1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 * 26 * Copyright (c) 2010, Intel Corporation. 27 * All rights reserved. 28 * 29 * Copyright 2020 Joyent, Inc. 30 * Copyright 2024 Oxide Computer Company 31 */ 32 33 /* 34 * This file contains the functionality that mimics the boot operations 35 * on SPARC systems or the old boot.bin/multiboot programs on x86 systems. 36 * The x86 kernel now does everything on its own. 37 */ 38 39 #include <sys/types.h> 40 #include <sys/bootconf.h> 41 #include <sys/bootsvcs.h> 42 #include <sys/bootinfo.h> 43 #include <sys/multiboot.h> 44 #include <sys/multiboot2.h> 45 #include <sys/multiboot2_impl.h> 46 #include <sys/bootvfs.h> 47 #include <sys/bootprops.h> 48 #include <sys/varargs.h> 49 #include <sys/param.h> 50 #include <sys/machparam.h> 51 #include <sys/machsystm.h> 52 #include <sys/archsystm.h> 53 #include <sys/boot_console.h> 54 #include <sys/framebuffer.h> 55 #include <sys/cmn_err.h> 56 #include <sys/systm.h> 57 #include <sys/promif.h> 58 #include <sys/archsystm.h> 59 #include <sys/x86_archext.h> 60 #include <sys/kobj.h> 61 #include <sys/privregs.h> 62 #include <sys/sysmacros.h> 63 #include <sys/ctype.h> 64 #include <sys/fastboot.h> 65 #ifdef __xpv 66 #include <sys/hypervisor.h> 67 #include <net/if.h> 68 #endif 69 #include <vm/kboot_mmu.h> 70 #include <vm/hat_pte.h> 71 #include <sys/kobj.h> 72 #include <sys/kobj_lex.h> 73 #include <sys/pci_cfgspace_impl.h> 74 #include <sys/fastboot_impl.h> 75 #include <sys/acpi/acconfig.h> 76 #include <sys/acpi/acpi.h> 77 #include <sys/ddipropdefs.h> /* For DDI prop types */ 78 79 static int have_console = 0; /* set once primitive console is initialized */ 80 static char *boot_args = ""; 81 82 /* 83 * Debugging macros 84 */ 85 static uint_t kbm_debug = 0; 86 #define DBG_MSG(s) { if (kbm_debug) bop_printf(NULL, "%s", s); } 87 #define DBG(x) { if (kbm_debug) \ 88 bop_printf(NULL, "%s is %" PRIx64 "\n", #x, (uint64_t)(x)); \ 89 } 90 91 #define PUT_STRING(s) { \ 92 char *cp; \ 93 for (cp = (s); *cp; ++cp) \ 94 bcons_putchar(*cp); \ 95 } 96 97 /* callback to boot_fb to set shadow frame buffer */ 98 extern void boot_fb_shadow_init(bootops_t *); 99 100 bootops_t bootop; /* simple bootops we'll pass on to kernel */ 101 struct bsys_mem bm; 102 103 /* 104 * Boot info from "glue" code in low memory. xbootp is used by: 105 * do_bop_phys_alloc(), do_bsys_alloc() and read_bootenvrc(). 106 */ 107 static struct xboot_info *xbootp; 108 static uintptr_t next_virt; /* next available virtual address */ 109 static paddr_t next_phys; /* next available physical address from dboot */ 110 static paddr_t high_phys = -(paddr_t)1; /* last used physical address */ 111 112 /* 113 * buffer for vsnprintf for console I/O 114 */ 115 #define BUFFERSIZE 512 116 static char buffer[BUFFERSIZE]; 117 118 /* 119 * stuff to store/report/manipulate boot property settings. 120 */ 121 typedef struct bootprop { 122 struct bootprop *bp_next; 123 char *bp_name; 124 int bp_flags; /* DDI prop type */ 125 uint_t bp_vlen; /* 0 for boolean */ 126 char *bp_value; 127 } bootprop_t; 128 129 static bootprop_t *bprops = NULL; 130 static char *curr_page = NULL; /* ptr to avail bprop memory */ 131 static int curr_space = 0; /* amount of memory at curr_page */ 132 133 #ifdef __xpv 134 extern start_info_t *xen_info; 135 extern shared_info_t *HYPERVISOR_shared_info; 136 #endif 137 138 /* 139 * some allocator statistics 140 */ 141 static ulong_t total_bop_alloc_scratch = 0; 142 static ulong_t total_bop_alloc_kernel = 0; 143 144 static void build_firmware_properties(struct xboot_info *); 145 146 static int early_allocation = 1; 147 148 int force_fastreboot = 0; 149 volatile int fastreboot_onpanic = 0; 150 int post_fastreboot = 0; 151 #ifdef __xpv 152 volatile int fastreboot_capable = 0; 153 #else 154 volatile int fastreboot_capable = 1; 155 #endif 156 157 /* 158 * Information saved from current boot for fast reboot. 159 * If the information size exceeds what we have allocated, fast reboot 160 * will not be supported. 161 */ 162 multiboot_info_t saved_mbi; 163 mb_memory_map_t saved_mmap[FASTBOOT_SAVED_MMAP_COUNT]; 164 uint8_t saved_drives[FASTBOOT_SAVED_DRIVES_SIZE]; 165 char saved_cmdline[FASTBOOT_SAVED_CMDLINE_LEN]; 166 int saved_cmdline_len = 0; 167 size_t saved_file_size[FASTBOOT_MAX_FILES_MAP]; 168 169 /* 170 * Turn off fastreboot_onpanic to avoid panic loop. 171 */ 172 char fastreboot_onpanic_cmdline[FASTBOOT_SAVED_CMDLINE_LEN]; 173 static const char fastreboot_onpanic_args[] = " -B fastreboot_onpanic=0"; 174 175 /* 176 * Pointers to where System Resource Affinity Table (SRAT), System Locality 177 * Information Table (SLIT) and Maximum System Capability Table (MSCT) 178 * are mapped into virtual memory 179 */ 180 ACPI_TABLE_SRAT *srat_ptr = NULL; 181 ACPI_TABLE_SLIT *slit_ptr = NULL; 182 ACPI_TABLE_MSCT *msct_ptr = NULL; 183 184 /* 185 * Arbitrary limit on number of localities we handle; if 186 * this limit is raised to more than UINT16_MAX, make sure 187 * process_slit() knows how to handle it. 188 */ 189 #define SLIT_LOCALITIES_MAX (4096) 190 191 #define SLIT_NUM_PROPNAME "acpi-slit-localities" 192 #define SLIT_PROPNAME "acpi-slit" 193 194 /* 195 * Allocate aligned physical memory at boot time. This allocator allocates 196 * from the highest possible addresses. This avoids exhausting memory that 197 * would be useful for DMA buffers. 198 */ 199 paddr_t 200 do_bop_phys_alloc(uint64_t size, uint64_t align) 201 { 202 paddr_t pa = 0; 203 paddr_t start; 204 paddr_t end; 205 struct memlist *ml = (struct memlist *)xbootp->bi_phys_install; 206 207 /* 208 * Be careful if high memory usage is limited in startup.c 209 * Since there are holes in the low part of the physical address 210 * space we can treat physmem as a pfn (not just a pgcnt) and 211 * get a conservative upper limit. 212 */ 213 if (physmem != 0 && high_phys > pfn_to_pa(physmem)) 214 high_phys = pfn_to_pa(physmem); 215 216 /* 217 * find the highest available memory in physinstalled 218 */ 219 size = P2ROUNDUP(size, align); 220 for (; ml; ml = ml->ml_next) { 221 start = P2ROUNDUP(ml->ml_address, align); 222 end = P2ALIGN(ml->ml_address + ml->ml_size, align); 223 if (start < next_phys) 224 start = P2ROUNDUP(next_phys, align); 225 if (end > high_phys) 226 end = P2ALIGN(high_phys, align); 227 228 if (end <= start) 229 continue; 230 if (end - start < size) 231 continue; 232 233 /* 234 * Early allocations need to use low memory, since 235 * physmem might be further limited by bootenv.rc 236 */ 237 if (early_allocation) { 238 if (pa == 0 || start < pa) 239 pa = start; 240 } else { 241 if (end - size > pa) 242 pa = end - size; 243 } 244 } 245 if (pa != 0) { 246 if (early_allocation) 247 next_phys = pa + size; 248 else 249 high_phys = pa; 250 return (pa); 251 } 252 bop_panic("do_bop_phys_alloc(0x%" PRIx64 ", 0x%" PRIx64 253 ") Out of memory\n", size, align); 254 /*NOTREACHED*/ 255 } 256 257 uintptr_t 258 alloc_vaddr(size_t size, paddr_t align) 259 { 260 uintptr_t rv; 261 262 next_virt = P2ROUNDUP(next_virt, (uintptr_t)align); 263 rv = (uintptr_t)next_virt; 264 next_virt += size; 265 return (rv); 266 } 267 268 /* 269 * Allocate virtual memory. The size is always rounded up to a multiple 270 * of base pagesize. 271 */ 272 273 /*ARGSUSED*/ 274 static caddr_t 275 do_bsys_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align) 276 { 277 paddr_t a = align; /* same type as pa for masking */ 278 uint_t pgsize; 279 paddr_t pa; 280 uintptr_t va; 281 ssize_t s; /* the aligned size */ 282 uint_t level; 283 uint_t is_kernel = (virthint != 0); 284 285 if (a < MMU_PAGESIZE) 286 a = MMU_PAGESIZE; 287 else if (!ISP2(a)) 288 prom_panic("do_bsys_alloc() incorrect alignment"); 289 size = P2ROUNDUP(size, MMU_PAGESIZE); 290 291 /* 292 * Use the next aligned virtual address if we weren't given one. 293 */ 294 if (virthint == NULL) { 295 virthint = (caddr_t)alloc_vaddr(size, a); 296 total_bop_alloc_scratch += size; 297 } else { 298 total_bop_alloc_kernel += size; 299 } 300 301 /* 302 * allocate the physical memory 303 */ 304 pa = do_bop_phys_alloc(size, a); 305 306 /* 307 * Add the mappings to the page tables, try large pages first. 308 */ 309 va = (uintptr_t)virthint; 310 s = size; 311 level = 1; 312 pgsize = xbootp->bi_use_pae ? TWO_MEG : FOUR_MEG; 313 if (xbootp->bi_use_largepage && a == pgsize) { 314 while (IS_P2ALIGNED(pa, pgsize) && IS_P2ALIGNED(va, pgsize) && 315 s >= pgsize) { 316 kbm_map(va, pa, level, is_kernel); 317 va += pgsize; 318 pa += pgsize; 319 s -= pgsize; 320 } 321 } 322 323 /* 324 * Map remaining pages use small mappings 325 */ 326 level = 0; 327 pgsize = MMU_PAGESIZE; 328 while (s > 0) { 329 kbm_map(va, pa, level, is_kernel); 330 va += pgsize; 331 pa += pgsize; 332 s -= pgsize; 333 } 334 return (virthint); 335 } 336 337 /* 338 * Free virtual memory - we'll just ignore these. 339 */ 340 /*ARGSUSED*/ 341 static void 342 do_bsys_free(bootops_t *bop, caddr_t virt, size_t size) 343 { 344 bop_printf(NULL, "do_bsys_free(virt=0x%p, size=0x%lx) ignored\n", 345 (void *)virt, size); 346 } 347 348 /* 349 * Old interface 350 */ 351 /*ARGSUSED*/ 352 static caddr_t 353 do_bsys_ealloc(bootops_t *bop, caddr_t virthint, size_t size, 354 int align, int flags) 355 { 356 prom_panic("unsupported call to BOP_EALLOC()\n"); 357 return (0); 358 } 359 360 361 static void 362 bsetprop(int flags, char *name, int nlen, void *value, int vlen) 363 { 364 uint_t size; 365 uint_t need_size; 366 bootprop_t *b; 367 368 /* 369 * align the size to 16 byte boundary 370 */ 371 size = sizeof (bootprop_t) + nlen + 1 + vlen; 372 size = (size + 0xf) & ~0xf; 373 if (size > curr_space) { 374 need_size = (size + (MMU_PAGEOFFSET)) & MMU_PAGEMASK; 375 curr_page = do_bsys_alloc(NULL, 0, need_size, MMU_PAGESIZE); 376 curr_space = need_size; 377 } 378 379 /* 380 * use a bootprop_t at curr_page and link into list 381 */ 382 b = (bootprop_t *)curr_page; 383 curr_page += sizeof (bootprop_t); 384 curr_space -= sizeof (bootprop_t); 385 b->bp_next = bprops; 386 bprops = b; 387 388 /* 389 * follow by name and ending zero byte 390 */ 391 b->bp_name = curr_page; 392 bcopy(name, curr_page, nlen); 393 curr_page += nlen; 394 *curr_page++ = 0; 395 curr_space -= nlen + 1; 396 397 /* 398 * set the property type 399 */ 400 b->bp_flags = flags & DDI_PROP_TYPE_MASK; 401 402 /* 403 * copy in value, but no ending zero byte 404 */ 405 b->bp_value = curr_page; 406 b->bp_vlen = vlen; 407 if (vlen > 0) { 408 bcopy(value, curr_page, vlen); 409 curr_page += vlen; 410 curr_space -= vlen; 411 } 412 413 /* 414 * align new values of curr_page, curr_space 415 */ 416 while (curr_space & 0xf) { 417 ++curr_page; 418 --curr_space; 419 } 420 } 421 422 static void 423 bsetprops(char *name, char *value) 424 { 425 bsetprop(DDI_PROP_TYPE_STRING, name, strlen(name), 426 value, strlen(value) + 1); 427 } 428 429 static void 430 bsetprop32(char *name, uint32_t value) 431 { 432 bsetprop(DDI_PROP_TYPE_INT, name, strlen(name), 433 (void *)&value, sizeof (value)); 434 } 435 436 static void 437 bsetprop64(char *name, uint64_t value) 438 { 439 bsetprop(DDI_PROP_TYPE_INT64, name, strlen(name), 440 (void *)&value, sizeof (value)); 441 } 442 443 static void 444 bsetpropsi(char *name, int value) 445 { 446 char prop_val[32]; 447 448 (void) snprintf(prop_val, sizeof (prop_val), "%d", value); 449 bsetprops(name, prop_val); 450 } 451 452 /* 453 * to find the type of the value associated with this name 454 */ 455 /*ARGSUSED*/ 456 int 457 do_bsys_getproptype(bootops_t *bop, const char *name) 458 { 459 bootprop_t *b; 460 461 for (b = bprops; b != NULL; b = b->bp_next) { 462 if (strcmp(name, b->bp_name) != 0) 463 continue; 464 return (b->bp_flags); 465 } 466 return (-1); 467 } 468 469 /* 470 * to find the size of the buffer to allocate 471 */ 472 /*ARGSUSED*/ 473 int 474 do_bsys_getproplen(bootops_t *bop, const char *name) 475 { 476 bootprop_t *b; 477 478 for (b = bprops; b; b = b->bp_next) { 479 if (strcmp(name, b->bp_name) != 0) 480 continue; 481 return (b->bp_vlen); 482 } 483 return (-1); 484 } 485 486 /* 487 * get the value associated with this name 488 */ 489 /*ARGSUSED*/ 490 int 491 do_bsys_getprop(bootops_t *bop, const char *name, void *value) 492 { 493 bootprop_t *b; 494 495 for (b = bprops; b; b = b->bp_next) { 496 if (strcmp(name, b->bp_name) != 0) 497 continue; 498 bcopy(b->bp_value, value, b->bp_vlen); 499 return (0); 500 } 501 return (-1); 502 } 503 504 /* 505 * get the name of the next property in succession from the standalone 506 */ 507 /*ARGSUSED*/ 508 static char * 509 do_bsys_nextprop(bootops_t *bop, char *name) 510 { 511 bootprop_t *b; 512 513 /* 514 * A null name is a special signal for the 1st boot property 515 */ 516 if (name == NULL || strlen(name) == 0) { 517 if (bprops == NULL) 518 return (NULL); 519 return (bprops->bp_name); 520 } 521 522 for (b = bprops; b; b = b->bp_next) { 523 if (name != b->bp_name) 524 continue; 525 b = b->bp_next; 526 if (b == NULL) 527 return (NULL); 528 return (b->bp_name); 529 } 530 return (NULL); 531 } 532 533 /* 534 * Parse numeric value from a string. Understands decimal, hex, octal, - and ~ 535 */ 536 static int 537 parse_value(char *p, uint64_t *retval) 538 { 539 int adjust = 0; 540 uint64_t tmp = 0; 541 int digit; 542 int radix = 10; 543 544 *retval = 0; 545 if (*p == '-' || *p == '~') 546 adjust = *p++; 547 548 if (*p == '0') { 549 ++p; 550 if (*p == 0) 551 return (0); 552 if (*p == 'x' || *p == 'X') { 553 radix = 16; 554 ++p; 555 } else { 556 radix = 8; 557 ++p; 558 } 559 } 560 while (*p) { 561 if ('0' <= *p && *p <= '9') 562 digit = *p - '0'; 563 else if ('a' <= *p && *p <= 'f') 564 digit = 10 + *p - 'a'; 565 else if ('A' <= *p && *p <= 'F') 566 digit = 10 + *p - 'A'; 567 else 568 return (-1); 569 if (digit >= radix) 570 return (-1); 571 tmp = tmp * radix + digit; 572 ++p; 573 } 574 if (adjust == '-') 575 tmp = -tmp; 576 else if (adjust == '~') 577 tmp = ~tmp; 578 *retval = tmp; 579 return (0); 580 } 581 582 static boolean_t 583 unprintable(char *value, int size) 584 { 585 int i; 586 587 if (size <= 0 || value[0] == '\0') 588 return (B_TRUE); 589 590 for (i = 0; i < size; i++) { 591 if (value[i] == '\0') 592 return (i != (size - 1)); 593 594 if (!isprint(value[i])) 595 return (B_TRUE); 596 } 597 return (B_FALSE); 598 } 599 600 /* 601 * Print out information about all boot properties. 602 * buffer is pointer to pre-allocated space to be used as temporary 603 * space for property values. 604 */ 605 static void 606 boot_prop_display(char *buffer) 607 { 608 char *name = ""; 609 int i, len, flags, *buf32; 610 int64_t *buf64; 611 612 bop_printf(NULL, "\nBoot properties:\n"); 613 614 while ((name = do_bsys_nextprop(NULL, name)) != NULL) { 615 bop_printf(NULL, "\t0x%p %s = ", (void *)name, name); 616 (void) do_bsys_getprop(NULL, name, buffer); 617 len = do_bsys_getproplen(NULL, name); 618 flags = do_bsys_getproptype(NULL, name); 619 bop_printf(NULL, "len=%d ", len); 620 621 switch (flags) { 622 case DDI_PROP_TYPE_INT: 623 len = len / sizeof (int); 624 buf32 = (int *)buffer; 625 for (i = 0; i < len; i++) { 626 bop_printf(NULL, "%08x", buf32[i]); 627 if (i < len - 1) 628 bop_printf(NULL, "."); 629 } 630 break; 631 case DDI_PROP_TYPE_STRING: 632 bop_printf(NULL, "%s", buffer); 633 break; 634 case DDI_PROP_TYPE_INT64: 635 len = len / sizeof (int64_t); 636 buf64 = (int64_t *)buffer; 637 for (i = 0; i < len; i++) { 638 bop_printf(NULL, "%016" PRIx64, buf64[i]); 639 if (i < len - 1) 640 bop_printf(NULL, "."); 641 } 642 break; 643 default: 644 if (!unprintable(buffer, len)) { 645 buffer[len] = 0; 646 bop_printf(NULL, "%s", buffer); 647 break; 648 } 649 for (i = 0; i < len; i++) { 650 bop_printf(NULL, "%02x", buffer[i] & 0xff); 651 if (i < len - 1) 652 bop_printf(NULL, "."); 653 } 654 break; 655 } 656 bop_printf(NULL, "\n"); 657 } 658 } 659 660 /* 661 * 2nd part of building the table of boot properties. This includes: 662 * - values from /boot/solaris/bootenv.rc (ie. eeprom(8) values) 663 * 664 * lines look like one of: 665 * ^$ 666 * ^# comment till end of line 667 * setprop name 'value' 668 * setprop name value 669 * setprop name "value" 670 * 671 * we do single character I/O since this is really just looking at memory 672 */ 673 void 674 read_bootenvrc(void) 675 { 676 int fd; 677 char *line; 678 int c; 679 int bytes_read; 680 char *name; 681 int n_len; 682 char *value; 683 int v_len; 684 char *inputdev; /* these override the command line if serial ports */ 685 char *outputdev; 686 char *consoledev; 687 uint64_t lvalue; 688 int use_xencons = 0; 689 extern int bootrd_debug; 690 691 #ifdef __xpv 692 if (!DOMAIN_IS_INITDOMAIN(xen_info)) 693 use_xencons = 1; 694 #endif /* __xpv */ 695 696 DBG_MSG("Opening /boot/solaris/bootenv.rc\n"); 697 fd = BRD_OPEN(bfs_ops, "/boot/solaris/bootenv.rc", 0); 698 DBG(fd); 699 700 line = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE); 701 while (fd >= 0) { 702 703 /* 704 * get a line 705 */ 706 for (c = 0; ; ++c) { 707 bytes_read = BRD_READ(bfs_ops, fd, line + c, 1); 708 if (bytes_read == 0) { 709 if (c == 0) 710 goto done; 711 break; 712 } 713 if (line[c] == '\n') 714 break; 715 } 716 line[c] = 0; 717 718 /* 719 * ignore comment lines 720 */ 721 c = 0; 722 while (ISSPACE(line[c])) 723 ++c; 724 if (line[c] == '#' || line[c] == 0) 725 continue; 726 727 /* 728 * must have "setprop " or "setprop\t" 729 */ 730 if (strncmp(line + c, "setprop ", 8) != 0 && 731 strncmp(line + c, "setprop\t", 8) != 0) 732 continue; 733 c += 8; 734 while (ISSPACE(line[c])) 735 ++c; 736 if (line[c] == 0) 737 continue; 738 739 /* 740 * gather up the property name 741 */ 742 name = line + c; 743 n_len = 0; 744 while (line[c] && !ISSPACE(line[c])) 745 ++n_len, ++c; 746 747 /* 748 * gather up the value, if any 749 */ 750 value = ""; 751 v_len = 0; 752 while (ISSPACE(line[c])) 753 ++c; 754 if (line[c] != 0) { 755 value = line + c; 756 while (line[c] && !ISSPACE(line[c])) 757 ++v_len, ++c; 758 } 759 760 if (v_len >= 2 && value[0] == value[v_len - 1] && 761 (value[0] == '\'' || value[0] == '"')) { 762 ++value; 763 v_len -= 2; 764 } 765 name[n_len] = 0; 766 if (v_len > 0) 767 value[v_len] = 0; 768 else 769 continue; 770 771 /* 772 * ignore "boot-file" property, it's now meaningless 773 */ 774 if (strcmp(name, "boot-file") == 0) 775 continue; 776 if (strcmp(name, "boot-args") == 0 && 777 strlen(boot_args) > 0) 778 continue; 779 780 /* 781 * If a property was explicitly set on the command line 782 * it will override a setting in bootenv.rc. We make an 783 * exception for a property from the bootloader such as: 784 * 785 * console="text,ttya,ttyb,ttyc,ttyd" 786 * 787 * In such a case, picking the first value here (as 788 * lookup_console_devices() does) is at best a guess; if 789 * bootenv.rc has a value, it's probably better. 790 */ 791 if (strcmp(name, "console") == 0) { 792 char propval[BP_MAX_STRLEN] = ""; 793 794 if (do_bsys_getprop(NULL, name, propval) == -1 || 795 strchr(propval, ',') != NULL) 796 bsetprops(name, value); 797 continue; 798 } 799 800 if (do_bsys_getproplen(NULL, name) == -1) 801 bsetprops(name, value); 802 } 803 done: 804 if (fd >= 0) 805 (void) BRD_CLOSE(bfs_ops, fd); 806 807 808 /* 809 * Check if we have to limit the boot time allocator 810 */ 811 if (do_bsys_getproplen(NULL, "physmem") != -1 && 812 do_bsys_getprop(NULL, "physmem", line) >= 0 && 813 parse_value(line, &lvalue) != -1) { 814 if (0 < lvalue && (lvalue < physmem || physmem == 0)) { 815 physmem = (pgcnt_t)lvalue; 816 DBG(physmem); 817 } 818 } 819 early_allocation = 0; 820 821 /* 822 * Check for bootrd_debug. 823 */ 824 if (find_boot_prop("bootrd_debug")) 825 bootrd_debug = 1; 826 827 /* 828 * check to see if we have to override the default value of the console 829 */ 830 if (!use_xencons) { 831 inputdev = line; 832 v_len = do_bsys_getproplen(NULL, "input-device"); 833 if (v_len > 0) 834 (void) do_bsys_getprop(NULL, "input-device", inputdev); 835 else 836 v_len = 0; 837 inputdev[v_len] = 0; 838 839 outputdev = inputdev + v_len + 1; 840 v_len = do_bsys_getproplen(NULL, "output-device"); 841 if (v_len > 0) 842 (void) do_bsys_getprop(NULL, "output-device", 843 outputdev); 844 else 845 v_len = 0; 846 outputdev[v_len] = 0; 847 848 consoledev = outputdev + v_len + 1; 849 v_len = do_bsys_getproplen(NULL, "console"); 850 if (v_len > 0) { 851 (void) do_bsys_getprop(NULL, "console", consoledev); 852 if (post_fastreboot && 853 strcmp(consoledev, "graphics") == 0) { 854 bsetprops("console", "text"); 855 v_len = strlen("text"); 856 bcopy("text", consoledev, v_len); 857 } 858 } else { 859 v_len = 0; 860 } 861 consoledev[v_len] = 0; 862 bcons_post_bootenvrc(inputdev, outputdev, consoledev); 863 } else { 864 /* 865 * Ensure console property exists 866 * If not create it as "hypervisor" 867 */ 868 v_len = do_bsys_getproplen(NULL, "console"); 869 if (v_len < 0) 870 bsetprops("console", "hypervisor"); 871 inputdev = outputdev = consoledev = "hypervisor"; 872 bcons_post_bootenvrc(inputdev, outputdev, consoledev); 873 } 874 875 if (find_boot_prop("prom_debug") || kbm_debug) 876 boot_prop_display(line); 877 } 878 879 /* 880 * print formatted output 881 */ 882 /*ARGSUSED*/ 883 void 884 vbop_printf(void *ptr, const char *fmt, va_list ap) 885 { 886 if (have_console == 0) 887 return; 888 889 (void) vsnprintf(buffer, BUFFERSIZE, fmt, ap); 890 PUT_STRING(buffer); 891 } 892 893 /*PRINTFLIKE2*/ 894 void 895 bop_printf(void *bop, const char *fmt, ...) 896 { 897 va_list ap; 898 899 va_start(ap, fmt); 900 vbop_printf(bop, fmt, ap); 901 va_end(ap); 902 } 903 904 /* 905 * Another panic() variant; this one can be used even earlier during boot than 906 * prom_panic(). 907 */ 908 /*PRINTFLIKE1*/ 909 void 910 bop_panic(const char *fmt, ...) 911 { 912 va_list ap; 913 914 va_start(ap, fmt); 915 vbop_printf(NULL, fmt, ap); 916 va_end(ap); 917 918 bop_printf(NULL, "\nPress any key to reboot.\n"); 919 (void) bcons_getchar(); 920 bop_printf(NULL, "Resetting...\n"); 921 pc_reset(); 922 } 923 924 /* 925 * Do a real mode interrupt BIOS call 926 */ 927 typedef struct bios_regs { 928 unsigned short ax, bx, cx, dx, si, di, bp, es, ds; 929 } bios_regs_t; 930 typedef int (*bios_func_t)(int, bios_regs_t *); 931 932 /*ARGSUSED*/ 933 static void 934 do_bsys_doint(bootops_t *bop, int intnum, struct bop_regs *rp) 935 { 936 #if defined(__xpv) 937 prom_panic("unsupported call to BOP_DOINT()\n"); 938 #else /* __xpv */ 939 static int firsttime = 1; 940 bios_func_t bios_func = (bios_func_t)(void *)(uintptr_t)0x5000; 941 bios_regs_t br; 942 943 /* 944 * We're about to disable paging; we shouldn't be PCID enabled. 945 */ 946 if (getcr4() & CR4_PCIDE) 947 prom_panic("do_bsys_doint() with PCID enabled\n"); 948 949 /* 950 * The first time we do this, we have to copy the pre-packaged 951 * low memory bios call code image into place. 952 */ 953 if (firsttime) { 954 extern char bios_image[]; 955 extern uint32_t bios_size; 956 957 bcopy(bios_image, (void *)bios_func, bios_size); 958 firsttime = 0; 959 } 960 961 br.ax = rp->eax.word.ax; 962 br.bx = rp->ebx.word.bx; 963 br.cx = rp->ecx.word.cx; 964 br.dx = rp->edx.word.dx; 965 br.bp = rp->ebp.word.bp; 966 br.si = rp->esi.word.si; 967 br.di = rp->edi.word.di; 968 br.ds = rp->ds; 969 br.es = rp->es; 970 971 DBG_MSG("Doing BIOS call...\n"); 972 DBG(br.ax); 973 DBG(br.bx); 974 DBG(br.dx); 975 rp->eflags = bios_func(intnum, &br); 976 DBG_MSG("done\n"); 977 DBG(rp->eflags); 978 DBG(br.ax); 979 DBG(br.bx); 980 DBG(br.dx); 981 982 rp->eax.word.ax = br.ax; 983 rp->ebx.word.bx = br.bx; 984 rp->ecx.word.cx = br.cx; 985 rp->edx.word.dx = br.dx; 986 rp->ebp.word.bp = br.bp; 987 rp->esi.word.si = br.si; 988 rp->edi.word.di = br.di; 989 rp->ds = br.ds; 990 rp->es = br.es; 991 #endif /* __xpv */ 992 } 993 994 static struct boot_syscalls bop_sysp = { 995 bcons_getchar, 996 bcons_putchar, 997 bcons_ischar, 998 }; 999 1000 static char *whoami; 1001 1002 #define BUFLEN 64 1003 1004 #if defined(__xpv) 1005 1006 static char namebuf[32]; 1007 1008 static void 1009 xen_parse_props(char *s, char *prop_map[], int n_prop) 1010 { 1011 char **prop_name = prop_map; 1012 char *cp = s, *scp; 1013 1014 do { 1015 scp = cp; 1016 while ((*cp != '\0') && (*cp != ':')) 1017 cp++; 1018 1019 if ((scp != cp) && (*prop_name != NULL)) { 1020 *cp = '\0'; 1021 bsetprops(*prop_name, scp); 1022 } 1023 1024 cp++; 1025 prop_name++; 1026 n_prop--; 1027 } while (n_prop > 0); 1028 } 1029 1030 #define VBDPATHLEN 64 1031 1032 /* 1033 * parse the 'xpv-root' property to create properties used by 1034 * ufs_mountroot. 1035 */ 1036 static void 1037 xen_vbdroot_props(char *s) 1038 { 1039 char vbdpath[VBDPATHLEN] = "/xpvd/xdf@"; 1040 const char lnamefix[] = "/dev/dsk/c0d"; 1041 char *pnp; 1042 char *prop_p; 1043 char mi; 1044 short minor; 1045 long addr = 0; 1046 1047 mi = '\0'; 1048 pnp = vbdpath + strlen(vbdpath); 1049 prop_p = s + strlen(lnamefix); 1050 while ((*prop_p != '\0') && (*prop_p != 's') && (*prop_p != 'p')) 1051 addr = addr * 10 + *prop_p++ - '0'; 1052 (void) snprintf(pnp, VBDPATHLEN, "%lx", addr); 1053 pnp = vbdpath + strlen(vbdpath); 1054 if (*prop_p == 's') 1055 mi = 'a'; 1056 else if (*prop_p == 'p') 1057 mi = 'q'; 1058 else 1059 ASSERT(0); /* shouldn't be here */ 1060 prop_p++; 1061 ASSERT(*prop_p != '\0'); 1062 if (ISDIGIT(*prop_p)) { 1063 minor = *prop_p - '0'; 1064 prop_p++; 1065 if (ISDIGIT(*prop_p)) { 1066 minor = minor * 10 + *prop_p - '0'; 1067 } 1068 } else { 1069 /* malformed root path, use 0 as default */ 1070 minor = 0; 1071 } 1072 ASSERT(minor < 16); /* at most 16 partitions */ 1073 mi += minor; 1074 *pnp++ = ':'; 1075 *pnp++ = mi; 1076 *pnp++ = '\0'; 1077 bsetprops("fstype", "ufs"); 1078 bsetprops("bootpath", vbdpath); 1079 1080 DBG_MSG("VBD bootpath set to "); 1081 DBG_MSG(vbdpath); 1082 DBG_MSG("\n"); 1083 } 1084 1085 /* 1086 * parse the xpv-nfsroot property to create properties used by 1087 * nfs_mountroot. 1088 */ 1089 static void 1090 xen_nfsroot_props(char *s) 1091 { 1092 char *prop_map[] = { 1093 BP_SERVER_IP, /* server IP address */ 1094 BP_SERVER_NAME, /* server hostname */ 1095 BP_SERVER_PATH, /* root path */ 1096 }; 1097 int n_prop = sizeof (prop_map) / sizeof (prop_map[0]); 1098 1099 bsetprops("fstype", "nfs"); 1100 1101 xen_parse_props(s, prop_map, n_prop); 1102 1103 /* 1104 * If a server name wasn't specified, use a default. 1105 */ 1106 if (do_bsys_getproplen(NULL, BP_SERVER_NAME) == -1) 1107 bsetprops(BP_SERVER_NAME, "unknown"); 1108 } 1109 1110 /* 1111 * Extract our IP address, etc. from the "xpv-ip" property. 1112 */ 1113 static void 1114 xen_ip_props(char *s) 1115 { 1116 char *prop_map[] = { 1117 BP_HOST_IP, /* IP address */ 1118 NULL, /* NFS server IP address (ignored in */ 1119 /* favour of xpv-nfsroot) */ 1120 BP_ROUTER_IP, /* IP gateway */ 1121 BP_SUBNET_MASK, /* IP subnet mask */ 1122 "xpv-hostname", /* hostname (ignored) */ 1123 BP_NETWORK_INTERFACE, /* interface name */ 1124 "xpv-hcp", /* host configuration protocol */ 1125 }; 1126 int n_prop = sizeof (prop_map) / sizeof (prop_map[0]); 1127 char ifname[IFNAMSIZ]; 1128 1129 xen_parse_props(s, prop_map, n_prop); 1130 1131 /* 1132 * A Linux dom0 administrator expects all interfaces to be 1133 * called "ethX", which is not the case here. 1134 * 1135 * If the interface name specified is "eth0", presume that 1136 * this is really intended to be "xnf0" (the first domU -> 1137 * dom0 interface for this domain). 1138 */ 1139 if ((do_bsys_getprop(NULL, BP_NETWORK_INTERFACE, ifname) == 0) && 1140 (strcmp("eth0", ifname) == 0)) { 1141 bsetprops(BP_NETWORK_INTERFACE, "xnf0"); 1142 bop_printf(NULL, 1143 "network interface name 'eth0' replaced with 'xnf0'\n"); 1144 } 1145 } 1146 1147 #else /* __xpv */ 1148 1149 static void 1150 setup_rarp_props(struct sol_netinfo *sip) 1151 { 1152 char buf[BUFLEN]; /* to hold ip/mac addrs */ 1153 uint8_t *val; 1154 1155 val = (uint8_t *)&sip->sn_ciaddr; 1156 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d", 1157 val[0], val[1], val[2], val[3]); 1158 bsetprops(BP_HOST_IP, buf); 1159 1160 val = (uint8_t *)&sip->sn_siaddr; 1161 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d", 1162 val[0], val[1], val[2], val[3]); 1163 bsetprops(BP_SERVER_IP, buf); 1164 1165 if (sip->sn_giaddr != 0) { 1166 val = (uint8_t *)&sip->sn_giaddr; 1167 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d", 1168 val[0], val[1], val[2], val[3]); 1169 bsetprops(BP_ROUTER_IP, buf); 1170 } 1171 1172 if (sip->sn_netmask != 0) { 1173 val = (uint8_t *)&sip->sn_netmask; 1174 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d", 1175 val[0], val[1], val[2], val[3]); 1176 bsetprops(BP_SUBNET_MASK, buf); 1177 } 1178 1179 if (sip->sn_mactype != 4 || sip->sn_maclen != 6) { 1180 bop_printf(NULL, "unsupported mac type %d, mac len %d\n", 1181 sip->sn_mactype, sip->sn_maclen); 1182 } else { 1183 val = sip->sn_macaddr; 1184 (void) snprintf(buf, BUFLEN, "%x:%x:%x:%x:%x:%x", 1185 val[0], val[1], val[2], val[3], val[4], val[5]); 1186 bsetprops(BP_BOOT_MAC, buf); 1187 } 1188 } 1189 1190 #endif /* __xpv */ 1191 1192 static void 1193 build_panic_cmdline(const char *cmd, int cmdlen) 1194 { 1195 int proplen; 1196 size_t arglen; 1197 1198 arglen = sizeof (fastreboot_onpanic_args); 1199 /* 1200 * If we allready have fastreboot-onpanic set to zero, 1201 * don't add them again. 1202 */ 1203 if ((proplen = do_bsys_getproplen(NULL, FASTREBOOT_ONPANIC)) > 0 && 1204 proplen <= sizeof (fastreboot_onpanic_cmdline)) { 1205 (void) do_bsys_getprop(NULL, FASTREBOOT_ONPANIC, 1206 fastreboot_onpanic_cmdline); 1207 if (FASTREBOOT_ONPANIC_NOTSET(fastreboot_onpanic_cmdline)) 1208 arglen = 1; 1209 } 1210 1211 /* 1212 * construct fastreboot_onpanic_cmdline 1213 */ 1214 if (cmdlen + arglen > sizeof (fastreboot_onpanic_cmdline)) { 1215 DBG_MSG("Command line too long: clearing " 1216 FASTREBOOT_ONPANIC "\n"); 1217 fastreboot_onpanic = 0; 1218 } else { 1219 bcopy(cmd, fastreboot_onpanic_cmdline, cmdlen); 1220 if (arglen != 1) 1221 bcopy(fastreboot_onpanic_args, 1222 fastreboot_onpanic_cmdline + cmdlen, arglen); 1223 else 1224 fastreboot_onpanic_cmdline[cmdlen] = 0; 1225 } 1226 } 1227 1228 1229 #ifndef __xpv 1230 /* 1231 * Construct boot command line for Fast Reboot. The saved_cmdline 1232 * is also reported by "eeprom bootcmd". 1233 */ 1234 static void 1235 build_fastboot_cmdline(struct xboot_info *xbp) 1236 { 1237 saved_cmdline_len = strlen(xbp->bi_cmdline) + 1; 1238 if (saved_cmdline_len > FASTBOOT_SAVED_CMDLINE_LEN) { 1239 DBG(saved_cmdline_len); 1240 DBG_MSG("Command line too long: clearing fastreboot_capable\n"); 1241 fastreboot_capable = 0; 1242 } else { 1243 bcopy((void *)(xbp->bi_cmdline), (void *)saved_cmdline, 1244 saved_cmdline_len); 1245 saved_cmdline[saved_cmdline_len - 1] = '\0'; 1246 build_panic_cmdline(saved_cmdline, saved_cmdline_len - 1); 1247 } 1248 } 1249 1250 /* 1251 * Save memory layout, disk drive information, unix and boot archive sizes for 1252 * Fast Reboot. 1253 */ 1254 static void 1255 save_boot_info(struct xboot_info *xbi) 1256 { 1257 multiboot_info_t *mbi = xbi->bi_mb_info; 1258 struct boot_modules *modp; 1259 int i; 1260 1261 bcopy(mbi, &saved_mbi, sizeof (multiboot_info_t)); 1262 if (mbi->mmap_length > sizeof (saved_mmap)) { 1263 DBG_MSG("mbi->mmap_length too big: clearing " 1264 "fastreboot_capable\n"); 1265 fastreboot_capable = 0; 1266 } else { 1267 bcopy((void *)(uintptr_t)mbi->mmap_addr, (void *)saved_mmap, 1268 mbi->mmap_length); 1269 } 1270 1271 if ((mbi->flags & MB_INFO_DRIVE_INFO) != 0) { 1272 if (mbi->drives_length > sizeof (saved_drives)) { 1273 DBG(mbi->drives_length); 1274 DBG_MSG("mbi->drives_length too big: clearing " 1275 "fastreboot_capable\n"); 1276 fastreboot_capable = 0; 1277 } else { 1278 bcopy((void *)(uintptr_t)mbi->drives_addr, 1279 (void *)saved_drives, mbi->drives_length); 1280 } 1281 } else { 1282 saved_mbi.drives_length = 0; 1283 saved_mbi.drives_addr = 0; 1284 } 1285 1286 /* 1287 * Current file sizes. Used by fastboot.c to figure out how much 1288 * memory to reserve for panic reboot. 1289 * Use the module list from the dboot-constructed xboot_info 1290 * instead of the list referenced by the multiboot structure 1291 * because that structure may not be addressable now. 1292 */ 1293 saved_file_size[FASTBOOT_NAME_UNIX] = FOUR_MEG - PAGESIZE; 1294 for (i = 0, modp = (struct boot_modules *)(uintptr_t)xbi->bi_modules; 1295 i < xbi->bi_module_cnt; i++, modp++) { 1296 saved_file_size[FASTBOOT_NAME_BOOTARCHIVE] += modp->bm_size; 1297 } 1298 } 1299 #endif /* __xpv */ 1300 1301 /* 1302 * Import boot environment module variables as properties, applying 1303 * blacklist filter for variables we know we will not use. 1304 * 1305 * Since the environment can be relatively large, containing many variables 1306 * used only for boot loader purposes, we will use a blacklist based filter. 1307 * To keep the blacklist from growing too large, we use prefix based filtering. 1308 * This is possible because in many cases, the loader variable names are 1309 * using a structured layout. 1310 * 1311 * We will not overwrite already set properties. 1312 * 1313 * Note that the menu items in particular can contain characters not 1314 * well-handled as bootparams, such as spaces, brackets, and the like, so that's 1315 * another reason. 1316 */ 1317 static struct bop_blacklist { 1318 const char *bl_name; 1319 int bl_name_len; 1320 } bop_prop_blacklist[] = { 1321 { "ISADIR", sizeof ("ISADIR") }, 1322 { "acpi", sizeof ("acpi") }, 1323 { "autoboot_delay", sizeof ("autoboot_delay") }, 1324 { "beansi_", sizeof ("beansi_") }, 1325 { "beastie", sizeof ("beastie") }, 1326 { "bemenu", sizeof ("bemenu") }, 1327 { "boot.", sizeof ("boot.") }, 1328 { "bootenv", sizeof ("bootenv") }, 1329 { "currdev", sizeof ("currdev") }, 1330 { "dhcp.", sizeof ("dhcp.") }, 1331 { "interpret", sizeof ("interpret") }, 1332 { "kernel", sizeof ("kernel") }, 1333 { "loaddev", sizeof ("loaddev") }, 1334 { "loader_", sizeof ("loader_") }, 1335 { "mainansi_", sizeof ("mainansi_") }, 1336 { "mainmenu_", sizeof ("mainmenu_") }, 1337 { "maintoggled_", sizeof ("maintoggled_") }, 1338 { "menu_timeout_command", sizeof ("menu_timeout_command") }, 1339 { "menuset_", sizeof ("menuset_") }, 1340 { "module_path", sizeof ("module_path") }, 1341 { "nfs.", sizeof ("nfs.") }, 1342 { "optionsansi_", sizeof ("optionsansi_") }, 1343 { "optionsmenu_", sizeof ("optionsmenu_") }, 1344 { "optionstoggled_", sizeof ("optionstoggled_") }, 1345 { "pcibios", sizeof ("pcibios") }, 1346 { "prompt", sizeof ("prompt") }, 1347 { "smbios", sizeof ("smbios") }, 1348 { "tem", sizeof ("tem") }, 1349 { "twiddle_divisor", sizeof ("twiddle_divisor") }, 1350 { "zfs_be", sizeof ("zfs_be") }, 1351 }; 1352 1353 /* 1354 * Match the name against prefixes in above blacklist. If the match was 1355 * found, this name is blacklisted. 1356 */ 1357 static boolean_t 1358 name_is_blacklisted(const char *name) 1359 { 1360 int i, n; 1361 1362 n = sizeof (bop_prop_blacklist) / sizeof (bop_prop_blacklist[0]); 1363 for (i = 0; i < n; i++) { 1364 if (strncmp(bop_prop_blacklist[i].bl_name, name, 1365 bop_prop_blacklist[i].bl_name_len - 1) == 0) { 1366 return (B_TRUE); 1367 } 1368 } 1369 return (B_FALSE); 1370 } 1371 1372 static void 1373 process_boot_environment(struct boot_modules *benv) 1374 { 1375 char *env, *ptr, *name, *value; 1376 uint32_t size, name_len, value_len; 1377 1378 if (benv == NULL || benv->bm_type != BMT_ENV) 1379 return; 1380 ptr = env = benv->bm_addr; 1381 size = benv->bm_size; 1382 do { 1383 name = ptr; 1384 /* find '=' */ 1385 while (*ptr != '=') { 1386 ptr++; 1387 if (ptr > env + size) /* Something is very wrong. */ 1388 return; 1389 } 1390 name_len = ptr - name; 1391 if (sizeof (buffer) <= name_len) 1392 continue; 1393 1394 (void) strncpy(buffer, name, sizeof (buffer)); 1395 buffer[name_len] = '\0'; 1396 name = buffer; 1397 1398 value_len = 0; 1399 value = ++ptr; 1400 while ((uintptr_t)ptr - (uintptr_t)env < size) { 1401 if (*ptr == '\0') { 1402 ptr++; 1403 value_len = (uintptr_t)ptr - (uintptr_t)env; 1404 break; 1405 } 1406 ptr++; 1407 } 1408 1409 /* Did we reach the end of the module? */ 1410 if (value_len == 0) 1411 return; 1412 1413 if (*value == '\0') 1414 continue; 1415 1416 /* Is this property already set? */ 1417 if (do_bsys_getproplen(NULL, name) >= 0) 1418 continue; 1419 1420 /* Translate netboot variables */ 1421 if (strcmp(name, "boot.netif.gateway") == 0) { 1422 bsetprops(BP_ROUTER_IP, value); 1423 continue; 1424 } 1425 if (strcmp(name, "boot.netif.hwaddr") == 0) { 1426 bsetprops(BP_BOOT_MAC, value); 1427 continue; 1428 } 1429 if (strcmp(name, "boot.netif.ip") == 0) { 1430 bsetprops(BP_HOST_IP, value); 1431 continue; 1432 } 1433 if (strcmp(name, "boot.netif.netmask") == 0) { 1434 bsetprops(BP_SUBNET_MASK, value); 1435 continue; 1436 } 1437 if (strcmp(name, "boot.netif.server") == 0) { 1438 bsetprops(BP_SERVER_IP, value); 1439 continue; 1440 } 1441 if (strcmp(name, "boot.netif.server") == 0) { 1442 if (do_bsys_getproplen(NULL, BP_SERVER_IP) < 0) 1443 bsetprops(BP_SERVER_IP, value); 1444 continue; 1445 } 1446 if (strcmp(name, "boot.nfsroot.server") == 0) { 1447 if (do_bsys_getproplen(NULL, BP_SERVER_IP) < 0) 1448 bsetprops(BP_SERVER_IP, value); 1449 continue; 1450 } 1451 if (strcmp(name, "boot.nfsroot.path") == 0) { 1452 bsetprops(BP_SERVER_PATH, value); 1453 continue; 1454 } 1455 1456 /* 1457 * The loader allows multiple console devices to be specified 1458 * as a comma-separated list, but the kernel does not yet 1459 * support multiple console devices. If a list is provided, 1460 * ignore all but the first entry: 1461 */ 1462 if (strcmp(name, "console") == 0) { 1463 char propval[BP_MAX_STRLEN]; 1464 1465 for (uint32_t i = 0; i < BP_MAX_STRLEN; i++) { 1466 propval[i] = value[i]; 1467 if (value[i] == ' ' || 1468 value[i] == ',' || 1469 value[i] == '\0') { 1470 propval[i] = '\0'; 1471 break; 1472 } 1473 1474 if (i + 1 == BP_MAX_STRLEN) 1475 propval[i] = '\0'; 1476 } 1477 bsetprops(name, propval); 1478 continue; 1479 } 1480 if (name_is_blacklisted(name) == B_TRUE) 1481 continue; 1482 1483 /* Create new property. */ 1484 bsetprops(name, value); 1485 1486 /* Avoid reading past the module end. */ 1487 if (size <= (uintptr_t)ptr - (uintptr_t)env) 1488 return; 1489 } while (*ptr != '\0'); 1490 } 1491 1492 /* 1493 * 1st pass at building the table of boot properties. This includes: 1494 * - values set on the command line: -B a=x,b=y,c=z .... 1495 * - known values we just compute (ie. from xbp) 1496 * - values from /boot/solaris/bootenv.rc (ie. eeprom(8) values) 1497 * 1498 * the grub command line looked like: 1499 * kernel boot-file [-B prop=value[,prop=value]...] [boot-args] 1500 * 1501 * whoami is the same as boot-file 1502 */ 1503 static void 1504 build_boot_properties(struct xboot_info *xbp) 1505 { 1506 char *name; 1507 int name_len; 1508 char *value; 1509 int value_len; 1510 struct boot_modules *bm, *rdbm, *benv = NULL; 1511 char *propbuf; 1512 int quoted = 0; 1513 int boot_arg_len; 1514 uint_t i, midx; 1515 char modid[32]; 1516 #ifndef __xpv 1517 static int stdout_val = 0; 1518 uchar_t boot_device; 1519 char str[3]; 1520 #endif 1521 1522 /* 1523 * These have to be done first, so that kobj_mount_root() works 1524 */ 1525 DBG_MSG("Building boot properties\n"); 1526 propbuf = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, 0); 1527 DBG((uintptr_t)propbuf); 1528 if (xbp->bi_module_cnt > 0) { 1529 bm = xbp->bi_modules; 1530 rdbm = NULL; 1531 for (midx = i = 0; i < xbp->bi_module_cnt; i++) { 1532 if (bm[i].bm_type == BMT_ROOTFS) { 1533 rdbm = &bm[i]; 1534 continue; 1535 } 1536 if (bm[i].bm_type == BMT_HASH || 1537 bm[i].bm_type == BMT_FONT || 1538 bm[i].bm_name == NULL) 1539 continue; 1540 1541 if (bm[i].bm_type == BMT_ENV) { 1542 if (benv == NULL) 1543 benv = &bm[i]; 1544 else 1545 continue; 1546 } 1547 1548 (void) snprintf(modid, sizeof (modid), 1549 "module-name-%u", midx); 1550 bsetprops(modid, (char *)bm[i].bm_name); 1551 (void) snprintf(modid, sizeof (modid), 1552 "module-addr-%u", midx); 1553 bsetprop64(modid, (uint64_t)(uintptr_t)bm[i].bm_addr); 1554 (void) snprintf(modid, sizeof (modid), 1555 "module-size-%u", midx); 1556 bsetprop64(modid, (uint64_t)bm[i].bm_size); 1557 ++midx; 1558 } 1559 if (rdbm != NULL) { 1560 bsetprop64("ramdisk_start", 1561 (uint64_t)(uintptr_t)rdbm->bm_addr); 1562 bsetprop64("ramdisk_end", 1563 (uint64_t)(uintptr_t)rdbm->bm_addr + rdbm->bm_size); 1564 } 1565 } 1566 1567 /* 1568 * If there are any boot time modules or hashes present, then disable 1569 * fast reboot. 1570 */ 1571 if (xbp->bi_module_cnt > 1) { 1572 fastreboot_disable(FBNS_BOOTMOD); 1573 } 1574 1575 #ifndef __xpv 1576 /* 1577 * Disable fast reboot if we're using the Multiboot 2 boot protocol, 1578 * since we don't currently support MB2 info and module relocation. 1579 * Note that fast reboot will have already been disabled if multiple 1580 * modules are present, since the current implementation assumes that 1581 * we only have a single module, the boot_archive. 1582 */ 1583 if (xbp->bi_mb_version != 1) { 1584 fastreboot_disable(FBNS_MULTIBOOT2); 1585 } 1586 #endif 1587 1588 DBG_MSG("Parsing command line for boot properties\n"); 1589 value = xbp->bi_cmdline; 1590 1591 /* 1592 * allocate memory to collect boot_args into 1593 */ 1594 boot_arg_len = strlen(xbp->bi_cmdline) + 1; 1595 boot_args = do_bsys_alloc(NULL, NULL, boot_arg_len, MMU_PAGESIZE); 1596 boot_args[0] = 0; 1597 boot_arg_len = 0; 1598 1599 #ifdef __xpv 1600 /* 1601 * Xen puts a lot of device information in front of the kernel name 1602 * let's grab them and make them boot properties. The first 1603 * string w/o an "=" in it will be the boot-file property. 1604 */ 1605 (void) strcpy(namebuf, "xpv-"); 1606 for (;;) { 1607 /* 1608 * get to next property 1609 */ 1610 while (ISSPACE(*value)) 1611 ++value; 1612 name = value; 1613 /* 1614 * look for an "=" 1615 */ 1616 while (*value && !ISSPACE(*value) && *value != '=') { 1617 value++; 1618 } 1619 if (*value != '=') { /* no "=" in the property */ 1620 value = name; 1621 break; 1622 } 1623 name_len = value - name; 1624 value_len = 0; 1625 /* 1626 * skip over the "=" 1627 */ 1628 value++; 1629 while (value[value_len] && !ISSPACE(value[value_len])) { 1630 ++value_len; 1631 } 1632 /* 1633 * build property name with "xpv-" prefix 1634 */ 1635 if (name_len + 4 > 32) { /* skip if name too long */ 1636 value += value_len; 1637 continue; 1638 } 1639 bcopy(name, &namebuf[4], name_len); 1640 name_len += 4; 1641 namebuf[name_len] = 0; 1642 bcopy(value, propbuf, value_len); 1643 propbuf[value_len] = 0; 1644 bsetprops(namebuf, propbuf); 1645 1646 /* 1647 * xpv-root is set to the logical disk name of the xen 1648 * VBD when booting from a disk-based filesystem. 1649 */ 1650 if (strcmp(namebuf, "xpv-root") == 0) 1651 xen_vbdroot_props(propbuf); 1652 /* 1653 * While we're here, if we have a "xpv-nfsroot" property 1654 * then we need to set "fstype" to "nfs" so we mount 1655 * our root from the nfs server. Also parse the xpv-nfsroot 1656 * property to create the properties that nfs_mountroot will 1657 * need to find the root and mount it. 1658 */ 1659 if (strcmp(namebuf, "xpv-nfsroot") == 0) 1660 xen_nfsroot_props(propbuf); 1661 1662 if (strcmp(namebuf, "xpv-ip") == 0) 1663 xen_ip_props(propbuf); 1664 value += value_len; 1665 } 1666 #endif 1667 1668 while (ISSPACE(*value)) 1669 ++value; 1670 /* 1671 * value now points at the boot-file 1672 */ 1673 value_len = 0; 1674 while (value[value_len] && !ISSPACE(value[value_len])) 1675 ++value_len; 1676 if (value_len > 0) { 1677 whoami = propbuf; 1678 bcopy(value, whoami, value_len); 1679 whoami[value_len] = 0; 1680 bsetprops("boot-file", whoami); 1681 /* 1682 * strip leading path stuff from whoami, so running from 1683 * PXE/miniroot makes sense. 1684 */ 1685 if (strstr(whoami, "/platform/") != NULL) 1686 whoami = strstr(whoami, "/platform/"); 1687 bsetprops("whoami", whoami); 1688 } 1689 1690 /* 1691 * Values forcibly set boot properties on the command line via -B. 1692 * Allow use of quotes in values. Other stuff goes on kernel 1693 * command line. 1694 */ 1695 name = value + value_len; 1696 while (*name != 0) { 1697 /* 1698 * anything not " -B" is copied to the command line 1699 */ 1700 if (!ISSPACE(name[0]) || name[1] != '-' || name[2] != 'B') { 1701 boot_args[boot_arg_len++] = *name; 1702 boot_args[boot_arg_len] = 0; 1703 ++name; 1704 continue; 1705 } 1706 1707 /* 1708 * skip the " -B" and following white space 1709 */ 1710 name += 3; 1711 while (ISSPACE(*name)) 1712 ++name; 1713 while (*name && !ISSPACE(*name)) { 1714 value = strstr(name, "="); 1715 if (value == NULL) 1716 break; 1717 name_len = value - name; 1718 ++value; 1719 value_len = 0; 1720 quoted = 0; 1721 for (; ; ++value_len) { 1722 if (!value[value_len]) 1723 break; 1724 1725 /* 1726 * is this value quoted? 1727 */ 1728 if (value_len == 0 && 1729 (value[0] == '\'' || value[0] == '"')) { 1730 quoted = value[0]; 1731 ++value_len; 1732 } 1733 1734 /* 1735 * In the quote accept any character, 1736 * but look for ending quote. 1737 */ 1738 if (quoted) { 1739 if (value[value_len] == quoted) 1740 quoted = 0; 1741 continue; 1742 } 1743 1744 /* 1745 * a comma or white space ends the value 1746 */ 1747 if (value[value_len] == ',' || 1748 ISSPACE(value[value_len])) 1749 break; 1750 } 1751 1752 if (value_len == 0) { 1753 bsetprop(DDI_PROP_TYPE_ANY, name, name_len, 1754 NULL, 0); 1755 } else { 1756 char *v = value; 1757 int l = value_len; 1758 if (v[0] == v[l - 1] && 1759 (v[0] == '\'' || v[0] == '"')) { 1760 ++v; 1761 l -= 2; 1762 } 1763 bcopy(v, propbuf, l); 1764 propbuf[l] = '\0'; 1765 bsetprop(DDI_PROP_TYPE_STRING, name, name_len, 1766 propbuf, l + 1); 1767 } 1768 name = value + value_len; 1769 while (*name == ',') 1770 ++name; 1771 } 1772 } 1773 1774 /* 1775 * set boot-args property 1776 * 1275 name is bootargs, so set 1777 * that too 1778 */ 1779 bsetprops("boot-args", boot_args); 1780 bsetprops("bootargs", boot_args); 1781 1782 process_boot_environment(benv); 1783 1784 #ifndef __xpv 1785 /* 1786 * Build boot command line for Fast Reboot 1787 */ 1788 build_fastboot_cmdline(xbp); 1789 1790 if (xbp->bi_mb_version == 1) { 1791 multiboot_info_t *mbi = xbp->bi_mb_info; 1792 int netboot; 1793 struct sol_netinfo *sip; 1794 1795 /* 1796 * set the BIOS boot device from GRUB 1797 */ 1798 netboot = 0; 1799 1800 /* 1801 * Save various boot information for Fast Reboot 1802 */ 1803 save_boot_info(xbp); 1804 1805 if (mbi != NULL && mbi->flags & MB_INFO_BOOTDEV) { 1806 boot_device = mbi->boot_device >> 24; 1807 if (boot_device == 0x20) 1808 netboot++; 1809 str[0] = (boot_device >> 4) + '0'; 1810 str[1] = (boot_device & 0xf) + '0'; 1811 str[2] = 0; 1812 bsetprops("bios-boot-device", str); 1813 } else { 1814 netboot = 1; 1815 } 1816 1817 /* 1818 * In the netboot case, drives_info is overloaded with the 1819 * dhcp ack. This is not multiboot compliant and requires 1820 * special pxegrub! 1821 */ 1822 if (netboot && mbi->drives_length != 0) { 1823 sip = (struct sol_netinfo *)(uintptr_t)mbi->drives_addr; 1824 if (sip->sn_infotype == SN_TYPE_BOOTP) 1825 bsetprop(DDI_PROP_TYPE_BYTE, 1826 "bootp-response", 1827 sizeof ("bootp-response"), 1828 (void *)(uintptr_t)mbi->drives_addr, 1829 mbi->drives_length); 1830 else if (sip->sn_infotype == SN_TYPE_RARP) 1831 setup_rarp_props(sip); 1832 } 1833 } else { 1834 multiboot2_info_header_t *mbi = xbp->bi_mb_info; 1835 multiboot_tag_bootdev_t *bootdev = NULL; 1836 multiboot_tag_network_t *netdev = NULL; 1837 1838 if (mbi != NULL) { 1839 bootdev = dboot_multiboot2_find_tag(mbi, 1840 MULTIBOOT_TAG_TYPE_BOOTDEV); 1841 netdev = dboot_multiboot2_find_tag(mbi, 1842 MULTIBOOT_TAG_TYPE_NETWORK); 1843 } 1844 if (bootdev != NULL) { 1845 DBG(bootdev->mb_biosdev); 1846 boot_device = bootdev->mb_biosdev; 1847 str[0] = (boot_device >> 4) + '0'; 1848 str[1] = (boot_device & 0xf) + '0'; 1849 str[2] = 0; 1850 bsetprops("bios-boot-device", str); 1851 } 1852 if (netdev != NULL) { 1853 bsetprop(DDI_PROP_TYPE_BYTE, 1854 "bootp-response", sizeof ("bootp-response"), 1855 (void *)(uintptr_t)netdev->mb_dhcpack, 1856 netdev->mb_size - 1857 sizeof (multiboot_tag_network_t)); 1858 } 1859 } 1860 1861 bsetprop32("stdout", stdout_val); 1862 #endif /* __xpv */ 1863 1864 /* 1865 * more conjured up values for made up things.... 1866 */ 1867 #if defined(__xpv) 1868 bsetprops("mfg-name", "i86xpv"); 1869 bsetprops("impl-arch-name", "i86xpv"); 1870 #else 1871 bsetprops("mfg-name", "i86pc"); 1872 bsetprops("impl-arch-name", "i86pc"); 1873 #endif 1874 1875 /* 1876 * Build firmware-provided system properties 1877 */ 1878 build_firmware_properties(xbp); 1879 1880 /* 1881 * XXPV 1882 * 1883 * Find out what these are: 1884 * - cpuid_feature_ecx_include 1885 * - cpuid_feature_ecx_exclude 1886 * - cpuid_feature_edx_include 1887 * - cpuid_feature_edx_exclude 1888 * 1889 * Find out what these are in multiboot: 1890 * - netdev-path 1891 * - fstype 1892 */ 1893 } 1894 1895 #ifdef __xpv 1896 /* 1897 * Under the Hypervisor, memory usable for DMA may be scarce. One 1898 * very likely large pool of DMA friendly memory is occupied by 1899 * the boot_archive, as it was loaded by grub into low MFNs. 1900 * 1901 * Here we free up that memory by copying the boot archive to what are 1902 * likely higher MFN pages and then swapping the mfn/pfn mappings. 1903 */ 1904 #define PFN_2GIG 0x80000 1905 static void 1906 relocate_boot_archive(struct xboot_info *xbp) 1907 { 1908 mfn_t max_mfn = HYPERVISOR_memory_op(XENMEM_maximum_ram_page, NULL); 1909 struct boot_modules *bm = xbp->bi_modules; 1910 uintptr_t va; 1911 pfn_t va_pfn; 1912 mfn_t va_mfn; 1913 caddr_t copy; 1914 pfn_t copy_pfn; 1915 mfn_t copy_mfn; 1916 size_t len; 1917 int slop; 1918 int total = 0; 1919 int relocated = 0; 1920 int mmu_update_return; 1921 mmu_update_t t[2]; 1922 x86pte_t pte; 1923 1924 /* 1925 * If all MFN's are below 2Gig, don't bother doing this. 1926 */ 1927 if (max_mfn < PFN_2GIG) 1928 return; 1929 if (xbp->bi_module_cnt < 1) { 1930 DBG_MSG("no boot_archive!"); 1931 return; 1932 } 1933 1934 DBG_MSG("moving boot_archive to high MFN memory\n"); 1935 va = (uintptr_t)bm->bm_addr; 1936 len = bm->bm_size; 1937 slop = va & MMU_PAGEOFFSET; 1938 if (slop) { 1939 va += MMU_PAGESIZE - slop; 1940 len -= MMU_PAGESIZE - slop; 1941 } 1942 len = P2ALIGN(len, MMU_PAGESIZE); 1943 1944 /* 1945 * Go through all boot_archive pages, swapping any low MFN pages 1946 * with memory at next_phys. 1947 */ 1948 while (len != 0) { 1949 ++total; 1950 va_pfn = mmu_btop(va - ONE_GIG); 1951 va_mfn = mfn_list[va_pfn]; 1952 if (mfn_list[va_pfn] < PFN_2GIG) { 1953 copy = kbm_remap_window(next_phys, 1); 1954 bcopy((void *)va, copy, MMU_PAGESIZE); 1955 copy_pfn = mmu_btop(next_phys); 1956 copy_mfn = mfn_list[copy_pfn]; 1957 1958 pte = mfn_to_ma(copy_mfn) | PT_NOCONSIST | PT_VALID; 1959 if (HYPERVISOR_update_va_mapping(va, pte, 1960 UVMF_INVLPG | UVMF_LOCAL)) 1961 bop_panic("relocate_boot_archive(): " 1962 "HYPERVISOR_update_va_mapping() failed"); 1963 1964 mfn_list[va_pfn] = copy_mfn; 1965 mfn_list[copy_pfn] = va_mfn; 1966 1967 t[0].ptr = mfn_to_ma(copy_mfn) | MMU_MACHPHYS_UPDATE; 1968 t[0].val = va_pfn; 1969 t[1].ptr = mfn_to_ma(va_mfn) | MMU_MACHPHYS_UPDATE; 1970 t[1].val = copy_pfn; 1971 if (HYPERVISOR_mmu_update(t, 2, &mmu_update_return, 1972 DOMID_SELF) != 0 || mmu_update_return != 2) 1973 bop_panic("relocate_boot_archive(): " 1974 "HYPERVISOR_mmu_update() failed"); 1975 1976 next_phys += MMU_PAGESIZE; 1977 ++relocated; 1978 } 1979 len -= MMU_PAGESIZE; 1980 va += MMU_PAGESIZE; 1981 } 1982 DBG_MSG("Relocated pages:\n"); 1983 DBG(relocated); 1984 DBG_MSG("Out of total pages:\n"); 1985 DBG(total); 1986 } 1987 #endif /* __xpv */ 1988 1989 #if !defined(__xpv) 1990 /* 1991 * simple description of a stack frame (args are 32 bit only currently) 1992 */ 1993 typedef struct bop_frame { 1994 struct bop_frame *old_frame; 1995 pc_t retaddr; 1996 long arg[1]; 1997 } bop_frame_t; 1998 1999 void 2000 bop_traceback(bop_frame_t *frame) 2001 { 2002 pc_t pc; 2003 int cnt; 2004 char *ksym; 2005 ulong_t off; 2006 2007 bop_printf(NULL, "Stack traceback:\n"); 2008 for (cnt = 0; cnt < 30; ++cnt) { /* up to 30 frames */ 2009 pc = frame->retaddr; 2010 if (pc == 0) 2011 break; 2012 ksym = kobj_getsymname(pc, &off); 2013 if (ksym) 2014 bop_printf(NULL, " %s+%lx", ksym, off); 2015 else 2016 bop_printf(NULL, " 0x%lx", pc); 2017 2018 frame = frame->old_frame; 2019 if (frame == 0) { 2020 bop_printf(NULL, "\n"); 2021 break; 2022 } 2023 bop_printf(NULL, "\n"); 2024 } 2025 } 2026 2027 struct trapframe { 2028 ulong_t error_code; /* optional */ 2029 ulong_t inst_ptr; 2030 ulong_t code_seg; 2031 ulong_t flags_reg; 2032 ulong_t stk_ptr; 2033 ulong_t stk_seg; 2034 }; 2035 2036 void 2037 bop_trap(ulong_t *tfp) 2038 { 2039 struct trapframe *tf = (struct trapframe *)tfp; 2040 bop_frame_t fakeframe; 2041 static int depth = 0; 2042 2043 /* 2044 * Check for an infinite loop of traps. 2045 */ 2046 if (++depth > 2) 2047 bop_panic("Nested trap"); 2048 2049 bop_printf(NULL, "Unexpected trap\n"); 2050 2051 /* 2052 * adjust the tf for optional error_code by detecting the code selector 2053 */ 2054 if (tf->code_seg != B64CODE_SEL) 2055 tf = (struct trapframe *)(tfp - 1); 2056 else 2057 bop_printf(NULL, "error code 0x%lx\n", 2058 tf->error_code & 0xffffffff); 2059 2060 bop_printf(NULL, "instruction pointer 0x%lx\n", tf->inst_ptr); 2061 bop_printf(NULL, "code segment 0x%lx\n", tf->code_seg & 0xffff); 2062 bop_printf(NULL, "flags register 0x%lx\n", tf->flags_reg); 2063 bop_printf(NULL, "return %%rsp 0x%lx\n", tf->stk_ptr); 2064 bop_printf(NULL, "return %%ss 0x%lx\n", tf->stk_seg & 0xffff); 2065 bop_printf(NULL, "%%cr2 0x%lx\n", getcr2()); 2066 2067 /* grab %[er]bp pushed by our code from the stack */ 2068 fakeframe.old_frame = (bop_frame_t *)*(tfp - 3); 2069 fakeframe.retaddr = (pc_t)tf->inst_ptr; 2070 bop_printf(NULL, "Attempting stack backtrace:\n"); 2071 bop_traceback(&fakeframe); 2072 bop_panic("unexpected trap in early boot"); 2073 } 2074 2075 extern void bop_trap_handler(void); 2076 2077 static gate_desc_t *bop_idt; 2078 2079 static desctbr_t bop_idt_info; 2080 2081 /* 2082 * Install a temporary IDT that lets us catch errors in the boot time code. 2083 * We shouldn't get any faults at all while this is installed, so we'll 2084 * just generate a traceback and exit. 2085 */ 2086 static void 2087 bop_idt_init(void) 2088 { 2089 int t; 2090 2091 bop_idt = (gate_desc_t *) 2092 do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE); 2093 bzero(bop_idt, MMU_PAGESIZE); 2094 for (t = 0; t < NIDT; ++t) { 2095 /* 2096 * Note that since boot runs without a TSS, the 2097 * double fault handler cannot use an alternate stack (64-bit). 2098 */ 2099 set_gatesegd(&bop_idt[t], &bop_trap_handler, B64CODE_SEL, 2100 SDT_SYSIGT, TRP_KPL, 0); 2101 } 2102 bop_idt_info.dtr_limit = (NIDT * sizeof (gate_desc_t)) - 1; 2103 bop_idt_info.dtr_base = (uintptr_t)bop_idt; 2104 wr_idtr(&bop_idt_info); 2105 } 2106 #endif /* !defined(__xpv) */ 2107 2108 /* 2109 * This is where we enter the kernel. It dummies up the boot_ops and 2110 * boot_syscalls vectors and jumps off to _kobj_boot() 2111 */ 2112 void 2113 _start(struct xboot_info *xbp) 2114 { 2115 bootops_t *bops = &bootop; 2116 extern void _kobj_boot(); 2117 2118 /* 2119 * 1st off - initialize the console for any error messages 2120 */ 2121 xbootp = xbp; 2122 #ifdef __xpv 2123 HYPERVISOR_shared_info = (void *)xbp->bi_shared_info; 2124 xen_info = xbp->bi_xen_start_info; 2125 #endif 2126 2127 #ifndef __xpv 2128 if (*((uint32_t *)(FASTBOOT_SWTCH_PA + FASTBOOT_STACK_OFFSET)) == 2129 FASTBOOT_MAGIC) { 2130 post_fastreboot = 1; 2131 *((uint32_t *)(FASTBOOT_SWTCH_PA + FASTBOOT_STACK_OFFSET)) = 0; 2132 } 2133 #endif 2134 2135 bcons_init(xbp); 2136 have_console = 1; 2137 2138 /* 2139 * enable debugging 2140 */ 2141 if (find_boot_prop("kbm_debug") != NULL) 2142 kbm_debug = 1; 2143 2144 DBG_MSG("\n\n*** Entered illumos in _start() cmdline is: "); 2145 DBG_MSG((char *)xbp->bi_cmdline); 2146 DBG_MSG("\n\n\n"); 2147 2148 /* 2149 * physavail is no longer used by startup 2150 */ 2151 bm.physinstalled = xbp->bi_phys_install; 2152 bm.pcimem = xbp->bi_pcimem; 2153 bm.rsvdmem = xbp->bi_rsvdmem; 2154 bm.physavail = NULL; 2155 2156 /* 2157 * initialize the boot time allocator 2158 */ 2159 next_phys = xbp->bi_next_paddr; 2160 DBG(next_phys); 2161 next_virt = (uintptr_t)xbp->bi_next_vaddr; 2162 DBG(next_virt); 2163 DBG_MSG("Initializing boot time memory management..."); 2164 #ifdef __xpv 2165 { 2166 xen_platform_parameters_t p; 2167 2168 /* This call shouldn't fail, dboot already did it once. */ 2169 (void) HYPERVISOR_xen_version(XENVER_platform_parameters, &p); 2170 mfn_to_pfn_mapping = (pfn_t *)(xen_virt_start = p.virt_start); 2171 DBG(xen_virt_start); 2172 } 2173 #endif 2174 kbm_init(xbp); 2175 DBG_MSG("done\n"); 2176 2177 /* 2178 * Fill in the bootops vector 2179 */ 2180 bops->bsys_version = BO_VERSION; 2181 bops->boot_mem = &bm; 2182 bops->bsys_alloc = do_bsys_alloc; 2183 bops->bsys_free = do_bsys_free; 2184 bops->bsys_getproplen = do_bsys_getproplen; 2185 bops->bsys_getprop = do_bsys_getprop; 2186 bops->bsys_nextprop = do_bsys_nextprop; 2187 bops->bsys_printf = bop_printf; 2188 bops->bsys_doint = do_bsys_doint; 2189 2190 /* 2191 * BOP_EALLOC() is no longer needed 2192 */ 2193 bops->bsys_ealloc = do_bsys_ealloc; 2194 2195 #ifdef __xpv 2196 /* 2197 * On domain 0 we need to free up some physical memory that is 2198 * usable for DMA. Since GRUB loaded the boot_archive, it is 2199 * sitting in low MFN memory. We'll relocated the boot archive 2200 * pages to high PFN memory. 2201 */ 2202 if (DOMAIN_IS_INITDOMAIN(xen_info)) 2203 relocate_boot_archive(xbp); 2204 #endif 2205 2206 #ifndef __xpv 2207 /* 2208 * Install an IDT to catch early pagefaults (shouldn't have any). 2209 * Also needed for kmdb. 2210 */ 2211 bop_idt_init(); 2212 #endif 2213 /* Set up the shadow fb for framebuffer console */ 2214 boot_fb_shadow_init(bops); 2215 2216 /* 2217 * Start building the boot properties from the command line 2218 */ 2219 DBG_MSG("Initializing boot properties:\n"); 2220 build_boot_properties(xbp); 2221 2222 if (find_boot_prop("prom_debug") || kbm_debug) { 2223 char *value; 2224 2225 value = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE); 2226 boot_prop_display(value); 2227 } 2228 2229 /* 2230 * jump into krtld... 2231 */ 2232 _kobj_boot(&bop_sysp, NULL, bops, NULL); 2233 } 2234 2235 2236 /*ARGSUSED*/ 2237 static caddr_t 2238 no_more_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align) 2239 { 2240 panic("Attempt to bsys_alloc() too late\n"); 2241 return (NULL); 2242 } 2243 2244 /*ARGSUSED*/ 2245 static void 2246 no_more_free(bootops_t *bop, caddr_t virt, size_t size) 2247 { 2248 panic("Attempt to bsys_free() too late\n"); 2249 } 2250 2251 void 2252 bop_no_more_mem(void) 2253 { 2254 DBG(total_bop_alloc_scratch); 2255 DBG(total_bop_alloc_kernel); 2256 bootops->bsys_alloc = no_more_alloc; 2257 bootops->bsys_free = no_more_free; 2258 } 2259 2260 2261 /* 2262 * Set ACPI firmware properties 2263 */ 2264 2265 static caddr_t 2266 vmap_phys(size_t length, paddr_t pa) 2267 { 2268 paddr_t start, end; 2269 caddr_t va; 2270 size_t len, page; 2271 2272 #ifdef __xpv 2273 pa = pfn_to_pa(xen_assign_pfn(mmu_btop(pa))) | (pa & MMU_PAGEOFFSET); 2274 #endif 2275 start = P2ALIGN(pa, MMU_PAGESIZE); 2276 end = P2ROUNDUP(pa + length, MMU_PAGESIZE); 2277 len = end - start; 2278 va = (caddr_t)alloc_vaddr(len, MMU_PAGESIZE); 2279 for (page = 0; page < len; page += MMU_PAGESIZE) 2280 kbm_map((uintptr_t)va + page, start + page, 0, 0); 2281 return (va + (pa & MMU_PAGEOFFSET)); 2282 } 2283 2284 static uint8_t 2285 checksum_table(uint8_t *tp, size_t len) 2286 { 2287 uint8_t sum = 0; 2288 2289 while (len-- > 0) 2290 sum += *tp++; 2291 2292 return (sum); 2293 } 2294 2295 static int 2296 valid_rsdp(ACPI_TABLE_RSDP *rp) 2297 { 2298 2299 /* validate the V1.x checksum */ 2300 if (checksum_table((uint8_t *)rp, ACPI_RSDP_CHECKSUM_LENGTH) != 0) 2301 return (0); 2302 2303 /* If pre-ACPI 2.0, this is a valid RSDP */ 2304 if (rp->Revision < 2) 2305 return (1); 2306 2307 /* validate the V2.x checksum */ 2308 if (checksum_table((uint8_t *)rp, ACPI_RSDP_XCHECKSUM_LENGTH) != 0) 2309 return (0); 2310 2311 return (1); 2312 } 2313 2314 /* 2315 * Scan memory range for an RSDP; 2316 * see ACPI 3.0 Spec, 5.2.5.1 2317 */ 2318 static ACPI_TABLE_RSDP * 2319 scan_rsdp(paddr_t *paddrp, size_t len) 2320 { 2321 paddr_t paddr = *paddrp; 2322 caddr_t ptr; 2323 2324 ptr = vmap_phys(len, paddr); 2325 2326 while (len > 0) { 2327 if (strncmp(ptr, ACPI_SIG_RSDP, strlen(ACPI_SIG_RSDP)) == 0 && 2328 valid_rsdp((ACPI_TABLE_RSDP *)ptr)) { 2329 *paddrp = paddr; 2330 return ((ACPI_TABLE_RSDP *)ptr); 2331 } 2332 2333 ptr += ACPI_RSDP_SCAN_STEP; 2334 paddr += ACPI_RSDP_SCAN_STEP; 2335 len -= ACPI_RSDP_SCAN_STEP; 2336 } 2337 2338 return (NULL); 2339 } 2340 2341 /* 2342 * Locate the ACPI RSDP. We search in a particular order: 2343 * 2344 * - If the bootloader told us the location of the RSDP (via the EFI system 2345 * table), try that first. 2346 * - Otherwise, look in the EBDA and BIOS memory as per ACPI 5.2.5.1 (legacy 2347 * case). 2348 * - Finally, our bootloader may have a copy of the RSDP in its info: this might 2349 * get freed after boot, so we always prefer to find the original RSDP first. 2350 * 2351 * Once found, we set acpi-root-tab property (a physical address) for the 2352 * benefit of acpica, acpidump etc. 2353 */ 2354 2355 static ACPI_TABLE_RSDP * 2356 find_rsdp(struct xboot_info *xbp) 2357 { 2358 ACPI_TABLE_RSDP *rsdp = NULL; 2359 paddr_t paddr = 0; 2360 2361 if (do_bsys_getproplen(NULL, "acpi-root-tab") == sizeof (uint64_t)) { 2362 (void) do_bsys_getprop(NULL, "acpi-root-tab", &paddr); 2363 rsdp = scan_rsdp(&paddr, sizeof (*rsdp)); 2364 } 2365 2366 #ifndef __xpv 2367 if (rsdp == NULL && xbp->bi_acpi_rsdp != NULL) { 2368 paddr = (uintptr_t)xbp->bi_acpi_rsdp; 2369 rsdp = scan_rsdp(&paddr, sizeof (*rsdp)); 2370 } 2371 #endif 2372 2373 if (rsdp == NULL) { 2374 uint16_t *ebda_seg = (uint16_t *)vmap_phys(sizeof (uint16_t), 2375 ACPI_EBDA_PTR_LOCATION); 2376 paddr = *ebda_seg << 4; 2377 rsdp = scan_rsdp(&paddr, ACPI_EBDA_WINDOW_SIZE); 2378 } 2379 2380 if (rsdp == NULL) { 2381 paddr = ACPI_HI_RSDP_WINDOW_BASE; 2382 rsdp = scan_rsdp(&paddr, ACPI_HI_RSDP_WINDOW_SIZE); 2383 } 2384 2385 #ifndef __xpv 2386 if (rsdp == NULL && xbp->bi_acpi_rsdp_copy != NULL) { 2387 paddr = (uintptr_t)xbp->bi_acpi_rsdp_copy; 2388 rsdp = scan_rsdp(&paddr, sizeof (*rsdp)); 2389 } 2390 #endif 2391 2392 if (rsdp == NULL) { 2393 bop_printf(NULL, "no RSDP found!\n"); 2394 return (NULL); 2395 } 2396 2397 if (kbm_debug) 2398 bop_printf(NULL, "RSDP found at physical 0x%lx\n", paddr); 2399 2400 if (do_bsys_getproplen(NULL, "acpi-root-tab") != sizeof (uint64_t)) 2401 bsetprop64("acpi-root-tab", paddr); 2402 2403 return (rsdp); 2404 } 2405 2406 static ACPI_TABLE_HEADER * 2407 map_fw_table(paddr_t table_addr) 2408 { 2409 ACPI_TABLE_HEADER *tp; 2410 size_t len = MAX(sizeof (*tp), MMU_PAGESIZE); 2411 2412 /* 2413 * Map at least a page; if the table is larger than this, remap it 2414 */ 2415 tp = (ACPI_TABLE_HEADER *)vmap_phys(len, table_addr); 2416 if (tp->Length > len) 2417 tp = (ACPI_TABLE_HEADER *)vmap_phys(tp->Length, table_addr); 2418 return (tp); 2419 } 2420 2421 static ACPI_TABLE_HEADER * 2422 find_fw_table(ACPI_TABLE_RSDP *rsdp, char *signature) 2423 { 2424 static int revision = 0; 2425 static ACPI_TABLE_XSDT *xsdt; 2426 static int len; 2427 paddr_t xsdt_addr; 2428 ACPI_TABLE_HEADER *tp; 2429 paddr_t table_addr; 2430 int n; 2431 2432 if (strlen(signature) != ACPI_NAME_SIZE) 2433 return (NULL); 2434 2435 /* 2436 * Reading the ACPI 3.0 Spec, section 5.2.5.3 will help 2437 * understand this code. If we haven't already found the RSDT/XSDT, 2438 * revision will be 0. Find the RSDP and check the revision 2439 * to find out whether to use the RSDT or XSDT. If revision is 2440 * 0 or 1, use the RSDT and set internal revision to 1; if it is 2, 2441 * use the XSDT. If the XSDT address is 0, though, fall back to 2442 * revision 1 and use the RSDT. 2443 */ 2444 xsdt_addr = 0; 2445 if (revision == 0) { 2446 if (rsdp == NULL) 2447 return (NULL); 2448 2449 revision = rsdp->Revision; 2450 /* 2451 * ACPI 6.0 states that current revision is 2 2452 * from acpi_table_rsdp definition: 2453 * Must be (0) for ACPI 1.0 or (2) for ACPI 2.0+ 2454 */ 2455 if (revision > 2) 2456 revision = 2; 2457 switch (revision) { 2458 case 2: 2459 /* 2460 * Use the XSDT unless BIOS is buggy and 2461 * claims to be rev 2 but has a null XSDT 2462 * address 2463 */ 2464 xsdt_addr = rsdp->XsdtPhysicalAddress; 2465 if (xsdt_addr != 0) 2466 break; 2467 /* FALLTHROUGH */ 2468 case 0: 2469 /* treat RSDP rev 0 as revision 1 internally */ 2470 revision = 1; 2471 /* FALLTHROUGH */ 2472 case 1: 2473 /* use the RSDT for rev 0/1 */ 2474 xsdt_addr = rsdp->RsdtPhysicalAddress; 2475 break; 2476 default: 2477 /* unknown revision */ 2478 revision = 0; 2479 break; 2480 } 2481 2482 if (revision == 0) 2483 return (NULL); 2484 2485 /* cache the XSDT info */ 2486 xsdt = (ACPI_TABLE_XSDT *)map_fw_table(xsdt_addr); 2487 len = (xsdt->Header.Length - sizeof (xsdt->Header)) / 2488 ((revision == 1) ? sizeof (uint32_t) : sizeof (uint64_t)); 2489 } 2490 2491 /* 2492 * Scan the table headers looking for a signature match 2493 */ 2494 for (n = 0; n < len; n++) { 2495 ACPI_TABLE_RSDT *rsdt = (ACPI_TABLE_RSDT *)xsdt; 2496 table_addr = (revision == 1) ? rsdt->TableOffsetEntry[n] : 2497 xsdt->TableOffsetEntry[n]; 2498 2499 if (table_addr == 0) 2500 continue; 2501 tp = map_fw_table(table_addr); 2502 if (strncmp(tp->Signature, signature, ACPI_NAME_SIZE) == 0) { 2503 return (tp); 2504 } 2505 } 2506 return (NULL); 2507 } 2508 2509 static void 2510 process_mcfg(ACPI_TABLE_MCFG *tp) 2511 { 2512 ACPI_MCFG_ALLOCATION *cfg_baap; 2513 char *cfg_baa_endp; 2514 int64_t ecfginfo[4]; 2515 2516 cfg_baap = (ACPI_MCFG_ALLOCATION *)((uintptr_t)tp + sizeof (*tp)); 2517 cfg_baa_endp = ((char *)tp) + tp->Header.Length; 2518 while ((char *)cfg_baap < cfg_baa_endp) { 2519 if (cfg_baap->Address != 0 && cfg_baap->PciSegment == 0) { 2520 ecfginfo[0] = cfg_baap->Address; 2521 ecfginfo[1] = cfg_baap->PciSegment; 2522 ecfginfo[2] = cfg_baap->StartBusNumber; 2523 ecfginfo[3] = cfg_baap->EndBusNumber; 2524 bsetprop(DDI_PROP_TYPE_INT64, 2525 MCFG_PROPNAME, strlen(MCFG_PROPNAME), 2526 ecfginfo, sizeof (ecfginfo)); 2527 break; 2528 } 2529 cfg_baap++; 2530 } 2531 } 2532 2533 #ifndef __xpv 2534 static void 2535 process_madt_entries(ACPI_TABLE_MADT *tp, uint32_t *cpu_countp, 2536 uint32_t *cpu_possible_countp, uint32_t *cpu_apicid_array) 2537 { 2538 ACPI_SUBTABLE_HEADER *item, *end; 2539 uint32_t cpu_count = 0; 2540 uint32_t cpu_possible_count = 0; 2541 2542 /* 2543 * Determine number of CPUs and keep track of "final" APIC ID 2544 * for each CPU by walking through ACPI MADT processor list 2545 */ 2546 end = (ACPI_SUBTABLE_HEADER *)(tp->Header.Length + (uintptr_t)tp); 2547 item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)tp + sizeof (*tp)); 2548 2549 while (item < end) { 2550 switch (item->Type) { 2551 case ACPI_MADT_TYPE_LOCAL_APIC: { 2552 ACPI_MADT_LOCAL_APIC *cpu = 2553 (ACPI_MADT_LOCAL_APIC *) item; 2554 2555 if (cpu->LapicFlags & ACPI_MADT_ENABLED) { 2556 if (cpu_apicid_array != NULL) 2557 cpu_apicid_array[cpu_count] = cpu->Id; 2558 cpu_count++; 2559 } 2560 cpu_possible_count++; 2561 break; 2562 } 2563 case ACPI_MADT_TYPE_LOCAL_X2APIC: { 2564 ACPI_MADT_LOCAL_X2APIC *cpu = 2565 (ACPI_MADT_LOCAL_X2APIC *) item; 2566 2567 if (cpu->LapicFlags & ACPI_MADT_ENABLED) { 2568 if (cpu_apicid_array != NULL) 2569 cpu_apicid_array[cpu_count] = 2570 cpu->LocalApicId; 2571 cpu_count++; 2572 } 2573 cpu_possible_count++; 2574 break; 2575 } 2576 default: 2577 if (kbm_debug) 2578 bop_printf(NULL, "MADT type %d\n", item->Type); 2579 break; 2580 } 2581 2582 item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)item + item->Length); 2583 } 2584 if (cpu_countp) 2585 *cpu_countp = cpu_count; 2586 if (cpu_possible_countp) 2587 *cpu_possible_countp = cpu_possible_count; 2588 } 2589 2590 static void 2591 process_madt(ACPI_TABLE_MADT *tp) 2592 { 2593 uint32_t cpu_count = 0; 2594 uint32_t cpu_possible_count = 0; 2595 uint32_t *cpu_apicid_array; /* x2APIC ID is 32bit! */ 2596 2597 if (tp != NULL) { 2598 /* count cpu's */ 2599 process_madt_entries(tp, &cpu_count, &cpu_possible_count, NULL); 2600 2601 cpu_apicid_array = (uint32_t *)do_bsys_alloc(NULL, NULL, 2602 cpu_count * sizeof (*cpu_apicid_array), MMU_PAGESIZE); 2603 if (cpu_apicid_array == NULL) 2604 bop_panic("Not enough memory for APIC ID array"); 2605 2606 /* copy IDs */ 2607 process_madt_entries(tp, NULL, NULL, cpu_apicid_array); 2608 2609 /* 2610 * Make boot property for array of "final" APIC IDs for each 2611 * CPU 2612 */ 2613 bsetprop(DDI_PROP_TYPE_INT, 2614 BP_CPU_APICID_ARRAY, strlen(BP_CPU_APICID_ARRAY), 2615 cpu_apicid_array, cpu_count * sizeof (*cpu_apicid_array)); 2616 } 2617 2618 /* 2619 * Check whether property plat-max-ncpus is already set. 2620 */ 2621 if (do_bsys_getproplen(NULL, PLAT_MAX_NCPUS_NAME) < 0) { 2622 /* 2623 * Set plat-max-ncpus to number of maximum possible CPUs given 2624 * in MADT if it hasn't been set. 2625 * There's no formal way to detect max possible CPUs supported 2626 * by platform according to ACPI spec3.0b. So current CPU 2627 * hotplug implementation expects that all possible CPUs will 2628 * have an entry in MADT table and set plat-max-ncpus to number 2629 * of entries in MADT. 2630 * With introducing of ACPI4.0, Maximum System Capability Table 2631 * (MSCT) provides maximum number of CPUs supported by platform. 2632 * If MSCT is unavailable, fall back to old way. 2633 */ 2634 if (tp != NULL) 2635 bsetpropsi(PLAT_MAX_NCPUS_NAME, cpu_possible_count); 2636 } 2637 2638 /* 2639 * Set boot property boot-max-ncpus to number of CPUs existing at 2640 * boot time. boot-max-ncpus is mainly used for optimization. 2641 */ 2642 if (tp != NULL) 2643 bsetpropsi(BOOT_MAX_NCPUS_NAME, cpu_count); 2644 2645 /* 2646 * User-set boot-ncpus overrides firmware count 2647 */ 2648 if (do_bsys_getproplen(NULL, BOOT_NCPUS_NAME) >= 0) 2649 return; 2650 2651 /* 2652 * Set boot property boot-ncpus to number of active CPUs given in MADT 2653 * if it hasn't been set yet. 2654 */ 2655 if (tp != NULL) 2656 bsetpropsi(BOOT_NCPUS_NAME, cpu_count); 2657 } 2658 2659 static void 2660 process_srat(ACPI_TABLE_SRAT *tp) 2661 { 2662 ACPI_SUBTABLE_HEADER *item, *end; 2663 int i; 2664 int proc_num, mem_num; 2665 #pragma pack(1) 2666 struct { 2667 uint32_t domain; 2668 uint32_t apic_id; 2669 uint32_t sapic_id; 2670 } processor; 2671 struct { 2672 uint32_t domain; 2673 uint32_t x2apic_id; 2674 } x2apic; 2675 struct { 2676 uint32_t domain; 2677 uint64_t addr; 2678 uint64_t length; 2679 uint32_t flags; 2680 } memory; 2681 #pragma pack() 2682 char prop_name[30]; 2683 uint64_t maxmem = 0; 2684 2685 if (tp == NULL) 2686 return; 2687 2688 proc_num = mem_num = 0; 2689 end = (ACPI_SUBTABLE_HEADER *)(tp->Header.Length + (uintptr_t)tp); 2690 item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)tp + sizeof (*tp)); 2691 while (item < end) { 2692 switch (item->Type) { 2693 case ACPI_SRAT_TYPE_CPU_AFFINITY: { 2694 ACPI_SRAT_CPU_AFFINITY *cpu = 2695 (ACPI_SRAT_CPU_AFFINITY *) item; 2696 2697 if (!(cpu->Flags & ACPI_SRAT_CPU_ENABLED)) 2698 break; 2699 processor.domain = cpu->ProximityDomainLo; 2700 for (i = 0; i < 3; i++) 2701 processor.domain += 2702 cpu->ProximityDomainHi[i] << ((i + 1) * 8); 2703 processor.apic_id = cpu->ApicId; 2704 processor.sapic_id = cpu->LocalSapicEid; 2705 (void) snprintf(prop_name, 30, "acpi-srat-processor-%d", 2706 proc_num); 2707 bsetprop(DDI_PROP_TYPE_INT, 2708 prop_name, strlen(prop_name), &processor, 2709 sizeof (processor)); 2710 proc_num++; 2711 break; 2712 } 2713 case ACPI_SRAT_TYPE_MEMORY_AFFINITY: { 2714 ACPI_SRAT_MEM_AFFINITY *mem = 2715 (ACPI_SRAT_MEM_AFFINITY *)item; 2716 2717 if (!(mem->Flags & ACPI_SRAT_MEM_ENABLED)) 2718 break; 2719 memory.domain = mem->ProximityDomain; 2720 memory.addr = mem->BaseAddress; 2721 memory.length = mem->Length; 2722 memory.flags = mem->Flags; 2723 (void) snprintf(prop_name, 30, "acpi-srat-memory-%d", 2724 mem_num); 2725 bsetprop(DDI_PROP_TYPE_INT, 2726 prop_name, strlen(prop_name), &memory, 2727 sizeof (memory)); 2728 if ((mem->Flags & ACPI_SRAT_MEM_HOT_PLUGGABLE) && 2729 (memory.addr + memory.length > maxmem)) { 2730 maxmem = memory.addr + memory.length; 2731 } 2732 mem_num++; 2733 break; 2734 } 2735 case ACPI_SRAT_TYPE_X2APIC_CPU_AFFINITY: { 2736 ACPI_SRAT_X2APIC_CPU_AFFINITY *x2cpu = 2737 (ACPI_SRAT_X2APIC_CPU_AFFINITY *) item; 2738 2739 if (!(x2cpu->Flags & ACPI_SRAT_CPU_ENABLED)) 2740 break; 2741 x2apic.domain = x2cpu->ProximityDomain; 2742 x2apic.x2apic_id = x2cpu->ApicId; 2743 (void) snprintf(prop_name, 30, "acpi-srat-processor-%d", 2744 proc_num); 2745 bsetprop(DDI_PROP_TYPE_INT, 2746 prop_name, strlen(prop_name), &x2apic, 2747 sizeof (x2apic)); 2748 proc_num++; 2749 break; 2750 } 2751 default: 2752 if (kbm_debug) 2753 bop_printf(NULL, "SRAT type %d\n", item->Type); 2754 break; 2755 } 2756 2757 item = (ACPI_SUBTABLE_HEADER *) 2758 (item->Length + (uintptr_t)item); 2759 } 2760 2761 /* 2762 * The maximum physical address calculated from the SRAT table is more 2763 * accurate than that calculated from the MSCT table. 2764 */ 2765 if (maxmem != 0) { 2766 plat_dr_physmax = btop(maxmem); 2767 } 2768 } 2769 2770 static void 2771 process_slit(ACPI_TABLE_SLIT *tp) 2772 { 2773 2774 /* 2775 * Check the number of localities; if it's too huge, we just 2776 * return and locality enumeration code will handle this later, 2777 * if possible. 2778 * 2779 * Note that the size of the table is the square of the 2780 * number of localities; if the number of localities exceeds 2781 * UINT16_MAX, the table size may overflow an int when being 2782 * passed to bsetprop() below. 2783 */ 2784 if (tp->LocalityCount >= SLIT_LOCALITIES_MAX) 2785 return; 2786 2787 bsetprop64(SLIT_NUM_PROPNAME, tp->LocalityCount); 2788 bsetprop(DDI_PROP_TYPE_BYTE, 2789 SLIT_PROPNAME, strlen(SLIT_PROPNAME), &tp->Entry, 2790 tp->LocalityCount * tp->LocalityCount); 2791 } 2792 2793 static ACPI_TABLE_MSCT * 2794 process_msct(ACPI_TABLE_MSCT *tp) 2795 { 2796 int last_seen = 0; 2797 int proc_num = 0; 2798 ACPI_MSCT_PROXIMITY *item, *end; 2799 extern uint64_t plat_dr_options; 2800 2801 ASSERT(tp != NULL); 2802 2803 end = (ACPI_MSCT_PROXIMITY *)(tp->Header.Length + (uintptr_t)tp); 2804 for (item = (void *)((uintptr_t)tp + tp->ProximityOffset); 2805 item < end; 2806 item = (void *)(item->Length + (uintptr_t)item)) { 2807 /* 2808 * Sanity check according to section 5.2.19.1 of ACPI 4.0. 2809 * Revision 1 2810 * Length 22 2811 */ 2812 if (item->Revision != 1 || item->Length != 22) { 2813 cmn_err(CE_CONT, 2814 "?boot: unknown proximity domain structure in MSCT " 2815 "with Revision(%d), Length(%d).\n", 2816 (int)item->Revision, (int)item->Length); 2817 return (NULL); 2818 } else if (item->RangeStart > item->RangeEnd) { 2819 cmn_err(CE_CONT, 2820 "?boot: invalid proximity domain structure in MSCT " 2821 "with RangeStart(%u), RangeEnd(%u).\n", 2822 item->RangeStart, item->RangeEnd); 2823 return (NULL); 2824 } else if (item->RangeStart != last_seen) { 2825 /* 2826 * Items must be organized in ascending order of the 2827 * proximity domain enumerations. 2828 */ 2829 cmn_err(CE_CONT, 2830 "?boot: invalid proximity domain structure in MSCT," 2831 " items are not orginized in ascending order.\n"); 2832 return (NULL); 2833 } 2834 2835 /* 2836 * If ProcessorCapacity is 0 then there would be no CPUs in this 2837 * domain. 2838 */ 2839 if (item->ProcessorCapacity != 0) { 2840 proc_num += (item->RangeEnd - item->RangeStart + 1) * 2841 item->ProcessorCapacity; 2842 } 2843 2844 last_seen = item->RangeEnd - item->RangeStart + 1; 2845 /* 2846 * Break out if all proximity domains have been processed. 2847 * Some BIOSes may have unused items at the end of MSCT table. 2848 */ 2849 if (last_seen > tp->MaxProximityDomains) { 2850 break; 2851 } 2852 } 2853 if (last_seen != tp->MaxProximityDomains + 1) { 2854 cmn_err(CE_CONT, 2855 "?boot: invalid proximity domain structure in MSCT, " 2856 "proximity domain count doesn't match.\n"); 2857 return (NULL); 2858 } 2859 2860 /* 2861 * Set plat-max-ncpus property if it hasn't been set yet. 2862 */ 2863 if (do_bsys_getproplen(NULL, PLAT_MAX_NCPUS_NAME) < 0) { 2864 if (proc_num != 0) { 2865 bsetpropsi(PLAT_MAX_NCPUS_NAME, proc_num); 2866 } 2867 } 2868 2869 /* 2870 * Use Maximum Physical Address from the MSCT table as upper limit for 2871 * memory hot-adding by default. It may be overridden by value from 2872 * the SRAT table or the "plat-dr-physmax" boot option. 2873 */ 2874 plat_dr_physmax = btop(tp->MaxAddress + 1); 2875 2876 /* 2877 * Existence of MSCT implies CPU/memory hotplug-capability for the 2878 * platform. 2879 */ 2880 plat_dr_options |= PLAT_DR_FEATURE_CPU; 2881 plat_dr_options |= PLAT_DR_FEATURE_MEMORY; 2882 2883 return (tp); 2884 } 2885 2886 #else /* __xpv */ 2887 static void 2888 enumerate_xen_cpus() 2889 { 2890 processorid_t id, max_id; 2891 2892 /* 2893 * User-set boot-ncpus overrides enumeration 2894 */ 2895 if (do_bsys_getproplen(NULL, BOOT_NCPUS_NAME) >= 0) 2896 return; 2897 2898 /* 2899 * Probe every possible virtual CPU id and remember the 2900 * highest id present; the count of CPUs is one greater 2901 * than this. This tacitly assumes at least cpu 0 is present. 2902 */ 2903 max_id = 0; 2904 for (id = 0; id < MAX_VIRT_CPUS; id++) 2905 if (HYPERVISOR_vcpu_op(VCPUOP_is_up, id, NULL) == 0) 2906 max_id = id; 2907 2908 bsetpropsi(BOOT_NCPUS_NAME, max_id+1); 2909 2910 } 2911 #endif /* __xpv */ 2912 2913 /*ARGSUSED*/ 2914 static void 2915 build_firmware_properties(struct xboot_info *xbp) 2916 { 2917 ACPI_TABLE_HEADER *tp = NULL; 2918 ACPI_TABLE_RSDP *rsdp; 2919 2920 #ifndef __xpv 2921 if (xbp->bi_uefi_arch == XBI_UEFI_ARCH_64) { 2922 bsetprops("efi-systype", "64"); 2923 bsetprop64("efi-systab", 2924 (uint64_t)(uintptr_t)xbp->bi_uefi_systab); 2925 if (kbm_debug) 2926 bop_printf(NULL, "64-bit UEFI detected.\n"); 2927 } else if (xbp->bi_uefi_arch == XBI_UEFI_ARCH_32) { 2928 bsetprops("efi-systype", "32"); 2929 bsetprop64("efi-systab", 2930 (uint64_t)(uintptr_t)xbp->bi_uefi_systab); 2931 if (kbm_debug) 2932 bop_printf(NULL, "32-bit UEFI detected.\n"); 2933 } 2934 2935 if (xbp->bi_smbios != NULL) { 2936 bsetprop64("smbios-address", 2937 (uint64_t)(uintptr_t)xbp->bi_smbios); 2938 } 2939 2940 rsdp = find_rsdp(xbp); 2941 2942 if ((tp = find_fw_table(rsdp, ACPI_SIG_MSCT)) != NULL) 2943 msct_ptr = process_msct((ACPI_TABLE_MSCT *)tp); 2944 else 2945 msct_ptr = NULL; 2946 2947 if ((tp = find_fw_table(rsdp, ACPI_SIG_MADT)) != NULL) 2948 process_madt((ACPI_TABLE_MADT *)tp); 2949 2950 if ((srat_ptr = (ACPI_TABLE_SRAT *) 2951 find_fw_table(rsdp, ACPI_SIG_SRAT)) != NULL) 2952 process_srat(srat_ptr); 2953 2954 if ((slit_ptr = (ACPI_TABLE_SLIT *)find_fw_table(rsdp, 2955 ACPI_SIG_SLIT)) != NULL) 2956 process_slit(slit_ptr); 2957 2958 tp = find_fw_table(rsdp, ACPI_SIG_MCFG); 2959 #else /* __xpv */ 2960 enumerate_xen_cpus(); 2961 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 2962 rsdp = find_rsdp(xbp); 2963 tp = find_fw_table(rsdp, ACPI_SIG_MCFG); 2964 } 2965 #endif /* __xpv */ 2966 if (tp != NULL) 2967 process_mcfg((ACPI_TABLE_MCFG *)tp); 2968 2969 /* 2970 * Map the first HPET table (if it exists) and save the address. 2971 * If the HPET is required to calibrate the TSC, we require the 2972 * HPET table prior to being able to load modules, so we cannot use 2973 * the acpica module (and thus AcpiGetTable()) to locate it. 2974 */ 2975 if ((tp = find_fw_table(rsdp, ACPI_SIG_HPET)) != NULL) 2976 bsetprop64("hpet-table", (uint64_t)(uintptr_t)tp); 2977 } 2978 2979 /* 2980 * fake up a boot property for deferred early console output 2981 * this is used by both graphical boot and the (developer only) 2982 * USB serial console 2983 */ 2984 void * 2985 defcons_init(size_t size) 2986 { 2987 static char *p = NULL; 2988 2989 p = do_bsys_alloc(NULL, NULL, size, MMU_PAGESIZE); 2990 *p = 0; 2991 bsetprop32("deferred-console-buf", (uint32_t)((uintptr_t)&p)); 2992 return (p); 2993 } 2994 2995 /*ARGSUSED*/ 2996 int 2997 boot_compinfo(int fd, struct compinfo *cbp) 2998 { 2999 cbp->iscmp = 0; 3000 cbp->blksize = MAXBSIZE; 3001 return (0); 3002 } 3003 3004 /* 3005 * Get an integer value for given boot property 3006 */ 3007 int 3008 bootprop_getval(const char *prop_name, u_longlong_t *prop_value) 3009 { 3010 int boot_prop_len; 3011 char str[BP_MAX_STRLEN]; 3012 u_longlong_t value; 3013 3014 boot_prop_len = BOP_GETPROPLEN(bootops, prop_name); 3015 if (boot_prop_len < 0 || boot_prop_len >= sizeof (str) || 3016 BOP_GETPROP(bootops, prop_name, str) < 0 || 3017 kobj_getvalue(str, &value) == -1) 3018 return (-1); 3019 3020 if (prop_value) 3021 *prop_value = value; 3022 3023 return (0); 3024 } 3025 3026 int 3027 bootprop_getstr(const char *prop_name, char *buf, size_t buflen) 3028 { 3029 int boot_prop_len = BOP_GETPROPLEN(bootops, prop_name); 3030 3031 if (boot_prop_len < 0 || boot_prop_len >= buflen || 3032 BOP_GETPROP(bootops, prop_name, buf) < 0) 3033 return (-1); 3034 3035 return (0); 3036 } 3037