1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 * 26 * Copyright (c) 2010, Intel Corporation. 27 * All rights reserved. 28 * 29 * Copyright 2013 Joyent, Inc. All rights reserved. 30 */ 31 32 /* 33 * This file contains the functionality that mimics the boot operations 34 * on SPARC systems or the old boot.bin/multiboot programs on x86 systems. 35 * The x86 kernel now does everything on its own. 36 */ 37 38 #include <sys/types.h> 39 #include <sys/bootconf.h> 40 #include <sys/bootsvcs.h> 41 #include <sys/bootinfo.h> 42 #include <sys/multiboot.h> 43 #include <sys/multiboot2.h> 44 #include <sys/multiboot2_impl.h> 45 #include <sys/bootvfs.h> 46 #include <sys/bootprops.h> 47 #include <sys/varargs.h> 48 #include <sys/param.h> 49 #include <sys/machparam.h> 50 #include <sys/machsystm.h> 51 #include <sys/archsystm.h> 52 #include <sys/boot_console.h> 53 #include <sys/cmn_err.h> 54 #include <sys/systm.h> 55 #include <sys/promif.h> 56 #include <sys/archsystm.h> 57 #include <sys/x86_archext.h> 58 #include <sys/kobj.h> 59 #include <sys/privregs.h> 60 #include <sys/sysmacros.h> 61 #include <sys/ctype.h> 62 #include <sys/fastboot.h> 63 #ifdef __xpv 64 #include <sys/hypervisor.h> 65 #include <net/if.h> 66 #endif 67 #include <vm/kboot_mmu.h> 68 #include <vm/hat_pte.h> 69 #include <sys/kobj.h> 70 #include <sys/kobj_lex.h> 71 #include <sys/pci_cfgspace_impl.h> 72 #include <sys/fastboot_impl.h> 73 #include <sys/acpi/acconfig.h> 74 #include <sys/acpi/acpi.h> 75 76 static int have_console = 0; /* set once primitive console is initialized */ 77 static char *boot_args = ""; 78 79 /* 80 * Debugging macros 81 */ 82 static uint_t kbm_debug = 0; 83 #define DBG_MSG(s) { if (kbm_debug) bop_printf(NULL, "%s", s); } 84 #define DBG(x) { if (kbm_debug) \ 85 bop_printf(NULL, "%s is %" PRIx64 "\n", #x, (uint64_t)(x)); \ 86 } 87 88 #define PUT_STRING(s) { \ 89 char *cp; \ 90 for (cp = (s); *cp; ++cp) \ 91 bcons_putchar(*cp); \ 92 } 93 94 bootops_t bootop; /* simple bootops we'll pass on to kernel */ 95 struct bsys_mem bm; 96 97 /* 98 * Boot info from "glue" code in low memory. xbootp is used by: 99 * do_bop_phys_alloc(), do_bsys_alloc() and boot_prop_finish(). 100 */ 101 static struct xboot_info *xbootp; 102 static uintptr_t next_virt; /* next available virtual address */ 103 static paddr_t next_phys; /* next available physical address from dboot */ 104 static paddr_t high_phys = -(paddr_t)1; /* last used physical address */ 105 106 /* 107 * buffer for vsnprintf for console I/O 108 */ 109 #define BUFFERSIZE 512 110 static char buffer[BUFFERSIZE]; 111 112 /* 113 * stuff to store/report/manipulate boot property settings. 114 */ 115 typedef struct bootprop { 116 struct bootprop *bp_next; 117 char *bp_name; 118 uint_t bp_vlen; 119 char *bp_value; 120 } bootprop_t; 121 122 static bootprop_t *bprops = NULL; 123 static char *curr_page = NULL; /* ptr to avail bprop memory */ 124 static int curr_space = 0; /* amount of memory at curr_page */ 125 126 #ifdef __xpv 127 start_info_t *xen_info; 128 shared_info_t *HYPERVISOR_shared_info; 129 #endif 130 131 /* 132 * some allocator statistics 133 */ 134 static ulong_t total_bop_alloc_scratch = 0; 135 static ulong_t total_bop_alloc_kernel = 0; 136 137 static void build_firmware_properties(struct xboot_info *); 138 139 static int early_allocation = 1; 140 141 int force_fastreboot = 0; 142 volatile int fastreboot_onpanic = 0; 143 int post_fastreboot = 0; 144 #ifdef __xpv 145 volatile int fastreboot_capable = 0; 146 #else 147 volatile int fastreboot_capable = 1; 148 #endif 149 150 /* 151 * Information saved from current boot for fast reboot. 152 * If the information size exceeds what we have allocated, fast reboot 153 * will not be supported. 154 */ 155 multiboot_info_t saved_mbi; 156 mb_memory_map_t saved_mmap[FASTBOOT_SAVED_MMAP_COUNT]; 157 uint8_t saved_drives[FASTBOOT_SAVED_DRIVES_SIZE]; 158 char saved_cmdline[FASTBOOT_SAVED_CMDLINE_LEN]; 159 int saved_cmdline_len = 0; 160 size_t saved_file_size[FASTBOOT_MAX_FILES_MAP]; 161 162 /* 163 * Turn off fastreboot_onpanic to avoid panic loop. 164 */ 165 char fastreboot_onpanic_cmdline[FASTBOOT_SAVED_CMDLINE_LEN]; 166 static const char fastreboot_onpanic_args[] = " -B fastreboot_onpanic=0"; 167 168 /* 169 * Pointers to where System Resource Affinity Table (SRAT), System Locality 170 * Information Table (SLIT) and Maximum System Capability Table (MSCT) 171 * are mapped into virtual memory 172 */ 173 ACPI_TABLE_SRAT *srat_ptr = NULL; 174 ACPI_TABLE_SLIT *slit_ptr = NULL; 175 ACPI_TABLE_MSCT *msct_ptr = NULL; 176 177 /* 178 * Arbitrary limit on number of localities we handle; if 179 * this limit is raised to more than UINT16_MAX, make sure 180 * process_slit() knows how to handle it. 181 */ 182 #define SLIT_LOCALITIES_MAX (4096) 183 184 #define SLIT_NUM_PROPNAME "acpi-slit-localities" 185 #define SLIT_PROPNAME "acpi-slit" 186 187 /* 188 * Allocate aligned physical memory at boot time. This allocator allocates 189 * from the highest possible addresses. This avoids exhausting memory that 190 * would be useful for DMA buffers. 191 */ 192 paddr_t 193 do_bop_phys_alloc(uint64_t size, uint64_t align) 194 { 195 paddr_t pa = 0; 196 paddr_t start; 197 paddr_t end; 198 struct memlist *ml = (struct memlist *)xbootp->bi_phys_install; 199 200 /* 201 * Be careful if high memory usage is limited in startup.c 202 * Since there are holes in the low part of the physical address 203 * space we can treat physmem as a pfn (not just a pgcnt) and 204 * get a conservative upper limit. 205 */ 206 if (physmem != 0 && high_phys > pfn_to_pa(physmem)) 207 high_phys = pfn_to_pa(physmem); 208 209 /* 210 * find the lowest or highest available memory in physinstalled 211 * On 32 bit avoid physmem above 4Gig if PAE isn't enabled 212 */ 213 #if defined(__i386) 214 if (xbootp->bi_use_pae == 0 && high_phys > FOUR_GIG) 215 high_phys = FOUR_GIG; 216 #endif 217 218 /* 219 * find the highest available memory in physinstalled 220 */ 221 size = P2ROUNDUP(size, align); 222 for (; ml; ml = ml->ml_next) { 223 start = P2ROUNDUP(ml->ml_address, align); 224 end = P2ALIGN(ml->ml_address + ml->ml_size, align); 225 if (start < next_phys) 226 start = P2ROUNDUP(next_phys, align); 227 if (end > high_phys) 228 end = P2ALIGN(high_phys, align); 229 230 if (end <= start) 231 continue; 232 if (end - start < size) 233 continue; 234 235 /* 236 * Early allocations need to use low memory, since 237 * physmem might be further limited by bootenv.rc 238 */ 239 if (early_allocation) { 240 if (pa == 0 || start < pa) 241 pa = start; 242 } else { 243 if (end - size > pa) 244 pa = end - size; 245 } 246 } 247 if (pa != 0) { 248 if (early_allocation) 249 next_phys = pa + size; 250 else 251 high_phys = pa; 252 return (pa); 253 } 254 bop_panic("do_bop_phys_alloc(0x%" PRIx64 ", 0x%" PRIx64 255 ") Out of memory\n", size, align); 256 /*NOTREACHED*/ 257 } 258 259 uintptr_t 260 alloc_vaddr(size_t size, paddr_t align) 261 { 262 uintptr_t rv; 263 264 next_virt = P2ROUNDUP(next_virt, (uintptr_t)align); 265 rv = (uintptr_t)next_virt; 266 next_virt += size; 267 return (rv); 268 } 269 270 /* 271 * Allocate virtual memory. The size is always rounded up to a multiple 272 * of base pagesize. 273 */ 274 275 /*ARGSUSED*/ 276 static caddr_t 277 do_bsys_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align) 278 { 279 paddr_t a = align; /* same type as pa for masking */ 280 uint_t pgsize; 281 paddr_t pa; 282 uintptr_t va; 283 ssize_t s; /* the aligned size */ 284 uint_t level; 285 uint_t is_kernel = (virthint != 0); 286 287 if (a < MMU_PAGESIZE) 288 a = MMU_PAGESIZE; 289 else if (!ISP2(a)) 290 prom_panic("do_bsys_alloc() incorrect alignment"); 291 size = P2ROUNDUP(size, MMU_PAGESIZE); 292 293 /* 294 * Use the next aligned virtual address if we weren't given one. 295 */ 296 if (virthint == NULL) { 297 virthint = (caddr_t)alloc_vaddr(size, a); 298 total_bop_alloc_scratch += size; 299 } else { 300 total_bop_alloc_kernel += size; 301 } 302 303 /* 304 * allocate the physical memory 305 */ 306 pa = do_bop_phys_alloc(size, a); 307 308 /* 309 * Add the mappings to the page tables, try large pages first. 310 */ 311 va = (uintptr_t)virthint; 312 s = size; 313 level = 1; 314 pgsize = xbootp->bi_use_pae ? TWO_MEG : FOUR_MEG; 315 if (xbootp->bi_use_largepage && a == pgsize) { 316 while (IS_P2ALIGNED(pa, pgsize) && IS_P2ALIGNED(va, pgsize) && 317 s >= pgsize) { 318 kbm_map(va, pa, level, is_kernel); 319 va += pgsize; 320 pa += pgsize; 321 s -= pgsize; 322 } 323 } 324 325 /* 326 * Map remaining pages use small mappings 327 */ 328 level = 0; 329 pgsize = MMU_PAGESIZE; 330 while (s > 0) { 331 kbm_map(va, pa, level, is_kernel); 332 va += pgsize; 333 pa += pgsize; 334 s -= pgsize; 335 } 336 return (virthint); 337 } 338 339 /* 340 * Free virtual memory - we'll just ignore these. 341 */ 342 /*ARGSUSED*/ 343 static void 344 do_bsys_free(bootops_t *bop, caddr_t virt, size_t size) 345 { 346 bop_printf(NULL, "do_bsys_free(virt=0x%p, size=0x%lx) ignored\n", 347 (void *)virt, size); 348 } 349 350 /* 351 * Old interface 352 */ 353 /*ARGSUSED*/ 354 static caddr_t 355 do_bsys_ealloc(bootops_t *bop, caddr_t virthint, size_t size, 356 int align, int flags) 357 { 358 prom_panic("unsupported call to BOP_EALLOC()\n"); 359 return (0); 360 } 361 362 363 static void 364 bsetprop(char *name, int nlen, void *value, int vlen) 365 { 366 uint_t size; 367 uint_t need_size; 368 bootprop_t *b; 369 370 /* 371 * align the size to 16 byte boundary 372 */ 373 size = sizeof (bootprop_t) + nlen + 1 + vlen; 374 size = (size + 0xf) & ~0xf; 375 if (size > curr_space) { 376 need_size = (size + (MMU_PAGEOFFSET)) & MMU_PAGEMASK; 377 curr_page = do_bsys_alloc(NULL, 0, need_size, MMU_PAGESIZE); 378 curr_space = need_size; 379 } 380 381 /* 382 * use a bootprop_t at curr_page and link into list 383 */ 384 b = (bootprop_t *)curr_page; 385 curr_page += sizeof (bootprop_t); 386 curr_space -= sizeof (bootprop_t); 387 b->bp_next = bprops; 388 bprops = b; 389 390 /* 391 * follow by name and ending zero byte 392 */ 393 b->bp_name = curr_page; 394 bcopy(name, curr_page, nlen); 395 curr_page += nlen; 396 *curr_page++ = 0; 397 curr_space -= nlen + 1; 398 399 /* 400 * copy in value, but no ending zero byte 401 */ 402 b->bp_value = curr_page; 403 b->bp_vlen = vlen; 404 if (vlen > 0) { 405 bcopy(value, curr_page, vlen); 406 curr_page += vlen; 407 curr_space -= vlen; 408 } 409 410 /* 411 * align new values of curr_page, curr_space 412 */ 413 while (curr_space & 0xf) { 414 ++curr_page; 415 --curr_space; 416 } 417 } 418 419 static void 420 bsetprops(char *name, char *value) 421 { 422 bsetprop(name, strlen(name), value, strlen(value) + 1); 423 } 424 425 static void 426 bsetprop64(char *name, uint64_t value) 427 { 428 bsetprop(name, strlen(name), (void *)&value, sizeof (value)); 429 } 430 431 static void 432 bsetpropsi(char *name, int value) 433 { 434 char prop_val[32]; 435 436 (void) snprintf(prop_val, sizeof (prop_val), "%d", value); 437 bsetprops(name, prop_val); 438 } 439 440 /* 441 * to find the size of the buffer to allocate 442 */ 443 /*ARGSUSED*/ 444 int 445 do_bsys_getproplen(bootops_t *bop, const char *name) 446 { 447 bootprop_t *b; 448 449 for (b = bprops; b; b = b->bp_next) { 450 if (strcmp(name, b->bp_name) != 0) 451 continue; 452 return (b->bp_vlen); 453 } 454 return (-1); 455 } 456 457 /* 458 * get the value associated with this name 459 */ 460 /*ARGSUSED*/ 461 int 462 do_bsys_getprop(bootops_t *bop, const char *name, void *value) 463 { 464 bootprop_t *b; 465 466 for (b = bprops; b; b = b->bp_next) { 467 if (strcmp(name, b->bp_name) != 0) 468 continue; 469 bcopy(b->bp_value, value, b->bp_vlen); 470 return (0); 471 } 472 return (-1); 473 } 474 475 /* 476 * get the name of the next property in succession from the standalone 477 */ 478 /*ARGSUSED*/ 479 static char * 480 do_bsys_nextprop(bootops_t *bop, char *name) 481 { 482 bootprop_t *b; 483 484 /* 485 * A null name is a special signal for the 1st boot property 486 */ 487 if (name == NULL || strlen(name) == 0) { 488 if (bprops == NULL) 489 return (NULL); 490 return (bprops->bp_name); 491 } 492 493 for (b = bprops; b; b = b->bp_next) { 494 if (name != b->bp_name) 495 continue; 496 b = b->bp_next; 497 if (b == NULL) 498 return (NULL); 499 return (b->bp_name); 500 } 501 return (NULL); 502 } 503 504 /* 505 * Parse numeric value from a string. Understands decimal, hex, octal, - and ~ 506 */ 507 static int 508 parse_value(char *p, uint64_t *retval) 509 { 510 int adjust = 0; 511 uint64_t tmp = 0; 512 int digit; 513 int radix = 10; 514 515 *retval = 0; 516 if (*p == '-' || *p == '~') 517 adjust = *p++; 518 519 if (*p == '0') { 520 ++p; 521 if (*p == 0) 522 return (0); 523 if (*p == 'x' || *p == 'X') { 524 radix = 16; 525 ++p; 526 } else { 527 radix = 8; 528 ++p; 529 } 530 } 531 while (*p) { 532 if ('0' <= *p && *p <= '9') 533 digit = *p - '0'; 534 else if ('a' <= *p && *p <= 'f') 535 digit = 10 + *p - 'a'; 536 else if ('A' <= *p && *p <= 'F') 537 digit = 10 + *p - 'A'; 538 else 539 return (-1); 540 if (digit >= radix) 541 return (-1); 542 tmp = tmp * radix + digit; 543 ++p; 544 } 545 if (adjust == '-') 546 tmp = -tmp; 547 else if (adjust == '~') 548 tmp = ~tmp; 549 *retval = tmp; 550 return (0); 551 } 552 553 static boolean_t 554 unprintable(char *value, int size) 555 { 556 int i; 557 558 if (size <= 0 || value[0] == '\0') 559 return (B_TRUE); 560 561 for (i = 0; i < size; i++) { 562 if (value[i] == '\0') 563 return (i != (size - 1)); 564 565 if (!isprint(value[i])) 566 return (B_TRUE); 567 } 568 return (B_FALSE); 569 } 570 571 /* 572 * Print out information about all boot properties. 573 * buffer is pointer to pre-allocated space to be used as temporary 574 * space for property values. 575 */ 576 static void 577 boot_prop_display(char *buffer) 578 { 579 char *name = ""; 580 int i, len; 581 582 bop_printf(NULL, "\nBoot properties:\n"); 583 584 while ((name = do_bsys_nextprop(NULL, name)) != NULL) { 585 bop_printf(NULL, "\t0x%p %s = ", (void *)name, name); 586 (void) do_bsys_getprop(NULL, name, buffer); 587 len = do_bsys_getproplen(NULL, name); 588 bop_printf(NULL, "len=%d ", len); 589 if (!unprintable(buffer, len)) { 590 buffer[len] = 0; 591 bop_printf(NULL, "%s\n", buffer); 592 continue; 593 } 594 for (i = 0; i < len; i++) { 595 bop_printf(NULL, "%02x", buffer[i] & 0xff); 596 if (i < len - 1) 597 bop_printf(NULL, "."); 598 } 599 bop_printf(NULL, "\n"); 600 } 601 } 602 603 /* 604 * 2nd part of building the table of boot properties. This includes: 605 * - values from /boot/solaris/bootenv.rc (ie. eeprom(1m) values) 606 * 607 * lines look like one of: 608 * ^$ 609 * ^# comment till end of line 610 * setprop name 'value' 611 * setprop name value 612 * setprop name "value" 613 * 614 * we do single character I/O since this is really just looking at memory 615 */ 616 void 617 boot_prop_finish(void) 618 { 619 int fd; 620 char *line; 621 int c; 622 int bytes_read; 623 char *name; 624 int n_len; 625 char *value; 626 int v_len; 627 char *inputdev; /* these override the command line if serial ports */ 628 char *outputdev; 629 char *consoledev; 630 uint64_t lvalue; 631 int use_xencons = 0; 632 633 #ifdef __xpv 634 if (!DOMAIN_IS_INITDOMAIN(xen_info)) 635 use_xencons = 1; 636 #endif /* __xpv */ 637 638 DBG_MSG("Opening /boot/solaris/bootenv.rc\n"); 639 fd = BRD_OPEN(bfs_ops, "/boot/solaris/bootenv.rc", 0); 640 DBG(fd); 641 642 line = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE); 643 while (fd >= 0) { 644 645 /* 646 * get a line 647 */ 648 for (c = 0; ; ++c) { 649 bytes_read = BRD_READ(bfs_ops, fd, line + c, 1); 650 if (bytes_read == 0) { 651 if (c == 0) 652 goto done; 653 break; 654 } 655 if (line[c] == '\n') 656 break; 657 } 658 line[c] = 0; 659 660 /* 661 * ignore comment lines 662 */ 663 c = 0; 664 while (ISSPACE(line[c])) 665 ++c; 666 if (line[c] == '#' || line[c] == 0) 667 continue; 668 669 /* 670 * must have "setprop " or "setprop\t" 671 */ 672 if (strncmp(line + c, "setprop ", 8) != 0 && 673 strncmp(line + c, "setprop\t", 8) != 0) 674 continue; 675 c += 8; 676 while (ISSPACE(line[c])) 677 ++c; 678 if (line[c] == 0) 679 continue; 680 681 /* 682 * gather up the property name 683 */ 684 name = line + c; 685 n_len = 0; 686 while (line[c] && !ISSPACE(line[c])) 687 ++n_len, ++c; 688 689 /* 690 * gather up the value, if any 691 */ 692 value = ""; 693 v_len = 0; 694 while (ISSPACE(line[c])) 695 ++c; 696 if (line[c] != 0) { 697 value = line + c; 698 while (line[c] && !ISSPACE(line[c])) 699 ++v_len, ++c; 700 } 701 702 if (v_len >= 2 && value[0] == value[v_len - 1] && 703 (value[0] == '\'' || value[0] == '"')) { 704 ++value; 705 v_len -= 2; 706 } 707 name[n_len] = 0; 708 if (v_len > 0) 709 value[v_len] = 0; 710 else 711 continue; 712 713 /* 714 * ignore "boot-file" property, it's now meaningless 715 */ 716 if (strcmp(name, "boot-file") == 0) 717 continue; 718 if (strcmp(name, "boot-args") == 0 && 719 strlen(boot_args) > 0) 720 continue; 721 722 /* 723 * If a property was explicitly set on the command line 724 * it will override a setting in bootenv.rc 725 */ 726 if (do_bsys_getproplen(NULL, name) > 0) 727 continue; 728 729 bsetprop(name, n_len, value, v_len + 1); 730 } 731 done: 732 if (fd >= 0) 733 (void) BRD_CLOSE(bfs_ops, fd); 734 735 /* 736 * Check if we have to limit the boot time allocator 737 */ 738 if (do_bsys_getproplen(NULL, "physmem") != -1 && 739 do_bsys_getprop(NULL, "physmem", line) >= 0 && 740 parse_value(line, &lvalue) != -1) { 741 if (0 < lvalue && (lvalue < physmem || physmem == 0)) { 742 physmem = (pgcnt_t)lvalue; 743 DBG(physmem); 744 } 745 } 746 early_allocation = 0; 747 748 /* 749 * check to see if we have to override the default value of the console 750 */ 751 if (!use_xencons) { 752 inputdev = line; 753 v_len = do_bsys_getproplen(NULL, "input-device"); 754 if (v_len > 0) 755 (void) do_bsys_getprop(NULL, "input-device", inputdev); 756 else 757 v_len = 0; 758 inputdev[v_len] = 0; 759 760 outputdev = inputdev + v_len + 1; 761 v_len = do_bsys_getproplen(NULL, "output-device"); 762 if (v_len > 0) 763 (void) do_bsys_getprop(NULL, "output-device", 764 outputdev); 765 else 766 v_len = 0; 767 outputdev[v_len] = 0; 768 769 consoledev = outputdev + v_len + 1; 770 v_len = do_bsys_getproplen(NULL, "console"); 771 if (v_len > 0) { 772 (void) do_bsys_getprop(NULL, "console", consoledev); 773 if (post_fastreboot && 774 strcmp(consoledev, "graphics") == 0) { 775 bsetprops("console", "text"); 776 v_len = strlen("text"); 777 bcopy("text", consoledev, v_len); 778 } 779 } else { 780 v_len = 0; 781 } 782 consoledev[v_len] = 0; 783 bcons_init2(inputdev, outputdev, consoledev); 784 } else { 785 /* 786 * Ensure console property exists 787 * If not create it as "hypervisor" 788 */ 789 v_len = do_bsys_getproplen(NULL, "console"); 790 if (v_len < 0) 791 bsetprops("console", "hypervisor"); 792 inputdev = outputdev = consoledev = "hypervisor"; 793 bcons_init2(inputdev, outputdev, consoledev); 794 } 795 796 if (find_boot_prop("prom_debug") || kbm_debug) 797 boot_prop_display(line); 798 } 799 800 /* 801 * print formatted output 802 */ 803 /*PRINTFLIKE2*/ 804 /*ARGSUSED*/ 805 void 806 bop_printf(bootops_t *bop, const char *fmt, ...) 807 { 808 va_list ap; 809 810 if (have_console == 0) 811 return; 812 813 va_start(ap, fmt); 814 (void) vsnprintf(buffer, BUFFERSIZE, fmt, ap); 815 va_end(ap); 816 PUT_STRING(buffer); 817 } 818 819 /* 820 * Another panic() variant; this one can be used even earlier during boot than 821 * prom_panic(). 822 */ 823 /*PRINTFLIKE1*/ 824 void 825 bop_panic(const char *fmt, ...) 826 { 827 va_list ap; 828 829 va_start(ap, fmt); 830 bop_printf(NULL, fmt, ap); 831 va_end(ap); 832 833 bop_printf(NULL, "\nPress any key to reboot.\n"); 834 (void) bcons_getchar(); 835 bop_printf(NULL, "Resetting...\n"); 836 pc_reset(); 837 } 838 839 /* 840 * Do a real mode interrupt BIOS call 841 */ 842 typedef struct bios_regs { 843 unsigned short ax, bx, cx, dx, si, di, bp, es, ds; 844 } bios_regs_t; 845 typedef int (*bios_func_t)(int, bios_regs_t *); 846 847 /*ARGSUSED*/ 848 static void 849 do_bsys_doint(bootops_t *bop, int intnum, struct bop_regs *rp) 850 { 851 #if defined(__xpv) 852 prom_panic("unsupported call to BOP_DOINT()\n"); 853 #else /* __xpv */ 854 static int firsttime = 1; 855 bios_func_t bios_func = (bios_func_t)(void *)(uintptr_t)0x5000; 856 bios_regs_t br; 857 858 /* 859 * The first time we do this, we have to copy the pre-packaged 860 * low memory bios call code image into place. 861 */ 862 if (firsttime) { 863 extern char bios_image[]; 864 extern uint32_t bios_size; 865 866 bcopy(bios_image, (void *)bios_func, bios_size); 867 firsttime = 0; 868 } 869 870 br.ax = rp->eax.word.ax; 871 br.bx = rp->ebx.word.bx; 872 br.cx = rp->ecx.word.cx; 873 br.dx = rp->edx.word.dx; 874 br.bp = rp->ebp.word.bp; 875 br.si = rp->esi.word.si; 876 br.di = rp->edi.word.di; 877 br.ds = rp->ds; 878 br.es = rp->es; 879 880 DBG_MSG("Doing BIOS call..."); 881 DBG(br.ax); 882 DBG(br.bx); 883 DBG(br.dx); 884 rp->eflags = bios_func(intnum, &br); 885 DBG_MSG("done\n"); 886 887 rp->eax.word.ax = br.ax; 888 rp->ebx.word.bx = br.bx; 889 rp->ecx.word.cx = br.cx; 890 rp->edx.word.dx = br.dx; 891 rp->ebp.word.bp = br.bp; 892 rp->esi.word.si = br.si; 893 rp->edi.word.di = br.di; 894 rp->ds = br.ds; 895 rp->es = br.es; 896 #endif /* __xpv */ 897 } 898 899 static struct boot_syscalls bop_sysp = { 900 bcons_getchar, 901 bcons_putchar, 902 bcons_ischar, 903 }; 904 905 static char *whoami; 906 907 #define BUFLEN 64 908 909 #if defined(__xpv) 910 911 static char namebuf[32]; 912 913 static void 914 xen_parse_props(char *s, char *prop_map[], int n_prop) 915 { 916 char **prop_name = prop_map; 917 char *cp = s, *scp; 918 919 do { 920 scp = cp; 921 while ((*cp != NULL) && (*cp != ':')) 922 cp++; 923 924 if ((scp != cp) && (*prop_name != NULL)) { 925 *cp = NULL; 926 bsetprops(*prop_name, scp); 927 } 928 929 cp++; 930 prop_name++; 931 n_prop--; 932 } while (n_prop > 0); 933 } 934 935 #define VBDPATHLEN 64 936 937 /* 938 * parse the 'xpv-root' property to create properties used by 939 * ufs_mountroot. 940 */ 941 static void 942 xen_vbdroot_props(char *s) 943 { 944 char vbdpath[VBDPATHLEN] = "/xpvd/xdf@"; 945 const char lnamefix[] = "/dev/dsk/c0d"; 946 char *pnp; 947 char *prop_p; 948 char mi; 949 short minor; 950 long addr = 0; 951 952 pnp = vbdpath + strlen(vbdpath); 953 prop_p = s + strlen(lnamefix); 954 while ((*prop_p != '\0') && (*prop_p != 's') && (*prop_p != 'p')) 955 addr = addr * 10 + *prop_p++ - '0'; 956 (void) snprintf(pnp, VBDPATHLEN, "%lx", addr); 957 pnp = vbdpath + strlen(vbdpath); 958 if (*prop_p == 's') 959 mi = 'a'; 960 else if (*prop_p == 'p') 961 mi = 'q'; 962 else 963 ASSERT(0); /* shouldn't be here */ 964 prop_p++; 965 ASSERT(*prop_p != '\0'); 966 if (ISDIGIT(*prop_p)) { 967 minor = *prop_p - '0'; 968 prop_p++; 969 if (ISDIGIT(*prop_p)) { 970 minor = minor * 10 + *prop_p - '0'; 971 } 972 } else { 973 /* malformed root path, use 0 as default */ 974 minor = 0; 975 } 976 ASSERT(minor < 16); /* at most 16 partitions */ 977 mi += minor; 978 *pnp++ = ':'; 979 *pnp++ = mi; 980 *pnp++ = '\0'; 981 bsetprops("fstype", "ufs"); 982 bsetprops("bootpath", vbdpath); 983 984 DBG_MSG("VBD bootpath set to "); 985 DBG_MSG(vbdpath); 986 DBG_MSG("\n"); 987 } 988 989 /* 990 * parse the xpv-nfsroot property to create properties used by 991 * nfs_mountroot. 992 */ 993 static void 994 xen_nfsroot_props(char *s) 995 { 996 char *prop_map[] = { 997 BP_SERVER_IP, /* server IP address */ 998 BP_SERVER_NAME, /* server hostname */ 999 BP_SERVER_PATH, /* root path */ 1000 }; 1001 int n_prop = sizeof (prop_map) / sizeof (prop_map[0]); 1002 1003 bsetprop("fstype", 6, "nfs", 4); 1004 1005 xen_parse_props(s, prop_map, n_prop); 1006 1007 /* 1008 * If a server name wasn't specified, use a default. 1009 */ 1010 if (do_bsys_getproplen(NULL, BP_SERVER_NAME) == -1) 1011 bsetprops(BP_SERVER_NAME, "unknown"); 1012 } 1013 1014 /* 1015 * Extract our IP address, etc. from the "xpv-ip" property. 1016 */ 1017 static void 1018 xen_ip_props(char *s) 1019 { 1020 char *prop_map[] = { 1021 BP_HOST_IP, /* IP address */ 1022 NULL, /* NFS server IP address (ignored in */ 1023 /* favour of xpv-nfsroot) */ 1024 BP_ROUTER_IP, /* IP gateway */ 1025 BP_SUBNET_MASK, /* IP subnet mask */ 1026 "xpv-hostname", /* hostname (ignored) */ 1027 BP_NETWORK_INTERFACE, /* interface name */ 1028 "xpv-hcp", /* host configuration protocol */ 1029 }; 1030 int n_prop = sizeof (prop_map) / sizeof (prop_map[0]); 1031 char ifname[IFNAMSIZ]; 1032 1033 xen_parse_props(s, prop_map, n_prop); 1034 1035 /* 1036 * A Linux dom0 administrator expects all interfaces to be 1037 * called "ethX", which is not the case here. 1038 * 1039 * If the interface name specified is "eth0", presume that 1040 * this is really intended to be "xnf0" (the first domU -> 1041 * dom0 interface for this domain). 1042 */ 1043 if ((do_bsys_getprop(NULL, BP_NETWORK_INTERFACE, ifname) == 0) && 1044 (strcmp("eth0", ifname) == 0)) { 1045 bsetprops(BP_NETWORK_INTERFACE, "xnf0"); 1046 bop_printf(NULL, 1047 "network interface name 'eth0' replaced with 'xnf0'\n"); 1048 } 1049 } 1050 1051 #else /* __xpv */ 1052 1053 static void 1054 setup_rarp_props(struct sol_netinfo *sip) 1055 { 1056 char buf[BUFLEN]; /* to hold ip/mac addrs */ 1057 uint8_t *val; 1058 1059 val = (uint8_t *)&sip->sn_ciaddr; 1060 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d", 1061 val[0], val[1], val[2], val[3]); 1062 bsetprops(BP_HOST_IP, buf); 1063 1064 val = (uint8_t *)&sip->sn_siaddr; 1065 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d", 1066 val[0], val[1], val[2], val[3]); 1067 bsetprops(BP_SERVER_IP, buf); 1068 1069 if (sip->sn_giaddr != 0) { 1070 val = (uint8_t *)&sip->sn_giaddr; 1071 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d", 1072 val[0], val[1], val[2], val[3]); 1073 bsetprops(BP_ROUTER_IP, buf); 1074 } 1075 1076 if (sip->sn_netmask != 0) { 1077 val = (uint8_t *)&sip->sn_netmask; 1078 (void) snprintf(buf, BUFLEN, "%d.%d.%d.%d", 1079 val[0], val[1], val[2], val[3]); 1080 bsetprops(BP_SUBNET_MASK, buf); 1081 } 1082 1083 if (sip->sn_mactype != 4 || sip->sn_maclen != 6) { 1084 bop_printf(NULL, "unsupported mac type %d, mac len %d\n", 1085 sip->sn_mactype, sip->sn_maclen); 1086 } else { 1087 val = sip->sn_macaddr; 1088 (void) snprintf(buf, BUFLEN, "%x:%x:%x:%x:%x:%x", 1089 val[0], val[1], val[2], val[3], val[4], val[5]); 1090 bsetprops(BP_BOOT_MAC, buf); 1091 } 1092 } 1093 1094 #endif /* __xpv */ 1095 1096 static void 1097 build_panic_cmdline(const char *cmd, int cmdlen) 1098 { 1099 int proplen; 1100 size_t arglen; 1101 1102 arglen = sizeof (fastreboot_onpanic_args); 1103 /* 1104 * If we allready have fastreboot-onpanic set to zero, 1105 * don't add them again. 1106 */ 1107 if ((proplen = do_bsys_getproplen(NULL, FASTREBOOT_ONPANIC)) > 0 && 1108 proplen <= sizeof (fastreboot_onpanic_cmdline)) { 1109 (void) do_bsys_getprop(NULL, FASTREBOOT_ONPANIC, 1110 fastreboot_onpanic_cmdline); 1111 if (FASTREBOOT_ONPANIC_NOTSET(fastreboot_onpanic_cmdline)) 1112 arglen = 1; 1113 } 1114 1115 /* 1116 * construct fastreboot_onpanic_cmdline 1117 */ 1118 if (cmdlen + arglen > sizeof (fastreboot_onpanic_cmdline)) { 1119 DBG_MSG("Command line too long: clearing " 1120 FASTREBOOT_ONPANIC "\n"); 1121 fastreboot_onpanic = 0; 1122 } else { 1123 bcopy(cmd, fastreboot_onpanic_cmdline, cmdlen); 1124 if (arglen != 1) 1125 bcopy(fastreboot_onpanic_args, 1126 fastreboot_onpanic_cmdline + cmdlen, arglen); 1127 else 1128 fastreboot_onpanic_cmdline[cmdlen] = 0; 1129 } 1130 } 1131 1132 1133 #ifndef __xpv 1134 /* 1135 * Construct boot command line for Fast Reboot. The saved_cmdline 1136 * is also reported by "eeprom bootcmd". 1137 */ 1138 static void 1139 build_fastboot_cmdline(struct xboot_info *xbp) 1140 { 1141 saved_cmdline_len = strlen(xbp->bi_cmdline) + 1; 1142 if (saved_cmdline_len > FASTBOOT_SAVED_CMDLINE_LEN) { 1143 DBG(saved_cmdline_len); 1144 DBG_MSG("Command line too long: clearing fastreboot_capable\n"); 1145 fastreboot_capable = 0; 1146 } else { 1147 bcopy((void *)(xbp->bi_cmdline), (void *)saved_cmdline, 1148 saved_cmdline_len); 1149 saved_cmdline[saved_cmdline_len - 1] = '\0'; 1150 build_panic_cmdline(saved_cmdline, saved_cmdline_len - 1); 1151 } 1152 } 1153 1154 /* 1155 * Save memory layout, disk drive information, unix and boot archive sizes for 1156 * Fast Reboot. 1157 */ 1158 static void 1159 save_boot_info(struct xboot_info *xbi) 1160 { 1161 multiboot_info_t *mbi = xbi->bi_mb_info; 1162 struct boot_modules *modp; 1163 int i; 1164 1165 bcopy(mbi, &saved_mbi, sizeof (multiboot_info_t)); 1166 if (mbi->mmap_length > sizeof (saved_mmap)) { 1167 DBG_MSG("mbi->mmap_length too big: clearing " 1168 "fastreboot_capable\n"); 1169 fastreboot_capable = 0; 1170 } else { 1171 bcopy((void *)(uintptr_t)mbi->mmap_addr, (void *)saved_mmap, 1172 mbi->mmap_length); 1173 } 1174 1175 if ((mbi->flags & MB_INFO_DRIVE_INFO) != 0) { 1176 if (mbi->drives_length > sizeof (saved_drives)) { 1177 DBG(mbi->drives_length); 1178 DBG_MSG("mbi->drives_length too big: clearing " 1179 "fastreboot_capable\n"); 1180 fastreboot_capable = 0; 1181 } else { 1182 bcopy((void *)(uintptr_t)mbi->drives_addr, 1183 (void *)saved_drives, mbi->drives_length); 1184 } 1185 } else { 1186 saved_mbi.drives_length = 0; 1187 saved_mbi.drives_addr = NULL; 1188 } 1189 1190 /* 1191 * Current file sizes. Used by fastboot.c to figure out how much 1192 * memory to reserve for panic reboot. 1193 * Use the module list from the dboot-constructed xboot_info 1194 * instead of the list referenced by the multiboot structure 1195 * because that structure may not be addressable now. 1196 */ 1197 saved_file_size[FASTBOOT_NAME_UNIX] = FOUR_MEG - PAGESIZE; 1198 for (i = 0, modp = (struct boot_modules *)(uintptr_t)xbi->bi_modules; 1199 i < xbi->bi_module_cnt; i++, modp++) { 1200 saved_file_size[FASTBOOT_NAME_BOOTARCHIVE] += modp->bm_size; 1201 } 1202 } 1203 #endif /* __xpv */ 1204 1205 /* 1206 * Import boot environment module variables as properties, applying 1207 * blacklist filter for variables we know we will not use. 1208 * 1209 * Since the environment can be relatively large, containing many variables 1210 * used only for boot loader purposes, we will use a blacklist based filter. 1211 * To keep the blacklist from growing too large, we use prefix based filtering. 1212 * This is possible because in many cases, the loader variable names are 1213 * using a structured layout. 1214 * 1215 * We will not overwrite already set properties. 1216 */ 1217 static struct bop_blacklist { 1218 const char *bl_name; 1219 int bl_name_len; 1220 } bop_prop_blacklist[] = { 1221 { "ISADIR", sizeof ("ISADIR") }, 1222 { "acpi", sizeof ("acpi") }, 1223 { "autoboot_delay", sizeof ("autoboot_delay") }, 1224 { "autoboot_delay", sizeof ("autoboot_delay") }, 1225 { "beansi_", sizeof ("beansi_") }, 1226 { "beastie", sizeof ("beastie") }, 1227 { "bemenu", sizeof ("bemenu") }, 1228 { "boot.", sizeof ("boot.") }, 1229 { "bootenv", sizeof ("bootenv") }, 1230 { "currdev", sizeof ("currdev") }, 1231 { "dhcp.", sizeof ("dhcp.") }, 1232 { "interpret", sizeof ("interpret") }, 1233 { "kernel", sizeof ("kernel") }, 1234 { "loaddev", sizeof ("loaddev") }, 1235 { "loader_", sizeof ("loader_") }, 1236 { "module_path", sizeof ("module_path") }, 1237 { "nfs.", sizeof ("nfs.") }, 1238 { "pcibios", sizeof ("pcibios") }, 1239 { "prompt", sizeof ("prompt") }, 1240 { "smbios", sizeof ("smbios") }, 1241 { "tem", sizeof ("tem") }, 1242 { "twiddle_divisor", sizeof ("twiddle_divisor") }, 1243 { "zfs_be", sizeof ("zfs_be") }, 1244 }; 1245 1246 /* 1247 * Match the name against prefixes in above blacklist. If the match was 1248 * found, this name is blacklisted. 1249 */ 1250 static boolean_t 1251 name_is_blacklisted(const char *name) 1252 { 1253 int i, n; 1254 1255 n = sizeof (bop_prop_blacklist) / sizeof (bop_prop_blacklist[0]); 1256 for (i = 0; i < n; i++) { 1257 if (strncmp(bop_prop_blacklist[i].bl_name, name, 1258 bop_prop_blacklist[i].bl_name_len - 1) == 0) { 1259 return (B_TRUE); 1260 } 1261 } 1262 return (B_FALSE); 1263 } 1264 1265 static void 1266 process_boot_environment(struct boot_modules *benv) 1267 { 1268 char *env, *ptr, *name, *value; 1269 uint32_t size, name_len, value_len; 1270 1271 if (benv == NULL || benv->bm_type != BMT_ENV) 1272 return; 1273 ptr = env = benv->bm_addr; 1274 size = benv->bm_size; 1275 do { 1276 name = ptr; 1277 /* find '=' */ 1278 while (*ptr != '=') { 1279 ptr++; 1280 if (ptr > env + size) /* Something is very wrong. */ 1281 return; 1282 } 1283 name_len = ptr - name; 1284 if (sizeof (buffer) <= name_len) 1285 continue; 1286 1287 (void) strncpy(buffer, name, sizeof (buffer)); 1288 buffer[name_len] = '\0'; 1289 name = buffer; 1290 1291 value_len = 0; 1292 value = ++ptr; 1293 while ((uintptr_t)ptr - (uintptr_t)env < size) { 1294 if (*ptr == '\0') { 1295 ptr++; 1296 value_len = (uintptr_t)ptr - (uintptr_t)env; 1297 break; 1298 } 1299 ptr++; 1300 } 1301 1302 /* Did we reach the end of the module? */ 1303 if (value_len == 0) 1304 return; 1305 1306 if (*value == '\0') 1307 continue; 1308 1309 /* Is this property already set? */ 1310 if (do_bsys_getproplen(NULL, name) >= 0) 1311 continue; 1312 1313 if (name_is_blacklisted(name) == B_TRUE) 1314 continue; 1315 1316 /* Create new property. */ 1317 bsetprops(name, value); 1318 1319 /* Avoid reading past the module end. */ 1320 if (size <= (uintptr_t)ptr - (uintptr_t)env) 1321 return; 1322 } while (*ptr != '\0'); 1323 } 1324 1325 /* 1326 * 1st pass at building the table of boot properties. This includes: 1327 * - values set on the command line: -B a=x,b=y,c=z .... 1328 * - known values we just compute (ie. from xbp) 1329 * - values from /boot/solaris/bootenv.rc (ie. eeprom(1m) values) 1330 * 1331 * the grub command line looked like: 1332 * kernel boot-file [-B prop=value[,prop=value]...] [boot-args] 1333 * 1334 * whoami is the same as boot-file 1335 */ 1336 static void 1337 build_boot_properties(struct xboot_info *xbp) 1338 { 1339 char *name; 1340 int name_len; 1341 char *value; 1342 int value_len; 1343 struct boot_modules *bm, *rdbm, *benv = NULL; 1344 char *propbuf; 1345 int quoted = 0; 1346 int boot_arg_len; 1347 uint_t i, midx; 1348 char modid[32]; 1349 #ifndef __xpv 1350 static int stdout_val = 0; 1351 uchar_t boot_device; 1352 char str[3]; 1353 #endif 1354 1355 /* 1356 * These have to be done first, so that kobj_mount_root() works 1357 */ 1358 DBG_MSG("Building boot properties\n"); 1359 propbuf = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, 0); 1360 DBG((uintptr_t)propbuf); 1361 if (xbp->bi_module_cnt > 0) { 1362 bm = xbp->bi_modules; 1363 rdbm = NULL; 1364 for (midx = i = 0; i < xbp->bi_module_cnt; i++) { 1365 if (bm[i].bm_type == BMT_ROOTFS) { 1366 rdbm = &bm[i]; 1367 continue; 1368 } 1369 if (bm[i].bm_type == BMT_HASH || bm[i].bm_name == NULL) 1370 continue; 1371 1372 if (bm[i].bm_type == BMT_ENV) { 1373 if (benv == NULL) 1374 benv = &bm[i]; 1375 else 1376 continue; 1377 } 1378 1379 (void) snprintf(modid, sizeof (modid), 1380 "module-name-%u", midx); 1381 bsetprops(modid, (char *)bm[i].bm_name); 1382 (void) snprintf(modid, sizeof (modid), 1383 "module-addr-%u", midx); 1384 bsetprop64(modid, (uint64_t)(uintptr_t)bm[i].bm_addr); 1385 (void) snprintf(modid, sizeof (modid), 1386 "module-size-%u", midx); 1387 bsetprop64(modid, (uint64_t)bm[i].bm_size); 1388 ++midx; 1389 } 1390 if (rdbm != NULL) { 1391 bsetprop64("ramdisk_start", 1392 (uint64_t)(uintptr_t)rdbm->bm_addr); 1393 bsetprop64("ramdisk_end", 1394 (uint64_t)(uintptr_t)rdbm->bm_addr + rdbm->bm_size); 1395 } 1396 } 1397 1398 /* 1399 * If there are any boot time modules or hashes present, then disable 1400 * fast reboot. 1401 */ 1402 if (xbp->bi_module_cnt > 1) { 1403 fastreboot_disable(FBNS_BOOTMOD); 1404 } 1405 1406 #ifndef __xpv 1407 /* 1408 * Disable fast reboot if we're using the Multiboot 2 boot protocol, 1409 * since we don't currently support MB2 info and module relocation. 1410 * Note that fast reboot will have already been disabled if multiple 1411 * modules are present, since the current implementation assumes that 1412 * we only have a single module, the boot_archive. 1413 */ 1414 if (xbp->bi_mb_version != 1) { 1415 fastreboot_disable(FBNS_MULTIBOOT2); 1416 } 1417 #endif 1418 1419 DBG_MSG("Parsing command line for boot properties\n"); 1420 value = xbp->bi_cmdline; 1421 1422 /* 1423 * allocate memory to collect boot_args into 1424 */ 1425 boot_arg_len = strlen(xbp->bi_cmdline) + 1; 1426 boot_args = do_bsys_alloc(NULL, NULL, boot_arg_len, MMU_PAGESIZE); 1427 boot_args[0] = 0; 1428 boot_arg_len = 0; 1429 1430 #ifdef __xpv 1431 /* 1432 * Xen puts a lot of device information in front of the kernel name 1433 * let's grab them and make them boot properties. The first 1434 * string w/o an "=" in it will be the boot-file property. 1435 */ 1436 (void) strcpy(namebuf, "xpv-"); 1437 for (;;) { 1438 /* 1439 * get to next property 1440 */ 1441 while (ISSPACE(*value)) 1442 ++value; 1443 name = value; 1444 /* 1445 * look for an "=" 1446 */ 1447 while (*value && !ISSPACE(*value) && *value != '=') { 1448 value++; 1449 } 1450 if (*value != '=') { /* no "=" in the property */ 1451 value = name; 1452 break; 1453 } 1454 name_len = value - name; 1455 value_len = 0; 1456 /* 1457 * skip over the "=" 1458 */ 1459 value++; 1460 while (value[value_len] && !ISSPACE(value[value_len])) { 1461 ++value_len; 1462 } 1463 /* 1464 * build property name with "xpv-" prefix 1465 */ 1466 if (name_len + 4 > 32) { /* skip if name too long */ 1467 value += value_len; 1468 continue; 1469 } 1470 bcopy(name, &namebuf[4], name_len); 1471 name_len += 4; 1472 namebuf[name_len] = 0; 1473 bcopy(value, propbuf, value_len); 1474 propbuf[value_len] = 0; 1475 bsetprops(namebuf, propbuf); 1476 1477 /* 1478 * xpv-root is set to the logical disk name of the xen 1479 * VBD when booting from a disk-based filesystem. 1480 */ 1481 if (strcmp(namebuf, "xpv-root") == 0) 1482 xen_vbdroot_props(propbuf); 1483 /* 1484 * While we're here, if we have a "xpv-nfsroot" property 1485 * then we need to set "fstype" to "nfs" so we mount 1486 * our root from the nfs server. Also parse the xpv-nfsroot 1487 * property to create the properties that nfs_mountroot will 1488 * need to find the root and mount it. 1489 */ 1490 if (strcmp(namebuf, "xpv-nfsroot") == 0) 1491 xen_nfsroot_props(propbuf); 1492 1493 if (strcmp(namebuf, "xpv-ip") == 0) 1494 xen_ip_props(propbuf); 1495 value += value_len; 1496 } 1497 #endif 1498 1499 while (ISSPACE(*value)) 1500 ++value; 1501 /* 1502 * value now points at the boot-file 1503 */ 1504 value_len = 0; 1505 while (value[value_len] && !ISSPACE(value[value_len])) 1506 ++value_len; 1507 if (value_len > 0) { 1508 whoami = propbuf; 1509 bcopy(value, whoami, value_len); 1510 whoami[value_len] = 0; 1511 bsetprops("boot-file", whoami); 1512 /* 1513 * strip leading path stuff from whoami, so running from 1514 * PXE/miniroot makes sense. 1515 */ 1516 if (strstr(whoami, "/platform/") != NULL) 1517 whoami = strstr(whoami, "/platform/"); 1518 bsetprops("whoami", whoami); 1519 } 1520 1521 /* 1522 * Values forcibly set boot properties on the command line via -B. 1523 * Allow use of quotes in values. Other stuff goes on kernel 1524 * command line. 1525 */ 1526 name = value + value_len; 1527 while (*name != 0) { 1528 /* 1529 * anything not " -B" is copied to the command line 1530 */ 1531 if (!ISSPACE(name[0]) || name[1] != '-' || name[2] != 'B') { 1532 boot_args[boot_arg_len++] = *name; 1533 boot_args[boot_arg_len] = 0; 1534 ++name; 1535 continue; 1536 } 1537 1538 /* 1539 * skip the " -B" and following white space 1540 */ 1541 name += 3; 1542 while (ISSPACE(*name)) 1543 ++name; 1544 while (*name && !ISSPACE(*name)) { 1545 value = strstr(name, "="); 1546 if (value == NULL) 1547 break; 1548 name_len = value - name; 1549 ++value; 1550 value_len = 0; 1551 quoted = 0; 1552 for (; ; ++value_len) { 1553 if (!value[value_len]) 1554 break; 1555 1556 /* 1557 * is this value quoted? 1558 */ 1559 if (value_len == 0 && 1560 (value[0] == '\'' || value[0] == '"')) { 1561 quoted = value[0]; 1562 ++value_len; 1563 } 1564 1565 /* 1566 * In the quote accept any character, 1567 * but look for ending quote. 1568 */ 1569 if (quoted) { 1570 if (value[value_len] == quoted) 1571 quoted = 0; 1572 continue; 1573 } 1574 1575 /* 1576 * a comma or white space ends the value 1577 */ 1578 if (value[value_len] == ',' || 1579 ISSPACE(value[value_len])) 1580 break; 1581 } 1582 1583 if (value_len == 0) { 1584 bsetprop(name, name_len, "true", 5); 1585 } else { 1586 char *v = value; 1587 int l = value_len; 1588 if (v[0] == v[l - 1] && 1589 (v[0] == '\'' || v[0] == '"')) { 1590 ++v; 1591 l -= 2; 1592 } 1593 bcopy(v, propbuf, l); 1594 propbuf[l] = '\0'; 1595 bsetprop(name, name_len, propbuf, 1596 l + 1); 1597 } 1598 name = value + value_len; 1599 while (*name == ',') 1600 ++name; 1601 } 1602 } 1603 1604 /* 1605 * set boot-args property 1606 * 1275 name is bootargs, so set 1607 * that too 1608 */ 1609 bsetprops("boot-args", boot_args); 1610 bsetprops("bootargs", boot_args); 1611 1612 process_boot_environment(benv); 1613 1614 #ifndef __xpv 1615 /* 1616 * Build boot command line for Fast Reboot 1617 */ 1618 build_fastboot_cmdline(xbp); 1619 1620 if (xbp->bi_mb_version == 1) { 1621 multiboot_info_t *mbi = xbp->bi_mb_info; 1622 int netboot; 1623 struct sol_netinfo *sip; 1624 1625 /* 1626 * set the BIOS boot device from GRUB 1627 */ 1628 netboot = 0; 1629 1630 /* 1631 * Save various boot information for Fast Reboot 1632 */ 1633 save_boot_info(xbp); 1634 1635 if (mbi != NULL && mbi->flags & MB_INFO_BOOTDEV) { 1636 boot_device = mbi->boot_device >> 24; 1637 if (boot_device == 0x20) 1638 netboot++; 1639 str[0] = (boot_device >> 4) + '0'; 1640 str[1] = (boot_device & 0xf) + '0'; 1641 str[2] = 0; 1642 bsetprops("bios-boot-device", str); 1643 } else { 1644 netboot = 1; 1645 } 1646 1647 /* 1648 * In the netboot case, drives_info is overloaded with the 1649 * dhcp ack. This is not multiboot compliant and requires 1650 * special pxegrub! 1651 */ 1652 if (netboot && mbi->drives_length != 0) { 1653 sip = (struct sol_netinfo *)(uintptr_t)mbi->drives_addr; 1654 if (sip->sn_infotype == SN_TYPE_BOOTP) 1655 bsetprop("bootp-response", 1656 sizeof ("bootp-response"), 1657 (void *)(uintptr_t)mbi->drives_addr, 1658 mbi->drives_length); 1659 else if (sip->sn_infotype == SN_TYPE_RARP) 1660 setup_rarp_props(sip); 1661 } 1662 } else { 1663 multiboot2_info_header_t *mbi = xbp->bi_mb_info; 1664 multiboot_tag_bootdev_t *bootdev = NULL; 1665 multiboot_tag_network_t *netdev = NULL; 1666 1667 if (mbi != NULL) { 1668 bootdev = dboot_multiboot2_find_tag(mbi, 1669 MULTIBOOT_TAG_TYPE_BOOTDEV); 1670 netdev = dboot_multiboot2_find_tag(mbi, 1671 MULTIBOOT_TAG_TYPE_NETWORK); 1672 } 1673 if (bootdev != NULL) { 1674 DBG(bootdev->mb_biosdev); 1675 boot_device = bootdev->mb_biosdev; 1676 str[0] = (boot_device >> 4) + '0'; 1677 str[1] = (boot_device & 0xf) + '0'; 1678 str[2] = 0; 1679 bsetprops("bios-boot-device", str); 1680 } 1681 if (netdev != NULL) { 1682 bsetprop("bootp-response", sizeof ("bootp-response"), 1683 (void *)(uintptr_t)netdev->mb_dhcpack, 1684 netdev->mb_size - 1685 sizeof (multiboot_tag_network_t)); 1686 } 1687 } 1688 1689 bsetprop("stdout", strlen("stdout"), 1690 &stdout_val, sizeof (stdout_val)); 1691 #endif /* __xpv */ 1692 1693 /* 1694 * more conjured up values for made up things.... 1695 */ 1696 #if defined(__xpv) 1697 bsetprops("mfg-name", "i86xpv"); 1698 bsetprops("impl-arch-name", "i86xpv"); 1699 #else 1700 bsetprops("mfg-name", "i86pc"); 1701 bsetprops("impl-arch-name", "i86pc"); 1702 #endif 1703 1704 /* 1705 * Build firmware-provided system properties 1706 */ 1707 build_firmware_properties(xbp); 1708 1709 /* 1710 * XXPV 1711 * 1712 * Find out what these are: 1713 * - cpuid_feature_ecx_include 1714 * - cpuid_feature_ecx_exclude 1715 * - cpuid_feature_edx_include 1716 * - cpuid_feature_edx_exclude 1717 * 1718 * Find out what these are in multiboot: 1719 * - netdev-path 1720 * - fstype 1721 */ 1722 } 1723 1724 #ifdef __xpv 1725 /* 1726 * Under the Hypervisor, memory usable for DMA may be scarce. One 1727 * very likely large pool of DMA friendly memory is occupied by 1728 * the boot_archive, as it was loaded by grub into low MFNs. 1729 * 1730 * Here we free up that memory by copying the boot archive to what are 1731 * likely higher MFN pages and then swapping the mfn/pfn mappings. 1732 */ 1733 #define PFN_2GIG 0x80000 1734 static void 1735 relocate_boot_archive(struct xboot_info *xbp) 1736 { 1737 mfn_t max_mfn = HYPERVISOR_memory_op(XENMEM_maximum_ram_page, NULL); 1738 struct boot_modules *bm = xbp->bi_modules; 1739 uintptr_t va; 1740 pfn_t va_pfn; 1741 mfn_t va_mfn; 1742 caddr_t copy; 1743 pfn_t copy_pfn; 1744 mfn_t copy_mfn; 1745 size_t len; 1746 int slop; 1747 int total = 0; 1748 int relocated = 0; 1749 int mmu_update_return; 1750 mmu_update_t t[2]; 1751 x86pte_t pte; 1752 1753 /* 1754 * If all MFN's are below 2Gig, don't bother doing this. 1755 */ 1756 if (max_mfn < PFN_2GIG) 1757 return; 1758 if (xbp->bi_module_cnt < 1) { 1759 DBG_MSG("no boot_archive!"); 1760 return; 1761 } 1762 1763 DBG_MSG("moving boot_archive to high MFN memory\n"); 1764 va = (uintptr_t)bm->bm_addr; 1765 len = bm->bm_size; 1766 slop = va & MMU_PAGEOFFSET; 1767 if (slop) { 1768 va += MMU_PAGESIZE - slop; 1769 len -= MMU_PAGESIZE - slop; 1770 } 1771 len = P2ALIGN(len, MMU_PAGESIZE); 1772 1773 /* 1774 * Go through all boot_archive pages, swapping any low MFN pages 1775 * with memory at next_phys. 1776 */ 1777 while (len != 0) { 1778 ++total; 1779 va_pfn = mmu_btop(va - ONE_GIG); 1780 va_mfn = mfn_list[va_pfn]; 1781 if (mfn_list[va_pfn] < PFN_2GIG) { 1782 copy = kbm_remap_window(next_phys, 1); 1783 bcopy((void *)va, copy, MMU_PAGESIZE); 1784 copy_pfn = mmu_btop(next_phys); 1785 copy_mfn = mfn_list[copy_pfn]; 1786 1787 pte = mfn_to_ma(copy_mfn) | PT_NOCONSIST | PT_VALID; 1788 if (HYPERVISOR_update_va_mapping(va, pte, 1789 UVMF_INVLPG | UVMF_LOCAL)) 1790 bop_panic("relocate_boot_archive(): " 1791 "HYPERVISOR_update_va_mapping() failed"); 1792 1793 mfn_list[va_pfn] = copy_mfn; 1794 mfn_list[copy_pfn] = va_mfn; 1795 1796 t[0].ptr = mfn_to_ma(copy_mfn) | MMU_MACHPHYS_UPDATE; 1797 t[0].val = va_pfn; 1798 t[1].ptr = mfn_to_ma(va_mfn) | MMU_MACHPHYS_UPDATE; 1799 t[1].val = copy_pfn; 1800 if (HYPERVISOR_mmu_update(t, 2, &mmu_update_return, 1801 DOMID_SELF) != 0 || mmu_update_return != 2) 1802 bop_panic("relocate_boot_archive(): " 1803 "HYPERVISOR_mmu_update() failed"); 1804 1805 next_phys += MMU_PAGESIZE; 1806 ++relocated; 1807 } 1808 len -= MMU_PAGESIZE; 1809 va += MMU_PAGESIZE; 1810 } 1811 DBG_MSG("Relocated pages:\n"); 1812 DBG(relocated); 1813 DBG_MSG("Out of total pages:\n"); 1814 DBG(total); 1815 } 1816 #endif /* __xpv */ 1817 1818 #if !defined(__xpv) 1819 /* 1820 * Install a temporary IDT that lets us catch errors in the boot time code. 1821 * We shouldn't get any faults at all while this is installed, so we'll 1822 * just generate a traceback and exit. 1823 */ 1824 #ifdef __amd64 1825 static const int bcode_sel = B64CODE_SEL; 1826 #else 1827 static const int bcode_sel = B32CODE_SEL; 1828 #endif 1829 1830 /* 1831 * simple description of a stack frame (args are 32 bit only currently) 1832 */ 1833 typedef struct bop_frame { 1834 struct bop_frame *old_frame; 1835 pc_t retaddr; 1836 long arg[1]; 1837 } bop_frame_t; 1838 1839 void 1840 bop_traceback(bop_frame_t *frame) 1841 { 1842 pc_t pc; 1843 int cnt; 1844 char *ksym; 1845 ulong_t off; 1846 #if defined(__i386) 1847 int a; 1848 #endif 1849 1850 bop_printf(NULL, "Stack traceback:\n"); 1851 for (cnt = 0; cnt < 30; ++cnt) { /* up to 30 frames */ 1852 pc = frame->retaddr; 1853 if (pc == 0) 1854 break; 1855 ksym = kobj_getsymname(pc, &off); 1856 if (ksym) 1857 bop_printf(NULL, " %s+%lx", ksym, off); 1858 else 1859 bop_printf(NULL, " 0x%lx", pc); 1860 1861 frame = frame->old_frame; 1862 if (frame == 0) { 1863 bop_printf(NULL, "\n"); 1864 break; 1865 } 1866 #if defined(__i386) 1867 for (a = 0; a < 6; ++a) { /* try for 6 args */ 1868 if ((void *)&frame->arg[a] == (void *)frame->old_frame) 1869 break; 1870 if (a == 0) 1871 bop_printf(NULL, "("); 1872 else 1873 bop_printf(NULL, ","); 1874 bop_printf(NULL, "0x%lx", frame->arg[a]); 1875 } 1876 bop_printf(NULL, ")"); 1877 #endif 1878 bop_printf(NULL, "\n"); 1879 } 1880 } 1881 1882 struct trapframe { 1883 ulong_t error_code; /* optional */ 1884 ulong_t inst_ptr; 1885 ulong_t code_seg; 1886 ulong_t flags_reg; 1887 #ifdef __amd64 1888 ulong_t stk_ptr; 1889 ulong_t stk_seg; 1890 #endif 1891 }; 1892 1893 void 1894 bop_trap(ulong_t *tfp) 1895 { 1896 struct trapframe *tf = (struct trapframe *)tfp; 1897 bop_frame_t fakeframe; 1898 static int depth = 0; 1899 1900 /* 1901 * Check for an infinite loop of traps. 1902 */ 1903 if (++depth > 2) 1904 bop_panic("Nested trap"); 1905 1906 bop_printf(NULL, "Unexpected trap\n"); 1907 1908 /* 1909 * adjust the tf for optional error_code by detecting the code selector 1910 */ 1911 if (tf->code_seg != bcode_sel) 1912 tf = (struct trapframe *)(tfp - 1); 1913 else 1914 bop_printf(NULL, "error code 0x%lx\n", 1915 tf->error_code & 0xffffffff); 1916 1917 bop_printf(NULL, "instruction pointer 0x%lx\n", tf->inst_ptr); 1918 bop_printf(NULL, "code segment 0x%lx\n", tf->code_seg & 0xffff); 1919 bop_printf(NULL, "flags register 0x%lx\n", tf->flags_reg); 1920 #ifdef __amd64 1921 bop_printf(NULL, "return %%rsp 0x%lx\n", tf->stk_ptr); 1922 bop_printf(NULL, "return %%ss 0x%lx\n", tf->stk_seg & 0xffff); 1923 #endif 1924 1925 /* grab %[er]bp pushed by our code from the stack */ 1926 fakeframe.old_frame = (bop_frame_t *)*(tfp - 3); 1927 fakeframe.retaddr = (pc_t)tf->inst_ptr; 1928 bop_printf(NULL, "Attempting stack backtrace:\n"); 1929 bop_traceback(&fakeframe); 1930 bop_panic("unexpected trap in early boot"); 1931 } 1932 1933 extern void bop_trap_handler(void); 1934 1935 static gate_desc_t *bop_idt; 1936 1937 static desctbr_t bop_idt_info; 1938 1939 static void 1940 bop_idt_init(void) 1941 { 1942 int t; 1943 1944 bop_idt = (gate_desc_t *) 1945 do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE); 1946 bzero(bop_idt, MMU_PAGESIZE); 1947 for (t = 0; t < NIDT; ++t) { 1948 /* 1949 * Note that since boot runs without a TSS, the 1950 * double fault handler cannot use an alternate stack 1951 * (64-bit) or a task gate (32-bit). 1952 */ 1953 set_gatesegd(&bop_idt[t], &bop_trap_handler, bcode_sel, 1954 SDT_SYSIGT, TRP_KPL, 0); 1955 } 1956 bop_idt_info.dtr_limit = (NIDT * sizeof (gate_desc_t)) - 1; 1957 bop_idt_info.dtr_base = (uintptr_t)bop_idt; 1958 wr_idtr(&bop_idt_info); 1959 } 1960 #endif /* !defined(__xpv) */ 1961 1962 /* 1963 * This is where we enter the kernel. It dummies up the boot_ops and 1964 * boot_syscalls vectors and jumps off to _kobj_boot() 1965 */ 1966 void 1967 _start(struct xboot_info *xbp) 1968 { 1969 bootops_t *bops = &bootop; 1970 extern void _kobj_boot(); 1971 1972 /* 1973 * 1st off - initialize the console for any error messages 1974 */ 1975 xbootp = xbp; 1976 #ifdef __xpv 1977 HYPERVISOR_shared_info = (void *)xbp->bi_shared_info; 1978 xen_info = xbp->bi_xen_start_info; 1979 #endif 1980 1981 #ifndef __xpv 1982 if (*((uint32_t *)(FASTBOOT_SWTCH_PA + FASTBOOT_STACK_OFFSET)) == 1983 FASTBOOT_MAGIC) { 1984 post_fastreboot = 1; 1985 *((uint32_t *)(FASTBOOT_SWTCH_PA + FASTBOOT_STACK_OFFSET)) = 0; 1986 } 1987 #endif 1988 1989 bcons_init(xbp); 1990 have_console = 1; 1991 1992 /* 1993 * enable debugging 1994 */ 1995 if (find_boot_prop("kbm_debug") != NULL) 1996 kbm_debug = 1; 1997 1998 DBG_MSG("\n\n*** Entered Solaris in _start() cmdline is: "); 1999 DBG_MSG((char *)xbp->bi_cmdline); 2000 DBG_MSG("\n\n\n"); 2001 2002 /* 2003 * physavail is no longer used by startup 2004 */ 2005 bm.physinstalled = xbp->bi_phys_install; 2006 bm.pcimem = xbp->bi_pcimem; 2007 bm.rsvdmem = xbp->bi_rsvdmem; 2008 bm.physavail = NULL; 2009 2010 /* 2011 * initialize the boot time allocator 2012 */ 2013 next_phys = xbp->bi_next_paddr; 2014 DBG(next_phys); 2015 next_virt = (uintptr_t)xbp->bi_next_vaddr; 2016 DBG(next_virt); 2017 DBG_MSG("Initializing boot time memory management..."); 2018 #ifdef __xpv 2019 { 2020 xen_platform_parameters_t p; 2021 2022 /* This call shouldn't fail, dboot already did it once. */ 2023 (void) HYPERVISOR_xen_version(XENVER_platform_parameters, &p); 2024 mfn_to_pfn_mapping = (pfn_t *)(xen_virt_start = p.virt_start); 2025 DBG(xen_virt_start); 2026 } 2027 #endif 2028 kbm_init(xbp); 2029 DBG_MSG("done\n"); 2030 2031 /* 2032 * Fill in the bootops vector 2033 */ 2034 bops->bsys_version = BO_VERSION; 2035 bops->boot_mem = &bm; 2036 bops->bsys_alloc = do_bsys_alloc; 2037 bops->bsys_free = do_bsys_free; 2038 bops->bsys_getproplen = do_bsys_getproplen; 2039 bops->bsys_getprop = do_bsys_getprop; 2040 bops->bsys_nextprop = do_bsys_nextprop; 2041 bops->bsys_printf = bop_printf; 2042 bops->bsys_doint = do_bsys_doint; 2043 2044 /* 2045 * BOP_EALLOC() is no longer needed 2046 */ 2047 bops->bsys_ealloc = do_bsys_ealloc; 2048 2049 #ifdef __xpv 2050 /* 2051 * On domain 0 we need to free up some physical memory that is 2052 * usable for DMA. Since GRUB loaded the boot_archive, it is 2053 * sitting in low MFN memory. We'll relocated the boot archive 2054 * pages to high PFN memory. 2055 */ 2056 if (DOMAIN_IS_INITDOMAIN(xen_info)) 2057 relocate_boot_archive(xbp); 2058 #endif 2059 2060 #ifndef __xpv 2061 /* 2062 * Install an IDT to catch early pagefaults (shouldn't have any). 2063 * Also needed for kmdb. 2064 */ 2065 bop_idt_init(); 2066 #endif 2067 2068 /* 2069 * Start building the boot properties from the command line 2070 */ 2071 DBG_MSG("Initializing boot properties:\n"); 2072 build_boot_properties(xbp); 2073 2074 if (find_boot_prop("prom_debug") || kbm_debug) { 2075 char *value; 2076 2077 value = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE); 2078 boot_prop_display(value); 2079 } 2080 2081 /* 2082 * jump into krtld... 2083 */ 2084 _kobj_boot(&bop_sysp, NULL, bops, NULL); 2085 } 2086 2087 2088 /*ARGSUSED*/ 2089 static caddr_t 2090 no_more_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align) 2091 { 2092 panic("Attempt to bsys_alloc() too late\n"); 2093 return (NULL); 2094 } 2095 2096 /*ARGSUSED*/ 2097 static void 2098 no_more_free(bootops_t *bop, caddr_t virt, size_t size) 2099 { 2100 panic("Attempt to bsys_free() too late\n"); 2101 } 2102 2103 void 2104 bop_no_more_mem(void) 2105 { 2106 DBG(total_bop_alloc_scratch); 2107 DBG(total_bop_alloc_kernel); 2108 bootops->bsys_alloc = no_more_alloc; 2109 bootops->bsys_free = no_more_free; 2110 } 2111 2112 2113 /* 2114 * Set ACPI firmware properties 2115 */ 2116 2117 static caddr_t 2118 vmap_phys(size_t length, paddr_t pa) 2119 { 2120 paddr_t start, end; 2121 caddr_t va; 2122 size_t len, page; 2123 2124 #ifdef __xpv 2125 pa = pfn_to_pa(xen_assign_pfn(mmu_btop(pa))) | (pa & MMU_PAGEOFFSET); 2126 #endif 2127 start = P2ALIGN(pa, MMU_PAGESIZE); 2128 end = P2ROUNDUP(pa + length, MMU_PAGESIZE); 2129 len = end - start; 2130 va = (caddr_t)alloc_vaddr(len, MMU_PAGESIZE); 2131 for (page = 0; page < len; page += MMU_PAGESIZE) 2132 kbm_map((uintptr_t)va + page, start + page, 0, 0); 2133 return (va + (pa & MMU_PAGEOFFSET)); 2134 } 2135 2136 static uint8_t 2137 checksum_table(uint8_t *tp, size_t len) 2138 { 2139 uint8_t sum = 0; 2140 2141 while (len-- > 0) 2142 sum += *tp++; 2143 2144 return (sum); 2145 } 2146 2147 static int 2148 valid_rsdp(ACPI_TABLE_RSDP *rp) 2149 { 2150 2151 /* validate the V1.x checksum */ 2152 if (checksum_table((uint8_t *)rp, ACPI_RSDP_CHECKSUM_LENGTH) != 0) 2153 return (0); 2154 2155 /* If pre-ACPI 2.0, this is a valid RSDP */ 2156 if (rp->Revision < 2) 2157 return (1); 2158 2159 /* validate the V2.x checksum */ 2160 if (checksum_table((uint8_t *)rp, ACPI_RSDP_XCHECKSUM_LENGTH) != 0) 2161 return (0); 2162 2163 return (1); 2164 } 2165 2166 /* 2167 * Scan memory range for an RSDP; 2168 * see ACPI 3.0 Spec, 5.2.5.1 2169 */ 2170 static ACPI_TABLE_RSDP * 2171 scan_rsdp(paddr_t start, paddr_t end) 2172 { 2173 ssize_t len = end - start; 2174 caddr_t ptr; 2175 2176 ptr = vmap_phys(len, start); 2177 while (len > 0) { 2178 if (strncmp(ptr, ACPI_SIG_RSDP, strlen(ACPI_SIG_RSDP)) == 0 && 2179 valid_rsdp((ACPI_TABLE_RSDP *)ptr)) 2180 return ((ACPI_TABLE_RSDP *)ptr); 2181 2182 ptr += ACPI_RSDP_SCAN_STEP; 2183 len -= ACPI_RSDP_SCAN_STEP; 2184 } 2185 2186 return (NULL); 2187 } 2188 2189 /* 2190 * Refer to ACPI 3.0 Spec, section 5.2.5.1 to understand this function 2191 */ 2192 static ACPI_TABLE_RSDP * 2193 find_rsdp() 2194 { 2195 ACPI_TABLE_RSDP *rsdp; 2196 uint64_t rsdp_val = 0; 2197 uint16_t *ebda_seg; 2198 paddr_t ebda_addr; 2199 2200 /* check for "acpi-root-tab" property */ 2201 if (do_bsys_getproplen(NULL, "acpi-root-tab") == sizeof (uint64_t)) { 2202 (void) do_bsys_getprop(NULL, "acpi-root-tab", &rsdp_val); 2203 if (rsdp_val != 0) { 2204 rsdp = scan_rsdp(rsdp_val, rsdp_val + sizeof (*rsdp)); 2205 if (rsdp != NULL) { 2206 if (kbm_debug) { 2207 bop_printf(NULL, 2208 "Using RSDP from bootloader: " 2209 "0x%p\n", (void *)rsdp); 2210 } 2211 return (rsdp); 2212 } 2213 } 2214 } 2215 2216 /* 2217 * Get the EBDA segment and scan the first 1K 2218 */ 2219 ebda_seg = (uint16_t *)vmap_phys(sizeof (uint16_t), 2220 ACPI_EBDA_PTR_LOCATION); 2221 ebda_addr = *ebda_seg << 4; 2222 rsdp = scan_rsdp(ebda_addr, ebda_addr + ACPI_EBDA_WINDOW_SIZE); 2223 if (rsdp == NULL) 2224 /* if EBDA doesn't contain RSDP, look in BIOS memory */ 2225 rsdp = scan_rsdp(ACPI_HI_RSDP_WINDOW_BASE, 2226 ACPI_HI_RSDP_WINDOW_BASE + ACPI_HI_RSDP_WINDOW_SIZE); 2227 return (rsdp); 2228 } 2229 2230 static ACPI_TABLE_HEADER * 2231 map_fw_table(paddr_t table_addr) 2232 { 2233 ACPI_TABLE_HEADER *tp; 2234 size_t len = MAX(sizeof (*tp), MMU_PAGESIZE); 2235 2236 /* 2237 * Map at least a page; if the table is larger than this, remap it 2238 */ 2239 tp = (ACPI_TABLE_HEADER *)vmap_phys(len, table_addr); 2240 if (tp->Length > len) 2241 tp = (ACPI_TABLE_HEADER *)vmap_phys(tp->Length, table_addr); 2242 return (tp); 2243 } 2244 2245 static ACPI_TABLE_HEADER * 2246 find_fw_table(char *signature) 2247 { 2248 static int revision = 0; 2249 static ACPI_TABLE_XSDT *xsdt; 2250 static int len; 2251 paddr_t xsdt_addr; 2252 ACPI_TABLE_RSDP *rsdp; 2253 ACPI_TABLE_HEADER *tp; 2254 paddr_t table_addr; 2255 int n; 2256 2257 if (strlen(signature) != ACPI_NAME_SIZE) 2258 return (NULL); 2259 2260 /* 2261 * Reading the ACPI 3.0 Spec, section 5.2.5.3 will help 2262 * understand this code. If we haven't already found the RSDT/XSDT, 2263 * revision will be 0. Find the RSDP and check the revision 2264 * to find out whether to use the RSDT or XSDT. If revision is 2265 * 0 or 1, use the RSDT and set internal revision to 1; if it is 2, 2266 * use the XSDT. If the XSDT address is 0, though, fall back to 2267 * revision 1 and use the RSDT. 2268 */ 2269 if (revision == 0) { 2270 if ((rsdp = find_rsdp()) != NULL) { 2271 revision = rsdp->Revision; 2272 /* 2273 * ACPI 6.0 states that current revision is 2 2274 * from acpi_table_rsdp definition: 2275 * Must be (0) for ACPI 1.0 or (2) for ACPI 2.0+ 2276 */ 2277 if (revision > 2) 2278 revision = 2; 2279 switch (revision) { 2280 case 2: 2281 /* 2282 * Use the XSDT unless BIOS is buggy and 2283 * claims to be rev 2 but has a null XSDT 2284 * address 2285 */ 2286 xsdt_addr = rsdp->XsdtPhysicalAddress; 2287 if (xsdt_addr != 0) 2288 break; 2289 /* FALLTHROUGH */ 2290 case 0: 2291 /* treat RSDP rev 0 as revision 1 internally */ 2292 revision = 1; 2293 /* FALLTHROUGH */ 2294 case 1: 2295 /* use the RSDT for rev 0/1 */ 2296 xsdt_addr = rsdp->RsdtPhysicalAddress; 2297 break; 2298 default: 2299 /* unknown revision */ 2300 revision = 0; 2301 break; 2302 } 2303 } 2304 if (revision == 0) 2305 return (NULL); 2306 2307 /* cache the XSDT info */ 2308 xsdt = (ACPI_TABLE_XSDT *)map_fw_table(xsdt_addr); 2309 len = (xsdt->Header.Length - sizeof (xsdt->Header)) / 2310 ((revision == 1) ? sizeof (uint32_t) : sizeof (uint64_t)); 2311 } 2312 2313 /* 2314 * Scan the table headers looking for a signature match 2315 */ 2316 for (n = 0; n < len; n++) { 2317 ACPI_TABLE_RSDT *rsdt = (ACPI_TABLE_RSDT *)xsdt; 2318 table_addr = (revision == 1) ? rsdt->TableOffsetEntry[n] : 2319 xsdt->TableOffsetEntry[n]; 2320 2321 if (table_addr == 0) 2322 continue; 2323 tp = map_fw_table(table_addr); 2324 if (strncmp(tp->Signature, signature, ACPI_NAME_SIZE) == 0) { 2325 return (tp); 2326 } 2327 } 2328 return (NULL); 2329 } 2330 2331 static void 2332 process_mcfg(ACPI_TABLE_MCFG *tp) 2333 { 2334 ACPI_MCFG_ALLOCATION *cfg_baap; 2335 char *cfg_baa_endp; 2336 int64_t ecfginfo[4]; 2337 2338 cfg_baap = (ACPI_MCFG_ALLOCATION *)((uintptr_t)tp + sizeof (*tp)); 2339 cfg_baa_endp = ((char *)tp) + tp->Header.Length; 2340 while ((char *)cfg_baap < cfg_baa_endp) { 2341 if (cfg_baap->Address != 0 && cfg_baap->PciSegment == 0) { 2342 ecfginfo[0] = cfg_baap->Address; 2343 ecfginfo[1] = cfg_baap->PciSegment; 2344 ecfginfo[2] = cfg_baap->StartBusNumber; 2345 ecfginfo[3] = cfg_baap->EndBusNumber; 2346 bsetprop(MCFG_PROPNAME, strlen(MCFG_PROPNAME), 2347 ecfginfo, sizeof (ecfginfo)); 2348 break; 2349 } 2350 cfg_baap++; 2351 } 2352 } 2353 2354 #ifndef __xpv 2355 static void 2356 process_madt_entries(ACPI_TABLE_MADT *tp, uint32_t *cpu_countp, 2357 uint32_t *cpu_possible_countp, uint32_t *cpu_apicid_array) 2358 { 2359 ACPI_SUBTABLE_HEADER *item, *end; 2360 uint32_t cpu_count = 0; 2361 uint32_t cpu_possible_count = 0; 2362 2363 /* 2364 * Determine number of CPUs and keep track of "final" APIC ID 2365 * for each CPU by walking through ACPI MADT processor list 2366 */ 2367 end = (ACPI_SUBTABLE_HEADER *)(tp->Header.Length + (uintptr_t)tp); 2368 item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)tp + sizeof (*tp)); 2369 2370 while (item < end) { 2371 switch (item->Type) { 2372 case ACPI_MADT_TYPE_LOCAL_APIC: { 2373 ACPI_MADT_LOCAL_APIC *cpu = 2374 (ACPI_MADT_LOCAL_APIC *) item; 2375 2376 if (cpu->LapicFlags & ACPI_MADT_ENABLED) { 2377 if (cpu_apicid_array != NULL) 2378 cpu_apicid_array[cpu_count] = cpu->Id; 2379 cpu_count++; 2380 } 2381 cpu_possible_count++; 2382 break; 2383 } 2384 case ACPI_MADT_TYPE_LOCAL_X2APIC: { 2385 ACPI_MADT_LOCAL_X2APIC *cpu = 2386 (ACPI_MADT_LOCAL_X2APIC *) item; 2387 2388 if (cpu->LapicFlags & ACPI_MADT_ENABLED) { 2389 if (cpu_apicid_array != NULL) 2390 cpu_apicid_array[cpu_count] = 2391 cpu->LocalApicId; 2392 cpu_count++; 2393 } 2394 cpu_possible_count++; 2395 break; 2396 } 2397 default: 2398 if (kbm_debug) 2399 bop_printf(NULL, "MADT type %d\n", item->Type); 2400 break; 2401 } 2402 2403 item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)item + item->Length); 2404 } 2405 if (cpu_countp) 2406 *cpu_countp = cpu_count; 2407 if (cpu_possible_countp) 2408 *cpu_possible_countp = cpu_possible_count; 2409 } 2410 2411 static void 2412 process_madt(ACPI_TABLE_MADT *tp) 2413 { 2414 uint32_t cpu_count = 0; 2415 uint32_t cpu_possible_count = 0; 2416 uint32_t *cpu_apicid_array; /* x2APIC ID is 32bit! */ 2417 2418 if (tp != NULL) { 2419 /* count cpu's */ 2420 process_madt_entries(tp, &cpu_count, &cpu_possible_count, NULL); 2421 2422 cpu_apicid_array = (uint32_t *)do_bsys_alloc(NULL, NULL, 2423 cpu_count * sizeof (*cpu_apicid_array), MMU_PAGESIZE); 2424 if (cpu_apicid_array == NULL) 2425 bop_panic("Not enough memory for APIC ID array"); 2426 2427 /* copy IDs */ 2428 process_madt_entries(tp, NULL, NULL, cpu_apicid_array); 2429 2430 /* 2431 * Make boot property for array of "final" APIC IDs for each 2432 * CPU 2433 */ 2434 bsetprop(BP_CPU_APICID_ARRAY, strlen(BP_CPU_APICID_ARRAY), 2435 cpu_apicid_array, cpu_count * sizeof (*cpu_apicid_array)); 2436 } 2437 2438 /* 2439 * Check whether property plat-max-ncpus is already set. 2440 */ 2441 if (do_bsys_getproplen(NULL, PLAT_MAX_NCPUS_NAME) < 0) { 2442 /* 2443 * Set plat-max-ncpus to number of maximum possible CPUs given 2444 * in MADT if it hasn't been set. 2445 * There's no formal way to detect max possible CPUs supported 2446 * by platform according to ACPI spec3.0b. So current CPU 2447 * hotplug implementation expects that all possible CPUs will 2448 * have an entry in MADT table and set plat-max-ncpus to number 2449 * of entries in MADT. 2450 * With introducing of ACPI4.0, Maximum System Capability Table 2451 * (MSCT) provides maximum number of CPUs supported by platform. 2452 * If MSCT is unavailable, fall back to old way. 2453 */ 2454 if (tp != NULL) 2455 bsetpropsi(PLAT_MAX_NCPUS_NAME, cpu_possible_count); 2456 } 2457 2458 /* 2459 * Set boot property boot-max-ncpus to number of CPUs existing at 2460 * boot time. boot-max-ncpus is mainly used for optimization. 2461 */ 2462 if (tp != NULL) 2463 bsetpropsi(BOOT_MAX_NCPUS_NAME, cpu_count); 2464 2465 /* 2466 * User-set boot-ncpus overrides firmware count 2467 */ 2468 if (do_bsys_getproplen(NULL, BOOT_NCPUS_NAME) >= 0) 2469 return; 2470 2471 /* 2472 * Set boot property boot-ncpus to number of active CPUs given in MADT 2473 * if it hasn't been set yet. 2474 */ 2475 if (tp != NULL) 2476 bsetpropsi(BOOT_NCPUS_NAME, cpu_count); 2477 } 2478 2479 static void 2480 process_srat(ACPI_TABLE_SRAT *tp) 2481 { 2482 ACPI_SUBTABLE_HEADER *item, *end; 2483 int i; 2484 int proc_num, mem_num; 2485 #pragma pack(1) 2486 struct { 2487 uint32_t domain; 2488 uint32_t apic_id; 2489 uint32_t sapic_id; 2490 } processor; 2491 struct { 2492 uint32_t domain; 2493 uint32_t x2apic_id; 2494 } x2apic; 2495 struct { 2496 uint32_t domain; 2497 uint64_t addr; 2498 uint64_t length; 2499 uint32_t flags; 2500 } memory; 2501 #pragma pack() 2502 char prop_name[30]; 2503 uint64_t maxmem = 0; 2504 2505 if (tp == NULL) 2506 return; 2507 2508 proc_num = mem_num = 0; 2509 end = (ACPI_SUBTABLE_HEADER *)(tp->Header.Length + (uintptr_t)tp); 2510 item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)tp + sizeof (*tp)); 2511 while (item < end) { 2512 switch (item->Type) { 2513 case ACPI_SRAT_TYPE_CPU_AFFINITY: { 2514 ACPI_SRAT_CPU_AFFINITY *cpu = 2515 (ACPI_SRAT_CPU_AFFINITY *) item; 2516 2517 if (!(cpu->Flags & ACPI_SRAT_CPU_ENABLED)) 2518 break; 2519 processor.domain = cpu->ProximityDomainLo; 2520 for (i = 0; i < 3; i++) 2521 processor.domain += 2522 cpu->ProximityDomainHi[i] << ((i + 1) * 8); 2523 processor.apic_id = cpu->ApicId; 2524 processor.sapic_id = cpu->LocalSapicEid; 2525 (void) snprintf(prop_name, 30, "acpi-srat-processor-%d", 2526 proc_num); 2527 bsetprop(prop_name, strlen(prop_name), &processor, 2528 sizeof (processor)); 2529 proc_num++; 2530 break; 2531 } 2532 case ACPI_SRAT_TYPE_MEMORY_AFFINITY: { 2533 ACPI_SRAT_MEM_AFFINITY *mem = 2534 (ACPI_SRAT_MEM_AFFINITY *)item; 2535 2536 if (!(mem->Flags & ACPI_SRAT_MEM_ENABLED)) 2537 break; 2538 memory.domain = mem->ProximityDomain; 2539 memory.addr = mem->BaseAddress; 2540 memory.length = mem->Length; 2541 memory.flags = mem->Flags; 2542 (void) snprintf(prop_name, 30, "acpi-srat-memory-%d", 2543 mem_num); 2544 bsetprop(prop_name, strlen(prop_name), &memory, 2545 sizeof (memory)); 2546 if ((mem->Flags & ACPI_SRAT_MEM_HOT_PLUGGABLE) && 2547 (memory.addr + memory.length > maxmem)) { 2548 maxmem = memory.addr + memory.length; 2549 } 2550 mem_num++; 2551 break; 2552 } 2553 case ACPI_SRAT_TYPE_X2APIC_CPU_AFFINITY: { 2554 ACPI_SRAT_X2APIC_CPU_AFFINITY *x2cpu = 2555 (ACPI_SRAT_X2APIC_CPU_AFFINITY *) item; 2556 2557 if (!(x2cpu->Flags & ACPI_SRAT_CPU_ENABLED)) 2558 break; 2559 x2apic.domain = x2cpu->ProximityDomain; 2560 x2apic.x2apic_id = x2cpu->ApicId; 2561 (void) snprintf(prop_name, 30, "acpi-srat-processor-%d", 2562 proc_num); 2563 bsetprop(prop_name, strlen(prop_name), &x2apic, 2564 sizeof (x2apic)); 2565 proc_num++; 2566 break; 2567 } 2568 default: 2569 if (kbm_debug) 2570 bop_printf(NULL, "SRAT type %d\n", item->Type); 2571 break; 2572 } 2573 2574 item = (ACPI_SUBTABLE_HEADER *) 2575 (item->Length + (uintptr_t)item); 2576 } 2577 2578 /* 2579 * The maximum physical address calculated from the SRAT table is more 2580 * accurate than that calculated from the MSCT table. 2581 */ 2582 if (maxmem != 0) { 2583 plat_dr_physmax = btop(maxmem); 2584 } 2585 } 2586 2587 static void 2588 process_slit(ACPI_TABLE_SLIT *tp) 2589 { 2590 2591 /* 2592 * Check the number of localities; if it's too huge, we just 2593 * return and locality enumeration code will handle this later, 2594 * if possible. 2595 * 2596 * Note that the size of the table is the square of the 2597 * number of localities; if the number of localities exceeds 2598 * UINT16_MAX, the table size may overflow an int when being 2599 * passed to bsetprop() below. 2600 */ 2601 if (tp->LocalityCount >= SLIT_LOCALITIES_MAX) 2602 return; 2603 2604 bsetprop(SLIT_NUM_PROPNAME, strlen(SLIT_NUM_PROPNAME), 2605 &tp->LocalityCount, sizeof (tp->LocalityCount)); 2606 bsetprop(SLIT_PROPNAME, strlen(SLIT_PROPNAME), &tp->Entry, 2607 tp->LocalityCount * tp->LocalityCount); 2608 } 2609 2610 static ACPI_TABLE_MSCT * 2611 process_msct(ACPI_TABLE_MSCT *tp) 2612 { 2613 int last_seen = 0; 2614 int proc_num = 0; 2615 ACPI_MSCT_PROXIMITY *item, *end; 2616 extern uint64_t plat_dr_options; 2617 2618 ASSERT(tp != NULL); 2619 2620 end = (ACPI_MSCT_PROXIMITY *)(tp->Header.Length + (uintptr_t)tp); 2621 for (item = (void *)((uintptr_t)tp + tp->ProximityOffset); 2622 item < end; 2623 item = (void *)(item->Length + (uintptr_t)item)) { 2624 /* 2625 * Sanity check according to section 5.2.19.1 of ACPI 4.0. 2626 * Revision 1 2627 * Length 22 2628 */ 2629 if (item->Revision != 1 || item->Length != 22) { 2630 cmn_err(CE_CONT, 2631 "?boot: unknown proximity domain structure in MSCT " 2632 "with Revision(%d), Length(%d).\n", 2633 (int)item->Revision, (int)item->Length); 2634 return (NULL); 2635 } else if (item->RangeStart > item->RangeEnd) { 2636 cmn_err(CE_CONT, 2637 "?boot: invalid proximity domain structure in MSCT " 2638 "with RangeStart(%u), RangeEnd(%u).\n", 2639 item->RangeStart, item->RangeEnd); 2640 return (NULL); 2641 } else if (item->RangeStart != last_seen) { 2642 /* 2643 * Items must be organized in ascending order of the 2644 * proximity domain enumerations. 2645 */ 2646 cmn_err(CE_CONT, 2647 "?boot: invalid proximity domain structure in MSCT," 2648 " items are not orginized in ascending order.\n"); 2649 return (NULL); 2650 } 2651 2652 /* 2653 * If ProcessorCapacity is 0 then there would be no CPUs in this 2654 * domain. 2655 */ 2656 if (item->ProcessorCapacity != 0) { 2657 proc_num += (item->RangeEnd - item->RangeStart + 1) * 2658 item->ProcessorCapacity; 2659 } 2660 2661 last_seen = item->RangeEnd - item->RangeStart + 1; 2662 /* 2663 * Break out if all proximity domains have been processed. 2664 * Some BIOSes may have unused items at the end of MSCT table. 2665 */ 2666 if (last_seen > tp->MaxProximityDomains) { 2667 break; 2668 } 2669 } 2670 if (last_seen != tp->MaxProximityDomains + 1) { 2671 cmn_err(CE_CONT, 2672 "?boot: invalid proximity domain structure in MSCT, " 2673 "proximity domain count doesn't match.\n"); 2674 return (NULL); 2675 } 2676 2677 /* 2678 * Set plat-max-ncpus property if it hasn't been set yet. 2679 */ 2680 if (do_bsys_getproplen(NULL, PLAT_MAX_NCPUS_NAME) < 0) { 2681 if (proc_num != 0) { 2682 bsetpropsi(PLAT_MAX_NCPUS_NAME, proc_num); 2683 } 2684 } 2685 2686 /* 2687 * Use Maximum Physical Address from the MSCT table as upper limit for 2688 * memory hot-adding by default. It may be overridden by value from 2689 * the SRAT table or the "plat-dr-physmax" boot option. 2690 */ 2691 plat_dr_physmax = btop(tp->MaxAddress + 1); 2692 2693 /* 2694 * Existence of MSCT implies CPU/memory hotplug-capability for the 2695 * platform. 2696 */ 2697 plat_dr_options |= PLAT_DR_FEATURE_CPU; 2698 plat_dr_options |= PLAT_DR_FEATURE_MEMORY; 2699 2700 return (tp); 2701 } 2702 2703 #else /* __xpv */ 2704 static void 2705 enumerate_xen_cpus() 2706 { 2707 processorid_t id, max_id; 2708 2709 /* 2710 * User-set boot-ncpus overrides enumeration 2711 */ 2712 if (do_bsys_getproplen(NULL, BOOT_NCPUS_NAME) >= 0) 2713 return; 2714 2715 /* 2716 * Probe every possible virtual CPU id and remember the 2717 * highest id present; the count of CPUs is one greater 2718 * than this. This tacitly assumes at least cpu 0 is present. 2719 */ 2720 max_id = 0; 2721 for (id = 0; id < MAX_VIRT_CPUS; id++) 2722 if (HYPERVISOR_vcpu_op(VCPUOP_is_up, id, NULL) == 0) 2723 max_id = id; 2724 2725 bsetpropsi(BOOT_NCPUS_NAME, max_id+1); 2726 2727 } 2728 #endif /* __xpv */ 2729 2730 /*ARGSUSED*/ 2731 static void 2732 build_firmware_properties(struct xboot_info *xbp) 2733 { 2734 ACPI_TABLE_HEADER *tp = NULL; 2735 2736 #ifndef __xpv 2737 if (xbp->bi_acpi_rsdp != NULL) { 2738 bsetprop64("acpi-root-tab", 2739 (uint64_t)(uintptr_t)xbp->bi_acpi_rsdp); 2740 } 2741 2742 if (xbp->bi_smbios != NULL) { 2743 bsetprop64("smbios-address", 2744 (uint64_t)(uintptr_t)xbp->bi_smbios); 2745 } 2746 2747 if ((tp = find_fw_table(ACPI_SIG_MSCT)) != NULL) 2748 msct_ptr = process_msct((ACPI_TABLE_MSCT *)tp); 2749 else 2750 msct_ptr = NULL; 2751 2752 if ((tp = find_fw_table(ACPI_SIG_MADT)) != NULL) 2753 process_madt((ACPI_TABLE_MADT *)tp); 2754 2755 if ((srat_ptr = (ACPI_TABLE_SRAT *) 2756 find_fw_table(ACPI_SIG_SRAT)) != NULL) 2757 process_srat(srat_ptr); 2758 2759 if (slit_ptr = (ACPI_TABLE_SLIT *)find_fw_table(ACPI_SIG_SLIT)) 2760 process_slit(slit_ptr); 2761 2762 tp = find_fw_table(ACPI_SIG_MCFG); 2763 #else /* __xpv */ 2764 enumerate_xen_cpus(); 2765 if (DOMAIN_IS_INITDOMAIN(xen_info)) 2766 tp = find_fw_table(ACPI_SIG_MCFG); 2767 #endif /* __xpv */ 2768 if (tp != NULL) 2769 process_mcfg((ACPI_TABLE_MCFG *)tp); 2770 } 2771 2772 /* 2773 * fake up a boot property for deferred early console output 2774 * this is used by both graphical boot and the (developer only) 2775 * USB serial console 2776 */ 2777 void * 2778 defcons_init(size_t size) 2779 { 2780 static char *p = NULL; 2781 2782 p = do_bsys_alloc(NULL, NULL, size, MMU_PAGESIZE); 2783 *p = 0; 2784 bsetprop("deferred-console-buf", strlen("deferred-console-buf") + 1, 2785 &p, sizeof (p)); 2786 return (p); 2787 } 2788 2789 /*ARGSUSED*/ 2790 int 2791 boot_compinfo(int fd, struct compinfo *cbp) 2792 { 2793 cbp->iscmp = 0; 2794 cbp->blksize = MAXBSIZE; 2795 return (0); 2796 } 2797 2798 #define BP_MAX_STRLEN 32 2799 2800 /* 2801 * Get value for given boot property 2802 */ 2803 int 2804 bootprop_getval(const char *prop_name, u_longlong_t *prop_value) 2805 { 2806 int boot_prop_len; 2807 char str[BP_MAX_STRLEN]; 2808 u_longlong_t value; 2809 2810 boot_prop_len = BOP_GETPROPLEN(bootops, prop_name); 2811 if (boot_prop_len < 0 || boot_prop_len > sizeof (str) || 2812 BOP_GETPROP(bootops, prop_name, str) < 0 || 2813 kobj_getvalue(str, &value) == -1) 2814 return (-1); 2815 2816 if (prop_value) 2817 *prop_value = value; 2818 2819 return (0); 2820 } 2821