xref: /illumos-gate/usr/src/uts/i86pc/os/fakebop.c (revision 6e6c7d67bf5ba2efa13619acd59395d0f278ee75)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  *
26  * Copyright (c) 2010, Intel Corporation.
27  * All rights reserved.
28  *
29  * Copyright 2013 Joyent, Inc.  All rights reserved.
30  */
31 
32 /*
33  * This file contains the functionality that mimics the boot operations
34  * on SPARC systems or the old boot.bin/multiboot programs on x86 systems.
35  * The x86 kernel now does everything on its own.
36  */
37 
38 #include <sys/types.h>
39 #include <sys/bootconf.h>
40 #include <sys/bootsvcs.h>
41 #include <sys/bootinfo.h>
42 #include <sys/multiboot.h>
43 #include <sys/multiboot2.h>
44 #include <sys/multiboot2_impl.h>
45 #include <sys/bootvfs.h>
46 #include <sys/bootprops.h>
47 #include <sys/varargs.h>
48 #include <sys/param.h>
49 #include <sys/machparam.h>
50 #include <sys/machsystm.h>
51 #include <sys/archsystm.h>
52 #include <sys/boot_console.h>
53 #include <sys/cmn_err.h>
54 #include <sys/systm.h>
55 #include <sys/promif.h>
56 #include <sys/archsystm.h>
57 #include <sys/x86_archext.h>
58 #include <sys/kobj.h>
59 #include <sys/privregs.h>
60 #include <sys/sysmacros.h>
61 #include <sys/ctype.h>
62 #include <sys/fastboot.h>
63 #ifdef __xpv
64 #include <sys/hypervisor.h>
65 #include <net/if.h>
66 #endif
67 #include <vm/kboot_mmu.h>
68 #include <vm/hat_pte.h>
69 #include <sys/kobj.h>
70 #include <sys/kobj_lex.h>
71 #include <sys/pci_cfgspace_impl.h>
72 #include <sys/fastboot_impl.h>
73 #include <sys/acpi/acconfig.h>
74 #include <sys/acpi/acpi.h>
75 
76 static int have_console = 0;	/* set once primitive console is initialized */
77 static char *boot_args = "";
78 
79 /*
80  * Debugging macros
81  */
82 static uint_t kbm_debug = 0;
83 #define	DBG_MSG(s)	{ if (kbm_debug) bop_printf(NULL, "%s", s); }
84 #define	DBG(x)		{ if (kbm_debug)			\
85 	bop_printf(NULL, "%s is %" PRIx64 "\n", #x, (uint64_t)(x));	\
86 	}
87 
88 #define	PUT_STRING(s) {				\
89 	char *cp;				\
90 	for (cp = (s); *cp; ++cp)		\
91 		bcons_putchar(*cp);		\
92 	}
93 
94 bootops_t bootop;	/* simple bootops we'll pass on to kernel */
95 struct bsys_mem bm;
96 
97 /*
98  * Boot info from "glue" code in low memory. xbootp is used by:
99  *	do_bop_phys_alloc(), do_bsys_alloc() and boot_prop_finish().
100  */
101 static struct xboot_info *xbootp;
102 static uintptr_t next_virt;	/* next available virtual address */
103 static paddr_t next_phys;	/* next available physical address from dboot */
104 static paddr_t high_phys = -(paddr_t)1;	/* last used physical address */
105 
106 /*
107  * buffer for vsnprintf for console I/O
108  */
109 #define	BUFFERSIZE	512
110 static char buffer[BUFFERSIZE];
111 
112 /*
113  * stuff to store/report/manipulate boot property settings.
114  */
115 typedef struct bootprop {
116 	struct bootprop *bp_next;
117 	char *bp_name;
118 	uint_t bp_vlen;
119 	char *bp_value;
120 } bootprop_t;
121 
122 static bootprop_t *bprops = NULL;
123 static char *curr_page = NULL;		/* ptr to avail bprop memory */
124 static int curr_space = 0;		/* amount of memory at curr_page */
125 
126 #ifdef __xpv
127 start_info_t *xen_info;
128 shared_info_t *HYPERVISOR_shared_info;
129 #endif
130 
131 /*
132  * some allocator statistics
133  */
134 static ulong_t total_bop_alloc_scratch = 0;
135 static ulong_t total_bop_alloc_kernel = 0;
136 
137 static void build_firmware_properties(struct xboot_info *);
138 
139 static int early_allocation = 1;
140 
141 int force_fastreboot = 0;
142 volatile int fastreboot_onpanic = 0;
143 int post_fastreboot = 0;
144 #ifdef	__xpv
145 volatile int fastreboot_capable = 0;
146 #else
147 volatile int fastreboot_capable = 1;
148 #endif
149 
150 /*
151  * Information saved from current boot for fast reboot.
152  * If the information size exceeds what we have allocated, fast reboot
153  * will not be supported.
154  */
155 multiboot_info_t saved_mbi;
156 mb_memory_map_t saved_mmap[FASTBOOT_SAVED_MMAP_COUNT];
157 uint8_t saved_drives[FASTBOOT_SAVED_DRIVES_SIZE];
158 char saved_cmdline[FASTBOOT_SAVED_CMDLINE_LEN];
159 int saved_cmdline_len = 0;
160 size_t saved_file_size[FASTBOOT_MAX_FILES_MAP];
161 
162 /*
163  * Turn off fastreboot_onpanic to avoid panic loop.
164  */
165 char fastreboot_onpanic_cmdline[FASTBOOT_SAVED_CMDLINE_LEN];
166 static const char fastreboot_onpanic_args[] = " -B fastreboot_onpanic=0";
167 
168 /*
169  * Pointers to where System Resource Affinity Table (SRAT), System Locality
170  * Information Table (SLIT) and Maximum System Capability Table (MSCT)
171  * are mapped into virtual memory
172  */
173 ACPI_TABLE_SRAT	*srat_ptr = NULL;
174 ACPI_TABLE_SLIT	*slit_ptr = NULL;
175 ACPI_TABLE_MSCT	*msct_ptr = NULL;
176 
177 /*
178  * Arbitrary limit on number of localities we handle; if
179  * this limit is raised to more than UINT16_MAX, make sure
180  * process_slit() knows how to handle it.
181  */
182 #define	SLIT_LOCALITIES_MAX	(4096)
183 
184 #define	SLIT_NUM_PROPNAME	"acpi-slit-localities"
185 #define	SLIT_PROPNAME		"acpi-slit"
186 
187 /*
188  * Allocate aligned physical memory at boot time. This allocator allocates
189  * from the highest possible addresses. This avoids exhausting memory that
190  * would be useful for DMA buffers.
191  */
192 paddr_t
193 do_bop_phys_alloc(uint64_t size, uint64_t align)
194 {
195 	paddr_t	pa = 0;
196 	paddr_t	start;
197 	paddr_t	end;
198 	struct memlist	*ml = (struct memlist *)xbootp->bi_phys_install;
199 
200 	/*
201 	 * Be careful if high memory usage is limited in startup.c
202 	 * Since there are holes in the low part of the physical address
203 	 * space we can treat physmem as a pfn (not just a pgcnt) and
204 	 * get a conservative upper limit.
205 	 */
206 	if (physmem != 0 && high_phys > pfn_to_pa(physmem))
207 		high_phys = pfn_to_pa(physmem);
208 
209 	/*
210 	 * find the highest available memory in physinstalled
211 	 */
212 	size = P2ROUNDUP(size, align);
213 	for (; ml; ml = ml->ml_next) {
214 		start = P2ROUNDUP(ml->ml_address, align);
215 		end = P2ALIGN(ml->ml_address + ml->ml_size, align);
216 		if (start < next_phys)
217 			start = P2ROUNDUP(next_phys, align);
218 		if (end > high_phys)
219 			end = P2ALIGN(high_phys, align);
220 
221 		if (end <= start)
222 			continue;
223 		if (end - start < size)
224 			continue;
225 
226 		/*
227 		 * Early allocations need to use low memory, since
228 		 * physmem might be further limited by bootenv.rc
229 		 */
230 		if (early_allocation) {
231 			if (pa == 0 || start < pa)
232 				pa = start;
233 		} else {
234 			if (end - size > pa)
235 				pa = end - size;
236 		}
237 	}
238 	if (pa != 0) {
239 		if (early_allocation)
240 			next_phys = pa + size;
241 		else
242 			high_phys = pa;
243 		return (pa);
244 	}
245 	bop_panic("do_bop_phys_alloc(0x%" PRIx64 ", 0x%" PRIx64
246 	    ") Out of memory\n", size, align);
247 	/*NOTREACHED*/
248 }
249 
250 uintptr_t
251 alloc_vaddr(size_t size, paddr_t align)
252 {
253 	uintptr_t rv;
254 
255 	next_virt = P2ROUNDUP(next_virt, (uintptr_t)align);
256 	rv = (uintptr_t)next_virt;
257 	next_virt += size;
258 	return (rv);
259 }
260 
261 /*
262  * Allocate virtual memory. The size is always rounded up to a multiple
263  * of base pagesize.
264  */
265 
266 /*ARGSUSED*/
267 static caddr_t
268 do_bsys_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align)
269 {
270 	paddr_t a = align;	/* same type as pa for masking */
271 	uint_t pgsize;
272 	paddr_t pa;
273 	uintptr_t va;
274 	ssize_t s;		/* the aligned size */
275 	uint_t level;
276 	uint_t is_kernel = (virthint != 0);
277 
278 	if (a < MMU_PAGESIZE)
279 		a = MMU_PAGESIZE;
280 	else if (!ISP2(a))
281 		prom_panic("do_bsys_alloc() incorrect alignment");
282 	size = P2ROUNDUP(size, MMU_PAGESIZE);
283 
284 	/*
285 	 * Use the next aligned virtual address if we weren't given one.
286 	 */
287 	if (virthint == NULL) {
288 		virthint = (caddr_t)alloc_vaddr(size, a);
289 		total_bop_alloc_scratch += size;
290 	} else {
291 		total_bop_alloc_kernel += size;
292 	}
293 
294 	/*
295 	 * allocate the physical memory
296 	 */
297 	pa = do_bop_phys_alloc(size, a);
298 
299 	/*
300 	 * Add the mappings to the page tables, try large pages first.
301 	 */
302 	va = (uintptr_t)virthint;
303 	s = size;
304 	level = 1;
305 	pgsize = xbootp->bi_use_pae ? TWO_MEG : FOUR_MEG;
306 	if (xbootp->bi_use_largepage && a == pgsize) {
307 		while (IS_P2ALIGNED(pa, pgsize) && IS_P2ALIGNED(va, pgsize) &&
308 		    s >= pgsize) {
309 			kbm_map(va, pa, level, is_kernel);
310 			va += pgsize;
311 			pa += pgsize;
312 			s -= pgsize;
313 		}
314 	}
315 
316 	/*
317 	 * Map remaining pages use small mappings
318 	 */
319 	level = 0;
320 	pgsize = MMU_PAGESIZE;
321 	while (s > 0) {
322 		kbm_map(va, pa, level, is_kernel);
323 		va += pgsize;
324 		pa += pgsize;
325 		s -= pgsize;
326 	}
327 	return (virthint);
328 }
329 
330 /*
331  * Free virtual memory - we'll just ignore these.
332  */
333 /*ARGSUSED*/
334 static void
335 do_bsys_free(bootops_t *bop, caddr_t virt, size_t size)
336 {
337 	bop_printf(NULL, "do_bsys_free(virt=0x%p, size=0x%lx) ignored\n",
338 	    (void *)virt, size);
339 }
340 
341 /*
342  * Old interface
343  */
344 /*ARGSUSED*/
345 static caddr_t
346 do_bsys_ealloc(bootops_t *bop, caddr_t virthint, size_t size,
347     int align, int flags)
348 {
349 	prom_panic("unsupported call to BOP_EALLOC()\n");
350 	return (0);
351 }
352 
353 
354 static void
355 bsetprop(char *name, int nlen, void *value, int vlen)
356 {
357 	uint_t size;
358 	uint_t need_size;
359 	bootprop_t *b;
360 
361 	/*
362 	 * align the size to 16 byte boundary
363 	 */
364 	size = sizeof (bootprop_t) + nlen + 1 + vlen;
365 	size = (size + 0xf) & ~0xf;
366 	if (size > curr_space) {
367 		need_size = (size + (MMU_PAGEOFFSET)) & MMU_PAGEMASK;
368 		curr_page = do_bsys_alloc(NULL, 0, need_size, MMU_PAGESIZE);
369 		curr_space = need_size;
370 	}
371 
372 	/*
373 	 * use a bootprop_t at curr_page and link into list
374 	 */
375 	b = (bootprop_t *)curr_page;
376 	curr_page += sizeof (bootprop_t);
377 	curr_space -=  sizeof (bootprop_t);
378 	b->bp_next = bprops;
379 	bprops = b;
380 
381 	/*
382 	 * follow by name and ending zero byte
383 	 */
384 	b->bp_name = curr_page;
385 	bcopy(name, curr_page, nlen);
386 	curr_page += nlen;
387 	*curr_page++ = 0;
388 	curr_space -= nlen + 1;
389 
390 	/*
391 	 * copy in value, but no ending zero byte
392 	 */
393 	b->bp_value = curr_page;
394 	b->bp_vlen = vlen;
395 	if (vlen > 0) {
396 		bcopy(value, curr_page, vlen);
397 		curr_page += vlen;
398 		curr_space -= vlen;
399 	}
400 
401 	/*
402 	 * align new values of curr_page, curr_space
403 	 */
404 	while (curr_space & 0xf) {
405 		++curr_page;
406 		--curr_space;
407 	}
408 }
409 
410 static void
411 bsetprops(char *name, char *value)
412 {
413 	bsetprop(name, strlen(name), value, strlen(value) + 1);
414 }
415 
416 static void
417 bsetprop64(char *name, uint64_t value)
418 {
419 	bsetprop(name, strlen(name), (void *)&value, sizeof (value));
420 }
421 
422 static void
423 bsetpropsi(char *name, int value)
424 {
425 	char prop_val[32];
426 
427 	(void) snprintf(prop_val, sizeof (prop_val), "%d", value);
428 	bsetprops(name, prop_val);
429 }
430 
431 /*
432  * to find the size of the buffer to allocate
433  */
434 /*ARGSUSED*/
435 int
436 do_bsys_getproplen(bootops_t *bop, const char *name)
437 {
438 	bootprop_t *b;
439 
440 	for (b = bprops; b; b = b->bp_next) {
441 		if (strcmp(name, b->bp_name) != 0)
442 			continue;
443 		return (b->bp_vlen);
444 	}
445 	return (-1);
446 }
447 
448 /*
449  * get the value associated with this name
450  */
451 /*ARGSUSED*/
452 int
453 do_bsys_getprop(bootops_t *bop, const char *name, void *value)
454 {
455 	bootprop_t *b;
456 
457 	for (b = bprops; b; b = b->bp_next) {
458 		if (strcmp(name, b->bp_name) != 0)
459 			continue;
460 		bcopy(b->bp_value, value, b->bp_vlen);
461 		return (0);
462 	}
463 	return (-1);
464 }
465 
466 /*
467  * get the name of the next property in succession from the standalone
468  */
469 /*ARGSUSED*/
470 static char *
471 do_bsys_nextprop(bootops_t *bop, char *name)
472 {
473 	bootprop_t *b;
474 
475 	/*
476 	 * A null name is a special signal for the 1st boot property
477 	 */
478 	if (name == NULL || strlen(name) == 0) {
479 		if (bprops == NULL)
480 			return (NULL);
481 		return (bprops->bp_name);
482 	}
483 
484 	for (b = bprops; b; b = b->bp_next) {
485 		if (name != b->bp_name)
486 			continue;
487 		b = b->bp_next;
488 		if (b == NULL)
489 			return (NULL);
490 		return (b->bp_name);
491 	}
492 	return (NULL);
493 }
494 
495 /*
496  * Parse numeric value from a string. Understands decimal, hex, octal, - and ~
497  */
498 static int
499 parse_value(char *p, uint64_t *retval)
500 {
501 	int adjust = 0;
502 	uint64_t tmp = 0;
503 	int digit;
504 	int radix = 10;
505 
506 	*retval = 0;
507 	if (*p == '-' || *p == '~')
508 		adjust = *p++;
509 
510 	if (*p == '0') {
511 		++p;
512 		if (*p == 0)
513 			return (0);
514 		if (*p == 'x' || *p == 'X') {
515 			radix = 16;
516 			++p;
517 		} else {
518 			radix = 8;
519 			++p;
520 		}
521 	}
522 	while (*p) {
523 		if ('0' <= *p && *p <= '9')
524 			digit = *p - '0';
525 		else if ('a' <= *p && *p <= 'f')
526 			digit = 10 + *p - 'a';
527 		else if ('A' <= *p && *p <= 'F')
528 			digit = 10 + *p - 'A';
529 		else
530 			return (-1);
531 		if (digit >= radix)
532 			return (-1);
533 		tmp = tmp * radix + digit;
534 		++p;
535 	}
536 	if (adjust == '-')
537 		tmp = -tmp;
538 	else if (adjust == '~')
539 		tmp = ~tmp;
540 	*retval = tmp;
541 	return (0);
542 }
543 
544 static boolean_t
545 unprintable(char *value, int size)
546 {
547 	int i;
548 
549 	if (size <= 0 || value[0] == '\0')
550 		return (B_TRUE);
551 
552 	for (i = 0; i < size; i++) {
553 		if (value[i] == '\0')
554 			return (i != (size - 1));
555 
556 		if (!isprint(value[i]))
557 			return (B_TRUE);
558 	}
559 	return (B_FALSE);
560 }
561 
562 /*
563  * Print out information about all boot properties.
564  * buffer is pointer to pre-allocated space to be used as temporary
565  * space for property values.
566  */
567 static void
568 boot_prop_display(char *buffer)
569 {
570 	char *name = "";
571 	int i, len;
572 
573 	bop_printf(NULL, "\nBoot properties:\n");
574 
575 	while ((name = do_bsys_nextprop(NULL, name)) != NULL) {
576 		bop_printf(NULL, "\t0x%p %s = ", (void *)name, name);
577 		(void) do_bsys_getprop(NULL, name, buffer);
578 		len = do_bsys_getproplen(NULL, name);
579 		bop_printf(NULL, "len=%d ", len);
580 		if (!unprintable(buffer, len)) {
581 			buffer[len] = 0;
582 			bop_printf(NULL, "%s\n", buffer);
583 			continue;
584 		}
585 		for (i = 0; i < len; i++) {
586 			bop_printf(NULL, "%02x", buffer[i] & 0xff);
587 			if (i < len - 1)
588 				bop_printf(NULL, ".");
589 		}
590 		bop_printf(NULL, "\n");
591 	}
592 }
593 
594 /*
595  * 2nd part of building the table of boot properties. This includes:
596  * - values from /boot/solaris/bootenv.rc (ie. eeprom(1m) values)
597  *
598  * lines look like one of:
599  * ^$
600  * ^# comment till end of line
601  * setprop name 'value'
602  * setprop name value
603  * setprop name "value"
604  *
605  * we do single character I/O since this is really just looking at memory
606  */
607 void
608 boot_prop_finish(void)
609 {
610 	int fd;
611 	char *line;
612 	int c;
613 	int bytes_read;
614 	char *name;
615 	int n_len;
616 	char *value;
617 	int v_len;
618 	char *inputdev;	/* these override the command line if serial ports */
619 	char *outputdev;
620 	char *consoledev;
621 	uint64_t lvalue;
622 	int use_xencons = 0;
623 
624 #ifdef __xpv
625 	if (!DOMAIN_IS_INITDOMAIN(xen_info))
626 		use_xencons = 1;
627 #endif /* __xpv */
628 
629 	DBG_MSG("Opening /boot/solaris/bootenv.rc\n");
630 	fd = BRD_OPEN(bfs_ops, "/boot/solaris/bootenv.rc", 0);
631 	DBG(fd);
632 
633 	line = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE);
634 	while (fd >= 0) {
635 
636 		/*
637 		 * get a line
638 		 */
639 		for (c = 0; ; ++c) {
640 			bytes_read = BRD_READ(bfs_ops, fd, line + c, 1);
641 			if (bytes_read == 0) {
642 				if (c == 0)
643 					goto done;
644 				break;
645 			}
646 			if (line[c] == '\n')
647 				break;
648 		}
649 		line[c] = 0;
650 
651 		/*
652 		 * ignore comment lines
653 		 */
654 		c = 0;
655 		while (ISSPACE(line[c]))
656 			++c;
657 		if (line[c] == '#' || line[c] == 0)
658 			continue;
659 
660 		/*
661 		 * must have "setprop " or "setprop\t"
662 		 */
663 		if (strncmp(line + c, "setprop ", 8) != 0 &&
664 		    strncmp(line + c, "setprop\t", 8) != 0)
665 			continue;
666 		c += 8;
667 		while (ISSPACE(line[c]))
668 			++c;
669 		if (line[c] == 0)
670 			continue;
671 
672 		/*
673 		 * gather up the property name
674 		 */
675 		name = line + c;
676 		n_len = 0;
677 		while (line[c] && !ISSPACE(line[c]))
678 			++n_len, ++c;
679 
680 		/*
681 		 * gather up the value, if any
682 		 */
683 		value = "";
684 		v_len = 0;
685 		while (ISSPACE(line[c]))
686 			++c;
687 		if (line[c] != 0) {
688 			value = line + c;
689 			while (line[c] && !ISSPACE(line[c]))
690 				++v_len, ++c;
691 		}
692 
693 		if (v_len >= 2 && value[0] == value[v_len - 1] &&
694 		    (value[0] == '\'' || value[0] == '"')) {
695 			++value;
696 			v_len -= 2;
697 		}
698 		name[n_len] = 0;
699 		if (v_len > 0)
700 			value[v_len] = 0;
701 		else
702 			continue;
703 
704 		/*
705 		 * ignore "boot-file" property, it's now meaningless
706 		 */
707 		if (strcmp(name, "boot-file") == 0)
708 			continue;
709 		if (strcmp(name, "boot-args") == 0 &&
710 		    strlen(boot_args) > 0)
711 			continue;
712 
713 		/*
714 		 * If a property was explicitly set on the command line
715 		 * it will override a setting in bootenv.rc
716 		 */
717 		if (do_bsys_getproplen(NULL, name) > 0)
718 			continue;
719 
720 		bsetprop(name, n_len, value, v_len + 1);
721 	}
722 done:
723 	if (fd >= 0)
724 		(void) BRD_CLOSE(bfs_ops, fd);
725 
726 	/*
727 	 * Check if we have to limit the boot time allocator
728 	 */
729 	if (do_bsys_getproplen(NULL, "physmem") != -1 &&
730 	    do_bsys_getprop(NULL, "physmem", line) >= 0 &&
731 	    parse_value(line, &lvalue) != -1) {
732 		if (0 < lvalue && (lvalue < physmem || physmem == 0)) {
733 			physmem = (pgcnt_t)lvalue;
734 			DBG(physmem);
735 		}
736 	}
737 	early_allocation = 0;
738 
739 	/*
740 	 * check to see if we have to override the default value of the console
741 	 */
742 	if (!use_xencons) {
743 		inputdev = line;
744 		v_len = do_bsys_getproplen(NULL, "input-device");
745 		if (v_len > 0)
746 			(void) do_bsys_getprop(NULL, "input-device", inputdev);
747 		else
748 			v_len = 0;
749 		inputdev[v_len] = 0;
750 
751 		outputdev = inputdev + v_len + 1;
752 		v_len = do_bsys_getproplen(NULL, "output-device");
753 		if (v_len > 0)
754 			(void) do_bsys_getprop(NULL, "output-device",
755 			    outputdev);
756 		else
757 			v_len = 0;
758 		outputdev[v_len] = 0;
759 
760 		consoledev = outputdev + v_len + 1;
761 		v_len = do_bsys_getproplen(NULL, "console");
762 		if (v_len > 0) {
763 			(void) do_bsys_getprop(NULL, "console", consoledev);
764 			if (post_fastreboot &&
765 			    strcmp(consoledev, "graphics") == 0) {
766 				bsetprops("console", "text");
767 				v_len = strlen("text");
768 				bcopy("text", consoledev, v_len);
769 			}
770 		} else {
771 			v_len = 0;
772 		}
773 		consoledev[v_len] = 0;
774 		bcons_init2(inputdev, outputdev, consoledev);
775 	} else {
776 		/*
777 		 * Ensure console property exists
778 		 * If not create it as "hypervisor"
779 		 */
780 		v_len = do_bsys_getproplen(NULL, "console");
781 		if (v_len < 0)
782 			bsetprops("console", "hypervisor");
783 		inputdev = outputdev = consoledev = "hypervisor";
784 		bcons_init2(inputdev, outputdev, consoledev);
785 	}
786 
787 	if (find_boot_prop("prom_debug") || kbm_debug)
788 		boot_prop_display(line);
789 }
790 
791 /*
792  * print formatted output
793  */
794 /*PRINTFLIKE2*/
795 /*ARGSUSED*/
796 void
797 bop_printf(bootops_t *bop, const char *fmt, ...)
798 {
799 	va_list	ap;
800 
801 	if (have_console == 0)
802 		return;
803 
804 	va_start(ap, fmt);
805 	(void) vsnprintf(buffer, BUFFERSIZE, fmt, ap);
806 	va_end(ap);
807 	PUT_STRING(buffer);
808 }
809 
810 /*
811  * Another panic() variant; this one can be used even earlier during boot than
812  * prom_panic().
813  */
814 /*PRINTFLIKE1*/
815 void
816 bop_panic(const char *fmt, ...)
817 {
818 	va_list ap;
819 
820 	va_start(ap, fmt);
821 	bop_printf(NULL, fmt, ap);
822 	va_end(ap);
823 
824 	bop_printf(NULL, "\nPress any key to reboot.\n");
825 	(void) bcons_getchar();
826 	bop_printf(NULL, "Resetting...\n");
827 	pc_reset();
828 }
829 
830 /*
831  * Do a real mode interrupt BIOS call
832  */
833 typedef struct bios_regs {
834 	unsigned short ax, bx, cx, dx, si, di, bp, es, ds;
835 } bios_regs_t;
836 typedef int (*bios_func_t)(int, bios_regs_t *);
837 
838 /*ARGSUSED*/
839 static void
840 do_bsys_doint(bootops_t *bop, int intnum, struct bop_regs *rp)
841 {
842 #if defined(__xpv)
843 	prom_panic("unsupported call to BOP_DOINT()\n");
844 #else	/* __xpv */
845 	static int firsttime = 1;
846 	bios_func_t bios_func = (bios_func_t)(void *)(uintptr_t)0x5000;
847 	bios_regs_t br;
848 
849 	/*
850 	 * The first time we do this, we have to copy the pre-packaged
851 	 * low memory bios call code image into place.
852 	 */
853 	if (firsttime) {
854 		extern char bios_image[];
855 		extern uint32_t bios_size;
856 
857 		bcopy(bios_image, (void *)bios_func, bios_size);
858 		firsttime = 0;
859 	}
860 
861 	br.ax = rp->eax.word.ax;
862 	br.bx = rp->ebx.word.bx;
863 	br.cx = rp->ecx.word.cx;
864 	br.dx = rp->edx.word.dx;
865 	br.bp = rp->ebp.word.bp;
866 	br.si = rp->esi.word.si;
867 	br.di = rp->edi.word.di;
868 	br.ds = rp->ds;
869 	br.es = rp->es;
870 
871 	DBG_MSG("Doing BIOS call...");
872 	DBG(br.ax);
873 	DBG(br.bx);
874 	DBG(br.dx);
875 	rp->eflags = bios_func(intnum, &br);
876 	DBG_MSG("done\n");
877 
878 	rp->eax.word.ax = br.ax;
879 	rp->ebx.word.bx = br.bx;
880 	rp->ecx.word.cx = br.cx;
881 	rp->edx.word.dx = br.dx;
882 	rp->ebp.word.bp = br.bp;
883 	rp->esi.word.si = br.si;
884 	rp->edi.word.di = br.di;
885 	rp->ds = br.ds;
886 	rp->es = br.es;
887 #endif /* __xpv */
888 }
889 
890 static struct boot_syscalls bop_sysp = {
891 	bcons_getchar,
892 	bcons_putchar,
893 	bcons_ischar,
894 };
895 
896 static char *whoami;
897 
898 #define	BUFLEN	64
899 
900 #if defined(__xpv)
901 
902 static char namebuf[32];
903 
904 static void
905 xen_parse_props(char *s, char *prop_map[], int n_prop)
906 {
907 	char **prop_name = prop_map;
908 	char *cp = s, *scp;
909 
910 	do {
911 		scp = cp;
912 		while ((*cp != NULL) && (*cp != ':'))
913 			cp++;
914 
915 		if ((scp != cp) && (*prop_name != NULL)) {
916 			*cp = NULL;
917 			bsetprops(*prop_name, scp);
918 		}
919 
920 		cp++;
921 		prop_name++;
922 		n_prop--;
923 	} while (n_prop > 0);
924 }
925 
926 #define	VBDPATHLEN	64
927 
928 /*
929  * parse the 'xpv-root' property to create properties used by
930  * ufs_mountroot.
931  */
932 static void
933 xen_vbdroot_props(char *s)
934 {
935 	char vbdpath[VBDPATHLEN] = "/xpvd/xdf@";
936 	const char lnamefix[] = "/dev/dsk/c0d";
937 	char *pnp;
938 	char *prop_p;
939 	char mi;
940 	short minor;
941 	long addr = 0;
942 
943 	pnp = vbdpath + strlen(vbdpath);
944 	prop_p = s + strlen(lnamefix);
945 	while ((*prop_p != '\0') && (*prop_p != 's') && (*prop_p != 'p'))
946 		addr = addr * 10 + *prop_p++ - '0';
947 	(void) snprintf(pnp, VBDPATHLEN, "%lx", addr);
948 	pnp = vbdpath + strlen(vbdpath);
949 	if (*prop_p == 's')
950 		mi = 'a';
951 	else if (*prop_p == 'p')
952 		mi = 'q';
953 	else
954 		ASSERT(0); /* shouldn't be here */
955 	prop_p++;
956 	ASSERT(*prop_p != '\0');
957 	if (ISDIGIT(*prop_p)) {
958 		minor = *prop_p - '0';
959 		prop_p++;
960 		if (ISDIGIT(*prop_p)) {
961 			minor = minor * 10 + *prop_p - '0';
962 		}
963 	} else {
964 		/* malformed root path, use 0 as default */
965 		minor = 0;
966 	}
967 	ASSERT(minor < 16); /* at most 16 partitions */
968 	mi += minor;
969 	*pnp++ = ':';
970 	*pnp++ = mi;
971 	*pnp++ = '\0';
972 	bsetprops("fstype", "ufs");
973 	bsetprops("bootpath", vbdpath);
974 
975 	DBG_MSG("VBD bootpath set to ");
976 	DBG_MSG(vbdpath);
977 	DBG_MSG("\n");
978 }
979 
980 /*
981  * parse the xpv-nfsroot property to create properties used by
982  * nfs_mountroot.
983  */
984 static void
985 xen_nfsroot_props(char *s)
986 {
987 	char *prop_map[] = {
988 		BP_SERVER_IP,	/* server IP address */
989 		BP_SERVER_NAME,	/* server hostname */
990 		BP_SERVER_PATH,	/* root path */
991 	};
992 	int n_prop = sizeof (prop_map) / sizeof (prop_map[0]);
993 
994 	bsetprop("fstype", 6, "nfs", 4);
995 
996 	xen_parse_props(s, prop_map, n_prop);
997 
998 	/*
999 	 * If a server name wasn't specified, use a default.
1000 	 */
1001 	if (do_bsys_getproplen(NULL, BP_SERVER_NAME) == -1)
1002 		bsetprops(BP_SERVER_NAME, "unknown");
1003 }
1004 
1005 /*
1006  * Extract our IP address, etc. from the "xpv-ip" property.
1007  */
1008 static void
1009 xen_ip_props(char *s)
1010 {
1011 	char *prop_map[] = {
1012 		BP_HOST_IP,		/* IP address */
1013 		NULL,			/* NFS server IP address (ignored in */
1014 					/* favour of xpv-nfsroot) */
1015 		BP_ROUTER_IP,		/* IP gateway */
1016 		BP_SUBNET_MASK,		/* IP subnet mask */
1017 		"xpv-hostname",		/* hostname (ignored) */
1018 		BP_NETWORK_INTERFACE,	/* interface name */
1019 		"xpv-hcp",		/* host configuration protocol */
1020 	};
1021 	int n_prop = sizeof (prop_map) / sizeof (prop_map[0]);
1022 	char ifname[IFNAMSIZ];
1023 
1024 	xen_parse_props(s, prop_map, n_prop);
1025 
1026 	/*
1027 	 * A Linux dom0 administrator expects all interfaces to be
1028 	 * called "ethX", which is not the case here.
1029 	 *
1030 	 * If the interface name specified is "eth0", presume that
1031 	 * this is really intended to be "xnf0" (the first domU ->
1032 	 * dom0 interface for this domain).
1033 	 */
1034 	if ((do_bsys_getprop(NULL, BP_NETWORK_INTERFACE, ifname) == 0) &&
1035 	    (strcmp("eth0", ifname) == 0)) {
1036 		bsetprops(BP_NETWORK_INTERFACE, "xnf0");
1037 		bop_printf(NULL,
1038 		    "network interface name 'eth0' replaced with 'xnf0'\n");
1039 	}
1040 }
1041 
1042 #else	/* __xpv */
1043 
1044 static void
1045 setup_rarp_props(struct sol_netinfo *sip)
1046 {
1047 	char buf[BUFLEN];	/* to hold ip/mac addrs */
1048 	uint8_t *val;
1049 
1050 	val = (uint8_t *)&sip->sn_ciaddr;
1051 	(void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1052 	    val[0], val[1], val[2], val[3]);
1053 	bsetprops(BP_HOST_IP, buf);
1054 
1055 	val = (uint8_t *)&sip->sn_siaddr;
1056 	(void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1057 	    val[0], val[1], val[2], val[3]);
1058 	bsetprops(BP_SERVER_IP, buf);
1059 
1060 	if (sip->sn_giaddr != 0) {
1061 		val = (uint8_t *)&sip->sn_giaddr;
1062 		(void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1063 		    val[0], val[1], val[2], val[3]);
1064 		bsetprops(BP_ROUTER_IP, buf);
1065 	}
1066 
1067 	if (sip->sn_netmask != 0) {
1068 		val = (uint8_t *)&sip->sn_netmask;
1069 		(void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1070 		    val[0], val[1], val[2], val[3]);
1071 		bsetprops(BP_SUBNET_MASK, buf);
1072 	}
1073 
1074 	if (sip->sn_mactype != 4 || sip->sn_maclen != 6) {
1075 		bop_printf(NULL, "unsupported mac type %d, mac len %d\n",
1076 		    sip->sn_mactype, sip->sn_maclen);
1077 	} else {
1078 		val = sip->sn_macaddr;
1079 		(void) snprintf(buf, BUFLEN, "%x:%x:%x:%x:%x:%x",
1080 		    val[0], val[1], val[2], val[3], val[4], val[5]);
1081 		bsetprops(BP_BOOT_MAC, buf);
1082 	}
1083 }
1084 
1085 #endif	/* __xpv */
1086 
1087 static void
1088 build_panic_cmdline(const char *cmd, int cmdlen)
1089 {
1090 	int proplen;
1091 	size_t arglen;
1092 
1093 	arglen = sizeof (fastreboot_onpanic_args);
1094 	/*
1095 	 * If we allready have fastreboot-onpanic set to zero,
1096 	 * don't add them again.
1097 	 */
1098 	if ((proplen = do_bsys_getproplen(NULL, FASTREBOOT_ONPANIC)) > 0 &&
1099 	    proplen <=  sizeof (fastreboot_onpanic_cmdline)) {
1100 		(void) do_bsys_getprop(NULL, FASTREBOOT_ONPANIC,
1101 		    fastreboot_onpanic_cmdline);
1102 		if (FASTREBOOT_ONPANIC_NOTSET(fastreboot_onpanic_cmdline))
1103 			arglen = 1;
1104 	}
1105 
1106 	/*
1107 	 * construct fastreboot_onpanic_cmdline
1108 	 */
1109 	if (cmdlen + arglen > sizeof (fastreboot_onpanic_cmdline)) {
1110 		DBG_MSG("Command line too long: clearing "
1111 		    FASTREBOOT_ONPANIC "\n");
1112 		fastreboot_onpanic = 0;
1113 	} else {
1114 		bcopy(cmd, fastreboot_onpanic_cmdline, cmdlen);
1115 		if (arglen != 1)
1116 			bcopy(fastreboot_onpanic_args,
1117 			    fastreboot_onpanic_cmdline + cmdlen, arglen);
1118 		else
1119 			fastreboot_onpanic_cmdline[cmdlen] = 0;
1120 	}
1121 }
1122 
1123 
1124 #ifndef	__xpv
1125 /*
1126  * Construct boot command line for Fast Reboot. The saved_cmdline
1127  * is also reported by "eeprom bootcmd".
1128  */
1129 static void
1130 build_fastboot_cmdline(struct xboot_info *xbp)
1131 {
1132 	saved_cmdline_len =  strlen(xbp->bi_cmdline) + 1;
1133 	if (saved_cmdline_len > FASTBOOT_SAVED_CMDLINE_LEN) {
1134 		DBG(saved_cmdline_len);
1135 		DBG_MSG("Command line too long: clearing fastreboot_capable\n");
1136 		fastreboot_capable = 0;
1137 	} else {
1138 		bcopy((void *)(xbp->bi_cmdline), (void *)saved_cmdline,
1139 		    saved_cmdline_len);
1140 		saved_cmdline[saved_cmdline_len - 1] = '\0';
1141 		build_panic_cmdline(saved_cmdline, saved_cmdline_len - 1);
1142 	}
1143 }
1144 
1145 /*
1146  * Save memory layout, disk drive information, unix and boot archive sizes for
1147  * Fast Reboot.
1148  */
1149 static void
1150 save_boot_info(struct xboot_info *xbi)
1151 {
1152 	multiboot_info_t *mbi = xbi->bi_mb_info;
1153 	struct boot_modules *modp;
1154 	int i;
1155 
1156 	bcopy(mbi, &saved_mbi, sizeof (multiboot_info_t));
1157 	if (mbi->mmap_length > sizeof (saved_mmap)) {
1158 		DBG_MSG("mbi->mmap_length too big: clearing "
1159 		    "fastreboot_capable\n");
1160 		fastreboot_capable = 0;
1161 	} else {
1162 		bcopy((void *)(uintptr_t)mbi->mmap_addr, (void *)saved_mmap,
1163 		    mbi->mmap_length);
1164 	}
1165 
1166 	if ((mbi->flags & MB_INFO_DRIVE_INFO) != 0) {
1167 		if (mbi->drives_length > sizeof (saved_drives)) {
1168 			DBG(mbi->drives_length);
1169 			DBG_MSG("mbi->drives_length too big: clearing "
1170 			    "fastreboot_capable\n");
1171 			fastreboot_capable = 0;
1172 		} else {
1173 			bcopy((void *)(uintptr_t)mbi->drives_addr,
1174 			    (void *)saved_drives, mbi->drives_length);
1175 		}
1176 	} else {
1177 		saved_mbi.drives_length = 0;
1178 		saved_mbi.drives_addr = NULL;
1179 	}
1180 
1181 	/*
1182 	 * Current file sizes.  Used by fastboot.c to figure out how much
1183 	 * memory to reserve for panic reboot.
1184 	 * Use the module list from the dboot-constructed xboot_info
1185 	 * instead of the list referenced by the multiboot structure
1186 	 * because that structure may not be addressable now.
1187 	 */
1188 	saved_file_size[FASTBOOT_NAME_UNIX] = FOUR_MEG - PAGESIZE;
1189 	for (i = 0, modp = (struct boot_modules *)(uintptr_t)xbi->bi_modules;
1190 	    i < xbi->bi_module_cnt; i++, modp++) {
1191 		saved_file_size[FASTBOOT_NAME_BOOTARCHIVE] += modp->bm_size;
1192 	}
1193 }
1194 #endif	/* __xpv */
1195 
1196 /*
1197  * Import boot environment module variables as properties, applying
1198  * blacklist filter for variables we know we will not use.
1199  *
1200  * Since the environment can be relatively large, containing many variables
1201  * used only for boot loader purposes, we will use a blacklist based filter.
1202  * To keep the blacklist from growing too large, we use prefix based filtering.
1203  * This is possible because in many cases, the loader variable names are
1204  * using a structured layout.
1205  *
1206  * We will not overwrite already set properties.
1207  */
1208 static struct bop_blacklist {
1209 	const char *bl_name;
1210 	int bl_name_len;
1211 } bop_prop_blacklist[] = {
1212 	{ "ISADIR", sizeof ("ISADIR") },
1213 	{ "acpi", sizeof ("acpi") },
1214 	{ "autoboot_delay", sizeof ("autoboot_delay") },
1215 	{ "autoboot_delay", sizeof ("autoboot_delay") },
1216 	{ "beansi_", sizeof ("beansi_") },
1217 	{ "beastie", sizeof ("beastie") },
1218 	{ "bemenu", sizeof ("bemenu") },
1219 	{ "boot.", sizeof ("boot.") },
1220 	{ "bootenv", sizeof ("bootenv") },
1221 	{ "currdev", sizeof ("currdev") },
1222 	{ "dhcp.", sizeof ("dhcp.") },
1223 	{ "interpret", sizeof ("interpret") },
1224 	{ "kernel", sizeof ("kernel") },
1225 	{ "loaddev", sizeof ("loaddev") },
1226 	{ "loader_", sizeof ("loader_") },
1227 	{ "module_path", sizeof ("module_path") },
1228 	{ "nfs.", sizeof ("nfs.") },
1229 	{ "pcibios", sizeof ("pcibios") },
1230 	{ "prompt", sizeof ("prompt") },
1231 	{ "smbios", sizeof ("smbios") },
1232 	{ "tem", sizeof ("tem") },
1233 	{ "twiddle_divisor", sizeof ("twiddle_divisor") },
1234 	{ "zfs_be", sizeof ("zfs_be") },
1235 };
1236 
1237 /*
1238  * Match the name against prefixes in above blacklist. If the match was
1239  * found, this name is blacklisted.
1240  */
1241 static boolean_t
1242 name_is_blacklisted(const char *name)
1243 {
1244 	int i, n;
1245 
1246 	n = sizeof (bop_prop_blacklist) / sizeof (bop_prop_blacklist[0]);
1247 	for (i = 0; i < n; i++) {
1248 		if (strncmp(bop_prop_blacklist[i].bl_name, name,
1249 		    bop_prop_blacklist[i].bl_name_len - 1) == 0) {
1250 			return (B_TRUE);
1251 		}
1252 	}
1253 	return (B_FALSE);
1254 }
1255 
1256 static void
1257 process_boot_environment(struct boot_modules *benv)
1258 {
1259 	char *env, *ptr, *name, *value;
1260 	uint32_t size, name_len, value_len;
1261 
1262 	if (benv == NULL || benv->bm_type != BMT_ENV)
1263 		return;
1264 	ptr = env = benv->bm_addr;
1265 	size = benv->bm_size;
1266 	do {
1267 		name = ptr;
1268 		/* find '=' */
1269 		while (*ptr != '=') {
1270 			ptr++;
1271 			if (ptr > env + size) /* Something is very wrong. */
1272 				return;
1273 		}
1274 		name_len = ptr - name;
1275 		if (sizeof (buffer) <= name_len)
1276 			continue;
1277 
1278 		(void) strncpy(buffer, name, sizeof (buffer));
1279 		buffer[name_len] = '\0';
1280 		name = buffer;
1281 
1282 		value_len = 0;
1283 		value = ++ptr;
1284 		while ((uintptr_t)ptr - (uintptr_t)env < size) {
1285 			if (*ptr == '\0') {
1286 				ptr++;
1287 				value_len = (uintptr_t)ptr - (uintptr_t)env;
1288 				break;
1289 			}
1290 			ptr++;
1291 		}
1292 
1293 		/* Did we reach the end of the module? */
1294 		if (value_len == 0)
1295 			return;
1296 
1297 		if (*value == '\0')
1298 			continue;
1299 
1300 		/* Is this property already set? */
1301 		if (do_bsys_getproplen(NULL, name) >= 0)
1302 			continue;
1303 
1304 		if (name_is_blacklisted(name) == B_TRUE)
1305 			continue;
1306 
1307 		/* Create new property. */
1308 		bsetprops(name, value);
1309 
1310 		/* Avoid reading past the module end. */
1311 		if (size <= (uintptr_t)ptr - (uintptr_t)env)
1312 			return;
1313 	} while (*ptr != '\0');
1314 }
1315 
1316 /*
1317  * 1st pass at building the table of boot properties. This includes:
1318  * - values set on the command line: -B a=x,b=y,c=z ....
1319  * - known values we just compute (ie. from xbp)
1320  * - values from /boot/solaris/bootenv.rc (ie. eeprom(1m) values)
1321  *
1322  * the grub command line looked like:
1323  * kernel boot-file [-B prop=value[,prop=value]...] [boot-args]
1324  *
1325  * whoami is the same as boot-file
1326  */
1327 static void
1328 build_boot_properties(struct xboot_info *xbp)
1329 {
1330 	char *name;
1331 	int name_len;
1332 	char *value;
1333 	int value_len;
1334 	struct boot_modules *bm, *rdbm, *benv = NULL;
1335 	char *propbuf;
1336 	int quoted = 0;
1337 	int boot_arg_len;
1338 	uint_t i, midx;
1339 	char modid[32];
1340 #ifndef __xpv
1341 	static int stdout_val = 0;
1342 	uchar_t boot_device;
1343 	char str[3];
1344 #endif
1345 
1346 	/*
1347 	 * These have to be done first, so that kobj_mount_root() works
1348 	 */
1349 	DBG_MSG("Building boot properties\n");
1350 	propbuf = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, 0);
1351 	DBG((uintptr_t)propbuf);
1352 	if (xbp->bi_module_cnt > 0) {
1353 		bm = xbp->bi_modules;
1354 		rdbm = NULL;
1355 		for (midx = i = 0; i < xbp->bi_module_cnt; i++) {
1356 			if (bm[i].bm_type == BMT_ROOTFS) {
1357 				rdbm = &bm[i];
1358 				continue;
1359 			}
1360 			if (bm[i].bm_type == BMT_HASH || bm[i].bm_name == NULL)
1361 				continue;
1362 
1363 			if (bm[i].bm_type == BMT_ENV) {
1364 				if (benv == NULL)
1365 					benv = &bm[i];
1366 				else
1367 					continue;
1368 			}
1369 
1370 			(void) snprintf(modid, sizeof (modid),
1371 			    "module-name-%u", midx);
1372 			bsetprops(modid, (char *)bm[i].bm_name);
1373 			(void) snprintf(modid, sizeof (modid),
1374 			    "module-addr-%u", midx);
1375 			bsetprop64(modid, (uint64_t)(uintptr_t)bm[i].bm_addr);
1376 			(void) snprintf(modid, sizeof (modid),
1377 			    "module-size-%u", midx);
1378 			bsetprop64(modid, (uint64_t)bm[i].bm_size);
1379 			++midx;
1380 		}
1381 		if (rdbm != NULL) {
1382 			bsetprop64("ramdisk_start",
1383 			    (uint64_t)(uintptr_t)rdbm->bm_addr);
1384 			bsetprop64("ramdisk_end",
1385 			    (uint64_t)(uintptr_t)rdbm->bm_addr + rdbm->bm_size);
1386 		}
1387 	}
1388 
1389 	/*
1390 	 * If there are any boot time modules or hashes present, then disable
1391 	 * fast reboot.
1392 	 */
1393 	if (xbp->bi_module_cnt > 1) {
1394 		fastreboot_disable(FBNS_BOOTMOD);
1395 	}
1396 
1397 #ifndef __xpv
1398 	/*
1399 	 * Disable fast reboot if we're using the Multiboot 2 boot protocol,
1400 	 * since we don't currently support MB2 info and module relocation.
1401 	 * Note that fast reboot will have already been disabled if multiple
1402 	 * modules are present, since the current implementation assumes that
1403 	 * we only have a single module, the boot_archive.
1404 	 */
1405 	if (xbp->bi_mb_version != 1) {
1406 		fastreboot_disable(FBNS_MULTIBOOT2);
1407 	}
1408 #endif
1409 
1410 	DBG_MSG("Parsing command line for boot properties\n");
1411 	value = xbp->bi_cmdline;
1412 
1413 	/*
1414 	 * allocate memory to collect boot_args into
1415 	 */
1416 	boot_arg_len = strlen(xbp->bi_cmdline) + 1;
1417 	boot_args = do_bsys_alloc(NULL, NULL, boot_arg_len, MMU_PAGESIZE);
1418 	boot_args[0] = 0;
1419 	boot_arg_len = 0;
1420 
1421 #ifdef __xpv
1422 	/*
1423 	 * Xen puts a lot of device information in front of the kernel name
1424 	 * let's grab them and make them boot properties.  The first
1425 	 * string w/o an "=" in it will be the boot-file property.
1426 	 */
1427 	(void) strcpy(namebuf, "xpv-");
1428 	for (;;) {
1429 		/*
1430 		 * get to next property
1431 		 */
1432 		while (ISSPACE(*value))
1433 			++value;
1434 		name = value;
1435 		/*
1436 		 * look for an "="
1437 		 */
1438 		while (*value && !ISSPACE(*value) && *value != '=') {
1439 			value++;
1440 		}
1441 		if (*value != '=') { /* no "=" in the property */
1442 			value = name;
1443 			break;
1444 		}
1445 		name_len = value - name;
1446 		value_len = 0;
1447 		/*
1448 		 * skip over the "="
1449 		 */
1450 		value++;
1451 		while (value[value_len] && !ISSPACE(value[value_len])) {
1452 			++value_len;
1453 		}
1454 		/*
1455 		 * build property name with "xpv-" prefix
1456 		 */
1457 		if (name_len + 4 > 32) { /* skip if name too long */
1458 			value += value_len;
1459 			continue;
1460 		}
1461 		bcopy(name, &namebuf[4], name_len);
1462 		name_len += 4;
1463 		namebuf[name_len] = 0;
1464 		bcopy(value, propbuf, value_len);
1465 		propbuf[value_len] = 0;
1466 		bsetprops(namebuf, propbuf);
1467 
1468 		/*
1469 		 * xpv-root is set to the logical disk name of the xen
1470 		 * VBD when booting from a disk-based filesystem.
1471 		 */
1472 		if (strcmp(namebuf, "xpv-root") == 0)
1473 			xen_vbdroot_props(propbuf);
1474 		/*
1475 		 * While we're here, if we have a "xpv-nfsroot" property
1476 		 * then we need to set "fstype" to "nfs" so we mount
1477 		 * our root from the nfs server.  Also parse the xpv-nfsroot
1478 		 * property to create the properties that nfs_mountroot will
1479 		 * need to find the root and mount it.
1480 		 */
1481 		if (strcmp(namebuf, "xpv-nfsroot") == 0)
1482 			xen_nfsroot_props(propbuf);
1483 
1484 		if (strcmp(namebuf, "xpv-ip") == 0)
1485 			xen_ip_props(propbuf);
1486 		value += value_len;
1487 	}
1488 #endif
1489 
1490 	while (ISSPACE(*value))
1491 		++value;
1492 	/*
1493 	 * value now points at the boot-file
1494 	 */
1495 	value_len = 0;
1496 	while (value[value_len] && !ISSPACE(value[value_len]))
1497 		++value_len;
1498 	if (value_len > 0) {
1499 		whoami = propbuf;
1500 		bcopy(value, whoami, value_len);
1501 		whoami[value_len] = 0;
1502 		bsetprops("boot-file", whoami);
1503 		/*
1504 		 * strip leading path stuff from whoami, so running from
1505 		 * PXE/miniroot makes sense.
1506 		 */
1507 		if (strstr(whoami, "/platform/") != NULL)
1508 			whoami = strstr(whoami, "/platform/");
1509 		bsetprops("whoami", whoami);
1510 	}
1511 
1512 	/*
1513 	 * Values forcibly set boot properties on the command line via -B.
1514 	 * Allow use of quotes in values. Other stuff goes on kernel
1515 	 * command line.
1516 	 */
1517 	name = value + value_len;
1518 	while (*name != 0) {
1519 		/*
1520 		 * anything not " -B" is copied to the command line
1521 		 */
1522 		if (!ISSPACE(name[0]) || name[1] != '-' || name[2] != 'B') {
1523 			boot_args[boot_arg_len++] = *name;
1524 			boot_args[boot_arg_len] = 0;
1525 			++name;
1526 			continue;
1527 		}
1528 
1529 		/*
1530 		 * skip the " -B" and following white space
1531 		 */
1532 		name += 3;
1533 		while (ISSPACE(*name))
1534 			++name;
1535 		while (*name && !ISSPACE(*name)) {
1536 			value = strstr(name, "=");
1537 			if (value == NULL)
1538 				break;
1539 			name_len = value - name;
1540 			++value;
1541 			value_len = 0;
1542 			quoted = 0;
1543 			for (; ; ++value_len) {
1544 				if (!value[value_len])
1545 					break;
1546 
1547 				/*
1548 				 * is this value quoted?
1549 				 */
1550 				if (value_len == 0 &&
1551 				    (value[0] == '\'' || value[0] == '"')) {
1552 					quoted = value[0];
1553 					++value_len;
1554 				}
1555 
1556 				/*
1557 				 * In the quote accept any character,
1558 				 * but look for ending quote.
1559 				 */
1560 				if (quoted) {
1561 					if (value[value_len] == quoted)
1562 						quoted = 0;
1563 					continue;
1564 				}
1565 
1566 				/*
1567 				 * a comma or white space ends the value
1568 				 */
1569 				if (value[value_len] == ',' ||
1570 				    ISSPACE(value[value_len]))
1571 					break;
1572 			}
1573 
1574 			if (value_len == 0) {
1575 				bsetprop(name, name_len, "true", 5);
1576 			} else {
1577 				char *v = value;
1578 				int l = value_len;
1579 				if (v[0] == v[l - 1] &&
1580 				    (v[0] == '\'' || v[0] == '"')) {
1581 					++v;
1582 					l -= 2;
1583 				}
1584 				bcopy(v, propbuf, l);
1585 				propbuf[l] = '\0';
1586 				bsetprop(name, name_len, propbuf,
1587 				    l + 1);
1588 			}
1589 			name = value + value_len;
1590 			while (*name == ',')
1591 				++name;
1592 		}
1593 	}
1594 
1595 	/*
1596 	 * set boot-args property
1597 	 * 1275 name is bootargs, so set
1598 	 * that too
1599 	 */
1600 	bsetprops("boot-args", boot_args);
1601 	bsetprops("bootargs", boot_args);
1602 
1603 	process_boot_environment(benv);
1604 
1605 #ifndef __xpv
1606 	/*
1607 	 * Build boot command line for Fast Reboot
1608 	 */
1609 	build_fastboot_cmdline(xbp);
1610 
1611 	if (xbp->bi_mb_version == 1) {
1612 		multiboot_info_t *mbi = xbp->bi_mb_info;
1613 		int netboot;
1614 		struct sol_netinfo *sip;
1615 
1616 		/*
1617 		 * set the BIOS boot device from GRUB
1618 		 */
1619 		netboot = 0;
1620 
1621 		/*
1622 		 * Save various boot information for Fast Reboot
1623 		 */
1624 		save_boot_info(xbp);
1625 
1626 		if (mbi != NULL && mbi->flags & MB_INFO_BOOTDEV) {
1627 			boot_device = mbi->boot_device >> 24;
1628 			if (boot_device == 0x20)
1629 				netboot++;
1630 			str[0] = (boot_device >> 4) + '0';
1631 			str[1] = (boot_device & 0xf) + '0';
1632 			str[2] = 0;
1633 			bsetprops("bios-boot-device", str);
1634 		} else {
1635 			netboot = 1;
1636 		}
1637 
1638 		/*
1639 		 * In the netboot case, drives_info is overloaded with the
1640 		 * dhcp ack. This is not multiboot compliant and requires
1641 		 * special pxegrub!
1642 		 */
1643 		if (netboot && mbi->drives_length != 0) {
1644 			sip = (struct sol_netinfo *)(uintptr_t)mbi->drives_addr;
1645 			if (sip->sn_infotype == SN_TYPE_BOOTP)
1646 				bsetprop("bootp-response",
1647 				    sizeof ("bootp-response"),
1648 				    (void *)(uintptr_t)mbi->drives_addr,
1649 				    mbi->drives_length);
1650 			else if (sip->sn_infotype == SN_TYPE_RARP)
1651 				setup_rarp_props(sip);
1652 		}
1653 	} else {
1654 		multiboot2_info_header_t *mbi = xbp->bi_mb_info;
1655 		multiboot_tag_bootdev_t *bootdev = NULL;
1656 		multiboot_tag_network_t *netdev = NULL;
1657 
1658 		if (mbi != NULL) {
1659 			bootdev = dboot_multiboot2_find_tag(mbi,
1660 			    MULTIBOOT_TAG_TYPE_BOOTDEV);
1661 			netdev = dboot_multiboot2_find_tag(mbi,
1662 			    MULTIBOOT_TAG_TYPE_NETWORK);
1663 		}
1664 		if (bootdev != NULL) {
1665 			DBG(bootdev->mb_biosdev);
1666 			boot_device = bootdev->mb_biosdev;
1667 			str[0] = (boot_device >> 4) + '0';
1668 			str[1] = (boot_device & 0xf) + '0';
1669 			str[2] = 0;
1670 			bsetprops("bios-boot-device", str);
1671 		}
1672 		if (netdev != NULL) {
1673 			bsetprop("bootp-response", sizeof ("bootp-response"),
1674 			    (void *)(uintptr_t)netdev->mb_dhcpack,
1675 			    netdev->mb_size -
1676 			    sizeof (multiboot_tag_network_t));
1677 		}
1678 	}
1679 
1680 	bsetprop("stdout", strlen("stdout"),
1681 	    &stdout_val, sizeof (stdout_val));
1682 #endif /* __xpv */
1683 
1684 	/*
1685 	 * more conjured up values for made up things....
1686 	 */
1687 #if defined(__xpv)
1688 	bsetprops("mfg-name", "i86xpv");
1689 	bsetprops("impl-arch-name", "i86xpv");
1690 #else
1691 	bsetprops("mfg-name", "i86pc");
1692 	bsetprops("impl-arch-name", "i86pc");
1693 #endif
1694 
1695 	/*
1696 	 * Build firmware-provided system properties
1697 	 */
1698 	build_firmware_properties(xbp);
1699 
1700 	/*
1701 	 * XXPV
1702 	 *
1703 	 * Find out what these are:
1704 	 * - cpuid_feature_ecx_include
1705 	 * - cpuid_feature_ecx_exclude
1706 	 * - cpuid_feature_edx_include
1707 	 * - cpuid_feature_edx_exclude
1708 	 *
1709 	 * Find out what these are in multiboot:
1710 	 * - netdev-path
1711 	 * - fstype
1712 	 */
1713 }
1714 
1715 #ifdef __xpv
1716 /*
1717  * Under the Hypervisor, memory usable for DMA may be scarce. One
1718  * very likely large pool of DMA friendly memory is occupied by
1719  * the boot_archive, as it was loaded by grub into low MFNs.
1720  *
1721  * Here we free up that memory by copying the boot archive to what are
1722  * likely higher MFN pages and then swapping the mfn/pfn mappings.
1723  */
1724 #define	PFN_2GIG	0x80000
1725 static void
1726 relocate_boot_archive(struct xboot_info *xbp)
1727 {
1728 	mfn_t max_mfn = HYPERVISOR_memory_op(XENMEM_maximum_ram_page, NULL);
1729 	struct boot_modules *bm = xbp->bi_modules;
1730 	uintptr_t va;
1731 	pfn_t va_pfn;
1732 	mfn_t va_mfn;
1733 	caddr_t copy;
1734 	pfn_t copy_pfn;
1735 	mfn_t copy_mfn;
1736 	size_t	len;
1737 	int slop;
1738 	int total = 0;
1739 	int relocated = 0;
1740 	int mmu_update_return;
1741 	mmu_update_t t[2];
1742 	x86pte_t pte;
1743 
1744 	/*
1745 	 * If all MFN's are below 2Gig, don't bother doing this.
1746 	 */
1747 	if (max_mfn < PFN_2GIG)
1748 		return;
1749 	if (xbp->bi_module_cnt < 1) {
1750 		DBG_MSG("no boot_archive!");
1751 		return;
1752 	}
1753 
1754 	DBG_MSG("moving boot_archive to high MFN memory\n");
1755 	va = (uintptr_t)bm->bm_addr;
1756 	len = bm->bm_size;
1757 	slop = va & MMU_PAGEOFFSET;
1758 	if (slop) {
1759 		va += MMU_PAGESIZE - slop;
1760 		len -= MMU_PAGESIZE - slop;
1761 	}
1762 	len = P2ALIGN(len, MMU_PAGESIZE);
1763 
1764 	/*
1765 	 * Go through all boot_archive pages, swapping any low MFN pages
1766 	 * with memory at next_phys.
1767 	 */
1768 	while (len != 0) {
1769 		++total;
1770 		va_pfn = mmu_btop(va - ONE_GIG);
1771 		va_mfn = mfn_list[va_pfn];
1772 		if (mfn_list[va_pfn] < PFN_2GIG) {
1773 			copy = kbm_remap_window(next_phys, 1);
1774 			bcopy((void *)va, copy, MMU_PAGESIZE);
1775 			copy_pfn = mmu_btop(next_phys);
1776 			copy_mfn = mfn_list[copy_pfn];
1777 
1778 			pte = mfn_to_ma(copy_mfn) | PT_NOCONSIST | PT_VALID;
1779 			if (HYPERVISOR_update_va_mapping(va, pte,
1780 			    UVMF_INVLPG | UVMF_LOCAL))
1781 				bop_panic("relocate_boot_archive():  "
1782 				    "HYPERVISOR_update_va_mapping() failed");
1783 
1784 			mfn_list[va_pfn] = copy_mfn;
1785 			mfn_list[copy_pfn] = va_mfn;
1786 
1787 			t[0].ptr = mfn_to_ma(copy_mfn) | MMU_MACHPHYS_UPDATE;
1788 			t[0].val = va_pfn;
1789 			t[1].ptr = mfn_to_ma(va_mfn) | MMU_MACHPHYS_UPDATE;
1790 			t[1].val = copy_pfn;
1791 			if (HYPERVISOR_mmu_update(t, 2, &mmu_update_return,
1792 			    DOMID_SELF) != 0 || mmu_update_return != 2)
1793 				bop_panic("relocate_boot_archive():  "
1794 				    "HYPERVISOR_mmu_update() failed");
1795 
1796 			next_phys += MMU_PAGESIZE;
1797 			++relocated;
1798 		}
1799 		len -= MMU_PAGESIZE;
1800 		va += MMU_PAGESIZE;
1801 	}
1802 	DBG_MSG("Relocated pages:\n");
1803 	DBG(relocated);
1804 	DBG_MSG("Out of total pages:\n");
1805 	DBG(total);
1806 }
1807 #endif /* __xpv */
1808 
1809 #if !defined(__xpv)
1810 /*
1811  * simple description of a stack frame (args are 32 bit only currently)
1812  */
1813 typedef struct bop_frame {
1814 	struct bop_frame *old_frame;
1815 	pc_t retaddr;
1816 	long arg[1];
1817 } bop_frame_t;
1818 
1819 void
1820 bop_traceback(bop_frame_t *frame)
1821 {
1822 	pc_t pc;
1823 	int cnt;
1824 	char *ksym;
1825 	ulong_t off;
1826 
1827 	bop_printf(NULL, "Stack traceback:\n");
1828 	for (cnt = 0; cnt < 30; ++cnt) {	/* up to 30 frames */
1829 		pc = frame->retaddr;
1830 		if (pc == 0)
1831 			break;
1832 		ksym = kobj_getsymname(pc, &off);
1833 		if (ksym)
1834 			bop_printf(NULL, "  %s+%lx", ksym, off);
1835 		else
1836 			bop_printf(NULL, "  0x%lx", pc);
1837 
1838 		frame = frame->old_frame;
1839 		if (frame == 0) {
1840 			bop_printf(NULL, "\n");
1841 			break;
1842 		}
1843 		bop_printf(NULL, "\n");
1844 	}
1845 }
1846 
1847 struct trapframe {
1848 	ulong_t error_code;	/* optional */
1849 	ulong_t inst_ptr;
1850 	ulong_t code_seg;
1851 	ulong_t flags_reg;
1852 	ulong_t stk_ptr;
1853 	ulong_t stk_seg;
1854 };
1855 
1856 void
1857 bop_trap(ulong_t *tfp)
1858 {
1859 	struct trapframe *tf = (struct trapframe *)tfp;
1860 	bop_frame_t fakeframe;
1861 	static int depth = 0;
1862 
1863 	/*
1864 	 * Check for an infinite loop of traps.
1865 	 */
1866 	if (++depth > 2)
1867 		bop_panic("Nested trap");
1868 
1869 	bop_printf(NULL, "Unexpected trap\n");
1870 
1871 	/*
1872 	 * adjust the tf for optional error_code by detecting the code selector
1873 	 */
1874 	if (tf->code_seg != B64CODE_SEL)
1875 		tf = (struct trapframe *)(tfp - 1);
1876 	else
1877 		bop_printf(NULL, "error code           0x%lx\n",
1878 		    tf->error_code & 0xffffffff);
1879 
1880 	bop_printf(NULL, "instruction pointer  0x%lx\n", tf->inst_ptr);
1881 	bop_printf(NULL, "code segment         0x%lx\n", tf->code_seg & 0xffff);
1882 	bop_printf(NULL, "flags register       0x%lx\n", tf->flags_reg);
1883 	bop_printf(NULL, "return %%rsp          0x%lx\n", tf->stk_ptr);
1884 	bop_printf(NULL, "return %%ss           0x%lx\n", tf->stk_seg & 0xffff);
1885 
1886 	/* grab %[er]bp pushed by our code from the stack */
1887 	fakeframe.old_frame = (bop_frame_t *)*(tfp - 3);
1888 	fakeframe.retaddr = (pc_t)tf->inst_ptr;
1889 	bop_printf(NULL, "Attempting stack backtrace:\n");
1890 	bop_traceback(&fakeframe);
1891 	bop_panic("unexpected trap in early boot");
1892 }
1893 
1894 extern void bop_trap_handler(void);
1895 
1896 static gate_desc_t *bop_idt;
1897 
1898 static desctbr_t bop_idt_info;
1899 
1900 /*
1901  * Install a temporary IDT that lets us catch errors in the boot time code.
1902  * We shouldn't get any faults at all while this is installed, so we'll
1903  * just generate a traceback and exit.
1904  */
1905 static void
1906 bop_idt_init(void)
1907 {
1908 	int t;
1909 
1910 	bop_idt = (gate_desc_t *)
1911 	    do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE);
1912 	bzero(bop_idt, MMU_PAGESIZE);
1913 	for (t = 0; t < NIDT; ++t) {
1914 		/*
1915 		 * Note that since boot runs without a TSS, the
1916 		 * double fault handler cannot use an alternate stack (64-bit).
1917 		 */
1918 		set_gatesegd(&bop_idt[t], &bop_trap_handler, B64CODE_SEL,
1919 		    SDT_SYSIGT, TRP_KPL, 0);
1920 	}
1921 	bop_idt_info.dtr_limit = (NIDT * sizeof (gate_desc_t)) - 1;
1922 	bop_idt_info.dtr_base = (uintptr_t)bop_idt;
1923 	wr_idtr(&bop_idt_info);
1924 }
1925 #endif	/* !defined(__xpv) */
1926 
1927 /*
1928  * This is where we enter the kernel. It dummies up the boot_ops and
1929  * boot_syscalls vectors and jumps off to _kobj_boot()
1930  */
1931 void
1932 _start(struct xboot_info *xbp)
1933 {
1934 	bootops_t *bops = &bootop;
1935 	extern void _kobj_boot();
1936 
1937 	/*
1938 	 * 1st off - initialize the console for any error messages
1939 	 */
1940 	xbootp = xbp;
1941 #ifdef __xpv
1942 	HYPERVISOR_shared_info = (void *)xbp->bi_shared_info;
1943 	xen_info = xbp->bi_xen_start_info;
1944 #endif
1945 
1946 #ifndef __xpv
1947 	if (*((uint32_t *)(FASTBOOT_SWTCH_PA + FASTBOOT_STACK_OFFSET)) ==
1948 	    FASTBOOT_MAGIC) {
1949 		post_fastreboot = 1;
1950 		*((uint32_t *)(FASTBOOT_SWTCH_PA + FASTBOOT_STACK_OFFSET)) = 0;
1951 	}
1952 #endif
1953 
1954 	bcons_init(xbp);
1955 	have_console = 1;
1956 
1957 	/*
1958 	 * enable debugging
1959 	 */
1960 	if (find_boot_prop("kbm_debug") != NULL)
1961 		kbm_debug = 1;
1962 
1963 	DBG_MSG("\n\n*** Entered Solaris in _start() cmdline is: ");
1964 	DBG_MSG((char *)xbp->bi_cmdline);
1965 	DBG_MSG("\n\n\n");
1966 
1967 	/*
1968 	 * physavail is no longer used by startup
1969 	 */
1970 	bm.physinstalled = xbp->bi_phys_install;
1971 	bm.pcimem = xbp->bi_pcimem;
1972 	bm.rsvdmem = xbp->bi_rsvdmem;
1973 	bm.physavail = NULL;
1974 
1975 	/*
1976 	 * initialize the boot time allocator
1977 	 */
1978 	next_phys = xbp->bi_next_paddr;
1979 	DBG(next_phys);
1980 	next_virt = (uintptr_t)xbp->bi_next_vaddr;
1981 	DBG(next_virt);
1982 	DBG_MSG("Initializing boot time memory management...");
1983 #ifdef __xpv
1984 	{
1985 		xen_platform_parameters_t p;
1986 
1987 		/* This call shouldn't fail, dboot already did it once. */
1988 		(void) HYPERVISOR_xen_version(XENVER_platform_parameters, &p);
1989 		mfn_to_pfn_mapping = (pfn_t *)(xen_virt_start = p.virt_start);
1990 		DBG(xen_virt_start);
1991 	}
1992 #endif
1993 	kbm_init(xbp);
1994 	DBG_MSG("done\n");
1995 
1996 	/*
1997 	 * Fill in the bootops vector
1998 	 */
1999 	bops->bsys_version = BO_VERSION;
2000 	bops->boot_mem = &bm;
2001 	bops->bsys_alloc = do_bsys_alloc;
2002 	bops->bsys_free = do_bsys_free;
2003 	bops->bsys_getproplen = do_bsys_getproplen;
2004 	bops->bsys_getprop = do_bsys_getprop;
2005 	bops->bsys_nextprop = do_bsys_nextprop;
2006 	bops->bsys_printf = bop_printf;
2007 	bops->bsys_doint = do_bsys_doint;
2008 
2009 	/*
2010 	 * BOP_EALLOC() is no longer needed
2011 	 */
2012 	bops->bsys_ealloc = do_bsys_ealloc;
2013 
2014 #ifdef __xpv
2015 	/*
2016 	 * On domain 0 we need to free up some physical memory that is
2017 	 * usable for DMA. Since GRUB loaded the boot_archive, it is
2018 	 * sitting in low MFN memory. We'll relocated the boot archive
2019 	 * pages to high PFN memory.
2020 	 */
2021 	if (DOMAIN_IS_INITDOMAIN(xen_info))
2022 		relocate_boot_archive(xbp);
2023 #endif
2024 
2025 #ifndef __xpv
2026 	/*
2027 	 * Install an IDT to catch early pagefaults (shouldn't have any).
2028 	 * Also needed for kmdb.
2029 	 */
2030 	bop_idt_init();
2031 #endif
2032 
2033 	/*
2034 	 * Start building the boot properties from the command line
2035 	 */
2036 	DBG_MSG("Initializing boot properties:\n");
2037 	build_boot_properties(xbp);
2038 
2039 	if (find_boot_prop("prom_debug") || kbm_debug) {
2040 		char *value;
2041 
2042 		value = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE);
2043 		boot_prop_display(value);
2044 	}
2045 
2046 	/*
2047 	 * jump into krtld...
2048 	 */
2049 	_kobj_boot(&bop_sysp, NULL, bops, NULL);
2050 }
2051 
2052 
2053 /*ARGSUSED*/
2054 static caddr_t
2055 no_more_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align)
2056 {
2057 	panic("Attempt to bsys_alloc() too late\n");
2058 	return (NULL);
2059 }
2060 
2061 /*ARGSUSED*/
2062 static void
2063 no_more_free(bootops_t *bop, caddr_t virt, size_t size)
2064 {
2065 	panic("Attempt to bsys_free() too late\n");
2066 }
2067 
2068 void
2069 bop_no_more_mem(void)
2070 {
2071 	DBG(total_bop_alloc_scratch);
2072 	DBG(total_bop_alloc_kernel);
2073 	bootops->bsys_alloc = no_more_alloc;
2074 	bootops->bsys_free = no_more_free;
2075 }
2076 
2077 
2078 /*
2079  * Set ACPI firmware properties
2080  */
2081 
2082 static caddr_t
2083 vmap_phys(size_t length, paddr_t pa)
2084 {
2085 	paddr_t	start, end;
2086 	caddr_t	va;
2087 	size_t	len, page;
2088 
2089 #ifdef __xpv
2090 	pa = pfn_to_pa(xen_assign_pfn(mmu_btop(pa))) | (pa & MMU_PAGEOFFSET);
2091 #endif
2092 	start = P2ALIGN(pa, MMU_PAGESIZE);
2093 	end = P2ROUNDUP(pa + length, MMU_PAGESIZE);
2094 	len = end - start;
2095 	va = (caddr_t)alloc_vaddr(len, MMU_PAGESIZE);
2096 	for (page = 0; page < len; page += MMU_PAGESIZE)
2097 		kbm_map((uintptr_t)va + page, start + page, 0, 0);
2098 	return (va + (pa & MMU_PAGEOFFSET));
2099 }
2100 
2101 static uint8_t
2102 checksum_table(uint8_t *tp, size_t len)
2103 {
2104 	uint8_t sum = 0;
2105 
2106 	while (len-- > 0)
2107 		sum += *tp++;
2108 
2109 	return (sum);
2110 }
2111 
2112 static int
2113 valid_rsdp(ACPI_TABLE_RSDP *rp)
2114 {
2115 
2116 	/* validate the V1.x checksum */
2117 	if (checksum_table((uint8_t *)rp, ACPI_RSDP_CHECKSUM_LENGTH) != 0)
2118 		return (0);
2119 
2120 	/* If pre-ACPI 2.0, this is a valid RSDP */
2121 	if (rp->Revision < 2)
2122 		return (1);
2123 
2124 	/* validate the V2.x checksum */
2125 	if (checksum_table((uint8_t *)rp, ACPI_RSDP_XCHECKSUM_LENGTH) != 0)
2126 		return (0);
2127 
2128 	return (1);
2129 }
2130 
2131 /*
2132  * Scan memory range for an RSDP;
2133  * see ACPI 3.0 Spec, 5.2.5.1
2134  */
2135 static ACPI_TABLE_RSDP *
2136 scan_rsdp(paddr_t start, paddr_t end)
2137 {
2138 	ssize_t len  = end - start;
2139 	caddr_t ptr;
2140 
2141 	ptr = vmap_phys(len, start);
2142 	while (len > 0) {
2143 		if (strncmp(ptr, ACPI_SIG_RSDP, strlen(ACPI_SIG_RSDP)) == 0 &&
2144 		    valid_rsdp((ACPI_TABLE_RSDP *)ptr))
2145 			return ((ACPI_TABLE_RSDP *)ptr);
2146 
2147 		ptr += ACPI_RSDP_SCAN_STEP;
2148 		len -= ACPI_RSDP_SCAN_STEP;
2149 	}
2150 
2151 	return (NULL);
2152 }
2153 
2154 /*
2155  * Refer to ACPI 3.0 Spec, section 5.2.5.1 to understand this function
2156  */
2157 static ACPI_TABLE_RSDP *
2158 find_rsdp()
2159 {
2160 	ACPI_TABLE_RSDP *rsdp;
2161 	uint64_t rsdp_val = 0;
2162 	uint16_t *ebda_seg;
2163 	paddr_t  ebda_addr;
2164 
2165 	/* check for "acpi-root-tab" property */
2166 	if (do_bsys_getproplen(NULL, "acpi-root-tab") == sizeof (uint64_t)) {
2167 		(void) do_bsys_getprop(NULL, "acpi-root-tab", &rsdp_val);
2168 		if (rsdp_val != 0) {
2169 			rsdp = scan_rsdp(rsdp_val, rsdp_val + sizeof (*rsdp));
2170 			if (rsdp != NULL) {
2171 				if (kbm_debug) {
2172 					bop_printf(NULL,
2173 					    "Using RSDP from bootloader: "
2174 					    "0x%p\n", (void *)rsdp);
2175 				}
2176 				return (rsdp);
2177 			}
2178 		}
2179 	}
2180 
2181 	/*
2182 	 * Get the EBDA segment and scan the first 1K
2183 	 */
2184 	ebda_seg = (uint16_t *)vmap_phys(sizeof (uint16_t),
2185 	    ACPI_EBDA_PTR_LOCATION);
2186 	ebda_addr = *ebda_seg << 4;
2187 	rsdp = scan_rsdp(ebda_addr, ebda_addr + ACPI_EBDA_WINDOW_SIZE);
2188 	if (rsdp == NULL)
2189 		/* if EBDA doesn't contain RSDP, look in BIOS memory */
2190 		rsdp = scan_rsdp(ACPI_HI_RSDP_WINDOW_BASE,
2191 		    ACPI_HI_RSDP_WINDOW_BASE + ACPI_HI_RSDP_WINDOW_SIZE);
2192 	return (rsdp);
2193 }
2194 
2195 static ACPI_TABLE_HEADER *
2196 map_fw_table(paddr_t table_addr)
2197 {
2198 	ACPI_TABLE_HEADER *tp;
2199 	size_t len = MAX(sizeof (*tp), MMU_PAGESIZE);
2200 
2201 	/*
2202 	 * Map at least a page; if the table is larger than this, remap it
2203 	 */
2204 	tp = (ACPI_TABLE_HEADER *)vmap_phys(len, table_addr);
2205 	if (tp->Length > len)
2206 		tp = (ACPI_TABLE_HEADER *)vmap_phys(tp->Length, table_addr);
2207 	return (tp);
2208 }
2209 
2210 static ACPI_TABLE_HEADER *
2211 find_fw_table(char *signature)
2212 {
2213 	static int revision = 0;
2214 	static ACPI_TABLE_XSDT *xsdt;
2215 	static int len;
2216 	paddr_t xsdt_addr;
2217 	ACPI_TABLE_RSDP *rsdp;
2218 	ACPI_TABLE_HEADER *tp;
2219 	paddr_t table_addr;
2220 	int	n;
2221 
2222 	if (strlen(signature) != ACPI_NAME_SIZE)
2223 		return (NULL);
2224 
2225 	/*
2226 	 * Reading the ACPI 3.0 Spec, section 5.2.5.3 will help
2227 	 * understand this code.  If we haven't already found the RSDT/XSDT,
2228 	 * revision will be 0. Find the RSDP and check the revision
2229 	 * to find out whether to use the RSDT or XSDT.  If revision is
2230 	 * 0 or 1, use the RSDT and set internal revision to 1; if it is 2,
2231 	 * use the XSDT.  If the XSDT address is 0, though, fall back to
2232 	 * revision 1 and use the RSDT.
2233 	 */
2234 	if (revision == 0) {
2235 		if ((rsdp = find_rsdp()) != NULL) {
2236 			revision = rsdp->Revision;
2237 			/*
2238 			 * ACPI 6.0 states that current revision is 2
2239 			 * from acpi_table_rsdp definition:
2240 			 * Must be (0) for ACPI 1.0 or (2) for ACPI 2.0+
2241 			 */
2242 			if (revision > 2)
2243 				revision = 2;
2244 			switch (revision) {
2245 			case 2:
2246 				/*
2247 				 * Use the XSDT unless BIOS is buggy and
2248 				 * claims to be rev 2 but has a null XSDT
2249 				 * address
2250 				 */
2251 				xsdt_addr = rsdp->XsdtPhysicalAddress;
2252 				if (xsdt_addr != 0)
2253 					break;
2254 				/* FALLTHROUGH */
2255 			case 0:
2256 				/* treat RSDP rev 0 as revision 1 internally */
2257 				revision = 1;
2258 				/* FALLTHROUGH */
2259 			case 1:
2260 				/* use the RSDT for rev 0/1 */
2261 				xsdt_addr = rsdp->RsdtPhysicalAddress;
2262 				break;
2263 			default:
2264 				/* unknown revision */
2265 				revision = 0;
2266 				break;
2267 			}
2268 		}
2269 		if (revision == 0)
2270 			return (NULL);
2271 
2272 		/* cache the XSDT info */
2273 		xsdt = (ACPI_TABLE_XSDT *)map_fw_table(xsdt_addr);
2274 		len = (xsdt->Header.Length - sizeof (xsdt->Header)) /
2275 		    ((revision == 1) ? sizeof (uint32_t) : sizeof (uint64_t));
2276 	}
2277 
2278 	/*
2279 	 * Scan the table headers looking for a signature match
2280 	 */
2281 	for (n = 0; n < len; n++) {
2282 		ACPI_TABLE_RSDT *rsdt = (ACPI_TABLE_RSDT *)xsdt;
2283 		table_addr = (revision == 1) ? rsdt->TableOffsetEntry[n] :
2284 		    xsdt->TableOffsetEntry[n];
2285 
2286 		if (table_addr == 0)
2287 			continue;
2288 		tp = map_fw_table(table_addr);
2289 		if (strncmp(tp->Signature, signature, ACPI_NAME_SIZE) == 0) {
2290 			return (tp);
2291 		}
2292 	}
2293 	return (NULL);
2294 }
2295 
2296 static void
2297 process_mcfg(ACPI_TABLE_MCFG *tp)
2298 {
2299 	ACPI_MCFG_ALLOCATION *cfg_baap;
2300 	char *cfg_baa_endp;
2301 	int64_t ecfginfo[4];
2302 
2303 	cfg_baap = (ACPI_MCFG_ALLOCATION *)((uintptr_t)tp + sizeof (*tp));
2304 	cfg_baa_endp = ((char *)tp) + tp->Header.Length;
2305 	while ((char *)cfg_baap < cfg_baa_endp) {
2306 		if (cfg_baap->Address != 0 && cfg_baap->PciSegment == 0) {
2307 			ecfginfo[0] = cfg_baap->Address;
2308 			ecfginfo[1] = cfg_baap->PciSegment;
2309 			ecfginfo[2] = cfg_baap->StartBusNumber;
2310 			ecfginfo[3] = cfg_baap->EndBusNumber;
2311 			bsetprop(MCFG_PROPNAME, strlen(MCFG_PROPNAME),
2312 			    ecfginfo, sizeof (ecfginfo));
2313 			break;
2314 		}
2315 		cfg_baap++;
2316 	}
2317 }
2318 
2319 #ifndef __xpv
2320 static void
2321 process_madt_entries(ACPI_TABLE_MADT *tp, uint32_t *cpu_countp,
2322     uint32_t *cpu_possible_countp, uint32_t *cpu_apicid_array)
2323 {
2324 	ACPI_SUBTABLE_HEADER *item, *end;
2325 	uint32_t cpu_count = 0;
2326 	uint32_t cpu_possible_count = 0;
2327 
2328 	/*
2329 	 * Determine number of CPUs and keep track of "final" APIC ID
2330 	 * for each CPU by walking through ACPI MADT processor list
2331 	 */
2332 	end = (ACPI_SUBTABLE_HEADER *)(tp->Header.Length + (uintptr_t)tp);
2333 	item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)tp + sizeof (*tp));
2334 
2335 	while (item < end) {
2336 		switch (item->Type) {
2337 		case ACPI_MADT_TYPE_LOCAL_APIC: {
2338 			ACPI_MADT_LOCAL_APIC *cpu =
2339 			    (ACPI_MADT_LOCAL_APIC *) item;
2340 
2341 			if (cpu->LapicFlags & ACPI_MADT_ENABLED) {
2342 				if (cpu_apicid_array != NULL)
2343 					cpu_apicid_array[cpu_count] = cpu->Id;
2344 				cpu_count++;
2345 			}
2346 			cpu_possible_count++;
2347 			break;
2348 		}
2349 		case ACPI_MADT_TYPE_LOCAL_X2APIC: {
2350 			ACPI_MADT_LOCAL_X2APIC *cpu =
2351 			    (ACPI_MADT_LOCAL_X2APIC *) item;
2352 
2353 			if (cpu->LapicFlags & ACPI_MADT_ENABLED) {
2354 				if (cpu_apicid_array != NULL)
2355 					cpu_apicid_array[cpu_count] =
2356 					    cpu->LocalApicId;
2357 				cpu_count++;
2358 			}
2359 			cpu_possible_count++;
2360 			break;
2361 		}
2362 		default:
2363 			if (kbm_debug)
2364 				bop_printf(NULL, "MADT type %d\n", item->Type);
2365 			break;
2366 		}
2367 
2368 		item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)item + item->Length);
2369 	}
2370 	if (cpu_countp)
2371 		*cpu_countp = cpu_count;
2372 	if (cpu_possible_countp)
2373 		*cpu_possible_countp = cpu_possible_count;
2374 }
2375 
2376 static void
2377 process_madt(ACPI_TABLE_MADT *tp)
2378 {
2379 	uint32_t cpu_count = 0;
2380 	uint32_t cpu_possible_count = 0;
2381 	uint32_t *cpu_apicid_array; /* x2APIC ID is 32bit! */
2382 
2383 	if (tp != NULL) {
2384 		/* count cpu's */
2385 		process_madt_entries(tp, &cpu_count, &cpu_possible_count, NULL);
2386 
2387 		cpu_apicid_array = (uint32_t *)do_bsys_alloc(NULL, NULL,
2388 		    cpu_count * sizeof (*cpu_apicid_array), MMU_PAGESIZE);
2389 		if (cpu_apicid_array == NULL)
2390 			bop_panic("Not enough memory for APIC ID array");
2391 
2392 		/* copy IDs */
2393 		process_madt_entries(tp, NULL, NULL, cpu_apicid_array);
2394 
2395 		/*
2396 		 * Make boot property for array of "final" APIC IDs for each
2397 		 * CPU
2398 		 */
2399 		bsetprop(BP_CPU_APICID_ARRAY, strlen(BP_CPU_APICID_ARRAY),
2400 		    cpu_apicid_array, cpu_count * sizeof (*cpu_apicid_array));
2401 	}
2402 
2403 	/*
2404 	 * Check whether property plat-max-ncpus is already set.
2405 	 */
2406 	if (do_bsys_getproplen(NULL, PLAT_MAX_NCPUS_NAME) < 0) {
2407 		/*
2408 		 * Set plat-max-ncpus to number of maximum possible CPUs given
2409 		 * in MADT if it hasn't been set.
2410 		 * There's no formal way to detect max possible CPUs supported
2411 		 * by platform according to ACPI spec3.0b. So current CPU
2412 		 * hotplug implementation expects that all possible CPUs will
2413 		 * have an entry in MADT table and set plat-max-ncpus to number
2414 		 * of entries in MADT.
2415 		 * With introducing of ACPI4.0, Maximum System Capability Table
2416 		 * (MSCT) provides maximum number of CPUs supported by platform.
2417 		 * If MSCT is unavailable, fall back to old way.
2418 		 */
2419 		if (tp != NULL)
2420 			bsetpropsi(PLAT_MAX_NCPUS_NAME, cpu_possible_count);
2421 	}
2422 
2423 	/*
2424 	 * Set boot property boot-max-ncpus to number of CPUs existing at
2425 	 * boot time. boot-max-ncpus is mainly used for optimization.
2426 	 */
2427 	if (tp != NULL)
2428 		bsetpropsi(BOOT_MAX_NCPUS_NAME, cpu_count);
2429 
2430 	/*
2431 	 * User-set boot-ncpus overrides firmware count
2432 	 */
2433 	if (do_bsys_getproplen(NULL, BOOT_NCPUS_NAME) >= 0)
2434 		return;
2435 
2436 	/*
2437 	 * Set boot property boot-ncpus to number of active CPUs given in MADT
2438 	 * if it hasn't been set yet.
2439 	 */
2440 	if (tp != NULL)
2441 		bsetpropsi(BOOT_NCPUS_NAME, cpu_count);
2442 }
2443 
2444 static void
2445 process_srat(ACPI_TABLE_SRAT *tp)
2446 {
2447 	ACPI_SUBTABLE_HEADER *item, *end;
2448 	int i;
2449 	int proc_num, mem_num;
2450 #pragma pack(1)
2451 	struct {
2452 		uint32_t domain;
2453 		uint32_t apic_id;
2454 		uint32_t sapic_id;
2455 	} processor;
2456 	struct {
2457 		uint32_t domain;
2458 		uint32_t x2apic_id;
2459 	} x2apic;
2460 	struct {
2461 		uint32_t domain;
2462 		uint64_t addr;
2463 		uint64_t length;
2464 		uint32_t flags;
2465 	} memory;
2466 #pragma pack()
2467 	char prop_name[30];
2468 	uint64_t maxmem = 0;
2469 
2470 	if (tp == NULL)
2471 		return;
2472 
2473 	proc_num = mem_num = 0;
2474 	end = (ACPI_SUBTABLE_HEADER *)(tp->Header.Length + (uintptr_t)tp);
2475 	item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)tp + sizeof (*tp));
2476 	while (item < end) {
2477 		switch (item->Type) {
2478 		case ACPI_SRAT_TYPE_CPU_AFFINITY: {
2479 			ACPI_SRAT_CPU_AFFINITY *cpu =
2480 			    (ACPI_SRAT_CPU_AFFINITY *) item;
2481 
2482 			if (!(cpu->Flags & ACPI_SRAT_CPU_ENABLED))
2483 				break;
2484 			processor.domain = cpu->ProximityDomainLo;
2485 			for (i = 0; i < 3; i++)
2486 				processor.domain +=
2487 				    cpu->ProximityDomainHi[i] << ((i + 1) * 8);
2488 			processor.apic_id = cpu->ApicId;
2489 			processor.sapic_id = cpu->LocalSapicEid;
2490 			(void) snprintf(prop_name, 30, "acpi-srat-processor-%d",
2491 			    proc_num);
2492 			bsetprop(prop_name, strlen(prop_name), &processor,
2493 			    sizeof (processor));
2494 			proc_num++;
2495 			break;
2496 		}
2497 		case ACPI_SRAT_TYPE_MEMORY_AFFINITY: {
2498 			ACPI_SRAT_MEM_AFFINITY *mem =
2499 			    (ACPI_SRAT_MEM_AFFINITY *)item;
2500 
2501 			if (!(mem->Flags & ACPI_SRAT_MEM_ENABLED))
2502 				break;
2503 			memory.domain = mem->ProximityDomain;
2504 			memory.addr = mem->BaseAddress;
2505 			memory.length = mem->Length;
2506 			memory.flags = mem->Flags;
2507 			(void) snprintf(prop_name, 30, "acpi-srat-memory-%d",
2508 			    mem_num);
2509 			bsetprop(prop_name, strlen(prop_name), &memory,
2510 			    sizeof (memory));
2511 			if ((mem->Flags & ACPI_SRAT_MEM_HOT_PLUGGABLE) &&
2512 			    (memory.addr + memory.length > maxmem)) {
2513 				maxmem = memory.addr + memory.length;
2514 			}
2515 			mem_num++;
2516 			break;
2517 		}
2518 		case ACPI_SRAT_TYPE_X2APIC_CPU_AFFINITY: {
2519 			ACPI_SRAT_X2APIC_CPU_AFFINITY *x2cpu =
2520 			    (ACPI_SRAT_X2APIC_CPU_AFFINITY *) item;
2521 
2522 			if (!(x2cpu->Flags & ACPI_SRAT_CPU_ENABLED))
2523 				break;
2524 			x2apic.domain = x2cpu->ProximityDomain;
2525 			x2apic.x2apic_id = x2cpu->ApicId;
2526 			(void) snprintf(prop_name, 30, "acpi-srat-processor-%d",
2527 			    proc_num);
2528 			bsetprop(prop_name, strlen(prop_name), &x2apic,
2529 			    sizeof (x2apic));
2530 			proc_num++;
2531 			break;
2532 		}
2533 		default:
2534 			if (kbm_debug)
2535 				bop_printf(NULL, "SRAT type %d\n", item->Type);
2536 			break;
2537 		}
2538 
2539 		item = (ACPI_SUBTABLE_HEADER *)
2540 		    (item->Length + (uintptr_t)item);
2541 	}
2542 
2543 	/*
2544 	 * The maximum physical address calculated from the SRAT table is more
2545 	 * accurate than that calculated from the MSCT table.
2546 	 */
2547 	if (maxmem != 0) {
2548 		plat_dr_physmax = btop(maxmem);
2549 	}
2550 }
2551 
2552 static void
2553 process_slit(ACPI_TABLE_SLIT *tp)
2554 {
2555 
2556 	/*
2557 	 * Check the number of localities; if it's too huge, we just
2558 	 * return and locality enumeration code will handle this later,
2559 	 * if possible.
2560 	 *
2561 	 * Note that the size of the table is the square of the
2562 	 * number of localities; if the number of localities exceeds
2563 	 * UINT16_MAX, the table size may overflow an int when being
2564 	 * passed to bsetprop() below.
2565 	 */
2566 	if (tp->LocalityCount >= SLIT_LOCALITIES_MAX)
2567 		return;
2568 
2569 	bsetprop(SLIT_NUM_PROPNAME, strlen(SLIT_NUM_PROPNAME),
2570 	    &tp->LocalityCount, sizeof (tp->LocalityCount));
2571 	bsetprop(SLIT_PROPNAME, strlen(SLIT_PROPNAME), &tp->Entry,
2572 	    tp->LocalityCount * tp->LocalityCount);
2573 }
2574 
2575 static ACPI_TABLE_MSCT *
2576 process_msct(ACPI_TABLE_MSCT *tp)
2577 {
2578 	int last_seen = 0;
2579 	int proc_num = 0;
2580 	ACPI_MSCT_PROXIMITY *item, *end;
2581 	extern uint64_t plat_dr_options;
2582 
2583 	ASSERT(tp != NULL);
2584 
2585 	end = (ACPI_MSCT_PROXIMITY *)(tp->Header.Length + (uintptr_t)tp);
2586 	for (item = (void *)((uintptr_t)tp + tp->ProximityOffset);
2587 	    item < end;
2588 	    item = (void *)(item->Length + (uintptr_t)item)) {
2589 		/*
2590 		 * Sanity check according to section 5.2.19.1 of ACPI 4.0.
2591 		 * Revision 	1
2592 		 * Length	22
2593 		 */
2594 		if (item->Revision != 1 || item->Length != 22) {
2595 			cmn_err(CE_CONT,
2596 			    "?boot: unknown proximity domain structure in MSCT "
2597 			    "with Revision(%d), Length(%d).\n",
2598 			    (int)item->Revision, (int)item->Length);
2599 			return (NULL);
2600 		} else if (item->RangeStart > item->RangeEnd) {
2601 			cmn_err(CE_CONT,
2602 			    "?boot: invalid proximity domain structure in MSCT "
2603 			    "with RangeStart(%u), RangeEnd(%u).\n",
2604 			    item->RangeStart, item->RangeEnd);
2605 			return (NULL);
2606 		} else if (item->RangeStart != last_seen) {
2607 			/*
2608 			 * Items must be organized in ascending order of the
2609 			 * proximity domain enumerations.
2610 			 */
2611 			cmn_err(CE_CONT,
2612 			    "?boot: invalid proximity domain structure in MSCT,"
2613 			    " items are not orginized in ascending order.\n");
2614 			return (NULL);
2615 		}
2616 
2617 		/*
2618 		 * If ProcessorCapacity is 0 then there would be no CPUs in this
2619 		 * domain.
2620 		 */
2621 		if (item->ProcessorCapacity != 0) {
2622 			proc_num += (item->RangeEnd - item->RangeStart + 1) *
2623 			    item->ProcessorCapacity;
2624 		}
2625 
2626 		last_seen = item->RangeEnd - item->RangeStart + 1;
2627 		/*
2628 		 * Break out if all proximity domains have been processed.
2629 		 * Some BIOSes may have unused items at the end of MSCT table.
2630 		 */
2631 		if (last_seen > tp->MaxProximityDomains) {
2632 			break;
2633 		}
2634 	}
2635 	if (last_seen != tp->MaxProximityDomains + 1) {
2636 		cmn_err(CE_CONT,
2637 		    "?boot: invalid proximity domain structure in MSCT, "
2638 		    "proximity domain count doesn't match.\n");
2639 		return (NULL);
2640 	}
2641 
2642 	/*
2643 	 * Set plat-max-ncpus property if it hasn't been set yet.
2644 	 */
2645 	if (do_bsys_getproplen(NULL, PLAT_MAX_NCPUS_NAME) < 0) {
2646 		if (proc_num != 0) {
2647 			bsetpropsi(PLAT_MAX_NCPUS_NAME, proc_num);
2648 		}
2649 	}
2650 
2651 	/*
2652 	 * Use Maximum Physical Address from the MSCT table as upper limit for
2653 	 * memory hot-adding by default. It may be overridden by value from
2654 	 * the SRAT table or the "plat-dr-physmax" boot option.
2655 	 */
2656 	plat_dr_physmax = btop(tp->MaxAddress + 1);
2657 
2658 	/*
2659 	 * Existence of MSCT implies CPU/memory hotplug-capability for the
2660 	 * platform.
2661 	 */
2662 	plat_dr_options |= PLAT_DR_FEATURE_CPU;
2663 	plat_dr_options |= PLAT_DR_FEATURE_MEMORY;
2664 
2665 	return (tp);
2666 }
2667 
2668 #else /* __xpv */
2669 static void
2670 enumerate_xen_cpus()
2671 {
2672 	processorid_t	id, max_id;
2673 
2674 	/*
2675 	 * User-set boot-ncpus overrides enumeration
2676 	 */
2677 	if (do_bsys_getproplen(NULL, BOOT_NCPUS_NAME) >= 0)
2678 		return;
2679 
2680 	/*
2681 	 * Probe every possible virtual CPU id and remember the
2682 	 * highest id present; the count of CPUs is one greater
2683 	 * than this.  This tacitly assumes at least cpu 0 is present.
2684 	 */
2685 	max_id = 0;
2686 	for (id = 0; id < MAX_VIRT_CPUS; id++)
2687 		if (HYPERVISOR_vcpu_op(VCPUOP_is_up, id, NULL) == 0)
2688 			max_id = id;
2689 
2690 	bsetpropsi(BOOT_NCPUS_NAME, max_id+1);
2691 
2692 }
2693 #endif /* __xpv */
2694 
2695 /*ARGSUSED*/
2696 static void
2697 build_firmware_properties(struct xboot_info *xbp)
2698 {
2699 	ACPI_TABLE_HEADER *tp = NULL;
2700 
2701 #ifndef __xpv
2702 	if (xbp->bi_uefi_arch == XBI_UEFI_ARCH_64) {
2703 		bsetprops("efi-systype", "64");
2704 		bsetprop64("efi-systab",
2705 		    (uint64_t)(uintptr_t)xbp->bi_uefi_systab);
2706 		if (kbm_debug)
2707 			bop_printf(NULL, "64-bit UEFI detected.\n");
2708 	} else if (xbp->bi_uefi_arch == XBI_UEFI_ARCH_32) {
2709 		bsetprops("efi-systype", "32");
2710 		bsetprop64("efi-systab",
2711 		    (uint64_t)(uintptr_t)xbp->bi_uefi_systab);
2712 		if (kbm_debug)
2713 			bop_printf(NULL, "32-bit UEFI detected.\n");
2714 	}
2715 
2716 	if (xbp->bi_acpi_rsdp != NULL) {
2717 		bsetprop64("acpi-root-tab",
2718 		    (uint64_t)(uintptr_t)xbp->bi_acpi_rsdp);
2719 	}
2720 
2721 	if (xbp->bi_smbios != NULL) {
2722 		bsetprop64("smbios-address",
2723 		    (uint64_t)(uintptr_t)xbp->bi_smbios);
2724 	}
2725 
2726 	if ((tp = find_fw_table(ACPI_SIG_MSCT)) != NULL)
2727 		msct_ptr = process_msct((ACPI_TABLE_MSCT *)tp);
2728 	else
2729 		msct_ptr = NULL;
2730 
2731 	if ((tp = find_fw_table(ACPI_SIG_MADT)) != NULL)
2732 		process_madt((ACPI_TABLE_MADT *)tp);
2733 
2734 	if ((srat_ptr = (ACPI_TABLE_SRAT *)
2735 	    find_fw_table(ACPI_SIG_SRAT)) != NULL)
2736 		process_srat(srat_ptr);
2737 
2738 	if (slit_ptr = (ACPI_TABLE_SLIT *)find_fw_table(ACPI_SIG_SLIT))
2739 		process_slit(slit_ptr);
2740 
2741 	tp = find_fw_table(ACPI_SIG_MCFG);
2742 #else /* __xpv */
2743 	enumerate_xen_cpus();
2744 	if (DOMAIN_IS_INITDOMAIN(xen_info))
2745 		tp = find_fw_table(ACPI_SIG_MCFG);
2746 #endif /* __xpv */
2747 	if (tp != NULL)
2748 		process_mcfg((ACPI_TABLE_MCFG *)tp);
2749 }
2750 
2751 /*
2752  * fake up a boot property for deferred early console output
2753  * this is used by both graphical boot and the (developer only)
2754  * USB serial console
2755  */
2756 void *
2757 defcons_init(size_t size)
2758 {
2759 	static char *p = NULL;
2760 
2761 	p = do_bsys_alloc(NULL, NULL, size, MMU_PAGESIZE);
2762 	*p = 0;
2763 	bsetprop("deferred-console-buf", strlen("deferred-console-buf") + 1,
2764 	    &p, sizeof (p));
2765 	return (p);
2766 }
2767 
2768 /*ARGSUSED*/
2769 int
2770 boot_compinfo(int fd, struct compinfo *cbp)
2771 {
2772 	cbp->iscmp = 0;
2773 	cbp->blksize = MAXBSIZE;
2774 	return (0);
2775 }
2776 
2777 #define	BP_MAX_STRLEN	32
2778 
2779 /*
2780  * Get value for given boot property
2781  */
2782 int
2783 bootprop_getval(const char *prop_name, u_longlong_t *prop_value)
2784 {
2785 	int		boot_prop_len;
2786 	char		str[BP_MAX_STRLEN];
2787 	u_longlong_t	value;
2788 
2789 	boot_prop_len = BOP_GETPROPLEN(bootops, prop_name);
2790 	if (boot_prop_len < 0 || boot_prop_len > sizeof (str) ||
2791 	    BOP_GETPROP(bootops, prop_name, str) < 0 ||
2792 	    kobj_getvalue(str, &value) == -1)
2793 		return (-1);
2794 
2795 	if (prop_value)
2796 		*prop_value = value;
2797 
2798 	return (0);
2799 }
2800