paddr_t a = align; /* same type as pa for masking */ 277 uint_t pgsize; 278 paddr_t pa; 279 uintptr_t va; 280 ssize_t s; /* the aligned size */ 281 uint_t level; 282 uint_t is_kernel = (virthint != 0); 283 284 if (a < MMU_PAGESIZE) 285 a = MMU_PAGESIZE; 286 else if (!ISP2(a)) 287 prom_panic("do_bsys_alloc() incorrect alignment"); 288 size = P2ROUNDUP(size, MMU_PAGESIZE); 289 290 /* 291 * Use the next aligned virtual address if we weren't given one. 292 */ 293 if (virthint == NULL) { 294 virthint = (caddr_t)alloc_vaddr(size, a); 295 total_bop_alloc_scratch += size; 296 } else { 297 total_bop_alloc_kernel += size; 298 } 299 300 /* 301 * allocate the physical memory 302 */ 303 pa = do_bop_phys_alloc(size, a); 304 305 /* 306 * Add the mappings to the page tables, try large pages first. 307 */ 308 va = (uintptr_t)virthint; 309 s = size; 310 level = 1; 311 pgsize = xbootp->bi_use_pae ? TWO_MEG : FOUR_MEG; 312 if (xbootp->bi_use_largepage && a == pgsize) { 313 while (IS_P2ALIGNED(pa, pgsize) && IS_P2ALIGNED(va, pgsize) && 314 s >= pgsize) { 315 kbm_map(va, pa, level, is_kernel); 316 va += pgsize; 317 pa += pgsize; 318 s -= pgsize; 319 } 320 } 321 322 /* 323 * Map remaining pages use small mappings 324 */ 325 level = 0; 326 pgsize = MMU_PAGESIZE; 327 while (s > 0) { 328 kbm_map(va, pa, level, is_kernel); 329 va += pgsize; 330 pa += pgsize; 331 s -= pgsize; 332 } 333 return (virthint); 334 } 335 336 /* 337 * Free virtual memory - we'll just ignore these. 338 */ 339 /*ARGSUSED*/ 340 static void 341 do_bsys_free(bootops_t *bop, caddr_t virt, size_t size) 342 { 343 bop_printf(NULL, "do_bsys_free(virt=0x%p, size=0x%lx) ignored\n", 344 (void *)virt, size); 345 } 346 347 /* 348 * Old interface 349 */ 350 /*ARGSUSED*/ 351 static caddr_t 352 do_bsys_ealloc(bootops_t *bop, caddr_t virthint, size_t size, 353 int align, int flags) 354 { 355 prom_panic("unsupported call to BOP_EALLOC()\n"); 356 return (0); 357 } 358 359 360 static void 361 bsetprop(int flags, char *name, int nlen, void *value, int vlen) 362 { 363 uint_t size; 364 uint_t need_size; 365 bootprop_t *b; 366 367 /* 368 * align the size to 16 byte boundary 369 */ 370 size = sizeof (bootprop_t) + nlen + 1 + vlen; 371 size = (size + 0xf) & ~0xf; 372 if (size > curr_space) { 373 need_size = (size + (MMU_PAGEOFFSET)) & MMU_PAGEMASK; 374 curr_page = do_bsys_alloc(NULL, 0, need_size, MMU_PAGESIZE); 375 curr_space = need_size; 376 } 377 378 /* 379 * use a bootprop_t at curr_page and link into list 380 */ 381 b = (bootprop_t *)curr_page; 382 curr_page += sizeof (bootprop_t); 383 curr_space -= sizeof (bootprop_t); 384 b->bp_next = bprops; 385 bprops = b; 386 387 /* 388 * follow by name and ending zero byte 389 */ 390 b->bp_name = curr_page; 391 bcopy(name, curr_page, nlen); 392 curr_page += nlen; 393 *curr_page++ = 0; 394 curr_space -= nlen + 1; 395 396 /* 397 * set the property type 398 */ 399 b->bp_flags = flags & DDI_PROP_TYPE_MASK; 400 401 /* 402 * copy in value, but no ending zero byte 403 */ 404 b->bp_value = curr_page; 405 b->bp_vlen = vlen; 406 if (vlen > 0) { 407 bcopy(value, curr_page, vlen); 408 curr_page += vlen; 409 curr_space -= vlen; 410 } 411 412 /* 413 * align new values of curr_page, curr_space 414 */ 415 while (curr_space & 0xf) { 416 ++curr_page; 417 --curr_space; 418 } 419 } 420 421 static void 422 bsetprops(char *name, char *value) 423 { 424 bsetprop(DDI_PROP_TYPE_STRING, name, strlen(name), 425 value, strlen(value) + 1); 426 } 427 428 static void 429 bsetprop32(char *name, uint32_t value) 430 { 431 bsetprop(DDI_PROP_TYPE_INT, name, strlen(name), 432 (void *)&value, sizeof (value)); 433 } 434 435 static void 436 bsetprop64(char *name, uint64_t value) 437 { 438 bsetprop(DDI_PROP_TYPE_INT64, name, strlen(name), 439 (void *)&value, sizeof (value)); 440 } 441 442 static void 443 bsetpropsi(char *name, int value) 444 { 445 char prop_val[32]; 446 447 (void) snprintf(prop_val, sizeof (prop_val), "%d", value); 448 bsetprops(name, prop_val); 449 } 450 451 /* 452 * to find the type of the value associated with this name 453 */ 454 /*ARGSUSED*/ 455 int 456 do_bsys_getproptype(bootops_t *bop, const char *name) 457 { 458 bootprop_t *b; 459 460 for (b = bprops; b != NULL; b = b->bp_next) { 461 if (strcmp(name, b->bp_name) != 0) 462 continue; 463 return (b->bp_flags); 464 } 465 return (-1); 466 } 467 468 /* 469 * to find the size of the buffer to allocate 470 */ 471 /*ARGSUSED*/ 472 int 473 do_bsys_getproplen(bootops_t *bop, const char *name) 474 { 475 bootprop_t *b; 476 477 for (b = bprops; b; b = b->bp_next) { 478 if (strcmp(name, b->bp_name) != 0) 479 continue; 480 return (b->bp_vlen); 481 } 482 return (-1); 483 } 484 485 /* 486 * get the value associated with this name 487 */ 488 /*ARGSUSED*/ 489 int 490 do_bsys_getprop(bootops_t *bop, const char *name, void *value) 491 { 492 bootprop_t *b; 493 494 for (b = bprops; b; b = b->bp_next) { 495 if (strcmp(name, b->bp_name) != 0) 496 continue; 497 bcopy(b->bp_value, value, b->bp_vlen); 498 return (0); 499 } 500 return (-1); 501 } 502 503 /* 504 * get the name of the next property in succession from the standalone 505 */ 506 /*ARGSUSED*/ 507 static char * 508 do_bsys_nextprop(bootops_t *bop, char *name) 509 { 510 bootprop_t *b; 511 512 /* 513 * A null name is a special signal for the 1st boot property 514 */ 515 if (name == NULL || strlen(name) == 0) { 516 if (bprops == NULL) 517 return (NULL); 518 return (bprops->bp_name); 519 } 520 521 for (b = bprops; b; b = b->bp_next) { 522 if (name != b->bp_name) 523 continue; 524 b = b->bp_next; 525 if (b == NULL) 526 return (NULL); 527 return (b->bp_name); 528 } 529 return (NULL); 530 } 531 532 /* 533 * Parse numeric value from a string. Understands decimal, hex, octal, - and ~ 534 */ 535 static int 536 parse_value(char *p, uint64_t *retval) 537 { 538 int adjust = 0; 539 uint64_t tmp = 0; 540 int digit; 541 int radix = 10; 542 543 *retval = 0; 544 if (*p == '-' || *p == '~') 545 adjust = *p++; 546 547 if (*p == '0') { 548 ++p; 549 if (*p == 0) 550 return (0); 551 if (*p == 'x' || *p == 'X') { 552 radix = 16; 553 ++p; 554 } else { 555 radix = 8; 556 ++p; 557 } 558 } 559 while (*p) { 560 if ('0' <= *p && *p <= '9') 561 digit = *p - '0'; 562 else if ('a' <= *p && *p <= 'f') 563 digit = 10 + *p - 'a'; 564 else if ('A' <= *p && *p <= 'F') 565 digit = 10 + *p - 'A'; 566 else 567 return (-1); 568 if (digit >= radix) 569 return (-1); 570 tmp = tmp * radix + digit; 571 ++p; 572 } 573 if (adjust == '-') 574 tmp = -tmp; 575 else if (adjust == '~') 576 tmp = ~tmp; 577 *retval = tmp; 578 return (0); 579 } 580 581 static boolean_t 582 unprintable(char *value, int size) 583 { 584 int i; 585 586 if (size <= 0 || value[0] == '\0') 587 return (B_TRUE); 588 589 for (i = 0; i < size; i++) { 590 if (value[i] == '\0') 591 return (i != (size - 1)); 592 593 if (!isprint(value[i])) 594 return (B_TRUE); 595 } 596 return (B_FALSE); 597 } 598 599 /* 600 * Print out information about all boot properties. 601 * buffer is pointer to pre-allocated space to be used as temporary 602 * space for property values. 603 */ 604 static void 605 boot_prop_display(char *buffer) 606 { 607 char *name = ""; 608 int i, len, flags, *buf32; 609 int64_t *buf64; 610 611 bop_printf(NULL, "\nBoot properties:\n"); 612 613 while ((name = do_bsys_nextprop(NULL, name)) != NULL) { 614 bop_printf(NULL, "\t0x%p %s = ", (void *)name, name); 615 (void) do_bsys_getprop(NULL, name, buffer); 616 len = do_bsys_getproplen(NULL, name); 617 flags = do_bsys_getproptype(NULL, name); 618 bop_printf(NULL, "len=%d ", len); 619 620 switch (flags) { 621 case DDI_PROP_TYPE_INT: 622 len = len / sizeof (int); 623 buf32 = (int *)buffer; 624 for (i = 0; i < len; i++) { 625 bop_printf(NULL, "%08x", buf32[i]); 626 if (i < len - 1) 627 bop_printf(NULL, "."); 628 } 629 break; 630 case DDI_PROP_TYPE_STRING: 631 bop_printf(NULL, "%s", buffer); 632 break; 633 case DDI_PROP_TYPE_INT64: 634 len = len / sizeof (int64_t); 635 buf64 = (int64_t *)buffer; 636 for (i = 0; i < len; i++) { 637 bop_printf(NULL, "%016" PRIx64, buf64[i]); 638 if (i < len - 1) 639 bop_printf(NULL, "."); 640 } 641 break; 642 default: 643 if (!unprintable(buffer, len)) { 644 buffer[len] = 0; 645 bop_printf(NULL, "%s", buffer); 646 break; 647 } 648 for (i = 0; i < len; i++) { 649 bop_printf(NULL, "%02x", buffer[i] & 0xff); 650 if (i < len - 1) 651 bop_printf(NULL, "."); 652 } 653 break; 654 } 655 bop_printf(NULL, "\n"); 656 } 657 } 658 659 /* 660 * 2nd part of building the table of boot properties. This includes: 661 * - values from /boot/solaris/bootenv.rc (ie. eeprom(1m) values) 662 * 663 * lines look like one of: 664 * ^$ 665 * ^# comment till end of line 666 * setprop name 'value' 667 * setprop name value 668 * setprop name "value" 669 * 670 * we do single character I/O since this is really just looking at memory 671 */ 672 void 673 read_bootenvrc(void) 674 { 675 int fd; 676 char *line; 677 int c; 678 int bytes_read; 679 char *name; 680 int n_len; 681 char *value; 682 int v_len; 683 char *inputdev; /* these override the command line if serial ports */ 684 char *outputdev; 685 char *consoledev; 686 uint64_t lvalue; 687 int use_xencons = 0; 688 extern int bootrd_debug; 689 690 #ifdef __xpv 691 if (!DOMAIN_IS_INITDOMAIN(xen_info)) 692 use_xencons = 1; 693 #endif /* __xpv */ 694 695 DBG_MSG("Opening /boot/solaris/bootenv.rc\n"); 696 fd = BRD_OPEN(bfs_ops, "/boot/solaris/bootenv.rc", 0); 697 DBG(fd); 698 699 line = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE); 700 while (fd >= 0) { 701 702 /* 703 * get a line 704 */ 705 for (c = 0; ; ++c) { 706 bytes_read = BRD_READ(bfs_ops, fd, line + c, 1); 707 if (bytes_read == 0) { 708 if (c == 0) 709 goto done; 710 break; 711 } 712 if (line[c] == '\n') 713 break; 714 } 715 line[c] = 0; 716 717 /* 718 * ignore comment lines 719 */ 720 c = 0; 721 while (ISSPACE(line[c])) 722 ++c; 723 if (line[c] == '#' || line[c] == 0) 724 continue; 725 726 /* 727 * must have "setprop " or "setprop\t" 728 */ 729 if (strncmp(line + c, "setprop ", 8) != 0 && 730 strncmp(line + c, "setprop\t", 8) != 0) 731 continue; 732 c += 8; 733 while (ISSPACE(line[c])) 734 ++c; 735 if (line[c] == 0) 736 continue; 737 738 /* 739 * gather up the property name 740 */ 741 name = line + c; 742 n_len = 0; 743 while (line[c] && !ISSPACE(line[c])) 744 ++n_len, ++c; 745 746 /* 747 * gather up the value, if any 748 */ 749 value = ""; 750 v_len = 0; 751 while (ISSPACE(line[c])) 752 ++c; 753 if (line[c] != 0) { 754 value = line + c; 755 while (line[c] && !ISSPACE(line[c])) 756 ++v_len, ++c; 757 } 758 759 if (v_len >= 2 && value[0] == value[v_len - 1] && 760 (value[0] == '\'' || value[0] == '"')) { 761 ++value; 762 v_len -= 2; 763 } 764 name[n_len] = 0; 765 if (v_len > 0) 766 value[v_len] = 0; 767 else 768 continue; 769 770 /* 771 * ignore "boot-file" property, it's now meaningless 772 */ 773 if (strcmp(name, "boot-file") == 0) 774 continue; 775 if (strcmp(name, "boot-args") == 0 && 776 strlen(boot_args) > 0) 777 continue; 778 779 /* 780 * If a property was explicitly set on the command line 781 * it will override a setting in bootenv.rc. We make an 782 * exception for a property from the bootloader such as: 783 * 784 * console="text,ttya,ttyb,ttyc,ttyd" 785 * 786 * In such a case, picking the first value here (as 787 * lookup_console_devices() does) is at best a guess; if 788 * bootenv.rc has a value, it's probably better. 789 */ 790 if (strcmp(name, "console") == 0) { 791 char propval[BP_MAX_STRLEN] = ""; 792 793 if (do_bsys_getprop(NULL, name, propval) == -1 || 794 strchr(propval, ',') != NULL) 795 bsetprops(name, value); 796 continue; 797 } 798 799 if (do_bsys_getproplen(NULL, name) == -1) 800 bsetprops(name, value); 801 } 802 done: 803 if (fd >= 0) 804 (void) BRD_CLOSE(bfs_ops, fd); 805 806 807 /* 808 * Check if we have to limit the boot time allocator 809 */ 810 if (do_bsys_getproplen(NULL, "physmem") != -1 && 811 do_bsys_getprop(NULL, "physmem", line) >= 0 && 812 parse_value(line, &lvalue) != -1) { 813 if (0 < lvalue && (lvalue < physmem || physmem == 0)) { 814 physmem = (pgcnt_t)lvalue; 815 DBG(physmem); 816 } 817 } 818 early_allocation = 0; 819 820 /* 821 * Check for bootrd_debug. 822 */ 823 if (find_boot_prop("bootrd_debug")) 824 bootrd_debug = 1; 825 826 /* 827 * check to see if we have to override the default value of the console 828 */ 829 if (!use_xencons) { 830 inputdev = line; 831 v_len = do_bsys_getproplen(NULL, "input-device"); 832 if (v_len > 0) 833 (void) do_bsys_getprop(NULL, "input-device", inputdev); 834 else 835 v_len = 0; 836 inputdev[v_len] = 0; 837 838 outputdev = inputdev + v_len + 1; 839 v_len = do_bsys_getproplen(NULL, "output-device"); 840 if (v_len > 0) 841 (void) do_bsys_getprop(NULL, "output-device", 842 outputdev); 843 else 844 v_len = 0; 845 outputdev[v_len] = 0; 846 847 consoledev = outputdev + v_len + 1; 848 v_len = do_bsys_getproplen(NULL, "console"); 849 if (v_len > 0) { 850 (void) do_bsys_getprop(NULL, "console", consoledev); 851 if (post_fastreboot && 852 strcmp(consoledev, "graphics") == 0) { 853 bsetprops("console", "text"); 854 v_len = strlen("text"); 855 bcopy("text", consoledev, v_len); 856 } 857 } else { 858 v_len = 0; 859 } 860 consoledev[v_len] = 0; 861 bcons_post_bootenvrc(inputdev, outputdev, consoledev); 862 } else { 863 /* 864 * Ensure console property exists 865 * If not create it as "hypervisor" 866 */ 867 v_len = do_bsys_getproplen(NULL, "console"); 868 if (v_len < 0) 869 bsetprops("console", "hypervisor"); 870 inputdev = outputdev = consoledev = "hypervisor"; 871 bcons_post_bootenvrc(inputdev, outputdev, consoledev); 872 } 873 874 if (find_boot_prop("prom_debug") || kbm_debug) 875 boot_prop_display(line); 876 } 877 878 /* 879 * print formatted output 880 */ 881 /*ARGSUSED*/ 882 void 883 vbop_printf(void *ptr, const char *fmt, va_list ap) 884 { 885 if (have_console == 0) 886 return; 887 888 (void) vsnprintf(buffer, BUFFERSIZE, fmt, ap); 889 PUT_STRING(buffer); 890 } 891 892 /*PRINTFLIKE2*/ 893 void 894 bop_printf(void *bop, const char *fmt, ...) 895 { 896 va_list ap; 897 898 va_start(ap, fmt); 899 vbop_printf(bop, fmt, ap); 900 va_end(ap); 901 } 902 903 /* 904 * Another panic() variant; this one can be used even earlier during boot than 905 * prom_panic(). 906 */ 907 /*PRINTFLIKE1*/ 908 void 909 bop_panic(const char *fmt, ...) 910 { 911 va_list ap; 912 913 va_start(ap, fmt); 914 bop_printf(NULL, fmt, ap); 915 va_end(ap); 916 917 bop_printf(NULL, "\nPress any key to reboot.\n"); 918 (void) bcons_getchar(); 919 bop_printf(NULL, "Resetting...\n"); 920 pc_reset(); 921 } 922 923 /* 924 * Do a real mode interrupt BIOS call 925 */ 926 typedef struct bios_regs { 927 unsigned short ax, bx, cx, dx, si, di, bp, es, ds; 928 } bios_regs_t; 929 typedef int (*bios_func_t)(int, bios_regs_t *); 930 931 /*ARGSUSED*/ 932 static void 933 do_bsys_doint(bootops_t *bop, int intnum, struct bop_regs *rp) 934 { 935 #if defined(__xpv) 936 prom_panic("unsupported call to BOP_DOINT()\n"); 937 #else /* __xpv */ 938 static int firsttime = 1; 939 bios_func_t bios_func = (bios_func_t)(void *)(uintptr_t)0x5000; 940 bios_regs_t br; 941 942 /* 943 * We're about to disable paging; we shouldn't be PCID enabled. 944 */ 945 if (getcr4() & CR4_PCIDE) 946 prom_panic("do_bsys_doint() with PCID enabled\n"); 947 948 /* 949 * The first time we do this, we have to copy the pre-packaged 950 * low memory bios call code image into place. 951 */ 952 if (firsttime) { 953 extern char bios_image[]; 954 extern uint32_t bios_size; 955 956 bcopy(bios_image, (void *)bios_func, bios_size); 957 firsttime = 0; 958 } 959 960 br.ax = rp->eax.word.ax; 961 br.bx = rp->ebx.word.bx; 962 br.cx = rp->ecx.word.cx; 963 br.dx = rp->edx.word.dx; 964 br.bp = rp->ebp.word.bp; 965 br.si = rp->esi.word.si; 966 br.di = rp->edi.word.di; 967 br.ds = rp->ds; 968 br.es = rp->es; 969 970 DBG_MSG("Doing BIOS call..."); 971 DBG(br.ax); 972 DBG(br.bx); 973 DBG(br.dx); 974 rp->eflags = bios_func(intnum, &br); 975 DBG_MSG("done\n"); 976 977 rp->eax.word.ax = br.ax; 978 rp->ebx.word.bx = br.bx; 979 rp->ecx.word.cx = br.cx; 980 rp->edx.word.dx = br.dx; 981 rp->ebp.word.bp = br.bp; 982 rp->esi.word.si = br.si; 983 rp->edi.word.di = br.di; 984 rp->ds = br.ds; 985 rp->es = br.es; 986 #endif /* __xpv */ 987 } 988 989 static struct boot_syscalls bop_sysp = { 990 bcons_getchar, 991 bcons_putchar, 992 bcons_ischar, 993 }; 994 995 static char *whoami; 996 997 #define BUFLEN 64 998 999 #if defined(__xpv) 1000 1001 static char namebuf[32]; 1002 1003 static void 1004 xen_parse_props(char *s, char *prop_map[], int n_prop) 1005 { 1006 char **prop_name = prop_map; 1007 char *cp = s, *scp; 1008 1009 do { 1010 scp = cp; 1011 while ((*cp != '\0') && (*cp != ':')) 1012 cp++; 1013 1014 if ((scp != cp) && (*prop_name != NULL)) { 1015 *cp = '\0'; 1016 bsetprops(*prop_name, scp); 1017 } 1018 1019 cp++; 1020 prop_name++; 1021 n_prop--; 1022 } while (n_prop > 0); 1023 } 1024 1025 #define VBDPATHLEN 64 1026 1027 /* 1028 * parse the 'xpv-root' property to create properties used by 1029 * ufs_mountroot. 1030 */ 1031 static void 1032 xen_vbdroot_props(char *s) 1033 { 1034 char vbdpath[VBDPATHLEN] = "/xpvd/xdf@"; 1035 const char lnamefix[] = "/dev/dsk/c0d"; 1036 char *pnp; 1037 char *prop_p; 1038 char mi; 1039 short minor; 1040 long addr = 0; 1041 1042 pnp = vbdpath + strlen(vbdpath); 1043 prop_p = s + strlen(lnamefix); 1044 while ((*prop_p != '\0') && (*prop_p != 's') && (*prop_p != 'p')) 1045 addr = addr * 10 + *prop_p++ - '0'; 1046 (void) snprintf(pnp, VBDPATHLEN, "%lx", addr); 1047 pnp = vbdpath + strlen(vbdpath); 1048 if (*prop_p == 's') 1049 mi = 'a'; 1050 else if (*prop_p == 'p') 1051 mi = 'q'; 1052 else 1053 ASSERT(0); /* shouldn't be here */ 1054 prop_p++; 1055 ASSERT(*prop_p != '\0'); 1056 if (ISDIGIT(*prop_p)) { 1057 minor = *prop_p - '0'; 1058 prop_p++; 1059 if (ISDIGIT(*prop_p)) { 1060 minor = minor * 10 + *prop_p - '0'; 1061 } 1062 } else { 1063 /* malformed root path, use 0 as default */ 1064 minor = 0; 1065 } 1066 ASSERT(minor < 16); /* at most 16 partitions */ 1067 mi += minor; 1068 *pnp++ = ':'; 1069 *pnp++ = mi; 1070 *pnp++ = '\0'; 1071 bsetprops("fstype", "ufs"); 1072 bsetprops("bootpath", vbdpath); 1073 1074 DBG_MSG("VBD bootpath set to "); 1075 DBG_MSG(vbdpath); 1076 DBG_MSG("\n"); 1077 } 1078 1079 /* 1080 * parse the xpv-nfsroot property to create properties used by 1081 * nfs_mountroot. 1082 */ 1083 static void 1084 xen_nfsroot_props(char *s) 1085 { 1086 char *prop_map[] = { 1087 BP_SERVER_IP, /* server IP address */ 1088 BP_SERVER_NAME, /* server hostname */ 1089 BP_SERVER_PATH, /* root path */ 1090 }; 1091 int n_prop = sizeof (prop_map) / sizeof (prop_map[0]); 1092 1093 bsetprops("fstype", "nfs"); 1094 1095 xen_parse_props(s, prop_map, n_prop); 1096 1097 /* 1098 * If a server name wasn't specified, use a default. 1099 */ 1100 if (do_bsys_getproplen(NULL, BP_SERVER_NAME) == -1) 1101 bsetprops(BP_SERVER_NAME, "unknown"); 1102 } 1103 1104 /* 1105 * Extract our IP address, etc. from the "xpv-ip" property. 1106 */ 1107 static void 1108 xen_ip_props(char *s) 1109 { 1110 char *prop_map[] = { 1111 BP_HOST_IP, /* IP address */ 1112 NULL, /* NFS server IP address (ignored in */ 1113 /* favour of xpv-nfsroot) */ 1114 BP_ROUTER_IP, /* IP gateway */ 1115 BP_SUBNET_MASK, /* IP subnet mask */ 1116 "xpv-hostname", /* hostname (ignored) */ 1117 BP_NETWORK_INTERFACE, /* interface name */ 1118 "xpv-hcp", /* host configuration protocol */ 1119 }; 1120 int n_prop = sizeof (prop_map) / sizeof (prop_map[0]); 1121 char ifname[IFNAMSIZ]; 1122 1123 xen_parse_props(s, prop_map, n_prop); 1124 1125 /* 1126 * A Linux dom0 administrator expects all interfaces to be 1127 * called "ethX", which is not the case here. 1128 * 1129 * If the interface name specified is "eth0", presume that 1130 * this is really intended to be "xnf0" (the first domU -> 1131 * dom0 interface for this domain). 1132 */ 1133 if ((do_bsys_getprop(NULL, BP_NETWORK_INTERFACE, ifname) == 0) && 1134 (strcmp("eth0", ifname) == 0)) { 1135 bsetprops(BP_NETWORK_INTERFACE, "xnf0"); 1136 bop_printf(NULL, 1137 "network interface name 'eth0' replaced with 'xnf0'\n"); 1138 } 1139 } 1140 1141 #else /* __xpv */ 1142 1143 static void 1144 setup_rarp_props(struct sol_netinfo *sip) 1145 { 1146 char buf[BUFLEN]; /* to hold ip/mac addrs */ 1147 uint8_t *val; 1148 1149 val = (uint8_t *)&sip->sn_ciaddr; 1150 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d", 1151 val[0], val[1], val[2], val[3]); 1152 bsetprops(BP_HOST_IP, buf); 1153 1154 val = (uint8_t *)&sip->sn_siaddr; 1155 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d", 1156 val[0], val[1], val[2], val[3]); 1157 bsetprops(BP_SERVER_IP, buf); 1158 1159 if (sip->sn_giaddr != 0) { 1160 val = (uint8_t *)&sip->sn_giaddr; 1161 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d", 1162 val[0], val[1], val[2], val[3]); 1163 bsetprops(BP_ROUTER_IP, buf); 1164 } 1165 1166 if (sip->sn_netmask != 0) { 1167 val = (uint8_t *)&sip->sn_netmask; 1168 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d", 1169 val[0], val[1], val[2], val[3]); 1170 bsetprops(BP_SUBNET_MASK, buf); 1171 } 1172 1173 if (sip->sn_mactype != 4 || sip->sn_maclen != 6) { 1174 bop_printf(NULL, "unsupported mac type %d, mac len %d\n", 1175 sip->sn_mactype, sip->sn_maclen); 1176 } else { 1177 val = sip->sn_macaddr; 1178 (void) snprintf(buf, BUFLEN, "%x:%x:%x:%x:%x:%x", 1179 val[0], val[1], val[2], val[3], val[4], val[5]); 1180 bsetprops(BP_BOOT_MAC, buf); 1181 } 1182 } 1183 1184 #endif /* __xpv */ 1185 1186 static void 1187 build_panic_cmdline(const char *cmd, int cmdlen) 1188 { 1189 int proplen; 1190 size_t arglen; 1191 1192 arglen = sizeof (fastreboot_onpanic_args); 1193 /* 1194 * If we allready have fastreboot-onpanic set to zero, 1195 * don't add them again. 1196 */ 1197 if ((proplen = do_bsys_getproplen(NULL, FASTREBOOT_ONPANIC)) > 0 && 1198 proplen <= sizeof (fastreboot_onpanic_cmdline)) { 1199 (void) do_bsys_getprop(NULL, FASTREBOOT_ONPANIC, 1200 fastreboot_onpanic_cmdline); 1201 if (FASTREBOOT_ONPANIC_NOTSET(fastreboot_onpanic_cmdline)) 1202 arglen = 1; 1203 } 1204 1205 /* 1206 * construct fastreboot_onpanic_cmdline 1207 */ 1208 if (cmdlen + arglen > sizeof (fastreboot_onpanic_cmdline)) { 1209 DBG_MSG("Command line too long: clearing " 1210 FASTREBOOT_ONPANIC "\n"); 1211 fastreboot_onpanic = 0; 1212 } else { 1213 bcopy(cmd, fastreboot_onpanic_cmdline, cmdlen); 1214 if (arglen != 1) 1215 bcopy(fastreboot_onpanic_args, 1216 fastreboot_onpanic_cmdline + cmdlen, arglen); 1217 else 1218 fastreboot_onpanic_cmdline[cmdlen] = 0; 1219 } 1220 } 1221 1222 1223 #ifndef __xpv 1224 /* 1225 * Construct boot command line for Fast Reboot. The saved_cmdline 1226 * is also reported by "eeprom bootcmd". 1227 */ 1228 static void 1229 build_fastboot_cmdline(struct xboot_info *xbp) 1230 { 1231 saved_cmdline_len = strlen(xbp->bi_cmdline) + 1; 1232 if (saved_cmdline_len > FASTBOOT_SAVED_CMDLINE_LEN) { 1233 DBG(saved_cmdline_len); 1234 DBG_MSG("Command line too long: clearing fastreboot_capable\n"); 1235 fastreboot_capable = 0; 1236 } else { 1237 bcopy((void *)(xbp->bi_cmdline), (void *)saved_cmdline, 1238 saved_cmdline_len); 1239 saved_cmdline[saved_cmdline_len - 1] = '\0'; 1240 build_panic_cmdline(saved_cmdline, saved_cmdline_len - 1); 1241 } 1242 } 1243 1244 /* 1245 * Save memory layout, disk drive information, unix and boot archive sizes for 1246 * Fast Reboot. 1247 */ 1248 static void 1249 save_boot_info(struct xboot_info *xbi) 1250 { 1251 multiboot_info_t *mbi = xbi->bi_mb_info; 1252 struct boot_modules *modp; 1253 int i; 1254 1255 bcopy(mbi, &saved_mbi, sizeof (multiboot_info_t)); 1256 if (mbi->mmap_length > sizeof (saved_mmap)) { 1257 DBG_MSG("mbi->mmap_length too big: clearing " 1258 "fastreboot_capable\n"); 1259 fastreboot_capable = 0; 1260 } else { 1261 bcopy((void *)(uintptr_t)mbi->mmap_addr, (void *)saved_mmap, 1262 mbi->mmap_length); 1263 } 1264 1265 if ((mbi->flags & MB_INFO_DRIVE_INFO) != 0) { 1266 if (mbi->drives_length > sizeof (saved_drives)) { 1267 DBG(mbi->drives_length); 1268 DBG_MSG("mbi->drives_length too big: clearing " 1269 "fastreboot_capable\n"); 1270 fastreboot_capable = 0; 1271 } else { 1272 bcopy((void *)(uintptr_t)mbi->drives_addr, 1273 (void *)saved_drives, mbi->drives_length); 1274 } 1275 } else { 1276 saved_mbi.drives_length = 0; 1277 saved_mbi.drives_addr = 0; 1278 } 1279 1280 /* 1281 * Current file sizes. Used by fastboot.c to figure out how much 1282 * memory to reserve for panic reboot. 1283 * Use the module list from the dboot-constructed xboot_info 1284 * instead of the list referenced by the multiboot structure 1285 * because that structure may not be addressable now. 1286 */ 1287 saved_file_size[FASTBOOT_NAME_UNIX] = FOUR_MEG - PAGESIZE; 1288 for (i = 0, modp = (struct boot_modules *)(uintptr_t)xbi->bi_modules; 1289 i < xbi->bi_module_cnt; i++, modp++) { 1290 saved_file_size[FASTBOOT_NAME_BOOTARCHIVE] += modp->bm_size; 1291 } 1292 } 1293 #endif /* __xpv */ 1294 1295 /* 1296 * Import boot environment module variables as properties, applying 1297 * blacklist filter for variables we know we will not use. 1298 * 1299 * Since the environment can be relatively large, containing many variables 1300 * used only for boot loader purposes, we will use a blacklist based filter. 1301 * To keep the blacklist from growing too large, we use prefix based filtering. 1302 * This is possible because in many cases, the loader variable names are 1303 * using a structured layout. 1304 * 1305 * We will not overwrite already set properties. 1306 * 1307 * Note that the menu items in particular can contain characters not 1308 * well-handled as bootparams, such as spaces, brackets, and the like, so that's 1309 * another reason. 1310 */ 1311 static struct bop_blacklist { 1312 const char *bl_name; 1313 int bl_name_len; 1314 } bop_prop_blacklist[] = { 1315 { "ISADIR", sizeof ("ISADIR") }, 1316 { "acpi", sizeof ("acpi") }, 1317 { "autoboot_delay", sizeof ("autoboot_delay") }, 1318 { "beansi_", sizeof ("beansi_") }, 1319 { "beastie", sizeof ("beastie") }, 1320 { "bemenu", sizeof ("bemenu") }, 1321 { "boot.", sizeof ("boot.") }, 1322 { "bootenv", sizeof ("bootenv") }, 1323 { "currdev", sizeof ("currdev") }, 1324 { "dhcp.", sizeof ("dhcp.") }, 1325 { "interpret", sizeof ("interpret") }, 1326 { "kernel", sizeof ("kernel") }, 1327 { "loaddev", sizeof ("loaddev") }, 1328 { "loader_", sizeof ("loader_") }, 1329 { "mainansi_", sizeof ("mainansi_") }, 1330 { "mainmenu_", sizeof ("mainmenu_") }, 1331 { "maintoggled_", sizeof ("maintoggled_") }, 1332 { "menu_timeout_command", sizeof ("menu_timeout_command") }, 1333 { "menuset_", sizeof ("menuset_") }, 1334 { "module_path", sizeof ("module_path") }, 1335 { "nfs.", sizeof ("nfs.") }, 1336 { "optionsansi_", sizeof ("optionsansi_") }, 1337 { "optionsmenu_", sizeof ("optionsmenu_") }, 1338 { "optionstoggled_", sizeof ("optionstoggled_") }, 1339 { "pcibios", sizeof ("pcibios") }, 1340 { "prompt", sizeof ("prompt") }, 1341 { "smbios", sizeof ("smbios") }, 1342 { "tem", sizeof ("tem") }, 1343 { "twiddle_divisor", sizeof ("twiddle_divisor") }, 1344 { "zfs_be", sizeof ("zfs_be") }, 1345 }; 1346 1347 /* 1348 * Match the name against prefixes in above blacklist. If the match was 1349 * found, this name is blacklisted. 1350 */ 1351 static boolean_t 1352 name_is_blacklisted(const char *name) 1353 { 1354 int i, n; 1355 1356 n = sizeof (bop_prop_blacklist) / sizeof (bop_prop_blacklist[0]); 1357 for (i = 0; i < n; i++) { 1358 if (strncmp(bop_prop_blacklist[i].bl_name, name, 1359 bop_prop_blacklist[i].bl_name_len - 1) == 0) { 1360 return (B_TRUE); 1361 } 1362 } 1363 return (B_FALSE); 1364 } 1365 1366 static void 1367 process_boot_environment(struct boot_modules *benv) 1368 { 1369 char *env, *ptr, *name, *value; 1370 uint32_t size, name_len, value_len; 1371 1372 if (benv == NULL || benv->bm_type != BMT_ENV) 1373 return; 1374 ptr = env = benv->bm_addr; 1375 size = benv->bm_size; 1376 do { 1377 name = ptr; 1378 /* find '=' */ 1379 while (*ptr != '=') { 1380 ptr++; 1381 if (ptr > env + size) /* Something is very wrong. */ 1382 return; 1383 } 1384 name_len = ptr - name; 1385 if (sizeof (buffer) <= name_len) 1386 continue; 1387 1388 (void) strncpy(buffer, name, sizeof (buffer)); 1389 buffer[name_len] = '\0'; 1390 name = buffer; 1391 1392 value_len = 0; 1393 value = ++ptr; 1394 while ((uintptr_t)ptr - (uintptr_t)env < size) { 1395 if (*ptr == '\0') { 1396 ptr++; 1397 value_len = (uintptr_t)ptr - (uintptr_t)env; 1398 break; 1399 } 1400 ptr++; 1401 } 1402 1403 /* Did we reach the end of the module? */ 1404 if (value_len == 0) 1405 return; 1406 1407 if (*value == '\0') 1408 continue; 1409 1410 /* Is this property already set? */ 1411 if (do_bsys_getproplen(NULL, name) >= 0) 1412 continue; 1413 1414 /* Translate netboot variables */ 1415 if (strcmp(name, "boot.netif.gateway") == 0) { 1416 bsetprops(BP_ROUTER_IP, value); 1417 continue; 1418 } 1419 if (strcmp(name, "boot.netif.hwaddr") == 0) { 1420 bsetprops(BP_BOOT_MAC, value); 1421 continue; 1422 } 1423 if (strcmp(name, "boot.netif.ip") == 0) { 1424 bsetprops(BP_HOST_IP, value); 1425 continue; 1426 } 1427 if (strcmp(name, "boot.netif.netmask") == 0) { 1428 bsetprops(BP_SUBNET_MASK, value); 1429 continue; 1430 } 1431 if (strcmp(name, "boot.netif.server") == 0) { 1432 bsetprops(BP_SERVER_IP, value); 1433 continue; 1434 } 1435 if (strcmp(name, "boot.netif.server") == 0) { 1436 if (do_bsys_getproplen(NULL, BP_SERVER_IP) < 0) 1437 bsetprops(BP_SERVER_IP, value); 1438 continue; 1439 } 1440 if (strcmp(name, "boot.nfsroot.server") == 0) { 1441 if (do_bsys_getproplen(NULL, BP_SERVER_IP) < 0) 1442 bsetprops(BP_SERVER_IP, value); 1443 continue; 1444 } 1445 if (strcmp(name, "boot.nfsroot.path") == 0) { 1446 bsetprops(BP_SERVER_PATH, value); 1447 continue; 1448 } 1449 1450 if (name_is_blacklisted(name) == B_TRUE) 1451 continue; 1452 1453 /* Create new property. */ 1454 bsetprops(name, value); 1455 1456 /* Avoid reading past the module end. */ 1457 if (size <= (uintptr_t)ptr - (uintptr_t)env) 1458 return; 1459 } while (*ptr != '\0'); 1460 } 1461 1462 /* 1463 * 1st pass at building the table of boot properties. This includes: 1464 * - values set on the command line: -B a=x,b=y,c=z .... 1465 * - known values we just compute (ie. from xbp) 1466 * - values from /boot/solaris/bootenv.rc (ie. eeprom(1m) values) 1467 * 1468 * the grub command line looked like: 1469 * kernel boot-file [-B prop=value[,prop=value]...] [boot-args] 1470 * 1471 * whoami is the same as boot-file 1472 */ 1473 static void 1474 build_boot_properties(struct xboot_info *xbp) 1475 { 1476 char *name; 1477 int name_len; 1478 char *value; 1479 int value_len; 1480 struct boot_modules *bm, *rdbm, *benv = NULL; 1481 char *propbuf; 1482 int quoted = 0; 1483 int boot_arg_len; 1484 uint_t i, midx; 1485 char modid[32]; 1486 #ifndef __xpv 1487 static int stdout_val = 0; 1488 uchar_t boot_device; 1489 char str[3]; 1490 #endif 1491 1492 /* 1493 * These have to be done first, so that kobj_mount_root() works 1494 */ 1495 DBG_MSG("Building boot properties\n"); 1496 propbuf = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, 0); 1497 DBG((uintptr_t)propbuf); 1498 if (xbp->bi_module_cnt > 0) { 1499 bm = xbp->bi_modules; 1500 rdbm = NULL; 1501 for (midx = i = 0; i < xbp->bi_module_cnt; i++) { 1502 if (bm[i].bm_type == BMT_ROOTFS) { 1503 rdbm = &bm[i]; 1504 continue; 1505 } 1506 if (bm[i].bm_type == BMT_HASH || 1507 bm[i].bm_type == BMT_FONT || 1508 bm[i].bm_name == NULL) 1509 continue; 1510 1511 if (bm[i].bm_type == BMT_ENV) { 1512 if (benv == NULL) 1513 benv = &bm[i]; 1514 else 1515 continue; 1516 } 1517 1518 (void) snprintf(modid, sizeof (modid), 1519 "module-name-%u", midx); 1520 bsetprops(modid, (char *)bm[i].bm_name); 1521 (void) snprintf(modid, sizeof (modid), 1522 "module-addr-%u", midx); 1523 bsetprop64(modid, (uint64_t)(uintptr_t)bm[i].bm_addr); 1524 (void) snprintf(modid, sizeof (modid), 1525 "module-size-%u", midx); 1526 bsetprop64(modid, (uint64_t)bm[i].bm_size); 1527 ++midx; 1528 } 1529 if (rdbm != NULL) { 1530 bsetprop64("ramdisk_start", 1531 (uint64_t)(uintptr_t)rdbm->bm_addr); 1532 bsetprop64("ramdisk_end", 1533 (uint64_t)(uintptr_t)rdbm->bm_addr + rdbm->bm_size); 1534 } 1535 } 1536 1537 /* 1538 * If there are any boot time modules or hashes present, then disable 1539 * fast reboot. 1540 */ 1541 if (xbp->bi_module_cnt > 1) { 1542 fastreboot_disable(FBNS_BOOTMOD); 1543 } 1544 1545 #ifndef __xpv 1546 /* 1547 * Disable fast reboot if we're using the Multiboot 2 boot protocol, 1548 * since we don't currently support MB2 info and module relocation. 1549 * Note that fast reboot will have already been disabled if multiple 1550 * modules are present, since the current implementation assumes that 1551 * we only have a single module, the boot_archive. 1552 */ 1553 if (xbp->bi_mb_version != 1) { 1554 fastreboot_disable(FBNS_MULTIBOOT2); 1555 } 1556 #endif 1557 1558 DBG_MSG("Parsing command line for boot properties\n"); 1559 value = xbp->bi_cmdline; 1560 1561 /* 1562 * allocate memory to collect boot_args into 1563 */ 1564 boot_arg_len = strlen(xbp->bi_cmdline) + 1; 1565 boot_args = do_bsys_alloc(NULL, NULL, boot_arg_len, MMU_PAGESIZE); 1566 boot_args[0] = 0; 1567 boot_arg_len = 0; 1568 1569 #ifdef __xpv 1570 /* 1571 * Xen puts a lot of device information in front of the kernel name 1572 * let's grab them and make them boot properties. The first 1573 * string w/o an "=" in it will be the boot-file property. 1574 */ 1575 (void) strcpy(namebuf, "xpv-"); 1576 for (;;) { 1577 /* 1578 * get to next property 1579 */ 1580 while (ISSPACE(*value)) 1581 ++value; 1582 name = value; 1583 /* 1584 * look for an "=" 1585 */ 1586 while (*value && !ISSPACE(*value) && *value != '=') { 1587 value++; 1588 } 1589 if (*value != '=') { /* no "=" in the property */ 1590 value = name; 1591 break; 1592 } 1593 name_len = value - name; 1594 value_len = 0; 1595 /* 1596 * skip over the "=" 1597 */ 1598 value++; 1599 while (value[value_len] && !ISSPACE(value[value_len])) { 1600 ++value_len; 1601 } 1602 /* 1603 * build property name with "xpv-" prefix 1604 */ 1605 if (name_len + 4 > 32) { /* skip if name too long */ 1606 value += value_len; 1607 continue; 1608 } 1609 bcopy(name, &namebuf[4], name_len); 1610 name_len += 4; 1611 namebuf[name_len] = 0; 1612 bcopy(value, propbuf, value_len); 1613 propbuf[value_len] = 0; 1614 bsetprops(namebuf, propbuf); 1615 1616 /* 1617 * xpv-root is set to the logical disk name of the xen 1618 * VBD when booting from a disk-based filesystem. 1619 */ 1620 if (strcmp(namebuf, "xpv-root") == 0) 1621 xen_vbdroot_props(propbuf); 1622 /* 1623 * While we're here, if we have a "xpv-nfsroot" property 1624 * then we need to set "fstype" to "nfs" so we mount 1625 * our root from the nfs server. Also parse the xpv-nfsroot 1626 * property to create the properties that nfs_mountroot will 1627 * need to find the root and mount it. 1628 */ 1629 if (strcmp(namebuf, "xpv-nfsroot") == 0) 1630 xen_nfsroot_props(propbuf); 1631 1632 if (strcmp(namebuf, "xpv-ip") == 0) 1633 xen_ip_props(propbuf); 1634 value += value_len; 1635 } 1636 #endif 1637 1638 while (ISSPACE(*value)) 1639 ++value; 1640 /* 1641 * value now points at the boot-file 1642 */ 1643 value_len = 0; 1644 while (value[value_len] && !ISSPACE(value[value_len])) 1645 ++value_len; 1646 if (value_len > 0) { 1647 whoami = propbuf; 1648 bcopy(value, whoami, value_len); 1649 whoami[value_len] = 0; 1650 bsetprops("boot-file", whoami); 1651 /* 1652 * strip leading path stuff from whoami, so running from 1653 * PXE/miniroot makes sense. 1654 */ 1655 if (strstr(whoami, "/platform/") != NULL) 1656 whoami = strstr(whoami, "/platform/"); 1657 bsetprops("whoami", whoami); 1658 } 1659 1660 /* 1661 * Values forcibly set boot properties on the command line via -B. 1662 * Allow use of quotes in values. Other stuff goes on kernel 1663 * command line. 1664 */ 1665 name = value + value_len; 1666 while (*name != 0) { 1667 /* 1668 * anything not " -B" is copied to the command line 1669 */ 1670 if (!ISSPACE(name[0]) || name[1] != '-' || name[2] != 'B') { 1671 boot_args[boot_arg_len++] = *name; 1672 boot_args[boot_arg_len] = 0; 1673 ++name; 1674 continue; 1675 } 1676 1677 /* 1678 * skip the " -B" and following white space 1679 */ 1680 name += 3; 1681 while (ISSPACE(*name)) 1682 ++name; 1683 while (*name && !ISSPACE(*name)) { 1684 value = strstr(name, "="); 1685 if (value == NULL) 1686 break; 1687 name_len = value - name; 1688 ++value; 1689 value_len = 0; 1690 quoted = 0; 1691 for (; ; ++value_len) { 1692 if (!value[value_len]) 1693 break; 1694 1695 /* 1696 * is this value quoted? 1697 */ 1698 if (value_len == 0 && 1699 (value[0] == '\'' || value[0] == '"')) { 1700 quoted = value[0]; 1701 ++value_len; 1702 } 1703 1704 /* 1705 * In the quote accept any character, 1706 * but look for ending quote. 1707 */ 1708 if (quoted) { 1709 if (value[value_len] == quoted) 1710 quoted = 0; 1711 continue; 1712 } 1713 1714 /* 1715 * a comma or white space ends the value 1716 */ 1717 if (value[value_len] == ',' || 1718 ISSPACE(value[value_len])) 1719 break; 1720 } 1721 1722 if (value_len == 0) { 1723 bsetprop(DDI_PROP_TYPE_ANY, name, name_len, 1724 NULL, 0); 1725 } else { 1726 char *v = value; 1727 int l = value_len; 1728 if (v[0] == v[l - 1] && 1729 (v[0] == '\'' || v[0] == '"')) { 1730 ++v; 1731 l -= 2; 1732 } 1733 bcopy(v, propbuf, l); 1734 propbuf[l] = '\0'; 1735 bsetprop(DDI_PROP_TYPE_STRING, name, name_len, 1736 propbuf, l + 1); 1737 } 1738 name = value + value_len; 1739 while (*name == ',') 1740 ++name; 1741 } 1742 } 1743 1744 /* 1745 * set boot-args property 1746 * 1275 name is bootargs, so set 1747 * that too 1748 */ 1749 bsetprops("boot-args", boot_args); 1750 bsetprops("bootargs", boot_args); 1751 1752 process_boot_environment(benv); 1753 1754 #ifndef __xpv 1755 /* 1756 * Build boot command line for Fast Reboot 1757 */ 1758 build_fastboot_cmdline(xbp); 1759 1760 if (xbp->bi_mb_version == 1) { 1761 multiboot_info_t *mbi = xbp->bi_mb_info; 1762 int netboot; 1763 struct sol_netinfo *sip; 1764 1765 /* 1766 * set the BIOS boot device from GRUB 1767 */ 1768 netboot = 0; 1769 1770 /* 1771 * Save various boot information for Fast Reboot 1772 */ 1773 save_boot_info(xbp); 1774 1775 if (mbi != NULL && mbi->flags & MB_INFO_BOOTDEV) { 1776 boot_device = mbi->boot_device >> 24; 1777 if (boot_device == 0x20) 1778 netboot++; 1779 str[0] = (boot_device >> 4) + '0'; 1780 str[1] = (boot_device & 0xf) + '0'; 1781 str[2] = 0; 1782 bsetprops("bios-boot-device", str); 1783 } else { 1784 netboot = 1; 1785 } 1786 1787 /* 1788 * In the netboot case, drives_info is overloaded with the 1789 * dhcp ack. This is not multiboot compliant and requires 1790 * special pxegrub! 1791 */ 1792 if (netboot && mbi->drives_length != 0) { 1793 sip = (struct sol_netinfo *)(uintptr_t)mbi->drives_addr; 1794 if (sip->sn_infotype == SN_TYPE_BOOTP) 1795 bsetprop(DDI_PROP_TYPE_BYTE, 1796 "bootp-response", 1797 sizeof ("bootp-response"), 1798 (void *)(uintptr_t)mbi->drives_addr, 1799 mbi->drives_length); 1800 else if (sip->sn_infotype == SN_TYPE_RARP) 1801 setup_rarp_props(sip); 1802 } 1803 } else { 1804 multiboot2_info_header_t *mbi = xbp->bi_mb_info; 1805 multiboot_tag_bootdev_t *bootdev = NULL; 1806 multiboot_tag_network_t *netdev = NULL; 1807 1808 if (mbi != NULL) { 1809 bootdev = dboot_multiboot2_find_tag(mbi, 1810 MULTIBOOT_TAG_TYPE_BOOTDEV); 1811 netdev = dboot_multiboot2_find_tag(mbi, 1812 MULTIBOOT_TAG_TYPE_NETWORK); 1813 } 1814 if (bootdev != NULL) { 1815 DBG(bootdev->mb_biosdev); 1816 boot_device = bootdev->mb_biosdev; 1817 str[0] = (boot_device >> 4) + '0'; 1818 str[1] = (boot_device & 0xf) + '0'; 1819 str[2] = 0; 1820 bsetprops("bios-boot-device", str); 1821 } 1822 if (netdev != NULL) { 1823 bsetprop(DDI_PROP_TYPE_BYTE, 1824 "bootp-response", sizeof ("bootp-response"), 1825 (void *)(uintptr_t)netdev->mb_dhcpack, 1826 netdev->mb_size - 1827 sizeof (multiboot_tag_network_t)); 1828 } 1829 } 1830 1831 bsetprop32("stdout", stdout_val); 1832 #endif /* __xpv */ 1833 1834 /* 1835 * more conjured up values for made up things.... 1836 */ 1837 #if defined(__xpv) 1838 bsetprops("mfg-name", "i86xpv"); 1839 bsetprops("impl-arch-name", "i86xpv"); 1840 #else 1841 bsetprops("mfg-name", "i86pc"); 1842 bsetprops("impl-arch-name", "i86pc"); 1843 #endif 1844 1845 /* 1846 * Build firmware-provided system properties 1847 */ 1848 build_firmware_properties(xbp); 1849 1850 /* 1851 * XXPV 1852 * 1853 * Find out what these are: 1854 * - cpuid_feature_ecx_include 1855 * - cpuid_feature_ecx_exclude 1856 * - cpuid_feature_edx_include 1857 * - cpuid_feature_edx_exclude 1858 * 1859 * Find out what these are in multiboot: 1860 * - netdev-path 1861 * - fstype 1862 */ 1863 } 1864 1865 #ifdef __xpv 1866 /* 1867 * Under the Hypervisor, memory usable for DMA may be scarce. One 1868 * very likely large pool of DMA friendly memory is occupied by 1869 * the boot_archive, as it was loaded by grub into low MFNs. 1870 * 1871 * Here we free up that memory by copying the boot archive to what are 1872 * likely higher MFN pages and then swapping the mfn/pfn mappings. 1873 */ 1874 #define PFN_2GIG 0x80000 1875 static void 1876 relocate_boot_archive(struct xboot_info *xbp) 1877 { 1878 mfn_t max_mfn = HYPERVISOR_memory_op(XENMEM_maximum_ram_page, NULL); 1879 struct boot_modules *bm = xbp->bi_modules; 1880 uintptr_t va; 1881 pfn_t va_pfn; 1882 mfn_t va_mfn; 1883 caddr_t copy; 1884 pfn_t copy_pfn; 1885 mfn_t copy_mfn; 1886 size_t len; 1887 int slop; 1888 int total = 0; 1889 int relocated = 0; 1890 int mmu_update_return; 1891 mmu_update_t t[2]; 1892 x86pte_t pte; 1893 1894 /* 1895 * If all MFN's are below 2Gig, don't bother doing this. 1896 */ 1897 if (max_mfn < PFN_2GIG) 1898 return; 1899 if (xbp->bi_module_cnt < 1) { 1900 DBG_MSG("no boot_archive!"); 1901 return; 1902 } 1903 1904 DBG_MSG("moving boot_archive to high MFN memory\n"); 1905 va = (uintptr_t)bm->bm_addr; 1906 len = bm->bm_size; 1907 slop = va & MMU_PAGEOFFSET; 1908 if (slop) { 1909 va += MMU_PAGESIZE - slop; 1910 len -= MMU_PAGESIZE - slop; 1911 } 1912 len = P2ALIGN(len, MMU_PAGESIZE); 1913 1914 /* 1915 * Go through all boot_archive pages, swapping any low MFN pages 1916 * with memory at next_phys. 1917 */ 1918 while (len != 0) { 1919 ++total; 1920 va_pfn = mmu_btop(va - ONE_GIG); 1921 va_mfn = mfn_list[va_pfn]; 1922 if (mfn_list[va_pfn] < PFN_2GIG) { 1923 copy = kbm_remap_window(next_phys, 1); 1924 bcopy((void *)va, copy, MMU_PAGESIZE); 1925 copy_pfn = mmu_btop(next_phys); 1926 copy_mfn = mfn_list[copy_pfn]; 1927 1928 pte = mfn_to_ma(copy_mfn) | PT_NOCONSIST | PT_VALID; 1929 if (HYPERVISOR_update_va_mapping(va, pte, 1930 UVMF_INVLPG | UVMF_LOCAL)) 1931 bop_panic("relocate_boot_archive(): " 1932 "HYPERVISOR_update_va_mapping() failed"); 1933 1934 mfn_list[va_pfn] = copy_mfn; 1935 mfn_list[copy_pfn] = va_mfn; 1936 1937 t[0].ptr = mfn_to_ma(copy_mfn) | MMU_MACHPHYS_UPDATE; 1938 t[0].val = va_pfn; 1939 t[1].ptr = mfn_to_ma(va_mfn) | MMU_MACHPHYS_UPDATE; 1940 t[1].val = copy_pfn; 1941 if (HYPERVISOR_mmu_update(t, 2, &mmu_update_return, 1942 DOMID_SELF) != 0 || mmu_update_return != 2) 1943 bop_panic("relocate_boot_archive(): " 1944 "HYPERVISOR_mmu_update() failed"); 1945 1946 next_phys += MMU_PAGESIZE; 1947 ++relocated; 1948 } 1949 len -= MMU_PAGESIZE; 1950 va += MMU_PAGESIZE; 1951 } 1952 DBG_MSG("Relocated pages:\n"); 1953 DBG(relocated); 1954 DBG_MSG("Out of total pages:\n"); 1955 DBG(total); 1956 } 1957 #endif /* __xpv */ 1958 1959 #if !defined(__xpv) 1960 /* 1961 * simple description of a stack frame (args are 32 bit only currently) 1962 */ 1963 typedef struct bop_frame { 1964 struct bop_frame *old_frame; 1965 pc_t retaddr; 1966 long arg[1]; 1967 } bop_frame_t; 1968 1969 void 1970 bop_traceback(bop_frame_t *frame) 1971 { 1972 pc_t pc; 1973 int cnt; 1974 char *ksym; 1975 ulong_t off; 1976 1977 bop_printf(NULL, "Stack traceback:\n"); 1978 for (cnt = 0; cnt < 30; ++cnt) { /* up to 30 frames */ 1979 pc = frame->retaddr; 1980 if (pc == 0) 1981 break; 1982 ksym = kobj_getsymname(pc, &off); 1983 if (ksym) 1984 bop_printf(NULL, " %s+%lx", ksym, off); 1985 else 1986 bop_printf(NULL, " 0x%lx", pc); 1987 1988 frame = frame->old_frame; 1989 if (frame == 0) { 1990 bop_printf(NULL, "\n"); 1991 break; 1992 } 1993 bop_printf(NULL, "\n"); 1994 } 1995 } 1996 1997 struct trapframe { 1998 ulong_t error_code; /* optional */ 1999 ulong_t inst_ptr; 2000 ulong_t code_seg; 2001 ulong_t flags_reg; 2002 ulong_t stk_ptr; 2003 ulong_t stk_seg; 2004 }; 2005 2006 void 2007 bop_trap(ulong_t *tfp) 2008 { 2009 struct trapframe *tf = (struct trapframe *)tfp; 2010 bop_frame_t fakeframe; 2011 static int depth = 0; 2012 2013 /* 2014 * Check for an infinite loop of traps. 2015 */ 2016 if (++depth > 2) 2017 bop_panic("Nested trap"); 2018 2019 bop_printf(NULL, "Unexpected trap\n"); 2020 2021 /* 2022 * adjust the tf for optional error_code by detecting the code selector 2023 */ 2024 if (tf->code_seg != B64CODE_SEL) 2025 tf = (struct trapframe *)(tfp - 1); 2026 else 2027 bop_printf(NULL, "error code 0x%lx\n", 2028 tf->error_code & 0xffffffff); 2029 2030 bop_printf(NULL, "instruction pointer 0x%lx\n", tf->inst_ptr); 2031 bop_printf(NULL, "code segment 0x%lx\n", tf->code_seg & 0xffff); 2032 bop_printf(NULL, "flags register 0x%lx\n", tf->flags_reg); 2033 bop_printf(NULL, "return %%rsp 0x%lx\n", tf->stk_ptr); 2034 bop_printf(NULL, "return %%ss 0x%lx\n", tf->stk_seg & 0xffff); 2035 bop_printf(NULL, "%%cr2 0x%lx\n", getcr2()); 2036 2037 /* grab %[er]bp pushed by our code from the stack */ 2038 fakeframe.old_frame = (bop_frame_t *)*(tfp - 3); 2039 fakeframe.retaddr = (pc_t)tf->inst_ptr; 2040 bop_printf(NULL, "Attempting stack backtrace:\n"); 2041 bop_traceback(&fakeframe); 2042 bop_panic("unexpected trap in early boot"); 2043 } 2044 2045 extern void bop_trap_handler(void); 2046 2047 static gate_desc_t *bop_idt; 2048 2049 static desctbr_t bop_idt_info; 2050 2051 /* 2052 * Install a temporary IDT that lets us catch errors in the boot time code. 2053 * We shouldn't get any faults at all while this is installed, so we'll 2054 * just generate a traceback and exit. 2055 */ 2056 static void 2057 bop_idt_init(void) 2058 { 2059 int t; 2060 2061 bop_idt = (gate_desc_t *) 2062 do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE); 2063 bzero(bop_idt, MMU_PAGESIZE); 2064 for (t = 0; t < NIDT; ++t) { 2065 /* 2066 * Note that since boot runs without a TSS, the 2067 * double fault handler cannot use an alternate stack (64-bit). 2068 */ 2069 set_gatesegd(&bop_idt[t], &bop_trap_handler, B64CODE_SEL, 2070 SDT_SYSIGT, TRP_KPL, 0); 2071 } 2072 bop_idt_info.dtr_limit = (NIDT * sizeof (gate_desc_t)) - 1; 2073 bop_idt_info.dtr_base = (uintptr_t)bop_idt; 2074 wr_idtr(&bop_idt_info); 2075 } 2076 #endif /* !defined(__xpv) */ 2077 2078 /* 2079 * This is where we enter the kernel. It dummies up the boot_ops and 2080 * boot_syscalls vectors and jumps off to _kobj_boot() 2081 */ 2082 void 2083 _start(struct xboot_info *xbp) 2084 { 2085 bootops_t *bops = &bootop; 2086 extern void _kobj_boot(); 2087 2088 /* 2089 * 1st off - initialize the console for any error messages 2090 */ 2091 xbootp = xbp; 2092 #ifdef __xpv 2093 HYPERVISOR_shared_info = (void *)xbp->bi_shared_info; 2094 xen_info = xbp->bi_xen_start_info; 2095 #endif 2096 2097 #ifndef __xpv 2098 if (*((uint32_t *)(FASTBOOT_SWTCH_PA + FASTBOOT_STACK_OFFSET)) == 2099 FASTBOOT_MAGIC) { 2100 post_fastreboot = 1; 2101 *((uint32_t *)(FASTBOOT_SWTCH_PA + FASTBOOT_STACK_OFFSET)) = 0; 2102 } 2103 #endif 2104 2105 bcons_init(xbp); 2106 have_console = 1; 2107 2108 /* 2109 * enable debugging 2110 */ 2111 if (find_boot_prop("kbm_debug") != NULL) 2112 kbm_debug = 1; 2113 2114 DBG_MSG("\n\n*** Entered Solaris in _start() cmdline is: "); 2115 DBG_MSG((char *)xbp->bi_cmdline); 2116 DBG_MSG("\n\n\n"); 2117 2118 /* 2119 * physavail is no longer used by startup 2120 */ 2121 bm.physinstalled = xbp->bi_phys_install; 2122 bm.pcimem = xbp->bi_pcimem; 2123 bm.rsvdmem = xbp->bi_rsvdmem; 2124 bm.physavail = NULL; 2125 2126 /* 2127 * initialize the boot time allocator 2128 */ 2129 next_phys = xbp->bi_next_paddr; 2130 DBG(next_phys); 2131 next_virt = (uintptr_t)xbp->bi_next_vaddr; 2132 DBG(next_virt); 2133 DBG_MSG("Initializing boot time memory management..."); 2134 #ifdef __xpv 2135 { 2136 xen_platform_parameters_t p; 2137 2138 /* This call shouldn't fail, dboot already did it once. */ 2139 (void) HYPERVISOR_xen_version(XENVER_platform_parameters, &p); 2140 mfn_to_pfn_mapping = (pfn_t *)(xen_virt_start = p.virt_start); 2141 DBG(xen_virt_start); 2142 } 2143 #endif 2144 kbm_init(xbp); 2145 DBG_MSG("done\n"); 2146 2147 /* 2148 * Fill in the bootops vector 2149 */ 2150 bops->bsys_version = BO_VERSION; 2151 bops->boot_mem = &bm; 2152 bops->bsys_alloc = do_bsys_alloc; 2153 bops->bsys_free = do_bsys_free; 2154 bops->bsys_getproplen = do_bsys_getproplen; 2155 bops->bsys_getprop = do_bsys_getprop; 2156 bops->bsys_nextprop = do_bsys_nextprop; 2157 bops->bsys_printf = bop_printf; 2158 bops->bsys_doint = do_bsys_doint; 2159 2160 /* 2161 * BOP_EALLOC() is no longer needed 2162 */ 2163 bops->bsys_ealloc = do_bsys_ealloc; 2164 2165 #ifdef __xpv 2166 /* 2167 * On domain 0 we need to free up some physical memory that is 2168 * usable for DMA. Since GRUB loaded the boot_archive, it is 2169 * sitting in low MFN memory. We'll relocated the boot archive 2170 * pages to high PFN memory. 2171 */ 2172 if (DOMAIN_IS_INITDOMAIN(xen_info)) 2173 relocate_boot_archive(xbp); 2174 #endif 2175 2176 #ifndef __xpv 2177 /* 2178 * Install an IDT to catch early pagefaults (shouldn't have any). 2179 * Also needed for kmdb. 2180 */ 2181 bop_idt_init(); 2182 #endif 2183 /* Set up the shadow fb for framebuffer console */ 2184 boot_fb_shadow_init(bops); 2185 2186 /* 2187 * Start building the boot properties from the command line 2188 */ 2189 DBG_MSG("Initializing boot properties:\n"); 2190 build_boot_properties(xbp); 2191 2192 if (find_boot_prop("prom_debug") || kbm_debug) { 2193 char *value; 2194 2195 value = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE); 2196 boot_prop_display(value); 2197 } 2198 2199 /* 2200 * jump into krtld... 2201 */ 2202 _kobj_boot(&bop_sysp, NULL, bops, NULL); 2203 } 2204 2205 2206 /*ARGSUSED*/ 2207 static caddr_t 2208 no_more_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align) 2209 { 2210 panic("Attempt to bsys_alloc() too late\n"); 2211 return (NULL); 2212 } 2213 2214 /*ARGSUSED*/ 2215 static void 2216 no_more_free(bootops_t *bop, caddr_t virt, size_t size) 2217 { 2218 panic("Attempt to bsys_free() too late\n"); 2219 } 2220 2221 void 2222 bop_no_more_mem(void) 2223 { 2224 DBG(total_bop_alloc_scratch); 2225 DBG(total_bop_alloc_kernel); 2226 bootops->bsys_alloc = no_more_alloc; 2227 bootops->bsys_free = no_more_free; 2228 } 2229 2230 2231 /* 2232 * Set ACPI firmware properties 2233 */ 2234 2235 static caddr_t 2236 vmap_phys(size_t length, paddr_t pa) 2237 { 2238 paddr_t start, end; 2239 caddr_t va; 2240 size_t len, page; 2241 2242 #ifdef __xpv 2243 pa = pfn_to_pa(xen_assign_pfn(mmu_btop(pa))) | (pa & MMU_PAGEOFFSET); 2244 #endif 2245 start = P2ALIGN(pa, MMU_PAGESIZE); 2246 end = P2ROUNDUP(pa + length, MMU_PAGESIZE); 2247 len = end - start; 2248 va = (caddr_t)alloc_vaddr(len, MMU_PAGESIZE); 2249 for (page = 0; page < len; page += MMU_PAGESIZE) 2250 kbm_map((uintptr_t)va + page, start + page, 0, 0); 2251 return (va + (pa & MMU_PAGEOFFSET)); 2252 } 2253 2254 static uint8_t 2255 checksum_table(uint8_t *tp, size_t len) 2256 { 2257 uint8_t sum = 0; 2258 2259 while (len-- > 0) 2260 sum += *tp++; 2261 2262 return (sum); 2263 } 2264 2265 static int 2266 valid_rsdp(ACPI_TABLE_RSDP *rp) 2267 { 2268 2269 /* validate the V1.x checksum */ 2270 if (checksum_table((uint8_t *)rp, ACPI_RSDP_CHECKSUM_LENGTH) != 0) 2271 return (0); 2272 2273 /* If pre-ACPI 2.0, this is a valid RSDP */ 2274 if (rp->Revision < 2) 2275 return (1); 2276 2277 /* validate the V2.x checksum */ 2278 if (checksum_table((uint8_t *)rp, ACPI_RSDP_XCHECKSUM_LENGTH) != 0) 2279 return (0); 2280 2281 return (1); 2282 } 2283 2284 /* 2285 * Scan memory range for an RSDP; 2286 * see ACPI 3.0 Spec, 5.2.5.1 2287 */ 2288 static ACPI_TABLE_RSDP * 2289 scan_rsdp(paddr_t *paddrp, size_t len) 2290 { 2291 paddr_t paddr = *paddrp; 2292 caddr_t ptr; 2293 2294 ptr = vmap_phys(len, paddr); 2295 2296 while (len > 0) { 2297 if (strncmp(ptr, ACPI_SIG_RSDP, strlen(ACPI_SIG_RSDP)) == 0 && 2298 valid_rsdp((ACPI_TABLE_RSDP *)ptr)) { 2299 *paddrp = paddr; 2300 return ((ACPI_TABLE_RSDP *)ptr); 2301 } 2302 2303 ptr += ACPI_RSDP_SCAN_STEP; 2304 paddr += ACPI_RSDP_SCAN_STEP; 2305 len -= ACPI_RSDP_SCAN_STEP; 2306 } 2307 2308 return (NULL); 2309 } 2310 2311 /* 2312 * Locate the ACPI RSDP. We search in a particular order: 2313 * 2314 * - If the bootloader told us the location of the RSDP (via the EFI system 2315 * table), try that first. 2316 * - Otherwise, look in the EBDA and BIOS memory as per ACPI 5.2.5.1 (legacy 2317 * case). 2318 * - Finally, our bootloader may have a copy of the RSDP in its info: this might 2319 * get freed after boot, so we always prefer to find the original RSDP first. 2320 * 2321 * Once found, we set acpi-root-tab property (a physical address) for the 2322 * benefit of acpica, acpidump etc. 2323 */ 2324 2325 static ACPI_TABLE_RSDP * 2326 find_rsdp(struct xboot_info *xbp) 2327 { 2328 ACPI_TABLE_RSDP *rsdp = NULL; 2329 paddr_t paddr = 0; 2330 2331 if (do_bsys_getproplen(NULL, "acpi-root-tab") == sizeof (uint64_t)) { 2332 (void) do_bsys_getprop(NULL, "acpi-root-tab", &paddr); 2333 rsdp = scan_rsdp(&paddr, sizeof (*rsdp)); 2334 } 2335 2336 #ifndef __xpv 2337 if (rsdp == NULL && xbp->bi_acpi_rsdp != NULL) { 2338 paddr = (uintptr_t)xbp->bi_acpi_rsdp; 2339 rsdp = scan_rsdp(&paddr, sizeof (*rsdp)); 2340 } 2341 #endif 2342 2343 if (rsdp == NULL) { 2344 uint16_t *ebda_seg = (uint16_t *)vmap_phys(sizeof (uint16_t), 2345 ACPI_EBDA_PTR_LOCATION); 2346 paddr = *ebda_seg << 4; 2347 rsdp = scan_rsdp(&paddr, ACPI_EBDA_WINDOW_SIZE); 2348 } 2349 2350 if (rsdp == NULL) { 2351 paddr = ACPI_HI_RSDP_WINDOW_BASE; 2352 rsdp = scan_rsdp(&paddr, ACPI_HI_RSDP_WINDOW_SIZE); 2353 } 2354 2355 #ifndef __xpv 2356 if (rsdp == NULL && xbp->bi_acpi_rsdp_copy != NULL) { 2357 paddr = (uintptr_t)xbp->bi_acpi_rsdp_copy; 2358 rsdp = scan_rsdp(&paddr, sizeof (*rsdp)); 2359 } 2360 #endif 2361 2362 if (rsdp == NULL) { 2363 bop_printf(NULL, "no RSDP found!\n"); 2364 return (NULL); 2365 } 2366 2367 if (kbm_debug) 2368 bop_printf(NULL, "RSDP found at physical 0x%lx\n", paddr); 2369 2370 if (do_bsys_getproplen(NULL, "acpi-root-tab") != sizeof (uint64_t)) 2371 bsetprop64("acpi-root-tab", paddr); 2372 2373 return (rsdp); 2374 } 2375 2376 static ACPI_TABLE_HEADER * 2377 map_fw_table(paddr_t table_addr) 2378 { 2379 ACPI_TABLE_HEADER *tp; 2380 size_t len = MAX(sizeof (*tp), MMU_PAGESIZE); 2381 2382 /* 2383 * Map at least a page; if the table is larger than this, remap it 2384 */ 2385 tp = (ACPI_TABLE_HEADER *)vmap_phys(len, table_addr); 2386 if (tp->Length > len) 2387 tp = (ACPI_TABLE_HEADER *)vmap_phys(tp->Length, table_addr); 2388 return (tp); 2389 } 2390 2391 static ACPI_TABLE_HEADER * 2392 find_fw_table(ACPI_TABLE_RSDP *rsdp, char *signature) 2393 { 2394 static int revision = 0; 2395 static ACPI_TABLE_XSDT *xsdt; 2396 static int len; 2397 paddr_t xsdt_addr; 2398 ACPI_TABLE_HEADER *tp; 2399 paddr_t table_addr; 2400 int n; 2401 2402 if (strlen(signature) != ACPI_NAME_SIZE) 2403 return (NULL); 2404 2405 /* 2406 * Reading the ACPI 3.0 Spec, section 5.2.5.3 will help 2407 * understand this code. If we haven't already found the RSDT/XSDT, 2408 * revision will be 0. Find the RSDP and check the revision 2409 * to find out whether to use the RSDT or XSDT. If revision is 2410 * 0 or 1, use the RSDT and set internal revision to 1; if it is 2, 2411 * use the XSDT. If the XSDT address is 0, though, fall back to 2412 * revision 1 and use the RSDT. 2413 */ 2414 if (revision == 0) { 2415 if (rsdp == NULL) 2416 return (NULL); 2417 2418 revision = rsdp->Revision; 2419 /* 2420 * ACPI 6.0 states that current revision is 2 2421 * from acpi_table_rsdp definition: 2422 * Must be (0) for ACPI 1.0 or (2) for ACPI 2.0+ 2423 */ 2424 if (revision > 2) 2425 revision = 2; 2426 switch (revision) { 2427 case 2: 2428 /* 2429 * Use the XSDT unless BIOS is buggy and 2430 * claims to be rev 2 but has a null XSDT 2431 * address 2432 */ 2433 xsdt_addr = rsdp->XsdtPhysicalAddress; 2434 if (xsdt_addr != 0) 2435 break; 2436 /* FALLTHROUGH */ 2437 case 0: 2438 /* treat RSDP rev 0 as revision 1 internally */ 2439 revision = 1; 2440 /* FALLTHROUGH */ 2441 case 1: 2442 /* use the RSDT for rev 0/1 */ 2443 xsdt_addr = rsdp->RsdtPhysicalAddress; 2444 break; 2445 default: 2446 /* unknown revision */ 2447 revision = 0; 2448 break; 2449 } 2450 2451 if (revision == 0) 2452 return (NULL); 2453 2454 /* cache the XSDT info */ 2455 xsdt = (ACPI_TABLE_XSDT *)map_fw_table(xsdt_addr); 2456 len = (xsdt->Header.Length - sizeof (xsdt->Header)) / 2457 ((revision == 1) ? sizeof (uint32_t) : sizeof (uint64_t)); 2458 } 2459 2460 /* 2461 * Scan the table headers looking for a signature match 2462 */ 2463 for (n = 0; n < len; n++) { 2464 ACPI_TABLE_RSDT *rsdt = (ACPI_TABLE_RSDT *)xsdt; 2465 table_addr = (revision == 1) ? rsdt->TableOffsetEntry[n] : 2466 xsdt->TableOffsetEntry[n]; 2467 2468 if (table_addr == 0) 2469 continue; 2470 tp = map_fw_table(table_addr); 2471 if (strncmp(tp->Signature, signature, ACPI_NAME_SIZE) == 0) { 2472 return (tp); 2473 } 2474 } 2475 return (NULL); 2476 } 2477 2478 static void 2479 process_mcfg(ACPI_TABLE_MCFG *tp) 2480 { 2481 ACPI_MCFG_ALLOCATION *cfg_baap; 2482 char *cfg_baa_endp; 2483 int64_t ecfginfo[4]; 2484 2485 cfg_baap = (ACPI_MCFG_ALLOCATION *)((uintptr_t)tp + sizeof (*tp)); 2486 cfg_baa_endp = ((char *)tp) + tp->Header.Length; 2487 while ((char *)cfg_baap < cfg_baa_endp) { 2488 if (cfg_baap->Address != 0 && cfg_baap->PciSegment == 0) { 2489 ecfginfo[0] = cfg_baap->Address; 2490 ecfginfo[1] = cfg_baap->PciSegment; 2491 ecfginfo[2] = cfg_baap->StartBusNumber; 2492 ecfginfo[3] = cfg_baap->EndBusNumber; 2493 bsetprop(DDI_PROP_TYPE_INT64, 2494 MCFG_PROPNAME, strlen(MCFG_PROPNAME), 2495 ecfginfo, sizeof (ecfginfo)); 2496 break; 2497 } 2498 cfg_baap++; 2499 } 2500 } 2501 2502 #ifndef __xpv 2503 static void 2504 process_madt_entries(ACPI_TABLE_MADT *tp, uint32_t *cpu_countp, 2505 uint32_t *cpu_possible_countp, uint32_t *cpu_apicid_array) 2506 { 2507 ACPI_SUBTABLE_HEADER *item, *end; 2508 uint32_t cpu_count = 0; 2509 uint32_t cpu_possible_count = 0; 2510 2511 /* 2512 * Determine number of CPUs and keep track of "final" APIC ID 2513 * for each CPU by walking through ACPI MADT processor list 2514 */ 2515 end = (ACPI_SUBTABLE_HEADER *)(tp->Header.Length + (uintptr_t)tp); 2516 item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)tp + sizeof (*tp)); 2517 2518 while (item < end) { 2519 switch (item->Type) { 2520 case ACPI_MADT_TYPE_LOCAL_APIC: { 2521 ACPI_MADT_LOCAL_APIC *cpu = 2522 (ACPI_MADT_LOCAL_APIC *) item; 2523 2524 if (cpu->LapicFlags & ACPI_MADT_ENABLED) { 2525 if (cpu_apicid_array != NULL) 2526 cpu_apicid_array[cpu_count] = cpu->Id; 2527 cpu_count++; 2528 } 2529 cpu_possible_count++; 2530 break; 2531 } 2532 case ACPI_MADT_TYPE_LOCAL_X2APIC: { 2533 ACPI_MADT_LOCAL_X2APIC *cpu = 2534 (ACPI_MADT_LOCAL_X2APIC *) item; 2535 2536 if (cpu->LapicFlags & ACPI_MADT_ENABLED) { 2537 if (cpu_apicid_array != NULL) 2538 cpu_apicid_array[cpu_count] = 2539 cpu->LocalApicId; 2540 cpu_count++; 2541 } 2542 cpu_possible_count++; 2543 break; 2544 } 2545 default: 2546 if (kbm_debug) 2547 bop_printf(NULL, "MADT type %d\n", item->Type); 2548 break; 2549 } 2550 2551 item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)item + item->Length); 2552 } 2553 if (cpu_countp) 2554 *cpu_countp = cpu_count; 2555 if (cpu_possible_countp) 2556 *cpu_possible_countp = cpu_possible_count; 2557 } 2558 2559 static void 2560 process_madt(ACPI_TABLE_MADT *tp) 2561 { 2562 uint32_t cpu_count = 0; 2563 uint32_t cpu_possible_count = 0; 2564 uint32_t *cpu_apicid_array; /* x2APIC ID is 32bit! */ 2565 2566 if (tp != NULL) { 2567 /* count cpu's */ 2568 process_madt_entries(tp, &cpu_count, &cpu_possible_count, NULL); 2569 2570 cpu_apicid_array = (uint32_t *)do_bsys_alloc(NULL, NULL, 2571 cpu_count * sizeof (*cpu_apicid_array), MMU_PAGESIZE); 2572 if (cpu_apicid_array == NULL) 2573 bop_panic("Not enough memory for APIC ID array"); 2574 2575 /* copy IDs */ 2576 process_madt_entries(tp, NULL, NULL, cpu_apicid_array); 2577 2578 /* 2579 * Make boot property for array of "final" APIC IDs for each 2580 * CPU 2581 */ 2582 bsetprop(DDI_PROP_TYPE_INT, 2583 BP_CPU_APICID_ARRAY, strlen(BP_CPU_APICID_ARRAY), 2584 cpu_apicid_array, cpu_count * sizeof (*cpu_apicid_array)); 2585 } 2586 2587 /* 2588 * Check whether property plat-max-ncpus is already set. 2589 */ 2590 if (do_bsys_getproplen(NULL, PLAT_MAX_NCPUS_NAME) < 0) { 2591 /* 2592 * Set plat-max-ncpus to number of maximum possible CPUs given 2593 * in MADT if it hasn't been set. 2594 * There's no formal way to detect max possible CPUs supported 2595 * by platform according to ACPI spec3.0b. So current CPU 2596 * hotplug implementation expects that all possible CPUs will 2597 * have an entry in MADT table and set plat-max-ncpus to number 2598 * of entries in MADT. 2599 * With introducing of ACPI4.0, Maximum System Capability Table 2600 * (MSCT) provides maximum number of CPUs supported by platform. 2601 * If MSCT is unavailable, fall back to old way. 2602 */ 2603 if (tp != NULL) 2604 bsetpropsi(PLAT_MAX_NCPUS_NAME, cpu_possible_count); 2605 } 2606 2607 /* 2608 * Set boot property boot-max-ncpus to number of CPUs existing at 2609 * boot time. boot-max-ncpus is mainly used for optimization. 2610 */ 2611 if (tp != NULL) 2612 bsetpropsi(BOOT_MAX_NCPUS_NAME, cpu_count); 2613 2614 /* 2615 * User-set boot-ncpus overrides firmware count 2616 */ 2617 if (do_bsys_getproplen(NULL, BOOT_NCPUS_NAME) >= 0) 2618 return; 2619 2620 /* 2621 * Set boot property boot-ncpus to number of active CPUs given in MADT 2622 * if it hasn't been set yet. 2623 */ 2624 if (tp != NULL) 2625 bsetpropsi(BOOT_NCPUS_NAME, cpu_count); 2626 } 2627 2628 static void 2629 process_srat(ACPI_TABLE_SRAT *tp) 2630 { 2631 ACPI_SUBTABLE_HEADER *item, *end; 2632 int i; 2633 int proc_num, mem_num; 2634 #pragma pack(1) 2635 struct { 2636 uint32_t domain; 2637 uint32_t apic_id; 2638 uint32_t sapic_id; 2639 } processor; 2640 struct { 2641 uint32_t domain; 2642 uint32_t x2apic_id; 2643 } x2apic; 2644 struct { 2645 uint32_t domain; 2646 uint64_t addr; 2647 uint64_t length; 2648 uint32_t flags; 2649 } memory; 2650 #pragma pack() 2651 char prop_name[30]; 2652 uint64_t maxmem = 0; 2653 2654 if (tp == NULL) 2655 return; 2656 2657 proc_num = mem_num = 0; 2658 end = (ACPI_SUBTABLE_HEADER *)(tp->Header.Length + (uintptr_t)tp); 2659 item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)tp + sizeof (*tp)); 2660 while (item < end) { 2661 switch (item->Type) { 2662 case ACPI_SRAT_TYPE_CPU_AFFINITY: { 2663 ACPI_SRAT_CPU_AFFINITY *cpu = 2664 (ACPI_SRAT_CPU_AFFINITY *) item; 2665 2666 if (!(cpu->Flags & ACPI_SRAT_CPU_ENABLED)) 2667 break; 2668 processor.domain = cpu->ProximityDomainLo; 2669 for (i = 0; i < 3; i++) 2670 processor.domain += 2671 cpu->ProximityDomainHi[i] << ((i + 1) * 8); 2672 processor.apic_id = cpu->ApicId; 2673 processor.sapic_id = cpu->LocalSapicEid; 2674 (void) snprintf(prop_name, 30, "acpi-srat-processor-%d", 2675 proc_num); 2676 bsetprop(DDI_PROP_TYPE_INT, 2677 prop_name, strlen(prop_name), &processor, 2678 sizeof (processor)); 2679 proc_num++; 2680 break; 2681 } 2682 case ACPI_SRAT_TYPE_MEMORY_AFFINITY: { 2683 ACPI_SRAT_MEM_AFFINITY *mem = 2684 (ACPI_SRAT_MEM_AFFINITY *)item; 2685 2686 if (!(mem->Flags & ACPI_SRAT_MEM_ENABLED)) 2687 break; 2688 memory.domain = mem->ProximityDomain; 2689 memory.addr = mem->BaseAddress; 2690 memory.length = mem->Length; 2691 memory.flags = mem->Flags; 2692 (void) snprintf(prop_name, 30, "acpi-srat-memory-%d", 2693 mem_num); 2694 bsetprop(DDI_PROP_TYPE_INT, 2695 prop_name, strlen(prop_name), &memory, 2696 sizeof (memory)); 2697 if ((mem->Flags & ACPI_SRAT_MEM_HOT_PLUGGABLE) && 2698 (memory.addr + memory.length > maxmem)) { 2699 maxmem = memory.addr + memory.length; 2700 } 2701 mem_num++; 2702 break; 2703 } 2704 case ACPI_SRAT_TYPE_X2APIC_CPU_AFFINITY: { 2705 ACPI_SRAT_X2APIC_CPU_AFFINITY *x2cpu = 2706 (ACPI_SRAT_X2APIC_CPU_AFFINITY *) item; 2707 2708 if (!(x2cpu->Flags & ACPI_SRAT_CPU_ENABLED)) 2709 break; 2710 x2apic.domain = x2cpu->ProximityDomain; 2711 x2apic.x2apic_id = x2cpu->ApicId; 2712 (void) snprintf(prop_name, 30, "acpi-srat-processor-%d", 2713 proc_num); 2714 bsetprop(DDI_PROP_TYPE_INT, 2715 prop_name, strlen(prop_name), &x2apic, 2716 sizeof (x2apic)); 2717 proc_num++; 2718 break; 2719 } 2720 default: 2721 if (kbm_debug) 2722 bop_printf(NULL, "SRAT type %d\n", item->Type); 2723 break; 2724 } 2725 2726 item = (ACPI_SUBTABLE_HEADER *) 2727 (item->Length + (uintptr_t)item); 2728 } 2729 2730 /* 2731 * The maximum physical address calculated from the SRAT table is more 2732 * accurate than that calculated from the MSCT table. 2733 */ 2734 if (maxmem != 0) { 2735 plat_dr_physmax = btop(maxmem); 2736 } 2737 } 2738 2739 static void 2740 process_slit(ACPI_TABLE_SLIT *tp) 2741 { 2742 2743 /* 2744 * Check the number of localities; if it's too huge, we just 2745 * return and locality enumeration code will handle this later, 2746 * if possible. 2747 * 2748 * Note that the size of the table is the square of the 2749 * number of localities; if the number of localities exceeds 2750 * UINT16_MAX, the table size may overflow an int when being 2751 * passed to bsetprop() below. 2752 */ 2753 if (tp->LocalityCount >= SLIT_LOCALITIES_MAX) 2754 return; 2755 2756 bsetprop64(SLIT_NUM_PROPNAME, tp->LocalityCount); 2757 bsetprop(DDI_PROP_TYPE_BYTE, 2758 SLIT_PROPNAME, strlen(SLIT_PROPNAME), &tp->Entry, 2759 tp->LocalityCount * tp->LocalityCount); 2760 } 2761 2762 static ACPI_TABLE_MSCT * 2763 process_msct(ACPI_TABLE_MSCT *tp) 2764 { 2765 int last_seen = 0; 2766 int proc_num = 0; 2767 ACPI_MSCT_PROXIMITY *item, *end; 2768 extern uint64_t plat_dr_options; 2769 2770 ASSERT(tp != NULL); 2771 2772 end = (ACPI_MSCT_PROXIMITY *)(tp->Header.Length + (uintptr_t)tp); 2773 for (item = (void *)((uintptr_t)tp + tp->ProximityOffset); 2774 item < end; 2775 item = (void *)(item->Length + (uintptr_t)item)) { 2776 /* 2777 * Sanity check according to section 5.2.19.1 of ACPI 4.0. 2778 * Revision 1 2779 * Length 22 2780 */ 2781 if (item->Revision != 1 || item->Length != 22) { 2782 cmn_err(CE_CONT, 2783 "?boot: unknown proximity domain structure in MSCT " 2784 "with Revision(%d), Length(%d).\n", 2785 (int)item->Revision, (int)item->Length); 2786 return (NULL); 2787 } else if (item->RangeStart > item->RangeEnd) { 2788 cmn_err(CE_CONT, 2789 "?boot: invalid proximity domain structure in MSCT " 2790 "with RangeStart(%u), RangeEnd(%u).\n", 2791 item->RangeStart, item->RangeEnd); 2792 return (NULL); 2793 } else if (item->RangeStart != last_seen) { 2794 /* 2795 * Items must be organized in ascending order of the 2796 * proximity domain enumerations. 2797 */ 2798 cmn_err(CE_CONT, 2799 "?boot: invalid proximity domain structure in MSCT," 2800 " items are not orginized in ascending order.\n"); 2801 return (NULL); 2802 } 2803 2804 /* 2805 * If ProcessorCapacity is 0 then there would be no CPUs in this 2806 * domain. 2807 */ 2808 if (item->ProcessorCapacity != 0) { 2809 proc_num += (item->RangeEnd - item->RangeStart + 1) * 2810 item->ProcessorCapacity; 2811 } 2812 2813 last_seen = item->RangeEnd - item->RangeStart + 1; 2814 /* 2815 * Break out if all proximity domains have been processed. 2816 * Some BIOSes may have unused items at the end of MSCT table. 2817 */ 2818 if (last_seen > tp->MaxProximityDomains) { 2819 break; 2820 } 2821 } 2822 if (last_seen != tp->MaxProximityDomains + 1) { 2823 cmn_err(CE_CONT, 2824 "?boot: invalid proximity domain structure in MSCT, " 2825 "proximity domain count doesn't match.\n"); 2826 return (NULL); 2827 } 2828 2829 /* 2830 * Set plat-max-ncpus property if it hasn't been set yet. 2831 */ 2832 if (do_bsys_getproplen(NULL, PLAT_MAX_NCPUS_NAME) < 0) { 2833 if (proc_num != 0) { 2834 bsetpropsi(PLAT_MAX_NCPUS_NAME, proc_num); 2835 } 2836 } 2837 2838 /* 2839 * Use Maximum Physical Address from the MSCT table as upper limit for 2840 * memory hot-adding by default. It may be overridden by value from 2841 * the SRAT table or the "plat-dr-physmax" boot option. 2842 */ 2843 plat_dr_physmax = btop(tp->MaxAddress + 1); 2844 2845 /* 2846 * Existence of MSCT implies CPU/memory hotplug-capability for the 2847 * platform. 2848 */ 2849 plat_dr_options |= PLAT_DR_FEATURE_CPU; 2850 plat_dr_options |= PLAT_DR_FEATURE_MEMORY; 2851 2852 return (tp); 2853 } 2854 2855 #else /* __xpv */ 2856 static void 2857 enumerate_xen_cpus() 2858 { 2859 processorid_t id, max_id; 2860 2861 /* 2862 * User-set boot-ncpus overrides enumeration 2863 */ 2864 if (do_bsys_getproplen(NULL, BOOT_NCPUS_NAME) >= 0) 2865 return; 2866 2867 /* 2868 * Probe every possible virtual CPU id and remember the 2869 * highest id present; the count of CPUs is one greater 2870 * than this. This tacitly assumes at least cpu 0 is present. 2871 */ 2872 max_id = 0; 2873 for (id = 0; id < MAX_VIRT_CPUS; id++) 2874 if (HYPERVISOR_vcpu_op(VCPUOP_is_up, id, NULL) == 0) 2875 max_id = id; 2876 2877 bsetpropsi(BOOT_NCPUS_NAME, max_id+1); 2878 2879 } 2880 #endif /* __xpv */ 2881 2882 /*ARGSUSED*/ 2883 static void 2884 build_firmware_properties(struct xboot_info *xbp) 2885 { 2886 ACPI_TABLE_HEADER *tp = NULL; 2887 ACPI_TABLE_RSDP *rsdp; 2888 2889 #ifndef __xpv 2890 if (xbp->bi_uefi_arch == XBI_UEFI_ARCH_64) { 2891 bsetprops("efi-systype", "64"); 2892 bsetprop64("efi-systab", 2893 (uint64_t)(uintptr_t)xbp->bi_uefi_systab); 2894 if (kbm_debug) 2895 bop_printf(NULL, "64-bit UEFI detected.\n"); 2896 } else if (xbp->bi_uefi_arch == XBI_UEFI_ARCH_32) { 2897 bsetprops("efi-systype", "32"); 2898 bsetprop64("efi-systab", 2899 (uint64_t)(uintptr_t)xbp->bi_uefi_systab); 2900 if (kbm_debug) 2901 bop_printf(NULL, "32-bit UEFI detected.\n"); 2902 } 2903 2904 if (xbp->bi_smbios != NULL) { 2905 bsetprop64("smbios-address", 2906 (uint64_t)(uintptr_t)xbp->bi_smbios); 2907 } 2908 2909 rsdp = find_rsdp(xbp); 2910 2911 if ((tp = find_fw_table(rsdp, ACPI_SIG_MSCT)) != NULL) 2912 msct_ptr = process_msct((ACPI_TABLE_MSCT *)tp); 2913 else 2914 msct_ptr = NULL; 2915 2916 if ((tp = find_fw_table(rsdp, ACPI_SIG_MADT)) != NULL) 2917 process_madt((ACPI_TABLE_MADT *)tp); 2918 2919 if ((srat_ptr = (ACPI_TABLE_SRAT *) 2920 find_fw_table(rsdp, ACPI_SIG_SRAT)) != NULL) 2921 process_srat(srat_ptr); 2922 2923 if (slit_ptr = (ACPI_TABLE_SLIT *)find_fw_table(rsdp, ACPI_SIG_SLIT)) 2924 process_slit(slit_ptr); 2925 2926 tp = find_fw_table(rsdp, ACPI_SIG_MCFG); 2927 #else /* __xpv */ 2928 enumerate_xen_cpus(); 2929 if (DOMAIN_IS_INITDOMAIN(xen_info)) 2930 tp = find_fw_table(rsdp, ACPI_SIG_MCFG); 2931 #endif /* __xpv */ 2932 if (tp != NULL) 2933 process_mcfg((ACPI_TABLE_MCFG *)tp); 2934 } 2935 2936 /* 2937 * fake up a boot property for deferred early console output 2938 * this is used by both graphical boot and the (developer only) 2939 * USB serial console 2940 */ 2941 void * 2942 defcons_init(size_t size) 2943 { 2944 static char *p = NULL; 2945 2946 p = do_bsys_alloc(NULL, NULL, size, MMU_PAGESIZE); 2947 *p = 0; 2948 bsetprop32("deferred-console-buf", (uint32_t)((uintptr_t)&p)); 2949 return (p); 2950 } 2951 2952 /*ARGSUSED*/ 2953 int 2954 boot_compinfo(int fd, struct compinfo *cbp) 2955 { 2956 cbp->iscmp = 0; 2957 cbp->blksize = MAXBSIZE; 2958 return (0); 2959 } 2960 2961 /* 2962 * Get an integer value for given boot property 2963 */ 2964 int 2965 bootprop_getval(const char *prop_name, u_longlong_t *prop_value) 2966 { 2967 int boot_prop_len; 2968 char str[BP_MAX_STRLEN]; 2969 u_longlong_t value; 2970 2971 boot_prop_len = BOP_GETPROPLEN(bootops, prop_name); 2972 if (boot_prop_len < 0 || boot_prop_len >= sizeof (str) || 2973 BOP_GETPROP(bootops, prop_name, str) < 0 || 2974 kobj_getvalue(str, &value) == -1) 2975 return (-1); 2976 2977 if (prop_value) 2978 *prop_value = value; 2979 2980 return (0); 2981 } 2982 2983 int 2984 bootprop_getstr(const char *prop_name, char *buf, size_t buflen) 2985 { 2986 int boot_prop_len = BOP_GETPROPLEN(bootops, prop_name); 2987 2988 if (boot_prop_len < 0 || boot_prop_len >= buflen || 2989 BOP_GETPROP(bootops, prop_name, buf) < 0) 2990 return (-1); 2991 2992 return (0); 2993 } 2994