xref: /illumos-gate/usr/src/uts/i86pc/os/fakebop.c (revision 6732dbb379bf754b70168b01ba56793737f9f3e7)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * This file contains the functionality that mimics the boot operations
29  * on SPARC systems or the old boot.bin/multiboot programs on x86 systems.
30  * The x86 kernel now does everything on its own.
31  */
32 
33 #include <sys/types.h>
34 #include <sys/bootconf.h>
35 #include <sys/bootsvcs.h>
36 #include <sys/bootinfo.h>
37 #include <sys/multiboot.h>
38 #include <sys/bootvfs.h>
39 #include <sys/bootprops.h>
40 #include <sys/varargs.h>
41 #include <sys/param.h>
42 #include <sys/machparam.h>
43 #include <sys/archsystm.h>
44 #include <sys/boot_console.h>
45 #include <sys/cmn_err.h>
46 #include <sys/systm.h>
47 #include <sys/promif.h>
48 #include <sys/archsystm.h>
49 #include <sys/x86_archext.h>
50 #include <sys/kobj.h>
51 #include <sys/privregs.h>
52 #include <sys/sysmacros.h>
53 #include <sys/ctype.h>
54 #include <sys/fastboot.h>
55 #ifdef __xpv
56 #include <sys/hypervisor.h>
57 #include <net/if.h>
58 #endif
59 #include <vm/kboot_mmu.h>
60 #include <vm/hat_pte.h>
61 #include <sys/dmar_acpi.h>
62 #include <sys/kobj.h>
63 #include <sys/kobj_lex.h>
64 #include "acpi_fw.h"
65 
66 static int have_console = 0;	/* set once primitive console is initialized */
67 static char *boot_args = "";
68 
69 /*
70  * Debugging macros
71  */
72 static uint_t kbm_debug = 0;
73 #define	DBG_MSG(s)	{ if (kbm_debug) bop_printf(NULL, "%s", s); }
74 #define	DBG(x)		{ if (kbm_debug)			\
75 	bop_printf(NULL, "%s is %" PRIx64 "\n", #x, (uint64_t)(x));	\
76 	}
77 
78 #define	PUT_STRING(s) {				\
79 	char *cp;				\
80 	for (cp = (s); *cp; ++cp)		\
81 		bcons_putchar(*cp);		\
82 	}
83 
84 struct xboot_info *xbootp;	/* boot info from "glue" code in low memory */
85 bootops_t bootop;	/* simple bootops we'll pass on to kernel */
86 struct bsys_mem bm;
87 
88 static uintptr_t next_virt;	/* next available virtual address */
89 static paddr_t next_phys;	/* next available physical address from dboot */
90 static paddr_t high_phys = -(paddr_t)1;	/* last used physical address */
91 
92 /*
93  * buffer for vsnprintf for console I/O
94  */
95 #define	BUFFERSIZE	256
96 static char buffer[BUFFERSIZE];
97 /*
98  * stuff to store/report/manipulate boot property settings.
99  */
100 typedef struct bootprop {
101 	struct bootprop *bp_next;
102 	char *bp_name;
103 	uint_t bp_vlen;
104 	char *bp_value;
105 } bootprop_t;
106 
107 static bootprop_t *bprops = NULL;
108 static char *curr_page = NULL;		/* ptr to avail bprop memory */
109 static int curr_space = 0;		/* amount of memory at curr_page */
110 
111 #ifdef __xpv
112 start_info_t *xen_info;
113 shared_info_t *HYPERVISOR_shared_info;
114 #endif
115 
116 /*
117  * some allocator statistics
118  */
119 static ulong_t total_bop_alloc_scratch = 0;
120 static ulong_t total_bop_alloc_kernel = 0;
121 
122 static void build_firmware_properties(void);
123 
124 static int early_allocation = 1;
125 
126 int force_fastreboot = 0;
127 volatile int fastreboot_onpanic = 0;
128 int post_fastreboot = 0;
129 #ifdef	__xpv
130 int fastreboot_capable = 0;
131 #else
132 int fastreboot_capable = 1;
133 #endif
134 
135 /*
136  * Information saved from current boot for fast reboot.
137  * If the information size exceeds what we have allocated, fast reboot
138  * will not be supported.
139  */
140 multiboot_info_t saved_mbi;
141 mb_memory_map_t saved_mmap[FASTBOOT_SAVED_MMAP_COUNT];
142 uint8_t saved_drives[FASTBOOT_SAVED_DRIVES_SIZE];
143 char saved_cmdline[FASTBOOT_SAVED_CMDLINE_LEN];
144 int saved_cmdline_len = 0;
145 size_t saved_file_size[FASTBOOT_MAX_FILES_MAP];
146 
147 /*
148  * Turn off fastreboot_onpanic to avoid panic loop.
149  */
150 char fastreboot_onpanic_cmdline[FASTBOOT_SAVED_CMDLINE_LEN];
151 static const char fastreboot_onpanic_args[] = " -B fastreboot_onpanic=0";
152 
153 /*
154  * Pointers to where System Resource Affinity Table (SRAT) and
155  * System Locality Information Table (SLIT) are mapped into virtual memory
156  */
157 struct srat	*srat_ptr = NULL;
158 struct slit	*slit_ptr = NULL;
159 
160 
161 /*
162  * Allocate aligned physical memory at boot time. This allocator allocates
163  * from the highest possible addresses. This avoids exhausting memory that
164  * would be useful for DMA buffers.
165  */
166 paddr_t
167 do_bop_phys_alloc(uint64_t size, uint64_t align)
168 {
169 	paddr_t	pa = 0;
170 	paddr_t	start;
171 	paddr_t	end;
172 	struct memlist	*ml = (struct memlist *)xbootp->bi_phys_install;
173 
174 	/*
175 	 * Be careful if high memory usage is limited in startup.c
176 	 * Since there are holes in the low part of the physical address
177 	 * space we can treat physmem as a pfn (not just a pgcnt) and
178 	 * get a conservative upper limit.
179 	 */
180 	if (physmem != 0 && high_phys > pfn_to_pa(physmem))
181 		high_phys = pfn_to_pa(physmem);
182 
183 	/*
184 	 * find the lowest or highest available memory in physinstalled
185 	 * On 32 bit avoid physmem above 4Gig if PAE isn't enabled
186 	 */
187 #if defined(__i386)
188 	if (xbootp->bi_use_pae == 0 && high_phys > FOUR_GIG)
189 		high_phys = FOUR_GIG;
190 #endif
191 
192 	/*
193 	 * find the highest available memory in physinstalled
194 	 */
195 	size = P2ROUNDUP(size, align);
196 	for (; ml; ml = ml->next) {
197 		start = P2ROUNDUP(ml->address, align);
198 		end = P2ALIGN(ml->address + ml->size, align);
199 		if (start < next_phys)
200 			start = P2ROUNDUP(next_phys, align);
201 		if (end > high_phys)
202 			end = P2ALIGN(high_phys, align);
203 
204 		if (end <= start)
205 			continue;
206 		if (end - start < size)
207 			continue;
208 
209 		/*
210 		 * Early allocations need to use low memory, since
211 		 * physmem might be further limited by bootenv.rc
212 		 */
213 		if (early_allocation) {
214 			if (pa == 0 || start < pa)
215 				pa = start;
216 		} else {
217 			if (end - size > pa)
218 				pa = end - size;
219 		}
220 	}
221 	if (pa != 0) {
222 		if (early_allocation)
223 			next_phys = pa + size;
224 		else
225 			high_phys = pa;
226 		return (pa);
227 	}
228 	bop_panic("do_bop_phys_alloc(0x%" PRIx64 ", 0x%" PRIx64
229 	    ") Out of memory\n", size, align);
230 	/*NOTREACHED*/
231 }
232 
233 static uintptr_t
234 alloc_vaddr(size_t size, paddr_t align)
235 {
236 	uintptr_t rv;
237 
238 	next_virt = P2ROUNDUP(next_virt, (uintptr_t)align);
239 	rv = (uintptr_t)next_virt;
240 	next_virt += size;
241 	return (rv);
242 }
243 
244 /*
245  * Allocate virtual memory. The size is always rounded up to a multiple
246  * of base pagesize.
247  */
248 
249 /*ARGSUSED*/
250 static caddr_t
251 do_bsys_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align)
252 {
253 	paddr_t a = align;	/* same type as pa for masking */
254 	uint_t pgsize;
255 	paddr_t pa;
256 	uintptr_t va;
257 	ssize_t s;		/* the aligned size */
258 	uint_t level;
259 	uint_t is_kernel = (virthint != 0);
260 
261 	if (a < MMU_PAGESIZE)
262 		a = MMU_PAGESIZE;
263 	else if (!ISP2(a))
264 		prom_panic("do_bsys_alloc() incorrect alignment");
265 	size = P2ROUNDUP(size, MMU_PAGESIZE);
266 
267 	/*
268 	 * Use the next aligned virtual address if we weren't given one.
269 	 */
270 	if (virthint == NULL) {
271 		virthint = (caddr_t)alloc_vaddr(size, a);
272 		total_bop_alloc_scratch += size;
273 	} else {
274 		total_bop_alloc_kernel += size;
275 	}
276 
277 	/*
278 	 * allocate the physical memory
279 	 */
280 	pa = do_bop_phys_alloc(size, a);
281 
282 	/*
283 	 * Add the mappings to the page tables, try large pages first.
284 	 */
285 	va = (uintptr_t)virthint;
286 	s = size;
287 	level = 1;
288 	pgsize = xbootp->bi_use_pae ? TWO_MEG : FOUR_MEG;
289 	if (xbootp->bi_use_largepage && a == pgsize) {
290 		while (IS_P2ALIGNED(pa, pgsize) && IS_P2ALIGNED(va, pgsize) &&
291 		    s >= pgsize) {
292 			kbm_map(va, pa, level, is_kernel);
293 			va += pgsize;
294 			pa += pgsize;
295 			s -= pgsize;
296 		}
297 	}
298 
299 	/*
300 	 * Map remaining pages use small mappings
301 	 */
302 	level = 0;
303 	pgsize = MMU_PAGESIZE;
304 	while (s > 0) {
305 		kbm_map(va, pa, level, is_kernel);
306 		va += pgsize;
307 		pa += pgsize;
308 		s -= pgsize;
309 	}
310 	return (virthint);
311 }
312 
313 /*
314  * Free virtual memory - we'll just ignore these.
315  */
316 /*ARGSUSED*/
317 static void
318 do_bsys_free(bootops_t *bop, caddr_t virt, size_t size)
319 {
320 	bop_printf(NULL, "do_bsys_free(virt=0x%p, size=0x%lx) ignored\n",
321 	    (void *)virt, size);
322 }
323 
324 /*
325  * Old interface
326  */
327 /*ARGSUSED*/
328 static caddr_t
329 do_bsys_ealloc(
330 	bootops_t *bop,
331 	caddr_t virthint,
332 	size_t size,
333 	int align,
334 	int flags)
335 {
336 	prom_panic("unsupported call to BOP_EALLOC()\n");
337 	return (0);
338 }
339 
340 
341 static void
342 bsetprop(char *name, int nlen, void *value, int vlen)
343 {
344 	uint_t size;
345 	uint_t need_size;
346 	bootprop_t *b;
347 
348 	/*
349 	 * align the size to 16 byte boundary
350 	 */
351 	size = sizeof (bootprop_t) + nlen + 1 + vlen;
352 	size = (size + 0xf) & ~0xf;
353 	if (size > curr_space) {
354 		need_size = (size + (MMU_PAGEOFFSET)) & MMU_PAGEMASK;
355 		curr_page = do_bsys_alloc(NULL, 0, need_size, MMU_PAGESIZE);
356 		curr_space = need_size;
357 	}
358 
359 	/*
360 	 * use a bootprop_t at curr_page and link into list
361 	 */
362 	b = (bootprop_t *)curr_page;
363 	curr_page += sizeof (bootprop_t);
364 	curr_space -=  sizeof (bootprop_t);
365 	b->bp_next = bprops;
366 	bprops = b;
367 
368 	/*
369 	 * follow by name and ending zero byte
370 	 */
371 	b->bp_name = curr_page;
372 	bcopy(name, curr_page, nlen);
373 	curr_page += nlen;
374 	*curr_page++ = 0;
375 	curr_space -= nlen + 1;
376 
377 	/*
378 	 * copy in value, but no ending zero byte
379 	 */
380 	b->bp_value = curr_page;
381 	b->bp_vlen = vlen;
382 	if (vlen > 0) {
383 		bcopy(value, curr_page, vlen);
384 		curr_page += vlen;
385 		curr_space -= vlen;
386 	}
387 
388 	/*
389 	 * align new values of curr_page, curr_space
390 	 */
391 	while (curr_space & 0xf) {
392 		++curr_page;
393 		--curr_space;
394 	}
395 }
396 
397 static void
398 bsetprops(char *name, char *value)
399 {
400 	bsetprop(name, strlen(name), value, strlen(value) + 1);
401 }
402 
403 static void
404 bsetprop64(char *name, uint64_t value)
405 {
406 	bsetprop(name, strlen(name), (void *)&value, sizeof (value));
407 }
408 
409 static void
410 bsetpropsi(char *name, int value)
411 {
412 	char prop_val[32];
413 
414 	(void) snprintf(prop_val, sizeof (prop_val), "%d", value);
415 	bsetprops(name, prop_val);
416 }
417 
418 /*
419  * to find the size of the buffer to allocate
420  */
421 /*ARGSUSED*/
422 int
423 do_bsys_getproplen(bootops_t *bop, const char *name)
424 {
425 	bootprop_t *b;
426 
427 	for (b = bprops; b; b = b->bp_next) {
428 		if (strcmp(name, b->bp_name) != 0)
429 			continue;
430 		return (b->bp_vlen);
431 	}
432 	return (-1);
433 }
434 
435 /*
436  * get the value associated with this name
437  */
438 /*ARGSUSED*/
439 int
440 do_bsys_getprop(bootops_t *bop, const char *name, void *value)
441 {
442 	bootprop_t *b;
443 
444 	for (b = bprops; b; b = b->bp_next) {
445 		if (strcmp(name, b->bp_name) != 0)
446 			continue;
447 		bcopy(b->bp_value, value, b->bp_vlen);
448 		return (0);
449 	}
450 	return (-1);
451 }
452 
453 /*
454  * get the name of the next property in succession from the standalone
455  */
456 /*ARGSUSED*/
457 static char *
458 do_bsys_nextprop(bootops_t *bop, char *name)
459 {
460 	bootprop_t *b;
461 
462 	/*
463 	 * A null name is a special signal for the 1st boot property
464 	 */
465 	if (name == NULL || strlen(name) == 0) {
466 		if (bprops == NULL)
467 			return (NULL);
468 		return (bprops->bp_name);
469 	}
470 
471 	for (b = bprops; b; b = b->bp_next) {
472 		if (name != b->bp_name)
473 			continue;
474 		b = b->bp_next;
475 		if (b == NULL)
476 			return (NULL);
477 		return (b->bp_name);
478 	}
479 	return (NULL);
480 }
481 
482 /*
483  * Parse numeric value from a string. Understands decimal, hex, octal, - and ~
484  */
485 static int
486 parse_value(char *p, uint64_t *retval)
487 {
488 	int adjust = 0;
489 	uint64_t tmp = 0;
490 	int digit;
491 	int radix = 10;
492 
493 	*retval = 0;
494 	if (*p == '-' || *p == '~')
495 		adjust = *p++;
496 
497 	if (*p == '0') {
498 		++p;
499 		if (*p == 0)
500 			return (0);
501 		if (*p == 'x' || *p == 'X') {
502 			radix = 16;
503 			++p;
504 		} else {
505 			radix = 8;
506 			++p;
507 		}
508 	}
509 	while (*p) {
510 		if ('0' <= *p && *p <= '9')
511 			digit = *p - '0';
512 		else if ('a' <= *p && *p <= 'f')
513 			digit = 10 + *p - 'a';
514 		else if ('A' <= *p && *p <= 'F')
515 			digit = 10 + *p - 'A';
516 		else
517 			return (-1);
518 		if (digit >= radix)
519 			return (-1);
520 		tmp = tmp * radix + digit;
521 		++p;
522 	}
523 	if (adjust == '-')
524 		tmp = -tmp;
525 	else if (adjust == '~')
526 		tmp = ~tmp;
527 	*retval = tmp;
528 	return (0);
529 }
530 
531 /*
532  * 2nd part of building the table of boot properties. This includes:
533  * - values from /boot/solaris/bootenv.rc (ie. eeprom(1m) values)
534  *
535  * lines look like one of:
536  * ^$
537  * ^# comment till end of line
538  * setprop name 'value'
539  * setprop name value
540  * setprop name "value"
541  *
542  * we do single character I/O since this is really just looking at memory
543  */
544 void
545 boot_prop_finish(void)
546 {
547 	int fd;
548 	char *line;
549 	int c;
550 	int bytes_read;
551 	char *name;
552 	int n_len;
553 	char *value;
554 	int v_len;
555 	char *inputdev;	/* these override the command line if serial ports */
556 	char *outputdev;
557 	char *consoledev;
558 	uint64_t lvalue;
559 	int use_xencons = 0;
560 
561 #ifdef __xpv
562 	if (!DOMAIN_IS_INITDOMAIN(xen_info))
563 		use_xencons = 1;
564 #endif /* __xpv */
565 
566 	DBG_MSG("Opening /boot/solaris/bootenv.rc\n");
567 	fd = BRD_OPEN(bfs_ops, "/boot/solaris/bootenv.rc", 0);
568 	DBG(fd);
569 
570 	line = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE);
571 	while (fd >= 0) {
572 
573 		/*
574 		 * get a line
575 		 */
576 		for (c = 0; ; ++c) {
577 			bytes_read = BRD_READ(bfs_ops, fd, line + c, 1);
578 			if (bytes_read == 0) {
579 				if (c == 0)
580 					goto done;
581 				break;
582 			}
583 			if (line[c] == '\n')
584 				break;
585 		}
586 		line[c] = 0;
587 
588 		/*
589 		 * ignore comment lines
590 		 */
591 		c = 0;
592 		while (ISSPACE(line[c]))
593 			++c;
594 		if (line[c] == '#' || line[c] == 0)
595 			continue;
596 
597 		/*
598 		 * must have "setprop " or "setprop\t"
599 		 */
600 		if (strncmp(line + c, "setprop ", 8) != 0 &&
601 		    strncmp(line + c, "setprop\t", 8) != 0)
602 			continue;
603 		c += 8;
604 		while (ISSPACE(line[c]))
605 			++c;
606 		if (line[c] == 0)
607 			continue;
608 
609 		/*
610 		 * gather up the property name
611 		 */
612 		name = line + c;
613 		n_len = 0;
614 		while (line[c] && !ISSPACE(line[c]))
615 			++n_len, ++c;
616 
617 		/*
618 		 * gather up the value, if any
619 		 */
620 		value = "";
621 		v_len = 0;
622 		while (ISSPACE(line[c]))
623 			++c;
624 		if (line[c] != 0) {
625 			value = line + c;
626 			while (line[c] && !ISSPACE(line[c]))
627 				++v_len, ++c;
628 		}
629 
630 		if (v_len >= 2 && value[0] == value[v_len - 1] &&
631 		    (value[0] == '\'' || value[0] == '"')) {
632 			++value;
633 			v_len -= 2;
634 		}
635 		name[n_len] = 0;
636 		if (v_len > 0)
637 			value[v_len] = 0;
638 		else
639 			continue;
640 
641 		/*
642 		 * ignore "boot-file" property, it's now meaningless
643 		 */
644 		if (strcmp(name, "boot-file") == 0)
645 			continue;
646 		if (strcmp(name, "boot-args") == 0 &&
647 		    strlen(boot_args) > 0)
648 			continue;
649 
650 		/*
651 		 * If a property was explicitly set on the command line
652 		 * it will override a setting in bootenv.rc
653 		 */
654 		if (do_bsys_getproplen(NULL, name) > 0)
655 			continue;
656 
657 		bsetprop(name, n_len, value, v_len + 1);
658 	}
659 done:
660 	if (fd >= 0)
661 		BRD_CLOSE(bfs_ops, fd);
662 
663 	/*
664 	 * Check if we have to limit the boot time allocator
665 	 */
666 	if (do_bsys_getproplen(NULL, "physmem") != -1 &&
667 	    do_bsys_getprop(NULL, "physmem", line) >= 0 &&
668 	    parse_value(line, &lvalue) != -1) {
669 		if (0 < lvalue && (lvalue < physmem || physmem == 0)) {
670 			physmem = (pgcnt_t)lvalue;
671 			DBG(physmem);
672 		}
673 	}
674 	early_allocation = 0;
675 
676 	/*
677 	 * check to see if we have to override the default value of the console
678 	 */
679 	if (!use_xencons) {
680 		inputdev = line;
681 		v_len = do_bsys_getproplen(NULL, "input-device");
682 		if (v_len > 0)
683 			(void) do_bsys_getprop(NULL, "input-device", inputdev);
684 		else
685 			v_len = 0;
686 		inputdev[v_len] = 0;
687 
688 		outputdev = inputdev + v_len + 1;
689 		v_len = do_bsys_getproplen(NULL, "output-device");
690 		if (v_len > 0)
691 			(void) do_bsys_getprop(NULL, "output-device",
692 			    outputdev);
693 		else
694 			v_len = 0;
695 		outputdev[v_len] = 0;
696 
697 		consoledev = outputdev + v_len + 1;
698 		v_len = do_bsys_getproplen(NULL, "console");
699 		if (v_len > 0)
700 			(void) do_bsys_getprop(NULL, "console", consoledev);
701 		else
702 			v_len = 0;
703 		consoledev[v_len] = 0;
704 		bcons_init2(inputdev, outputdev, consoledev);
705 	} else {
706 		/*
707 		 * Ensure console property exists
708 		 * If not create it as "hypervisor"
709 		 */
710 		v_len = do_bsys_getproplen(NULL, "console");
711 		if (v_len < 0)
712 			bsetprops("console", "hypervisor");
713 		inputdev = outputdev = consoledev = "hypervisor";
714 		bcons_init2(inputdev, outputdev, consoledev);
715 	}
716 
717 	if (strstr((char *)xbootp->bi_cmdline, "prom_debug") || kbm_debug) {
718 		value = line;
719 		bop_printf(NULL, "\nBoot properties:\n");
720 		name = "";
721 		while ((name = do_bsys_nextprop(NULL, name)) != NULL) {
722 			bop_printf(NULL, "\t0x%p %s = ", (void *)name, name);
723 			(void) do_bsys_getprop(NULL, name, value);
724 			v_len = do_bsys_getproplen(NULL, name);
725 			bop_printf(NULL, "len=%d ", v_len);
726 			value[v_len] = 0;
727 			bop_printf(NULL, "%s\n", value);
728 		}
729 	}
730 }
731 
732 /*
733  * print formatted output
734  */
735 /*PRINTFLIKE2*/
736 /*ARGSUSED*/
737 void
738 bop_printf(bootops_t *bop, const char *fmt, ...)
739 {
740 	va_list	ap;
741 
742 	if (have_console == 0)
743 		return;
744 
745 	va_start(ap, fmt);
746 	(void) vsnprintf(buffer, BUFFERSIZE, fmt, ap);
747 	va_end(ap);
748 	PUT_STRING(buffer);
749 }
750 
751 /*
752  * Another panic() variant; this one can be used even earlier during boot than
753  * prom_panic().
754  */
755 /*PRINTFLIKE1*/
756 void
757 bop_panic(const char *fmt, ...)
758 {
759 	va_list ap;
760 
761 	va_start(ap, fmt);
762 	bop_printf(NULL, fmt, ap);
763 	va_end(ap);
764 
765 	bop_printf(NULL, "\nPress any key to reboot.\n");
766 	(void) bcons_getchar();
767 	bop_printf(NULL, "Resetting...\n");
768 	pc_reset();
769 }
770 
771 /*
772  * Do a real mode interrupt BIOS call
773  */
774 typedef struct bios_regs {
775 	unsigned short ax, bx, cx, dx, si, di, bp, es, ds;
776 } bios_regs_t;
777 typedef int (*bios_func_t)(int, bios_regs_t *);
778 
779 /*ARGSUSED*/
780 static void
781 do_bsys_doint(bootops_t *bop, int intnum, struct bop_regs *rp)
782 {
783 #if defined(__xpv)
784 	prom_panic("unsupported call to BOP_DOINT()\n");
785 #else	/* __xpv */
786 	static int firsttime = 1;
787 	bios_func_t bios_func = (bios_func_t)(void *)(uintptr_t)0x5000;
788 	bios_regs_t br;
789 
790 	/*
791 	 * The first time we do this, we have to copy the pre-packaged
792 	 * low memory bios call code image into place.
793 	 */
794 	if (firsttime) {
795 		extern char bios_image[];
796 		extern uint32_t bios_size;
797 
798 		bcopy(bios_image, (void *)bios_func, bios_size);
799 		firsttime = 0;
800 	}
801 
802 	br.ax = rp->eax.word.ax;
803 	br.bx = rp->ebx.word.bx;
804 	br.cx = rp->ecx.word.cx;
805 	br.dx = rp->edx.word.dx;
806 	br.bp = rp->ebp.word.bp;
807 	br.si = rp->esi.word.si;
808 	br.di = rp->edi.word.di;
809 	br.ds = rp->ds;
810 	br.es = rp->es;
811 
812 	DBG_MSG("Doing BIOS call...");
813 	DBG(br.ax);
814 	DBG(br.bx);
815 	DBG(br.dx);
816 	rp->eflags = bios_func(intnum, &br);
817 	DBG_MSG("done\n");
818 
819 	rp->eax.word.ax = br.ax;
820 	rp->ebx.word.bx = br.bx;
821 	rp->ecx.word.cx = br.cx;
822 	rp->edx.word.dx = br.dx;
823 	rp->ebp.word.bp = br.bp;
824 	rp->esi.word.si = br.si;
825 	rp->edi.word.di = br.di;
826 	rp->ds = br.ds;
827 	rp->es = br.es;
828 #endif /* __xpv */
829 }
830 
831 static struct boot_syscalls bop_sysp = {
832 	bcons_getchar,
833 	bcons_putchar,
834 	bcons_ischar,
835 };
836 
837 static char *whoami;
838 
839 #define	BUFLEN	64
840 
841 #if defined(__xpv)
842 
843 static char namebuf[32];
844 
845 static void
846 xen_parse_props(char *s, char *prop_map[], int n_prop)
847 {
848 	char **prop_name = prop_map;
849 	char *cp = s, *scp;
850 
851 	do {
852 		scp = cp;
853 		while ((*cp != NULL) && (*cp != ':'))
854 			cp++;
855 
856 		if ((scp != cp) && (*prop_name != NULL)) {
857 			*cp = NULL;
858 			bsetprops(*prop_name, scp);
859 		}
860 
861 		cp++;
862 		prop_name++;
863 		n_prop--;
864 	} while (n_prop > 0);
865 }
866 
867 #define	VBDPATHLEN	64
868 
869 /*
870  * parse the 'xpv-root' property to create properties used by
871  * ufs_mountroot.
872  */
873 static void
874 xen_vbdroot_props(char *s)
875 {
876 	char vbdpath[VBDPATHLEN] = "/xpvd/xdf@";
877 	const char lnamefix[] = "/dev/dsk/c0d";
878 	char *pnp;
879 	char *prop_p;
880 	char mi;
881 	short minor;
882 	long addr = 0;
883 
884 	pnp = vbdpath + strlen(vbdpath);
885 	prop_p = s + strlen(lnamefix);
886 	while ((*prop_p != '\0') && (*prop_p != 's') && (*prop_p != 'p'))
887 		addr = addr * 10 + *prop_p++ - '0';
888 	(void) snprintf(pnp, VBDPATHLEN, "%lx", addr);
889 	pnp = vbdpath + strlen(vbdpath);
890 	if (*prop_p == 's')
891 		mi = 'a';
892 	else if (*prop_p == 'p')
893 		mi = 'q';
894 	else
895 		ASSERT(0); /* shouldn't be here */
896 	prop_p++;
897 	ASSERT(*prop_p != '\0');
898 	if (ISDIGIT(*prop_p)) {
899 		minor = *prop_p - '0';
900 		prop_p++;
901 		if (ISDIGIT(*prop_p)) {
902 			minor = minor * 10 + *prop_p - '0';
903 		}
904 	} else {
905 		/* malformed root path, use 0 as default */
906 		minor = 0;
907 	}
908 	ASSERT(minor < 16); /* at most 16 partitions */
909 	mi += minor;
910 	*pnp++ = ':';
911 	*pnp++ = mi;
912 	*pnp++ = '\0';
913 	bsetprops("fstype", "ufs");
914 	bsetprops("bootpath", vbdpath);
915 
916 	DBG_MSG("VBD bootpath set to ");
917 	DBG_MSG(vbdpath);
918 	DBG_MSG("\n");
919 }
920 
921 /*
922  * parse the xpv-nfsroot property to create properties used by
923  * nfs_mountroot.
924  */
925 static void
926 xen_nfsroot_props(char *s)
927 {
928 	char *prop_map[] = {
929 		BP_SERVER_IP,	/* server IP address */
930 		BP_SERVER_NAME,	/* server hostname */
931 		BP_SERVER_PATH,	/* root path */
932 	};
933 	int n_prop = sizeof (prop_map) / sizeof (prop_map[0]);
934 
935 	bsetprop("fstype", 6, "nfs", 4);
936 
937 	xen_parse_props(s, prop_map, n_prop);
938 
939 	/*
940 	 * If a server name wasn't specified, use a default.
941 	 */
942 	if (do_bsys_getproplen(NULL, BP_SERVER_NAME) == -1)
943 		bsetprops(BP_SERVER_NAME, "unknown");
944 }
945 
946 /*
947  * Extract our IP address, etc. from the "xpv-ip" property.
948  */
949 static void
950 xen_ip_props(char *s)
951 {
952 	char *prop_map[] = {
953 		BP_HOST_IP,		/* IP address */
954 		NULL,			/* NFS server IP address (ignored in */
955 					/* favour of xpv-nfsroot) */
956 		BP_ROUTER_IP,		/* IP gateway */
957 		BP_SUBNET_MASK,		/* IP subnet mask */
958 		"xpv-hostname",		/* hostname (ignored) */
959 		BP_NETWORK_INTERFACE,	/* interface name */
960 		"xpv-hcp",		/* host configuration protocol */
961 	};
962 	int n_prop = sizeof (prop_map) / sizeof (prop_map[0]);
963 	char ifname[IFNAMSIZ];
964 
965 	xen_parse_props(s, prop_map, n_prop);
966 
967 	/*
968 	 * A Linux dom0 administrator expects all interfaces to be
969 	 * called "ethX", which is not the case here.
970 	 *
971 	 * If the interface name specified is "eth0", presume that
972 	 * this is really intended to be "xnf0" (the first domU ->
973 	 * dom0 interface for this domain).
974 	 */
975 	if ((do_bsys_getprop(NULL, BP_NETWORK_INTERFACE, ifname) == 0) &&
976 	    (strcmp("eth0", ifname) == 0)) {
977 		bsetprops(BP_NETWORK_INTERFACE, "xnf0");
978 		bop_printf(NULL,
979 		    "network interface name 'eth0' replaced with 'xnf0'\n");
980 	}
981 }
982 
983 #else	/* __xpv */
984 
985 static void
986 setup_rarp_props(struct sol_netinfo *sip)
987 {
988 	char buf[BUFLEN];	/* to hold ip/mac addrs */
989 	uint8_t *val;
990 
991 	val = (uint8_t *)&sip->sn_ciaddr;
992 	(void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
993 	    val[0], val[1], val[2], val[3]);
994 	bsetprops(BP_HOST_IP, buf);
995 
996 	val = (uint8_t *)&sip->sn_siaddr;
997 	(void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
998 	    val[0], val[1], val[2], val[3]);
999 	bsetprops(BP_SERVER_IP, buf);
1000 
1001 	if (sip->sn_giaddr != 0) {
1002 		val = (uint8_t *)&sip->sn_giaddr;
1003 		(void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1004 		    val[0], val[1], val[2], val[3]);
1005 		bsetprops(BP_ROUTER_IP, buf);
1006 	}
1007 
1008 	if (sip->sn_netmask != 0) {
1009 		val = (uint8_t *)&sip->sn_netmask;
1010 		(void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1011 		    val[0], val[1], val[2], val[3]);
1012 		bsetprops(BP_SUBNET_MASK, buf);
1013 	}
1014 
1015 	if (sip->sn_mactype != 4 || sip->sn_maclen != 6) {
1016 		bop_printf(NULL, "unsupported mac type %d, mac len %d\n",
1017 		    sip->sn_mactype, sip->sn_maclen);
1018 	} else {
1019 		val = sip->sn_macaddr;
1020 		(void) snprintf(buf, BUFLEN, "%x:%x:%x:%x:%x:%x",
1021 		    val[0], val[1], val[2], val[3], val[4], val[5]);
1022 		bsetprops(BP_BOOT_MAC, buf);
1023 	}
1024 }
1025 
1026 #endif	/* __xpv */
1027 
1028 static void
1029 build_panic_cmdline(const char *cmd, int cmdlen)
1030 {
1031 	int proplen;
1032 	size_t arglen;
1033 
1034 	arglen = sizeof (fastreboot_onpanic_args);
1035 	/*
1036 	 * If we allready have fastreboot-onpanic set to zero,
1037 	 * don't add them again.
1038 	 */
1039 	if ((proplen = do_bsys_getproplen(NULL, FASTREBOOT_ONPANIC)) > 0 &&
1040 	    proplen <=  sizeof (fastreboot_onpanic_cmdline)) {
1041 		(void) do_bsys_getprop(NULL, FASTREBOOT_ONPANIC,
1042 		    fastreboot_onpanic_cmdline);
1043 		if (FASTREBOOT_ONPANIC_NOTSET(fastreboot_onpanic_cmdline))
1044 			arglen = 1;
1045 	}
1046 
1047 	/*
1048 	 * construct fastreboot_onpanic_cmdline
1049 	 */
1050 	if (cmdlen + arglen > sizeof (fastreboot_onpanic_cmdline)) {
1051 		DBG_MSG("Command line too long: clearing "
1052 		    FASTREBOOT_ONPANIC "\n");
1053 		fastreboot_onpanic = 0;
1054 	} else {
1055 		bcopy(cmd, fastreboot_onpanic_cmdline, cmdlen);
1056 		if (arglen != 1)
1057 			bcopy(fastreboot_onpanic_args,
1058 			    fastreboot_onpanic_cmdline + cmdlen, arglen);
1059 		else
1060 			fastreboot_onpanic_cmdline[cmdlen] = 0;
1061 	}
1062 }
1063 
1064 
1065 #ifndef	__xpv
1066 /*
1067  * Construct boot command line for Fast Reboot
1068  */
1069 static void
1070 build_fastboot_cmdline(void)
1071 {
1072 	saved_cmdline_len =  strlen(xbootp->bi_cmdline) + 1;
1073 	if (saved_cmdline_len > FASTBOOT_SAVED_CMDLINE_LEN) {
1074 		DBG(saved_cmdline_len);
1075 		DBG_MSG("Command line too long: clearing fastreboot_capable\n");
1076 		fastreboot_capable = 0;
1077 	} else {
1078 		bcopy((void *)(xbootp->bi_cmdline), (void *)saved_cmdline,
1079 		    saved_cmdline_len);
1080 		saved_cmdline[saved_cmdline_len - 1] = '\0';
1081 		build_panic_cmdline(saved_cmdline, saved_cmdline_len - 1);
1082 	}
1083 }
1084 
1085 /*
1086  * Save memory layout, disk drive information, unix and boot archive sizes for
1087  * Fast Reboot.
1088  */
1089 static void
1090 save_boot_info(multiboot_info_t *mbi, struct xboot_info *xbi)
1091 {
1092 	struct boot_modules *modp;
1093 	int i;
1094 
1095 	bcopy(mbi, &saved_mbi, sizeof (multiboot_info_t));
1096 	if (mbi->mmap_length > sizeof (saved_mmap)) {
1097 		DBG_MSG("mbi->mmap_length too big: clearing "
1098 		    "fastreboot_capable\n");
1099 		fastreboot_capable = 0;
1100 	} else {
1101 		bcopy((void *)(uintptr_t)mbi->mmap_addr, (void *)saved_mmap,
1102 		    mbi->mmap_length);
1103 	}
1104 
1105 	if ((mbi->flags & MB_INFO_DRIVE_INFO) != 0) {
1106 		if (mbi->drives_length > sizeof (saved_drives)) {
1107 			DBG(mbi->drives_length);
1108 			DBG_MSG("mbi->drives_length too big: clearing "
1109 			    "fastreboot_capable\n");
1110 			fastreboot_capable = 0;
1111 		} else {
1112 			bcopy((void *)(uintptr_t)mbi->drives_addr,
1113 			    (void *)saved_drives, mbi->drives_length);
1114 		}
1115 	} else {
1116 		saved_mbi.drives_length = 0;
1117 		saved_mbi.drives_addr = NULL;
1118 	}
1119 
1120 	/*
1121 	 * Current file sizes.  Used by fastboot.c to figure out how much
1122 	 * memory to reserve for panic reboot.
1123 	 * Use the module list from the dboot-constructed xboot_info
1124 	 * instead of the list referenced by the multiboot structure
1125 	 * because that structure may not be addressable now.
1126 	 */
1127 	saved_file_size[FASTBOOT_NAME_UNIX] = FOUR_MEG - PAGESIZE;
1128 	for (i = 0, modp = (struct boot_modules *)(uintptr_t)xbi->bi_modules;
1129 	    i < xbi->bi_module_cnt; i++, modp++) {
1130 		saved_file_size[FASTBOOT_NAME_BOOTARCHIVE] += modp->bm_size;
1131 	}
1132 }
1133 #endif	/* __xpv */
1134 
1135 
1136 /*
1137  * 1st pass at building the table of boot properties. This includes:
1138  * - values set on the command line: -B a=x,b=y,c=z ....
1139  * - known values we just compute (ie. from xbootp)
1140  * - values from /boot/solaris/bootenv.rc (ie. eeprom(1m) values)
1141  *
1142  * the grub command line looked like:
1143  * kernel boot-file [-B prop=value[,prop=value]...] [boot-args]
1144  *
1145  * whoami is the same as boot-file
1146  */
1147 static void
1148 build_boot_properties(void)
1149 {
1150 	char *name;
1151 	int name_len;
1152 	char *value;
1153 	int value_len;
1154 	struct boot_modules *bm;
1155 	char *propbuf;
1156 	int quoted = 0;
1157 	int boot_arg_len;
1158 #ifndef __xpv
1159 	static int stdout_val = 0;
1160 	uchar_t boot_device;
1161 	char str[3];
1162 	multiboot_info_t *mbi;
1163 	int netboot;
1164 	struct sol_netinfo *sip;
1165 #endif
1166 
1167 	/*
1168 	 * These have to be done first, so that kobj_mount_root() works
1169 	 */
1170 	DBG_MSG("Building boot properties\n");
1171 	propbuf = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, 0);
1172 	DBG((uintptr_t)propbuf);
1173 	if (xbootp->bi_module_cnt > 0) {
1174 		bm = xbootp->bi_modules;
1175 		bsetprop64("ramdisk_start", (uint64_t)(uintptr_t)bm->bm_addr);
1176 		bsetprop64("ramdisk_end", (uint64_t)(uintptr_t)bm->bm_addr +
1177 		    bm->bm_size);
1178 	}
1179 
1180 	DBG_MSG("Parsing command line for boot properties\n");
1181 	value = xbootp->bi_cmdline;
1182 
1183 	/*
1184 	 * allocate memory to collect boot_args into
1185 	 */
1186 	boot_arg_len = strlen(xbootp->bi_cmdline) + 1;
1187 	boot_args = do_bsys_alloc(NULL, NULL, boot_arg_len, MMU_PAGESIZE);
1188 	boot_args[0] = 0;
1189 	boot_arg_len = 0;
1190 
1191 #ifdef __xpv
1192 	/*
1193 	 * Xen puts a lot of device information in front of the kernel name
1194 	 * let's grab them and make them boot properties.  The first
1195 	 * string w/o an "=" in it will be the boot-file property.
1196 	 */
1197 	(void) strcpy(namebuf, "xpv-");
1198 	for (;;) {
1199 		/*
1200 		 * get to next property
1201 		 */
1202 		while (ISSPACE(*value))
1203 			++value;
1204 		name = value;
1205 		/*
1206 		 * look for an "="
1207 		 */
1208 		while (*value && !ISSPACE(*value) && *value != '=') {
1209 			value++;
1210 		}
1211 		if (*value != '=') { /* no "=" in the property */
1212 			value = name;
1213 			break;
1214 		}
1215 		name_len = value - name;
1216 		value_len = 0;
1217 		/*
1218 		 * skip over the "="
1219 		 */
1220 		value++;
1221 		while (value[value_len] && !ISSPACE(value[value_len])) {
1222 			++value_len;
1223 		}
1224 		/*
1225 		 * build property name with "xpv-" prefix
1226 		 */
1227 		if (name_len + 4 > 32) { /* skip if name too long */
1228 			value += value_len;
1229 			continue;
1230 		}
1231 		bcopy(name, &namebuf[4], name_len);
1232 		name_len += 4;
1233 		namebuf[name_len] = 0;
1234 		bcopy(value, propbuf, value_len);
1235 		propbuf[value_len] = 0;
1236 		bsetprops(namebuf, propbuf);
1237 
1238 		/*
1239 		 * xpv-root is set to the logical disk name of the xen
1240 		 * VBD when booting from a disk-based filesystem.
1241 		 */
1242 		if (strcmp(namebuf, "xpv-root") == 0)
1243 			xen_vbdroot_props(propbuf);
1244 		/*
1245 		 * While we're here, if we have a "xpv-nfsroot" property
1246 		 * then we need to set "fstype" to "nfs" so we mount
1247 		 * our root from the nfs server.  Also parse the xpv-nfsroot
1248 		 * property to create the properties that nfs_mountroot will
1249 		 * need to find the root and mount it.
1250 		 */
1251 		if (strcmp(namebuf, "xpv-nfsroot") == 0)
1252 			xen_nfsroot_props(propbuf);
1253 
1254 		if (strcmp(namebuf, "xpv-ip") == 0)
1255 			xen_ip_props(propbuf);
1256 		value += value_len;
1257 	}
1258 #endif
1259 
1260 	while (ISSPACE(*value))
1261 		++value;
1262 	/*
1263 	 * value now points at the boot-file
1264 	 */
1265 	value_len = 0;
1266 	while (value[value_len] && !ISSPACE(value[value_len]))
1267 		++value_len;
1268 	if (value_len > 0) {
1269 		whoami = propbuf;
1270 		bcopy(value, whoami, value_len);
1271 		whoami[value_len] = 0;
1272 		bsetprops("boot-file", whoami);
1273 		/*
1274 		 * strip leading path stuff from whoami, so running from
1275 		 * PXE/miniroot makes sense.
1276 		 */
1277 		if (strstr(whoami, "/platform/") != NULL)
1278 			whoami = strstr(whoami, "/platform/");
1279 		bsetprops("whoami", whoami);
1280 	}
1281 
1282 	/*
1283 	 * Values forcibly set boot properties on the command line via -B.
1284 	 * Allow use of quotes in values. Other stuff goes on kernel
1285 	 * command line.
1286 	 */
1287 	name = value + value_len;
1288 	while (*name != 0) {
1289 		/*
1290 		 * anything not " -B" is copied to the command line
1291 		 */
1292 		if (!ISSPACE(name[0]) || name[1] != '-' || name[2] != 'B') {
1293 			boot_args[boot_arg_len++] = *name;
1294 			boot_args[boot_arg_len] = 0;
1295 			++name;
1296 			continue;
1297 		}
1298 
1299 		/*
1300 		 * skip the " -B" and following white space
1301 		 */
1302 		name += 3;
1303 		while (ISSPACE(*name))
1304 			++name;
1305 		while (*name && !ISSPACE(*name)) {
1306 			value = strstr(name, "=");
1307 			if (value == NULL)
1308 				break;
1309 			name_len = value - name;
1310 			++value;
1311 			value_len = 0;
1312 			quoted = 0;
1313 			for (; ; ++value_len) {
1314 				if (!value[value_len])
1315 					break;
1316 
1317 				/*
1318 				 * is this value quoted?
1319 				 */
1320 				if (value_len == 0 &&
1321 				    (value[0] == '\'' || value[0] == '"')) {
1322 					quoted = value[0];
1323 					++value_len;
1324 				}
1325 
1326 				/*
1327 				 * In the quote accept any character,
1328 				 * but look for ending quote.
1329 				 */
1330 				if (quoted) {
1331 					if (value[value_len] == quoted)
1332 						quoted = 0;
1333 					continue;
1334 				}
1335 
1336 				/*
1337 				 * a comma or white space ends the value
1338 				 */
1339 				if (value[value_len] == ',' ||
1340 				    ISSPACE(value[value_len]))
1341 					break;
1342 			}
1343 
1344 			if (value_len == 0) {
1345 				bsetprop(name, name_len, "true", 5);
1346 			} else {
1347 				char *v = value;
1348 				int l = value_len;
1349 				if (v[0] == v[l - 1] &&
1350 				    (v[0] == '\'' || v[0] == '"')) {
1351 					++v;
1352 					l -= 2;
1353 				}
1354 				bcopy(v, propbuf, l);
1355 				propbuf[l] = '\0';
1356 				bsetprop(name, name_len, propbuf,
1357 				    l + 1);
1358 			}
1359 			name = value + value_len;
1360 			while (*name == ',')
1361 				++name;
1362 		}
1363 	}
1364 
1365 	/*
1366 	 * set boot-args property
1367 	 * 1275 name is bootargs, so set
1368 	 * that too
1369 	 */
1370 	bsetprops("boot-args", boot_args);
1371 	bsetprops("bootargs", boot_args);
1372 
1373 #ifndef __xpv
1374 	/*
1375 	 * set the BIOS boot device from GRUB
1376 	 */
1377 	netboot = 0;
1378 	mbi = xbootp->bi_mb_info;
1379 
1380 	/*
1381 	 * Build boot command line for Fast Reboot
1382 	 */
1383 	build_fastboot_cmdline();
1384 
1385 	/*
1386 	 * Save various boot information for Fast Reboot
1387 	 */
1388 	save_boot_info(mbi, xbootp);
1389 
1390 	if (mbi != NULL && mbi->flags & MB_INFO_BOOTDEV) {
1391 		boot_device = mbi->boot_device >> 24;
1392 		if (boot_device == 0x20)
1393 			netboot++;
1394 		str[0] = (boot_device >> 4) + '0';
1395 		str[1] = (boot_device & 0xf) + '0';
1396 		str[2] = 0;
1397 		bsetprops("bios-boot-device", str);
1398 	} else {
1399 		netboot = 1;
1400 	}
1401 
1402 	/*
1403 	 * In the netboot case, drives_info is overloaded with the dhcp ack.
1404 	 * This is not multiboot compliant and requires special pxegrub!
1405 	 */
1406 	if (netboot && mbi->drives_length != 0) {
1407 		sip = (struct sol_netinfo *)(uintptr_t)mbi->drives_addr;
1408 		if (sip->sn_infotype == SN_TYPE_BOOTP)
1409 			bsetprop("bootp-response", sizeof ("bootp-response"),
1410 			    (void *)(uintptr_t)mbi->drives_addr,
1411 			    mbi->drives_length);
1412 		else if (sip->sn_infotype == SN_TYPE_RARP)
1413 			setup_rarp_props(sip);
1414 	}
1415 	bsetprop("stdout", strlen("stdout"),
1416 	    &stdout_val, sizeof (stdout_val));
1417 #endif /* __xpv */
1418 
1419 	/*
1420 	 * more conjured up values for made up things....
1421 	 */
1422 #if defined(__xpv)
1423 	bsetprops("mfg-name", "i86xpv");
1424 	bsetprops("impl-arch-name", "i86xpv");
1425 #else
1426 	bsetprops("mfg-name", "i86pc");
1427 	bsetprops("impl-arch-name", "i86pc");
1428 #endif
1429 
1430 	/*
1431 	 * Build firmware-provided system properties
1432 	 */
1433 	build_firmware_properties();
1434 
1435 	/*
1436 	 * XXPV
1437 	 *
1438 	 * Find out what these are:
1439 	 * - cpuid_feature_ecx_include
1440 	 * - cpuid_feature_ecx_exclude
1441 	 * - cpuid_feature_edx_include
1442 	 * - cpuid_feature_edx_exclude
1443 	 *
1444 	 * Find out what these are in multiboot:
1445 	 * - netdev-path
1446 	 * - fstype
1447 	 */
1448 }
1449 
1450 #ifdef __xpv
1451 /*
1452  * Under the Hypervisor, memory usable for DMA may be scarce. One
1453  * very likely large pool of DMA friendly memory is occupied by
1454  * the boot_archive, as it was loaded by grub into low MFNs.
1455  *
1456  * Here we free up that memory by copying the boot archive to what are
1457  * likely higher MFN pages and then swapping the mfn/pfn mappings.
1458  */
1459 #define	PFN_2GIG	0x80000
1460 static void
1461 relocate_boot_archive(void)
1462 {
1463 	mfn_t max_mfn = HYPERVISOR_memory_op(XENMEM_maximum_ram_page, NULL);
1464 	struct boot_modules *bm = xbootp->bi_modules;
1465 	uintptr_t va;
1466 	pfn_t va_pfn;
1467 	mfn_t va_mfn;
1468 	caddr_t copy;
1469 	pfn_t copy_pfn;
1470 	mfn_t copy_mfn;
1471 	size_t	len;
1472 	int slop;
1473 	int total = 0;
1474 	int relocated = 0;
1475 	int mmu_update_return;
1476 	mmu_update_t t[2];
1477 	x86pte_t pte;
1478 
1479 	/*
1480 	 * If all MFN's are below 2Gig, don't bother doing this.
1481 	 */
1482 	if (max_mfn < PFN_2GIG)
1483 		return;
1484 	if (xbootp->bi_module_cnt < 1) {
1485 		DBG_MSG("no boot_archive!");
1486 		return;
1487 	}
1488 
1489 	DBG_MSG("moving boot_archive to high MFN memory\n");
1490 	va = (uintptr_t)bm->bm_addr;
1491 	len = bm->bm_size;
1492 	slop = va & MMU_PAGEOFFSET;
1493 	if (slop) {
1494 		va += MMU_PAGESIZE - slop;
1495 		len -= MMU_PAGESIZE - slop;
1496 	}
1497 	len = P2ALIGN(len, MMU_PAGESIZE);
1498 
1499 	/*
1500 	 * Go through all boot_archive pages, swapping any low MFN pages
1501 	 * with memory at next_phys.
1502 	 */
1503 	while (len != 0) {
1504 		++total;
1505 		va_pfn = mmu_btop(va - ONE_GIG);
1506 		va_mfn = mfn_list[va_pfn];
1507 		if (mfn_list[va_pfn] < PFN_2GIG) {
1508 			copy = kbm_remap_window(next_phys, 1);
1509 			bcopy((void *)va, copy, MMU_PAGESIZE);
1510 			copy_pfn = mmu_btop(next_phys);
1511 			copy_mfn = mfn_list[copy_pfn];
1512 
1513 			pte = mfn_to_ma(copy_mfn) | PT_NOCONSIST | PT_VALID;
1514 			if (HYPERVISOR_update_va_mapping(va, pte,
1515 			    UVMF_INVLPG | UVMF_LOCAL))
1516 				bop_panic("relocate_boot_archive():  "
1517 				    "HYPERVISOR_update_va_mapping() failed");
1518 
1519 			mfn_list[va_pfn] = copy_mfn;
1520 			mfn_list[copy_pfn] = va_mfn;
1521 
1522 			t[0].ptr = mfn_to_ma(copy_mfn) | MMU_MACHPHYS_UPDATE;
1523 			t[0].val = va_pfn;
1524 			t[1].ptr = mfn_to_ma(va_mfn) | MMU_MACHPHYS_UPDATE;
1525 			t[1].val = copy_pfn;
1526 			if (HYPERVISOR_mmu_update(t, 2, &mmu_update_return,
1527 			    DOMID_SELF) != 0 || mmu_update_return != 2)
1528 				bop_panic("relocate_boot_archive():  "
1529 				    "HYPERVISOR_mmu_update() failed");
1530 
1531 			next_phys += MMU_PAGESIZE;
1532 			++relocated;
1533 		}
1534 		len -= MMU_PAGESIZE;
1535 		va += MMU_PAGESIZE;
1536 	}
1537 	DBG_MSG("Relocated pages:\n");
1538 	DBG(relocated);
1539 	DBG_MSG("Out of total pages:\n");
1540 	DBG(total);
1541 }
1542 #endif /* __xpv */
1543 
1544 #if !defined(__xpv)
1545 /*
1546  * Install a temporary IDT that lets us catch errors in the boot time code.
1547  * We shouldn't get any faults at all while this is installed, so we'll
1548  * just generate a traceback and exit.
1549  */
1550 #ifdef __amd64
1551 static const int bcode_sel = B64CODE_SEL;
1552 #else
1553 static const int bcode_sel = B32CODE_SEL;
1554 #endif
1555 
1556 /*
1557  * simple description of a stack frame (args are 32 bit only currently)
1558  */
1559 typedef struct bop_frame {
1560 	struct bop_frame *old_frame;
1561 	pc_t retaddr;
1562 	long arg[1];
1563 } bop_frame_t;
1564 
1565 void
1566 bop_traceback(bop_frame_t *frame)
1567 {
1568 	pc_t pc;
1569 	int cnt;
1570 	int a;
1571 	char *ksym;
1572 	ulong_t off;
1573 
1574 	bop_printf(NULL, "Stack traceback:\n");
1575 	for (cnt = 0; cnt < 30; ++cnt) {	/* up to 30 frames */
1576 		pc = frame->retaddr;
1577 		if (pc == 0)
1578 			break;
1579 		ksym = kobj_getsymname(pc, &off);
1580 		if (ksym)
1581 			bop_printf(NULL, "  %s+%lx", ksym, off);
1582 		else
1583 			bop_printf(NULL, "  0x%lx", pc);
1584 
1585 		frame = frame->old_frame;
1586 		if (frame == 0) {
1587 			bop_printf(NULL, "\n");
1588 			break;
1589 		}
1590 		for (a = 0; a < 6; ++a) {	/* try for 6 args */
1591 #if defined(__i386)
1592 			if ((void *)&frame->arg[a] == (void *)frame->old_frame)
1593 				break;
1594 			if (a == 0)
1595 				bop_printf(NULL, "(");
1596 			else
1597 				bop_printf(NULL, ",");
1598 			bop_printf(NULL, "0x%lx", frame->arg[a]);
1599 #endif
1600 		}
1601 		bop_printf(NULL, ")\n");
1602 	}
1603 }
1604 
1605 struct trapframe {
1606 	ulong_t frame_ptr;	/* %[er]bp pushed by our code */
1607 	ulong_t error_code;	/* optional */
1608 	ulong_t inst_ptr;
1609 	ulong_t code_seg;
1610 	ulong_t flags_reg;
1611 #ifdef __amd64
1612 	ulong_t stk_ptr;
1613 	ulong_t stk_seg;
1614 #endif
1615 };
1616 
1617 void
1618 bop_trap(struct trapframe *tf)
1619 {
1620 	bop_frame_t fakeframe;
1621 	static int depth = 0;
1622 
1623 	/*
1624 	 * Check for an infinite loop of traps.
1625 	 */
1626 	if (++depth > 2)
1627 		bop_panic("Nested trap");
1628 
1629 	/*
1630 	 * adjust the tf for optional error_code by detecting the code selector
1631 	 */
1632 	if (tf->code_seg != bcode_sel)
1633 		tf = (struct trapframe *)((uintptr_t)tf - sizeof (ulong_t));
1634 
1635 	bop_printf(NULL, "Unexpected trap\n");
1636 	bop_printf(NULL, "instruction pointer  0x%lx\n", tf->inst_ptr);
1637 	bop_printf(NULL, "error code, optional 0x%lx\n",
1638 	    tf->error_code & 0xffffffff);
1639 	bop_printf(NULL, "code segment         0x%lx\n", tf->code_seg & 0xffff);
1640 	bop_printf(NULL, "flags register       0x%lx\n", tf->flags_reg);
1641 #ifdef __amd64
1642 	bop_printf(NULL, "return %%rsp         0x%lx\n", tf->stk_ptr);
1643 	bop_printf(NULL, "return %%ss          0x%lx\n", tf->stk_seg & 0xffff);
1644 #endif
1645 	fakeframe.old_frame = (bop_frame_t *)tf->frame_ptr;
1646 	fakeframe.retaddr = (pc_t)tf->inst_ptr;
1647 	bop_printf(NULL, "Attempting stack backtrace:\n");
1648 	bop_traceback(&fakeframe);
1649 	bop_panic("unexpected trap in early boot");
1650 }
1651 
1652 extern void bop_trap_handler(void);
1653 
1654 static gate_desc_t *bop_idt;
1655 
1656 static desctbr_t bop_idt_info;
1657 
1658 static void
1659 bop_idt_init(void)
1660 {
1661 	int t;
1662 
1663 	bop_idt = (gate_desc_t *)
1664 	    do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE);
1665 	bzero(bop_idt, MMU_PAGESIZE);
1666 	for (t = 0; t < NIDT; ++t) {
1667 		/*
1668 		 * Note that since boot runs without a TSS, the
1669 		 * double fault handler cannot use an alternate stack
1670 		 * (64-bit) or a task gate (32-bit).
1671 		 */
1672 		set_gatesegd(&bop_idt[t], &bop_trap_handler, bcode_sel,
1673 		    SDT_SYSIGT, TRP_KPL, 0);
1674 	}
1675 	bop_idt_info.dtr_limit = (NIDT * sizeof (gate_desc_t)) - 1;
1676 	bop_idt_info.dtr_base = (uintptr_t)bop_idt;
1677 	wr_idtr(&bop_idt_info);
1678 }
1679 #endif	/* !defined(__xpv) */
1680 
1681 /*
1682  * This is where we enter the kernel. It dummies up the boot_ops and
1683  * boot_syscalls vectors and jumps off to _kobj_boot()
1684  */
1685 void
1686 _start(struct xboot_info *xbp)
1687 {
1688 	bootops_t *bops = &bootop;
1689 	extern void _kobj_boot();
1690 
1691 	/*
1692 	 * 1st off - initialize the console for any error messages
1693 	 */
1694 	xbootp = xbp;
1695 #ifdef __xpv
1696 	HYPERVISOR_shared_info = (void *)xbootp->bi_shared_info;
1697 	xen_info = xbootp->bi_xen_start_info;
1698 #endif
1699 	bcons_init((void *)xbootp->bi_cmdline);
1700 	have_console = 1;
1701 
1702 #ifndef __xpv
1703 	if (*((uint32_t *)(FASTBOOT_SWTCH_PA + FASTBOOT_STACK_OFFSET)) ==
1704 	    FASTBOOT_MAGIC) {
1705 		post_fastreboot = 1;
1706 		*((uint32_t *)(FASTBOOT_SWTCH_PA + FASTBOOT_STACK_OFFSET)) = 0;
1707 	}
1708 #endif
1709 
1710 	/*
1711 	 * enable debugging
1712 	 */
1713 	if (strstr((char *)xbootp->bi_cmdline, "kbm_debug"))
1714 		kbm_debug = 1;
1715 
1716 	DBG_MSG("\n\n*** Entered Solaris in _start() cmdline is: ");
1717 	DBG_MSG((char *)xbootp->bi_cmdline);
1718 	DBG_MSG("\n\n\n");
1719 
1720 	/*
1721 	 * physavail is no longer used by startup
1722 	 */
1723 	bm.physinstalled = xbp->bi_phys_install;
1724 	bm.pcimem = xbp->bi_pcimem;
1725 	bm.rsvdmem = xbp->bi_rsvdmem;
1726 	bm.physavail = NULL;
1727 
1728 	/*
1729 	 * initialize the boot time allocator
1730 	 */
1731 	next_phys = xbootp->bi_next_paddr;
1732 	DBG(next_phys);
1733 	next_virt = (uintptr_t)xbootp->bi_next_vaddr;
1734 	DBG(next_virt);
1735 	DBG_MSG("Initializing boot time memory management...");
1736 #ifdef __xpv
1737 	{
1738 		xen_platform_parameters_t p;
1739 
1740 		/* This call shouldn't fail, dboot already did it once. */
1741 		(void) HYPERVISOR_xen_version(XENVER_platform_parameters, &p);
1742 		mfn_to_pfn_mapping = (pfn_t *)(xen_virt_start = p.virt_start);
1743 		DBG(xen_virt_start);
1744 	}
1745 #endif
1746 	kbm_init(xbootp);
1747 	DBG_MSG("done\n");
1748 
1749 	/*
1750 	 * Fill in the bootops vector
1751 	 */
1752 	bops->bsys_version = BO_VERSION;
1753 	bops->boot_mem = &bm;
1754 	bops->bsys_alloc = do_bsys_alloc;
1755 	bops->bsys_free = do_bsys_free;
1756 	bops->bsys_getproplen = do_bsys_getproplen;
1757 	bops->bsys_getprop = do_bsys_getprop;
1758 	bops->bsys_nextprop = do_bsys_nextprop;
1759 	bops->bsys_printf = bop_printf;
1760 	bops->bsys_doint = do_bsys_doint;
1761 
1762 	/*
1763 	 * BOP_EALLOC() is no longer needed
1764 	 */
1765 	bops->bsys_ealloc = do_bsys_ealloc;
1766 
1767 #ifdef __xpv
1768 	/*
1769 	 * On domain 0 we need to free up some physical memory that is
1770 	 * usable for DMA. Since GRUB loaded the boot_archive, it is
1771 	 * sitting in low MFN memory. We'll relocated the boot archive
1772 	 * pages to high PFN memory.
1773 	 */
1774 	if (DOMAIN_IS_INITDOMAIN(xen_info))
1775 		relocate_boot_archive();
1776 #endif
1777 
1778 #ifndef __xpv
1779 	/*
1780 	 * Install an IDT to catch early pagefaults (shouldn't have any).
1781 	 * Also needed for kmdb.
1782 	 */
1783 	bop_idt_init();
1784 #endif
1785 
1786 	/*
1787 	 * Start building the boot properties from the command line
1788 	 */
1789 	DBG_MSG("Initializing boot properties:\n");
1790 	build_boot_properties();
1791 
1792 	if (strstr((char *)xbootp->bi_cmdline, "prom_debug") || kbm_debug) {
1793 		char *name;
1794 		char *value;
1795 		char *cp;
1796 		int len;
1797 
1798 		value = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE);
1799 		bop_printf(NULL, "\nBoot properties:\n");
1800 		name = "";
1801 		while ((name = do_bsys_nextprop(NULL, name)) != NULL) {
1802 			bop_printf(NULL, "\t0x%p %s = ", (void *)name, name);
1803 			(void) do_bsys_getprop(NULL, name, value);
1804 			len = do_bsys_getproplen(NULL, name);
1805 			bop_printf(NULL, "len=%d ", len);
1806 			value[len] = 0;
1807 			for (cp = value; *cp; ++cp) {
1808 				if (' ' <= *cp && *cp <= '~')
1809 					bop_printf(NULL, "%c", *cp);
1810 				else
1811 					bop_printf(NULL, "-0x%x-", *cp);
1812 			}
1813 			bop_printf(NULL, "\n");
1814 		}
1815 	}
1816 
1817 	/*
1818 	 * jump into krtld...
1819 	 */
1820 	_kobj_boot(&bop_sysp, NULL, bops, NULL);
1821 }
1822 
1823 
1824 /*ARGSUSED*/
1825 static caddr_t
1826 no_more_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align)
1827 {
1828 	panic("Attempt to bsys_alloc() too late\n");
1829 	return (NULL);
1830 }
1831 
1832 /*ARGSUSED*/
1833 static void
1834 no_more_free(bootops_t *bop, caddr_t virt, size_t size)
1835 {
1836 	panic("Attempt to bsys_free() too late\n");
1837 }
1838 
1839 void
1840 bop_no_more_mem(void)
1841 {
1842 	DBG(total_bop_alloc_scratch);
1843 	DBG(total_bop_alloc_kernel);
1844 	bootops->bsys_alloc = no_more_alloc;
1845 	bootops->bsys_free = no_more_free;
1846 }
1847 
1848 
1849 #ifndef __xpv
1850 /*
1851  * Set ACPI firmware properties
1852  */
1853 
1854 static caddr_t
1855 vmap_phys(size_t length, paddr_t pa)
1856 {
1857 	paddr_t	start, end;
1858 	caddr_t	va;
1859 	size_t	len, page;
1860 
1861 	start = P2ALIGN(pa, MMU_PAGESIZE);
1862 	end = P2ROUNDUP(pa + length, MMU_PAGESIZE);
1863 	len = end - start;
1864 	va = (caddr_t)alloc_vaddr(len, MMU_PAGESIZE);
1865 	for (page = 0; page < len; page += MMU_PAGESIZE)
1866 		kbm_map((uintptr_t)va + page, start + page, 0, 0);
1867 	return (va + (pa & MMU_PAGEOFFSET));
1868 }
1869 
1870 static uint8_t
1871 checksum_table(uint8_t *tp, size_t len)
1872 {
1873 	uint8_t sum = 0;
1874 
1875 	while (len-- > 0)
1876 		sum += *tp++;
1877 
1878 	return (sum);
1879 }
1880 
1881 static int
1882 valid_rsdp(struct rsdp *rp)
1883 {
1884 
1885 	/* validate the V1.x checksum */
1886 	if (checksum_table((uint8_t *)&rp->v1, sizeof (struct rsdp_v1)) != 0)
1887 		return (0);
1888 
1889 	/* If pre-ACPI 2.0, this is a valid RSDP */
1890 	if (rp->v1.revision < 2)
1891 		return (1);
1892 
1893 	/* validate the V2.x checksum */
1894 	if (checksum_table((uint8_t *)rp, sizeof (struct rsdp)) != 0)
1895 		return (0);
1896 
1897 	return (1);
1898 }
1899 
1900 /*
1901  * Scan memory range for an RSDP;
1902  * see ACPI 3.0 Spec, 5.2.5.1
1903  */
1904 static struct rsdp *
1905 scan_rsdp(paddr_t start, paddr_t end)
1906 {
1907 	size_t len  = end - start + 1;
1908 	caddr_t ptr;
1909 
1910 	ptr = vmap_phys(len, start);
1911 	while (len > 0) {
1912 		if (strncmp(ptr, ACPI_RSDP_SIG, ACPI_RSDP_SIG_LEN) == 0)
1913 			if (valid_rsdp((struct rsdp *)ptr))
1914 				return ((struct rsdp *)ptr);
1915 		ptr += 16;
1916 		len -= 16;
1917 	}
1918 
1919 	return (NULL);
1920 }
1921 
1922 /*
1923  * Refer to ACPI 3.0 Spec, section 5.2.5.1 to understand this function
1924  */
1925 static struct rsdp *
1926 find_rsdp() {
1927 	struct rsdp *rsdp;
1928 	uint16_t *ebda_seg;
1929 	paddr_t  ebda_addr;
1930 
1931 	/*
1932 	 * Get the EBDA segment and scan the first 1K
1933 	 */
1934 	ebda_seg = (uint16_t *)vmap_phys(sizeof (uint16_t), ACPI_EBDA_SEG_ADDR);
1935 	ebda_addr = *ebda_seg << 4;
1936 	rsdp = scan_rsdp(ebda_addr, ebda_addr + ACPI_EBDA_LEN - 1);
1937 	if (rsdp == NULL)
1938 		/* if EBDA doesn't contain RSDP, look in BIOS memory */
1939 		rsdp = scan_rsdp(0xe0000, 0xfffff);
1940 	return (rsdp);
1941 }
1942 
1943 static struct table_header *
1944 map_fw_table(paddr_t table_addr)
1945 {
1946 	struct table_header *tp;
1947 	size_t len = MAX(sizeof (struct table_header), MMU_PAGESIZE);
1948 
1949 	/*
1950 	 * Map at least a page; if the table is larger than this, remap it
1951 	 */
1952 	tp = (struct table_header *)vmap_phys(len, table_addr);
1953 	if (tp->len > len)
1954 		tp = (struct table_header *)vmap_phys(tp->len, table_addr);
1955 	return (tp);
1956 }
1957 
1958 static struct table_header *
1959 find_fw_table(char *signature)
1960 {
1961 	static int revision = 0;
1962 	static struct xsdt *xsdt;
1963 	static int len;
1964 	paddr_t xsdt_addr;
1965 	struct rsdp *rsdp;
1966 	struct table_header *tp;
1967 	paddr_t table_addr;
1968 	int	n;
1969 
1970 	if (strlen(signature) != ACPI_TABLE_SIG_LEN)
1971 		return (NULL);
1972 
1973 	/*
1974 	 * Reading the ACPI 3.0 Spec, section 5.2.5.3 will help
1975 	 * understand this code.  If we haven't already found the RSDT/XSDT,
1976 	 * revision will be 0. Find the RSDP and check the revision
1977 	 * to find out whether to use the RSDT or XSDT.  If revision is
1978 	 * 0 or 1, use the RSDT and set internal revision to 1; if it is 2,
1979 	 * use the XSDT.  If the XSDT address is 0, though, fall back to
1980 	 * revision 1 and use the RSDT.
1981 	 */
1982 	if (revision == 0) {
1983 		if ((rsdp = (struct rsdp *)find_rsdp()) != NULL) {
1984 			revision = rsdp->v1.revision;
1985 			switch (revision) {
1986 			case 2:
1987 				/*
1988 				 * Use the XSDT unless BIOS is buggy and
1989 				 * claims to be rev 2 but has a null XSDT
1990 				 * address
1991 				 */
1992 				xsdt_addr = rsdp->xsdt;
1993 				if (xsdt_addr != 0)
1994 					break;
1995 				/* FALLTHROUGH */
1996 			case 0:
1997 				/* treat RSDP rev 0 as revision 1 internally */
1998 				revision = 1;
1999 				/* FALLTHROUGH */
2000 			case 1:
2001 				/* use the RSDT for rev 0/1 */
2002 				xsdt_addr = rsdp->v1.rsdt;
2003 				break;
2004 			default:
2005 				/* unknown revision */
2006 				revision = 0;
2007 				break;
2008 			}
2009 		}
2010 		if (revision == 0)
2011 			return (NULL);
2012 
2013 		/* cache the XSDT info */
2014 		xsdt = (struct xsdt *)map_fw_table(xsdt_addr);
2015 		len = (xsdt->hdr.len - sizeof (xsdt->hdr)) /
2016 		    ((revision == 1) ? sizeof (uint32_t) : sizeof (uint64_t));
2017 	}
2018 
2019 	/*
2020 	 * Scan the table headers looking for a signature match
2021 	 */
2022 	for (n = 0; n < len; n++) {
2023 		table_addr = (revision == 1) ? xsdt->p.r[n] : xsdt->p.x[n];
2024 		if (table_addr == 0)
2025 			continue;
2026 		tp = map_fw_table(table_addr);
2027 		if (strncmp(tp->sig, signature, ACPI_TABLE_SIG_LEN) == 0) {
2028 			return (tp);
2029 		}
2030 	}
2031 	return (NULL);
2032 }
2033 
2034 static void
2035 process_madt(struct madt *tp)
2036 {
2037 	struct madt_processor *cpu, *end;
2038 	uint32_t cpu_count = 0;
2039 	uint8_t cpu_apicid_array[UINT8_MAX + 1];
2040 
2041 	if (tp != NULL) {
2042 		/*
2043 		 * Determine number of CPUs and keep track of "final" APIC ID
2044 		 * for each CPU by walking through ACPI MADT processor list
2045 		 */
2046 		end = (struct madt_processor *)(tp->hdr.len + (uintptr_t)tp);
2047 		cpu = tp->list;
2048 		while (cpu < end) {
2049 			if (cpu->type == MADT_PROCESSOR) {
2050 				if (cpu->flags & 1) {
2051 					if (cpu_count < UINT8_MAX)
2052 						cpu_apicid_array[cpu_count] =
2053 						    cpu->apic_id;
2054 					cpu_count++;
2055 				}
2056 			}
2057 
2058 			cpu = (struct madt_processor *)
2059 			    (cpu->len + (uintptr_t)cpu);
2060 		}
2061 
2062 		/*
2063 		 * Make boot property for array of "final" APIC IDs for each
2064 		 * CPU
2065 		 */
2066 		bsetprop(BP_CPU_APICID_ARRAY, strlen(BP_CPU_APICID_ARRAY),
2067 		    cpu_apicid_array, cpu_count * sizeof (uint8_t));
2068 	}
2069 
2070 	/*
2071 	 * User-set boot-ncpus overrides firmware count
2072 	 */
2073 	if (do_bsys_getproplen(NULL, "boot-ncpus") >= 0)
2074 		return;
2075 
2076 	/*
2077 	 * Set boot property for boot-ncpus to number of CPUs given in MADT
2078 	 * if user hasn't set the property already
2079 	 */
2080 	if (tp != NULL)
2081 		bsetpropsi("boot-ncpus", cpu_count);
2082 }
2083 
2084 static void
2085 process_srat(struct srat *tp)
2086 {
2087 	struct srat_item *item, *end;
2088 	int i;
2089 	int proc_num, mem_num;
2090 #pragma pack(1)
2091 	struct {
2092 		uint32_t domain;
2093 		uint32_t apic_id;
2094 		uint32_t sapic_id;
2095 	} processor;
2096 	struct {
2097 		uint32_t domain;
2098 		uint32_t x2apic_id;
2099 	} x2apic;
2100 	struct {
2101 		uint32_t domain;
2102 		uint64_t addr;
2103 		uint64_t length;
2104 		uint32_t flags;
2105 	} memory;
2106 #pragma pack()
2107 	char prop_name[30];
2108 
2109 	if (tp == NULL)
2110 		return;
2111 
2112 	proc_num = mem_num = 0;
2113 	end = (struct srat_item *)(tp->hdr.len + (uintptr_t)tp);
2114 	item = tp->list;
2115 	while (item < end) {
2116 		switch (item->type) {
2117 		case SRAT_PROCESSOR:
2118 			if (!(item->i.p.flags & SRAT_ENABLED))
2119 				break;
2120 			processor.domain = item->i.p.domain1;
2121 			for (i = 0; i < 3; i++)
2122 				processor.domain +=
2123 				    item->i.p.domain2[i] << ((i + 1) * 8);
2124 			processor.apic_id = item->i.p.apic_id;
2125 			processor.sapic_id = item->i.p.local_sapic_eid;
2126 			(void) snprintf(prop_name, 30, "acpi-srat-processor-%d",
2127 			    proc_num);
2128 			bsetprop(prop_name, strlen(prop_name), &processor,
2129 			    sizeof (processor));
2130 			proc_num++;
2131 			break;
2132 		case SRAT_MEMORY:
2133 			if (!(item->i.m.flags & SRAT_ENABLED))
2134 				break;
2135 			memory.domain = item->i.m.domain;
2136 			memory.addr = item->i.m.base_addr;
2137 			memory.length = item->i.m.len;
2138 			memory.flags = item->i.m.flags;
2139 			(void) snprintf(prop_name, 30, "acpi-srat-memory-%d",
2140 			    mem_num);
2141 			bsetprop(prop_name, strlen(prop_name), &memory,
2142 			    sizeof (memory));
2143 			mem_num++;
2144 			break;
2145 		case SRAT_X2APIC:
2146 			if (!(item->i.xp.flags & SRAT_ENABLED))
2147 				break;
2148 			x2apic.domain = item->i.xp.domain;
2149 			x2apic.x2apic_id = item->i.xp.x2apic_id;
2150 			(void) snprintf(prop_name, 30, "acpi-srat-processor-%d",
2151 			    proc_num);
2152 			bsetprop(prop_name, strlen(prop_name), &x2apic,
2153 			    sizeof (x2apic));
2154 			proc_num++;
2155 			break;
2156 		}
2157 
2158 		item = (struct srat_item *)
2159 		    (item->len + (caddr_t)item);
2160 	}
2161 }
2162 
2163 static void
2164 process_slit(struct slit *tp)
2165 {
2166 
2167 	/*
2168 	 * Check the number of localities; if it's too huge, we just
2169 	 * return and locality enumeration code will handle this later,
2170 	 * if possible.
2171 	 *
2172 	 * Note that the size of the table is the square of the
2173 	 * number of localities; if the number of localities exceeds
2174 	 * UINT16_MAX, the table size may overflow an int when being
2175 	 * passed to bsetprop() below.
2176 	 */
2177 	if (tp->number >= SLIT_LOCALITIES_MAX)
2178 		return;
2179 
2180 	bsetprop(SLIT_NUM_PROPNAME, strlen(SLIT_NUM_PROPNAME), &tp->number,
2181 	    sizeof (tp->number));
2182 	bsetprop(SLIT_PROPNAME, strlen(SLIT_PROPNAME), &tp->entry,
2183 	    tp->number * tp->number);
2184 }
2185 
2186 static void
2187 process_dmar(struct dmar *tp)
2188 {
2189 	bsetprop(DMAR_TABLE_PROPNAME, strlen(DMAR_TABLE_PROPNAME),
2190 	    tp, tp->hdr.len);
2191 }
2192 
2193 #else /* __xpv */
2194 static void
2195 enumerate_xen_cpus()
2196 {
2197 	processorid_t	id, max_id;
2198 
2199 	/*
2200 	 * User-set boot-ncpus overrides enumeration
2201 	 */
2202 	if (do_bsys_getproplen(NULL, "boot-ncpus") >= 0)
2203 		return;
2204 
2205 	/*
2206 	 * Probe every possible virtual CPU id and remember the
2207 	 * highest id present; the count of CPUs is one greater
2208 	 * than this.  This tacitly assumes at least cpu 0 is present.
2209 	 */
2210 	max_id = 0;
2211 	for (id = 0; id < MAX_VIRT_CPUS; id++)
2212 		if (HYPERVISOR_vcpu_op(VCPUOP_is_up, id, NULL) == 0)
2213 			max_id = id;
2214 
2215 	bsetpropsi("boot-ncpus", max_id+1);
2216 
2217 }
2218 #endif /* __xpv */
2219 
2220 static void
2221 build_firmware_properties(void)
2222 {
2223 #ifndef __xpv
2224 	struct table_header *tp;
2225 
2226 	if ((tp = find_fw_table("APIC")) != NULL)
2227 		process_madt((struct madt *)tp);
2228 
2229 	if ((srat_ptr = (struct srat *)find_fw_table("SRAT")) != NULL)
2230 		process_srat(srat_ptr);
2231 
2232 	if (slit_ptr = (struct slit *)find_fw_table("SLIT"))
2233 		process_slit(slit_ptr);
2234 
2235 	if (tp = find_fw_table("DMAR"))
2236 		process_dmar((struct dmar *)tp);
2237 #else /* __xpv */
2238 	enumerate_xen_cpus();
2239 #endif /* __xpv */
2240 }
2241 
2242 /*
2243  * fake up a boot property for deferred early console output
2244  * this is used by both graphical boot and the (developer only)
2245  * USB serial console
2246  */
2247 void *
2248 defcons_init(size_t size)
2249 {
2250 	static char *p = NULL;
2251 
2252 	p = do_bsys_alloc(NULL, NULL, size, MMU_PAGESIZE);
2253 	*p = 0;
2254 	bsetprop("deferred-console-buf", strlen("deferred-console-buf") + 1,
2255 	    &p, sizeof (p));
2256 	return (p);
2257 }
2258 
2259 /*ARGSUSED*/
2260 int
2261 boot_compinfo(int fd, struct compinfo *cbp)
2262 {
2263 	cbp->iscmp = 0;
2264 	cbp->blksize = MAXBSIZE;
2265 	return (0);
2266 }
2267 
2268 #define	BP_MAX_STRLEN	32
2269 
2270 /*
2271  * Get value for given boot property
2272  */
2273 int
2274 bootprop_getval(const char *prop_name, u_longlong_t *prop_value)
2275 {
2276 	int		boot_prop_len;
2277 	char		str[BP_MAX_STRLEN];
2278 	u_longlong_t	value;
2279 
2280 	boot_prop_len = BOP_GETPROPLEN(bootops, prop_name);
2281 	if (boot_prop_len < 0 || boot_prop_len > sizeof (str) ||
2282 	    BOP_GETPROP(bootops, prop_name, str) < 0 ||
2283 	    kobj_getvalue(str, &value) == -1)
2284 		return (-1);
2285 
2286 	if (prop_value)
2287 		*prop_value = value;
2288 
2289 	return (0);
2290 }
2291