xref: /illumos-gate/usr/src/uts/i86pc/os/fakebop.c (revision 096c97d62be876a03a0a8cdb0a540e9c84ec509f)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  *
26  * Copyright (c) 2010, Intel Corporation.
27  * All rights reserved.
28  *
29  * Copyright 2018 Joyent, Inc.  All rights reserved.
30  */
31 
32 /*
33  * This file contains the functionality that mimics the boot operations
34  * on SPARC systems or the old boot.bin/multiboot programs on x86 systems.
35  * The x86 kernel now does everything on its own.
36  */
37 
38 #include <sys/types.h>
39 #include <sys/bootconf.h>
40 #include <sys/bootsvcs.h>
41 #include <sys/bootinfo.h>
42 #include <sys/multiboot.h>
43 #include <sys/multiboot2.h>
44 #include <sys/multiboot2_impl.h>
45 #include <sys/bootvfs.h>
46 #include <sys/bootprops.h>
47 #include <sys/varargs.h>
48 #include <sys/param.h>
49 #include <sys/machparam.h>
50 #include <sys/machsystm.h>
51 #include <sys/archsystm.h>
52 #include <sys/boot_console.h>
53 #include <sys/framebuffer.h>
54 #include <sys/cmn_err.h>
55 #include <sys/systm.h>
56 #include <sys/promif.h>
57 #include <sys/archsystm.h>
58 #include <sys/x86_archext.h>
59 #include <sys/kobj.h>
60 #include <sys/privregs.h>
61 #include <sys/sysmacros.h>
62 #include <sys/ctype.h>
63 #include <sys/fastboot.h>
64 #ifdef __xpv
65 #include <sys/hypervisor.h>
66 #include <net/if.h>
67 #endif
68 #include <vm/kboot_mmu.h>
69 #include <vm/hat_pte.h>
70 #include <sys/kobj.h>
71 #include <sys/kobj_lex.h>
72 #include <sys/pci_cfgspace_impl.h>
73 #include <sys/fastboot_impl.h>
74 #include <sys/acpi/acconfig.h>
75 #include <sys/acpi/acpi.h>
76 #include <sys/ddipropdefs.h>	/* For DDI prop types */
77 
78 static int have_console = 0;	/* set once primitive console is initialized */
79 static char *boot_args = "";
80 
81 /*
82  * Debugging macros
83  */
84 static uint_t kbm_debug = 0;
85 #define	DBG_MSG(s)	{ if (kbm_debug) bop_printf(NULL, "%s", s); }
86 #define	DBG(x)		{ if (kbm_debug)			\
87 	bop_printf(NULL, "%s is %" PRIx64 "\n", #x, (uint64_t)(x));	\
88 	}
89 
90 #define	PUT_STRING(s) {				\
91 	char *cp;				\
92 	for (cp = (s); *cp; ++cp)		\
93 		bcons_putchar(*cp);		\
94 	}
95 
96 /* callback to boot_fb to set shadow frame buffer */
97 extern void boot_fb_shadow_init(bootops_t *);
98 
99 bootops_t bootop;	/* simple bootops we'll pass on to kernel */
100 struct bsys_mem bm;
101 
102 /*
103  * Boot info from "glue" code in low memory. xbootp is used by:
104  *	do_bop_phys_alloc(), do_bsys_alloc() and boot_prop_finish().
105  */
106 static struct xboot_info *xbootp;
107 static uintptr_t next_virt;	/* next available virtual address */
108 static paddr_t next_phys;	/* next available physical address from dboot */
109 static paddr_t high_phys = -(paddr_t)1;	/* last used physical address */
110 
111 /*
112  * buffer for vsnprintf for console I/O
113  */
114 #define	BUFFERSIZE	512
115 static char buffer[BUFFERSIZE];
116 
117 /*
118  * stuff to store/report/manipulate boot property settings.
119  */
120 typedef struct bootprop {
121 	struct bootprop *bp_next;
122 	char *bp_name;
123 	int bp_flags;			/* DDI prop type */
124 	uint_t bp_vlen;			/* 0 for boolean */
125 	char *bp_value;
126 } bootprop_t;
127 
128 static bootprop_t *bprops = NULL;
129 static char *curr_page = NULL;		/* ptr to avail bprop memory */
130 static int curr_space = 0;		/* amount of memory at curr_page */
131 
132 #ifdef __xpv
133 start_info_t *xen_info;
134 shared_info_t *HYPERVISOR_shared_info;
135 #endif
136 
137 /*
138  * some allocator statistics
139  */
140 static ulong_t total_bop_alloc_scratch = 0;
141 static ulong_t total_bop_alloc_kernel = 0;
142 
143 static void build_firmware_properties(struct xboot_info *);
144 
145 static int early_allocation = 1;
146 
147 int force_fastreboot = 0;
148 volatile int fastreboot_onpanic = 0;
149 int post_fastreboot = 0;
150 #ifdef	__xpv
151 volatile int fastreboot_capable = 0;
152 #else
153 volatile int fastreboot_capable = 1;
154 #endif
155 
156 /*
157  * Information saved from current boot for fast reboot.
158  * If the information size exceeds what we have allocated, fast reboot
159  * will not be supported.
160  */
161 multiboot_info_t saved_mbi;
162 mb_memory_map_t saved_mmap[FASTBOOT_SAVED_MMAP_COUNT];
163 uint8_t saved_drives[FASTBOOT_SAVED_DRIVES_SIZE];
164 char saved_cmdline[FASTBOOT_SAVED_CMDLINE_LEN];
165 int saved_cmdline_len = 0;
166 size_t saved_file_size[FASTBOOT_MAX_FILES_MAP];
167 
168 /*
169  * Turn off fastreboot_onpanic to avoid panic loop.
170  */
171 char fastreboot_onpanic_cmdline[FASTBOOT_SAVED_CMDLINE_LEN];
172 static const char fastreboot_onpanic_args[] = " -B fastreboot_onpanic=0";
173 
174 /*
175  * Pointers to where System Resource Affinity Table (SRAT), System Locality
176  * Information Table (SLIT) and Maximum System Capability Table (MSCT)
177  * are mapped into virtual memory
178  */
179 ACPI_TABLE_SRAT	*srat_ptr = NULL;
180 ACPI_TABLE_SLIT	*slit_ptr = NULL;
181 ACPI_TABLE_MSCT	*msct_ptr = NULL;
182 
183 /*
184  * Arbitrary limit on number of localities we handle; if
185  * this limit is raised to more than UINT16_MAX, make sure
186  * process_slit() knows how to handle it.
187  */
188 #define	SLIT_LOCALITIES_MAX	(4096)
189 
190 #define	SLIT_NUM_PROPNAME	"acpi-slit-localities"
191 #define	SLIT_PROPNAME		"acpi-slit"
192 
193 /*
194  * Allocate aligned physical memory at boot time. This allocator allocates
195  * from the highest possible addresses. This avoids exhausting memory that
196  * would be useful for DMA buffers.
197  */
198 paddr_t
199 do_bop_phys_alloc(uint64_t size, uint64_t align)
200 {
201 	paddr_t	pa = 0;
202 	paddr_t	start;
203 	paddr_t	end;
204 	struct memlist	*ml = (struct memlist *)xbootp->bi_phys_install;
205 
206 	/*
207 	 * Be careful if high memory usage is limited in startup.c
208 	 * Since there are holes in the low part of the physical address
209 	 * space we can treat physmem as a pfn (not just a pgcnt) and
210 	 * get a conservative upper limit.
211 	 */
212 	if (physmem != 0 && high_phys > pfn_to_pa(physmem))
213 		high_phys = pfn_to_pa(physmem);
214 
215 	/*
216 	 * find the highest available memory in physinstalled
217 	 */
218 	size = P2ROUNDUP(size, align);
219 	for (; ml; ml = ml->ml_next) {
220 		start = P2ROUNDUP(ml->ml_address, align);
221 		end = P2ALIGN(ml->ml_address + ml->ml_size, align);
222 		if (start < next_phys)
223 			start = P2ROUNDUP(next_phys, align);
224 		if (end > high_phys)
225 			end = P2ALIGN(high_phys, align);
226 
227 		if (end <= start)
228 			continue;
229 		if (end - start < size)
230 			continue;
231 
232 		/*
233 		 * Early allocations need to use low memory, since
234 		 * physmem might be further limited by bootenv.rc
235 		 */
236 		if (early_allocation) {
237 			if (pa == 0 || start < pa)
238 				pa = start;
239 		} else {
240 			if (end - size > pa)
241 				pa = end - size;
242 		}
243 	}
244 	if (pa != 0) {
245 		if (early_allocation)
246 			next_phys = pa + size;
247 		else
248 			high_phys = pa;
249 		return (pa);
250 	}
251 	bop_panic("do_bop_phys_alloc(0x%" PRIx64 ", 0x%" PRIx64
252 	    ") Out of memory\n", size, align);
253 	/*NOTREACHED*/
254 }
255 
256 uintptr_t
257 alloc_vaddr(size_t size, paddr_t align)
258 {
259 	uintptr_t rv;
260 
261 	next_virt = P2ROUNDUP(next_virt, (uintptr_t)align);
262 	rv = (uintptr_t)next_virt;
263 	next_virt += size;
264 	return (rv);
265 }
266 
267 /*
268  * Allocate virtual memory. The size is always rounded up to a multiple
269  * of base pagesize.
270  */
271 
272 /*ARGSUSED*/
273 static caddr_t
274 do_bsys_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align)
275 {
276 	paddr_t a = align;	/* same type as pa for masking */
277 	uint_t pgsize;
278 	paddr_t pa;
279 	uintptr_t va;
280 	ssize_t s;		/* the aligned size */
281 	uint_t level;
282 	uint_t is_kernel = (virthint != 0);
283 
284 	if (a < MMU_PAGESIZE)
285 		a = MMU_PAGESIZE;
286 	else if (!ISP2(a))
287 		prom_panic("do_bsys_alloc() incorrect alignment");
288 	size = P2ROUNDUP(size, MMU_PAGESIZE);
289 
290 	/*
291 	 * Use the next aligned virtual address if we weren't given one.
292 	 */
293 	if (virthint == NULL) {
294 		virthint = (caddr_t)alloc_vaddr(size, a);
295 		total_bop_alloc_scratch += size;
296 	} else {
297 		total_bop_alloc_kernel += size;
298 	}
299 
300 	/*
301 	 * allocate the physical memory
302 	 */
303 	pa = do_bop_phys_alloc(size, a);
304 
305 	/*
306 	 * Add the mappings to the page tables, try large pages first.
307 	 */
308 	va = (uintptr_t)virthint;
309 	s = size;
310 	level = 1;
311 	pgsize = xbootp->bi_use_pae ? TWO_MEG : FOUR_MEG;
312 	if (xbootp->bi_use_largepage && a == pgsize) {
313 		while (IS_P2ALIGNED(pa, pgsize) && IS_P2ALIGNED(va, pgsize) &&
314 		    s >= pgsize) {
315 			kbm_map(va, pa, level, is_kernel);
316 			va += pgsize;
317 			pa += pgsize;
318 			s -= pgsize;
319 		}
320 	}
321 
322 	/*
323 	 * Map remaining pages use small mappings
324 	 */
325 	level = 0;
326 	pgsize = MMU_PAGESIZE;
327 	while (s > 0) {
328 		kbm_map(va, pa, level, is_kernel);
329 		va += pgsize;
330 		pa += pgsize;
331 		s -= pgsize;
332 	}
333 	return (virthint);
334 }
335 
336 /*
337  * Free virtual memory - we'll just ignore these.
338  */
339 /*ARGSUSED*/
340 static void
341 do_bsys_free(bootops_t *bop, caddr_t virt, size_t size)
342 {
343 	bop_printf(NULL, "do_bsys_free(virt=0x%p, size=0x%lx) ignored\n",
344 	    (void *)virt, size);
345 }
346 
347 /*
348  * Old interface
349  */
350 /*ARGSUSED*/
351 static caddr_t
352 do_bsys_ealloc(bootops_t *bop, caddr_t virthint, size_t size,
353     int align, int flags)
354 {
355 	prom_panic("unsupported call to BOP_EALLOC()\n");
356 	return (0);
357 }
358 
359 
360 static void
361 bsetprop(int flags, char *name, int nlen, void *value, int vlen)
362 {
363 	uint_t size;
364 	uint_t need_size;
365 	bootprop_t *b;
366 
367 	/*
368 	 * align the size to 16 byte boundary
369 	 */
370 	size = sizeof (bootprop_t) + nlen + 1 + vlen;
371 	size = (size + 0xf) & ~0xf;
372 	if (size > curr_space) {
373 		need_size = (size + (MMU_PAGEOFFSET)) & MMU_PAGEMASK;
374 		curr_page = do_bsys_alloc(NULL, 0, need_size, MMU_PAGESIZE);
375 		curr_space = need_size;
376 	}
377 
378 	/*
379 	 * use a bootprop_t at curr_page and link into list
380 	 */
381 	b = (bootprop_t *)curr_page;
382 	curr_page += sizeof (bootprop_t);
383 	curr_space -=  sizeof (bootprop_t);
384 	b->bp_next = bprops;
385 	bprops = b;
386 
387 	/*
388 	 * follow by name and ending zero byte
389 	 */
390 	b->bp_name = curr_page;
391 	bcopy(name, curr_page, nlen);
392 	curr_page += nlen;
393 	*curr_page++ = 0;
394 	curr_space -= nlen + 1;
395 
396 	/*
397 	 * set the property type
398 	 */
399 	b->bp_flags = flags & DDI_PROP_TYPE_MASK;
400 
401 	/*
402 	 * copy in value, but no ending zero byte
403 	 */
404 	b->bp_value = curr_page;
405 	b->bp_vlen = vlen;
406 	if (vlen > 0) {
407 		bcopy(value, curr_page, vlen);
408 		curr_page += vlen;
409 		curr_space -= vlen;
410 	}
411 
412 	/*
413 	 * align new values of curr_page, curr_space
414 	 */
415 	while (curr_space & 0xf) {
416 		++curr_page;
417 		--curr_space;
418 	}
419 }
420 
421 static void
422 bsetprops(char *name, char *value)
423 {
424 	bsetprop(DDI_PROP_TYPE_STRING, name, strlen(name),
425 	    value, strlen(value) + 1);
426 }
427 
428 static void
429 bsetprop32(char *name, uint32_t value)
430 {
431 	bsetprop(DDI_PROP_TYPE_INT, name, strlen(name),
432 	    (void *)&value, sizeof (value));
433 }
434 
435 static void
436 bsetprop64(char *name, uint64_t value)
437 {
438 	bsetprop(DDI_PROP_TYPE_INT64, name, strlen(name),
439 	    (void *)&value, sizeof (value));
440 }
441 
442 static void
443 bsetpropsi(char *name, int value)
444 {
445 	char prop_val[32];
446 
447 	(void) snprintf(prop_val, sizeof (prop_val), "%d", value);
448 	bsetprops(name, prop_val);
449 }
450 
451 /*
452  * to find the type of the value associated with this name
453  */
454 /*ARGSUSED*/
455 int
456 do_bsys_getproptype(bootops_t *bop, const char *name)
457 {
458 	bootprop_t *b;
459 
460 	for (b = bprops; b != NULL; b = b->bp_next) {
461 		if (strcmp(name, b->bp_name) != 0)
462 			continue;
463 		return (b->bp_flags);
464 	}
465 	return (-1);
466 }
467 
468 /*
469  * to find the size of the buffer to allocate
470  */
471 /*ARGSUSED*/
472 int
473 do_bsys_getproplen(bootops_t *bop, const char *name)
474 {
475 	bootprop_t *b;
476 
477 	for (b = bprops; b; b = b->bp_next) {
478 		if (strcmp(name, b->bp_name) != 0)
479 			continue;
480 		return (b->bp_vlen);
481 	}
482 	return (-1);
483 }
484 
485 /*
486  * get the value associated with this name
487  */
488 /*ARGSUSED*/
489 int
490 do_bsys_getprop(bootops_t *bop, const char *name, void *value)
491 {
492 	bootprop_t *b;
493 
494 	for (b = bprops; b; b = b->bp_next) {
495 		if (strcmp(name, b->bp_name) != 0)
496 			continue;
497 		bcopy(b->bp_value, value, b->bp_vlen);
498 		return (0);
499 	}
500 	return (-1);
501 }
502 
503 /*
504  * get the name of the next property in succession from the standalone
505  */
506 /*ARGSUSED*/
507 static char *
508 do_bsys_nextprop(bootops_t *bop, char *name)
509 {
510 	bootprop_t *b;
511 
512 	/*
513 	 * A null name is a special signal for the 1st boot property
514 	 */
515 	if (name == NULL || strlen(name) == 0) {
516 		if (bprops == NULL)
517 			return (NULL);
518 		return (bprops->bp_name);
519 	}
520 
521 	for (b = bprops; b; b = b->bp_next) {
522 		if (name != b->bp_name)
523 			continue;
524 		b = b->bp_next;
525 		if (b == NULL)
526 			return (NULL);
527 		return (b->bp_name);
528 	}
529 	return (NULL);
530 }
531 
532 /*
533  * Parse numeric value from a string. Understands decimal, hex, octal, - and ~
534  */
535 static int
536 parse_value(char *p, uint64_t *retval)
537 {
538 	int adjust = 0;
539 	uint64_t tmp = 0;
540 	int digit;
541 	int radix = 10;
542 
543 	*retval = 0;
544 	if (*p == '-' || *p == '~')
545 		adjust = *p++;
546 
547 	if (*p == '0') {
548 		++p;
549 		if (*p == 0)
550 			return (0);
551 		if (*p == 'x' || *p == 'X') {
552 			radix = 16;
553 			++p;
554 		} else {
555 			radix = 8;
556 			++p;
557 		}
558 	}
559 	while (*p) {
560 		if ('0' <= *p && *p <= '9')
561 			digit = *p - '0';
562 		else if ('a' <= *p && *p <= 'f')
563 			digit = 10 + *p - 'a';
564 		else if ('A' <= *p && *p <= 'F')
565 			digit = 10 + *p - 'A';
566 		else
567 			return (-1);
568 		if (digit >= radix)
569 			return (-1);
570 		tmp = tmp * radix + digit;
571 		++p;
572 	}
573 	if (adjust == '-')
574 		tmp = -tmp;
575 	else if (adjust == '~')
576 		tmp = ~tmp;
577 	*retval = tmp;
578 	return (0);
579 }
580 
581 static boolean_t
582 unprintable(char *value, int size)
583 {
584 	int i;
585 
586 	if (size <= 0 || value[0] == '\0')
587 		return (B_TRUE);
588 
589 	for (i = 0; i < size; i++) {
590 		if (value[i] == '\0')
591 			return (i != (size - 1));
592 
593 		if (!isprint(value[i]))
594 			return (B_TRUE);
595 	}
596 	return (B_FALSE);
597 }
598 
599 /*
600  * Print out information about all boot properties.
601  * buffer is pointer to pre-allocated space to be used as temporary
602  * space for property values.
603  */
604 static void
605 boot_prop_display(char *buffer)
606 {
607 	char *name = "";
608 	int i, len, flags, *buf32;
609 	int64_t *buf64;
610 
611 	bop_printf(NULL, "\nBoot properties:\n");
612 
613 	while ((name = do_bsys_nextprop(NULL, name)) != NULL) {
614 		bop_printf(NULL, "\t0x%p %s = ", (void *)name, name);
615 		(void) do_bsys_getprop(NULL, name, buffer);
616 		len = do_bsys_getproplen(NULL, name);
617 		flags = do_bsys_getproptype(NULL, name);
618 		bop_printf(NULL, "len=%d ", len);
619 
620 		switch (flags) {
621 		case DDI_PROP_TYPE_INT:
622 			len = len / sizeof (int);
623 			buf32 = (int *)buffer;
624 			for (i = 0; i < len; i++) {
625 				bop_printf(NULL, "%08x", buf32[i]);
626 				if (i < len - 1)
627 					bop_printf(NULL, ".");
628 			}
629 			break;
630 		case DDI_PROP_TYPE_STRING:
631 			bop_printf(NULL, "%s", buffer);
632 			break;
633 		case DDI_PROP_TYPE_INT64:
634 			len = len / sizeof (int64_t);
635 			buf64 = (int64_t *)buffer;
636 			for (i = 0; i < len; i++) {
637 				bop_printf(NULL, "%016" PRIx64, buf64[i]);
638 				if (i < len - 1)
639 					bop_printf(NULL, ".");
640 			}
641 			break;
642 		default:
643 			if (!unprintable(buffer, len)) {
644 				buffer[len] = 0;
645 				bop_printf(NULL, "%s", buffer);
646 				break;
647 			}
648 			for (i = 0; i < len; i++) {
649 				bop_printf(NULL, "%02x", buffer[i] & 0xff);
650 				if (i < len - 1)
651 					bop_printf(NULL, ".");
652 			}
653 			break;
654 		}
655 		bop_printf(NULL, "\n");
656 	}
657 }
658 
659 /*
660  * 2nd part of building the table of boot properties. This includes:
661  * - values from /boot/solaris/bootenv.rc (ie. eeprom(1m) values)
662  *
663  * lines look like one of:
664  * ^$
665  * ^# comment till end of line
666  * setprop name 'value'
667  * setprop name value
668  * setprop name "value"
669  *
670  * we do single character I/O since this is really just looking at memory
671  */
672 void
673 boot_prop_finish(void)
674 {
675 	int fd;
676 	char *line;
677 	int c;
678 	int bytes_read;
679 	char *name;
680 	int n_len;
681 	char *value;
682 	int v_len;
683 	char *inputdev;	/* these override the command line if serial ports */
684 	char *outputdev;
685 	char *consoledev;
686 	uint64_t lvalue;
687 	int use_xencons = 0;
688 	extern int bootrd_debug;
689 
690 #ifdef __xpv
691 	if (!DOMAIN_IS_INITDOMAIN(xen_info))
692 		use_xencons = 1;
693 #endif /* __xpv */
694 
695 	DBG_MSG("Opening /boot/solaris/bootenv.rc\n");
696 	fd = BRD_OPEN(bfs_ops, "/boot/solaris/bootenv.rc", 0);
697 	DBG(fd);
698 
699 	line = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE);
700 	while (fd >= 0) {
701 
702 		/*
703 		 * get a line
704 		 */
705 		for (c = 0; ; ++c) {
706 			bytes_read = BRD_READ(bfs_ops, fd, line + c, 1);
707 			if (bytes_read == 0) {
708 				if (c == 0)
709 					goto done;
710 				break;
711 			}
712 			if (line[c] == '\n')
713 				break;
714 		}
715 		line[c] = 0;
716 
717 		/*
718 		 * ignore comment lines
719 		 */
720 		c = 0;
721 		while (ISSPACE(line[c]))
722 			++c;
723 		if (line[c] == '#' || line[c] == 0)
724 			continue;
725 
726 		/*
727 		 * must have "setprop " or "setprop\t"
728 		 */
729 		if (strncmp(line + c, "setprop ", 8) != 0 &&
730 		    strncmp(line + c, "setprop\t", 8) != 0)
731 			continue;
732 		c += 8;
733 		while (ISSPACE(line[c]))
734 			++c;
735 		if (line[c] == 0)
736 			continue;
737 
738 		/*
739 		 * gather up the property name
740 		 */
741 		name = line + c;
742 		n_len = 0;
743 		while (line[c] && !ISSPACE(line[c]))
744 			++n_len, ++c;
745 
746 		/*
747 		 * gather up the value, if any
748 		 */
749 		value = "";
750 		v_len = 0;
751 		while (ISSPACE(line[c]))
752 			++c;
753 		if (line[c] != 0) {
754 			value = line + c;
755 			while (line[c] && !ISSPACE(line[c]))
756 				++v_len, ++c;
757 		}
758 
759 		if (v_len >= 2 && value[0] == value[v_len - 1] &&
760 		    (value[0] == '\'' || value[0] == '"')) {
761 			++value;
762 			v_len -= 2;
763 		}
764 		name[n_len] = 0;
765 		if (v_len > 0)
766 			value[v_len] = 0;
767 		else
768 			continue;
769 
770 		/*
771 		 * ignore "boot-file" property, it's now meaningless
772 		 */
773 		if (strcmp(name, "boot-file") == 0)
774 			continue;
775 		if (strcmp(name, "boot-args") == 0 &&
776 		    strlen(boot_args) > 0)
777 			continue;
778 
779 		/*
780 		 * If a property was explicitly set on the command line
781 		 * it will override a setting in bootenv.rc
782 		 */
783 		if (do_bsys_getproplen(NULL, name) >= 0)
784 			continue;
785 
786 		bsetprops(name, value);
787 	}
788 done:
789 	if (fd >= 0)
790 		(void) BRD_CLOSE(bfs_ops, fd);
791 
792 	/*
793 	 * Check if we have to limit the boot time allocator
794 	 */
795 	if (do_bsys_getproplen(NULL, "physmem") != -1 &&
796 	    do_bsys_getprop(NULL, "physmem", line) >= 0 &&
797 	    parse_value(line, &lvalue) != -1) {
798 		if (0 < lvalue && (lvalue < physmem || physmem == 0)) {
799 			physmem = (pgcnt_t)lvalue;
800 			DBG(physmem);
801 		}
802 	}
803 	early_allocation = 0;
804 
805 	/*
806 	 * Check for bootrd_debug.
807 	 */
808 	if (find_boot_prop("bootrd_debug"))
809 		bootrd_debug = 1;
810 
811 	/*
812 	 * check to see if we have to override the default value of the console
813 	 */
814 	if (!use_xencons) {
815 		inputdev = line;
816 		v_len = do_bsys_getproplen(NULL, "input-device");
817 		if (v_len > 0)
818 			(void) do_bsys_getprop(NULL, "input-device", inputdev);
819 		else
820 			v_len = 0;
821 		inputdev[v_len] = 0;
822 
823 		outputdev = inputdev + v_len + 1;
824 		v_len = do_bsys_getproplen(NULL, "output-device");
825 		if (v_len > 0)
826 			(void) do_bsys_getprop(NULL, "output-device",
827 			    outputdev);
828 		else
829 			v_len = 0;
830 		outputdev[v_len] = 0;
831 
832 		consoledev = outputdev + v_len + 1;
833 		v_len = do_bsys_getproplen(NULL, "console");
834 		if (v_len > 0) {
835 			(void) do_bsys_getprop(NULL, "console", consoledev);
836 			if (post_fastreboot &&
837 			    strcmp(consoledev, "graphics") == 0) {
838 				bsetprops("console", "text");
839 				v_len = strlen("text");
840 				bcopy("text", consoledev, v_len);
841 			}
842 		} else {
843 			v_len = 0;
844 		}
845 		consoledev[v_len] = 0;
846 		bcons_init2(inputdev, outputdev, consoledev);
847 	} else {
848 		/*
849 		 * Ensure console property exists
850 		 * If not create it as "hypervisor"
851 		 */
852 		v_len = do_bsys_getproplen(NULL, "console");
853 		if (v_len < 0)
854 			bsetprops("console", "hypervisor");
855 		inputdev = outputdev = consoledev = "hypervisor";
856 		bcons_init2(inputdev, outputdev, consoledev);
857 	}
858 
859 	if (find_boot_prop("prom_debug") || kbm_debug)
860 		boot_prop_display(line);
861 }
862 
863 /*
864  * print formatted output
865  */
866 /*ARGSUSED*/
867 void
868 vbop_printf(void *ptr, const char *fmt, va_list ap)
869 {
870 	if (have_console == 0)
871 		return;
872 
873 	(void) vsnprintf(buffer, BUFFERSIZE, fmt, ap);
874 	PUT_STRING(buffer);
875 }
876 
877 /*PRINTFLIKE2*/
878 void
879 bop_printf(void *bop, const char *fmt, ...)
880 {
881 	va_list	ap;
882 
883 	va_start(ap, fmt);
884 	vbop_printf(bop, fmt, ap);
885 	va_end(ap);
886 }
887 
888 /*
889  * Another panic() variant; this one can be used even earlier during boot than
890  * prom_panic().
891  */
892 /*PRINTFLIKE1*/
893 void
894 bop_panic(const char *fmt, ...)
895 {
896 	va_list ap;
897 
898 	va_start(ap, fmt);
899 	bop_printf(NULL, fmt, ap);
900 	va_end(ap);
901 
902 	bop_printf(NULL, "\nPress any key to reboot.\n");
903 	(void) bcons_getchar();
904 	bop_printf(NULL, "Resetting...\n");
905 	pc_reset();
906 }
907 
908 /*
909  * Do a real mode interrupt BIOS call
910  */
911 typedef struct bios_regs {
912 	unsigned short ax, bx, cx, dx, si, di, bp, es, ds;
913 } bios_regs_t;
914 typedef int (*bios_func_t)(int, bios_regs_t *);
915 
916 /*ARGSUSED*/
917 static void
918 do_bsys_doint(bootops_t *bop, int intnum, struct bop_regs *rp)
919 {
920 #if defined(__xpv)
921 	prom_panic("unsupported call to BOP_DOINT()\n");
922 #else	/* __xpv */
923 	static int firsttime = 1;
924 	bios_func_t bios_func = (bios_func_t)(void *)(uintptr_t)0x5000;
925 	bios_regs_t br;
926 
927 	/*
928 	 * We're about to disable paging; we shouldn't be PCID enabled.
929 	 */
930 	if (getcr4() & CR4_PCIDE)
931 		prom_panic("do_bsys_doint() with PCID enabled\n");
932 
933 	/*
934 	 * The first time we do this, we have to copy the pre-packaged
935 	 * low memory bios call code image into place.
936 	 */
937 	if (firsttime) {
938 		extern char bios_image[];
939 		extern uint32_t bios_size;
940 
941 		bcopy(bios_image, (void *)bios_func, bios_size);
942 		firsttime = 0;
943 	}
944 
945 	br.ax = rp->eax.word.ax;
946 	br.bx = rp->ebx.word.bx;
947 	br.cx = rp->ecx.word.cx;
948 	br.dx = rp->edx.word.dx;
949 	br.bp = rp->ebp.word.bp;
950 	br.si = rp->esi.word.si;
951 	br.di = rp->edi.word.di;
952 	br.ds = rp->ds;
953 	br.es = rp->es;
954 
955 	DBG_MSG("Doing BIOS call...");
956 	DBG(br.ax);
957 	DBG(br.bx);
958 	DBG(br.dx);
959 	rp->eflags = bios_func(intnum, &br);
960 	DBG_MSG("done\n");
961 
962 	rp->eax.word.ax = br.ax;
963 	rp->ebx.word.bx = br.bx;
964 	rp->ecx.word.cx = br.cx;
965 	rp->edx.word.dx = br.dx;
966 	rp->ebp.word.bp = br.bp;
967 	rp->esi.word.si = br.si;
968 	rp->edi.word.di = br.di;
969 	rp->ds = br.ds;
970 	rp->es = br.es;
971 #endif /* __xpv */
972 }
973 
974 static struct boot_syscalls bop_sysp = {
975 	bcons_getchar,
976 	bcons_putchar,
977 	bcons_ischar,
978 };
979 
980 static char *whoami;
981 
982 #define	BUFLEN	64
983 
984 #if defined(__xpv)
985 
986 static char namebuf[32];
987 
988 static void
989 xen_parse_props(char *s, char *prop_map[], int n_prop)
990 {
991 	char **prop_name = prop_map;
992 	char *cp = s, *scp;
993 
994 	do {
995 		scp = cp;
996 		while ((*cp != NULL) && (*cp != ':'))
997 			cp++;
998 
999 		if ((scp != cp) && (*prop_name != NULL)) {
1000 			*cp = NULL;
1001 			bsetprops(*prop_name, scp);
1002 		}
1003 
1004 		cp++;
1005 		prop_name++;
1006 		n_prop--;
1007 	} while (n_prop > 0);
1008 }
1009 
1010 #define	VBDPATHLEN	64
1011 
1012 /*
1013  * parse the 'xpv-root' property to create properties used by
1014  * ufs_mountroot.
1015  */
1016 static void
1017 xen_vbdroot_props(char *s)
1018 {
1019 	char vbdpath[VBDPATHLEN] = "/xpvd/xdf@";
1020 	const char lnamefix[] = "/dev/dsk/c0d";
1021 	char *pnp;
1022 	char *prop_p;
1023 	char mi;
1024 	short minor;
1025 	long addr = 0;
1026 
1027 	pnp = vbdpath + strlen(vbdpath);
1028 	prop_p = s + strlen(lnamefix);
1029 	while ((*prop_p != '\0') && (*prop_p != 's') && (*prop_p != 'p'))
1030 		addr = addr * 10 + *prop_p++ - '0';
1031 	(void) snprintf(pnp, VBDPATHLEN, "%lx", addr);
1032 	pnp = vbdpath + strlen(vbdpath);
1033 	if (*prop_p == 's')
1034 		mi = 'a';
1035 	else if (*prop_p == 'p')
1036 		mi = 'q';
1037 	else
1038 		ASSERT(0); /* shouldn't be here */
1039 	prop_p++;
1040 	ASSERT(*prop_p != '\0');
1041 	if (ISDIGIT(*prop_p)) {
1042 		minor = *prop_p - '0';
1043 		prop_p++;
1044 		if (ISDIGIT(*prop_p)) {
1045 			minor = minor * 10 + *prop_p - '0';
1046 		}
1047 	} else {
1048 		/* malformed root path, use 0 as default */
1049 		minor = 0;
1050 	}
1051 	ASSERT(minor < 16); /* at most 16 partitions */
1052 	mi += minor;
1053 	*pnp++ = ':';
1054 	*pnp++ = mi;
1055 	*pnp++ = '\0';
1056 	bsetprops("fstype", "ufs");
1057 	bsetprops("bootpath", vbdpath);
1058 
1059 	DBG_MSG("VBD bootpath set to ");
1060 	DBG_MSG(vbdpath);
1061 	DBG_MSG("\n");
1062 }
1063 
1064 /*
1065  * parse the xpv-nfsroot property to create properties used by
1066  * nfs_mountroot.
1067  */
1068 static void
1069 xen_nfsroot_props(char *s)
1070 {
1071 	char *prop_map[] = {
1072 		BP_SERVER_IP,	/* server IP address */
1073 		BP_SERVER_NAME,	/* server hostname */
1074 		BP_SERVER_PATH,	/* root path */
1075 	};
1076 	int n_prop = sizeof (prop_map) / sizeof (prop_map[0]);
1077 
1078 	bsetprops("fstype", "nfs");
1079 
1080 	xen_parse_props(s, prop_map, n_prop);
1081 
1082 	/*
1083 	 * If a server name wasn't specified, use a default.
1084 	 */
1085 	if (do_bsys_getproplen(NULL, BP_SERVER_NAME) == -1)
1086 		bsetprops(BP_SERVER_NAME, "unknown");
1087 }
1088 
1089 /*
1090  * Extract our IP address, etc. from the "xpv-ip" property.
1091  */
1092 static void
1093 xen_ip_props(char *s)
1094 {
1095 	char *prop_map[] = {
1096 		BP_HOST_IP,		/* IP address */
1097 		NULL,			/* NFS server IP address (ignored in */
1098 					/* favour of xpv-nfsroot) */
1099 		BP_ROUTER_IP,		/* IP gateway */
1100 		BP_SUBNET_MASK,		/* IP subnet mask */
1101 		"xpv-hostname",		/* hostname (ignored) */
1102 		BP_NETWORK_INTERFACE,	/* interface name */
1103 		"xpv-hcp",		/* host configuration protocol */
1104 	};
1105 	int n_prop = sizeof (prop_map) / sizeof (prop_map[0]);
1106 	char ifname[IFNAMSIZ];
1107 
1108 	xen_parse_props(s, prop_map, n_prop);
1109 
1110 	/*
1111 	 * A Linux dom0 administrator expects all interfaces to be
1112 	 * called "ethX", which is not the case here.
1113 	 *
1114 	 * If the interface name specified is "eth0", presume that
1115 	 * this is really intended to be "xnf0" (the first domU ->
1116 	 * dom0 interface for this domain).
1117 	 */
1118 	if ((do_bsys_getprop(NULL, BP_NETWORK_INTERFACE, ifname) == 0) &&
1119 	    (strcmp("eth0", ifname) == 0)) {
1120 		bsetprops(BP_NETWORK_INTERFACE, "xnf0");
1121 		bop_printf(NULL,
1122 		    "network interface name 'eth0' replaced with 'xnf0'\n");
1123 	}
1124 }
1125 
1126 #else	/* __xpv */
1127 
1128 static void
1129 setup_rarp_props(struct sol_netinfo *sip)
1130 {
1131 	char buf[BUFLEN];	/* to hold ip/mac addrs */
1132 	uint8_t *val;
1133 
1134 	val = (uint8_t *)&sip->sn_ciaddr;
1135 	(void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1136 	    val[0], val[1], val[2], val[3]);
1137 	bsetprops(BP_HOST_IP, buf);
1138 
1139 	val = (uint8_t *)&sip->sn_siaddr;
1140 	(void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1141 	    val[0], val[1], val[2], val[3]);
1142 	bsetprops(BP_SERVER_IP, buf);
1143 
1144 	if (sip->sn_giaddr != 0) {
1145 		val = (uint8_t *)&sip->sn_giaddr;
1146 		(void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1147 		    val[0], val[1], val[2], val[3]);
1148 		bsetprops(BP_ROUTER_IP, buf);
1149 	}
1150 
1151 	if (sip->sn_netmask != 0) {
1152 		val = (uint8_t *)&sip->sn_netmask;
1153 		(void) snprintf(buf, BUFLEN, "%d.%d.%d.%d",
1154 		    val[0], val[1], val[2], val[3]);
1155 		bsetprops(BP_SUBNET_MASK, buf);
1156 	}
1157 
1158 	if (sip->sn_mactype != 4 || sip->sn_maclen != 6) {
1159 		bop_printf(NULL, "unsupported mac type %d, mac len %d\n",
1160 		    sip->sn_mactype, sip->sn_maclen);
1161 	} else {
1162 		val = sip->sn_macaddr;
1163 		(void) snprintf(buf, BUFLEN, "%x:%x:%x:%x:%x:%x",
1164 		    val[0], val[1], val[2], val[3], val[4], val[5]);
1165 		bsetprops(BP_BOOT_MAC, buf);
1166 	}
1167 }
1168 
1169 #endif	/* __xpv */
1170 
1171 static void
1172 build_panic_cmdline(const char *cmd, int cmdlen)
1173 {
1174 	int proplen;
1175 	size_t arglen;
1176 
1177 	arglen = sizeof (fastreboot_onpanic_args);
1178 	/*
1179 	 * If we allready have fastreboot-onpanic set to zero,
1180 	 * don't add them again.
1181 	 */
1182 	if ((proplen = do_bsys_getproplen(NULL, FASTREBOOT_ONPANIC)) > 0 &&
1183 	    proplen <=  sizeof (fastreboot_onpanic_cmdline)) {
1184 		(void) do_bsys_getprop(NULL, FASTREBOOT_ONPANIC,
1185 		    fastreboot_onpanic_cmdline);
1186 		if (FASTREBOOT_ONPANIC_NOTSET(fastreboot_onpanic_cmdline))
1187 			arglen = 1;
1188 	}
1189 
1190 	/*
1191 	 * construct fastreboot_onpanic_cmdline
1192 	 */
1193 	if (cmdlen + arglen > sizeof (fastreboot_onpanic_cmdline)) {
1194 		DBG_MSG("Command line too long: clearing "
1195 		    FASTREBOOT_ONPANIC "\n");
1196 		fastreboot_onpanic = 0;
1197 	} else {
1198 		bcopy(cmd, fastreboot_onpanic_cmdline, cmdlen);
1199 		if (arglen != 1)
1200 			bcopy(fastreboot_onpanic_args,
1201 			    fastreboot_onpanic_cmdline + cmdlen, arglen);
1202 		else
1203 			fastreboot_onpanic_cmdline[cmdlen] = 0;
1204 	}
1205 }
1206 
1207 
1208 #ifndef	__xpv
1209 /*
1210  * Construct boot command line for Fast Reboot. The saved_cmdline
1211  * is also reported by "eeprom bootcmd".
1212  */
1213 static void
1214 build_fastboot_cmdline(struct xboot_info *xbp)
1215 {
1216 	saved_cmdline_len =  strlen(xbp->bi_cmdline) + 1;
1217 	if (saved_cmdline_len > FASTBOOT_SAVED_CMDLINE_LEN) {
1218 		DBG(saved_cmdline_len);
1219 		DBG_MSG("Command line too long: clearing fastreboot_capable\n");
1220 		fastreboot_capable = 0;
1221 	} else {
1222 		bcopy((void *)(xbp->bi_cmdline), (void *)saved_cmdline,
1223 		    saved_cmdline_len);
1224 		saved_cmdline[saved_cmdline_len - 1] = '\0';
1225 		build_panic_cmdline(saved_cmdline, saved_cmdline_len - 1);
1226 	}
1227 }
1228 
1229 /*
1230  * Save memory layout, disk drive information, unix and boot archive sizes for
1231  * Fast Reboot.
1232  */
1233 static void
1234 save_boot_info(struct xboot_info *xbi)
1235 {
1236 	multiboot_info_t *mbi = xbi->bi_mb_info;
1237 	struct boot_modules *modp;
1238 	int i;
1239 
1240 	bcopy(mbi, &saved_mbi, sizeof (multiboot_info_t));
1241 	if (mbi->mmap_length > sizeof (saved_mmap)) {
1242 		DBG_MSG("mbi->mmap_length too big: clearing "
1243 		    "fastreboot_capable\n");
1244 		fastreboot_capable = 0;
1245 	} else {
1246 		bcopy((void *)(uintptr_t)mbi->mmap_addr, (void *)saved_mmap,
1247 		    mbi->mmap_length);
1248 	}
1249 
1250 	if ((mbi->flags & MB_INFO_DRIVE_INFO) != 0) {
1251 		if (mbi->drives_length > sizeof (saved_drives)) {
1252 			DBG(mbi->drives_length);
1253 			DBG_MSG("mbi->drives_length too big: clearing "
1254 			    "fastreboot_capable\n");
1255 			fastreboot_capable = 0;
1256 		} else {
1257 			bcopy((void *)(uintptr_t)mbi->drives_addr,
1258 			    (void *)saved_drives, mbi->drives_length);
1259 		}
1260 	} else {
1261 		saved_mbi.drives_length = 0;
1262 		saved_mbi.drives_addr = NULL;
1263 	}
1264 
1265 	/*
1266 	 * Current file sizes.  Used by fastboot.c to figure out how much
1267 	 * memory to reserve for panic reboot.
1268 	 * Use the module list from the dboot-constructed xboot_info
1269 	 * instead of the list referenced by the multiboot structure
1270 	 * because that structure may not be addressable now.
1271 	 */
1272 	saved_file_size[FASTBOOT_NAME_UNIX] = FOUR_MEG - PAGESIZE;
1273 	for (i = 0, modp = (struct boot_modules *)(uintptr_t)xbi->bi_modules;
1274 	    i < xbi->bi_module_cnt; i++, modp++) {
1275 		saved_file_size[FASTBOOT_NAME_BOOTARCHIVE] += modp->bm_size;
1276 	}
1277 }
1278 #endif	/* __xpv */
1279 
1280 /*
1281  * Import boot environment module variables as properties, applying
1282  * blacklist filter for variables we know we will not use.
1283  *
1284  * Since the environment can be relatively large, containing many variables
1285  * used only for boot loader purposes, we will use a blacklist based filter.
1286  * To keep the blacklist from growing too large, we use prefix based filtering.
1287  * This is possible because in many cases, the loader variable names are
1288  * using a structured layout.
1289  *
1290  * We will not overwrite already set properties.
1291  */
1292 static struct bop_blacklist {
1293 	const char *bl_name;
1294 	int bl_name_len;
1295 } bop_prop_blacklist[] = {
1296 	{ "ISADIR", sizeof ("ISADIR") },
1297 	{ "acpi", sizeof ("acpi") },
1298 	{ "autoboot_delay", sizeof ("autoboot_delay") },
1299 	{ "autoboot_delay", sizeof ("autoboot_delay") },
1300 	{ "beansi_", sizeof ("beansi_") },
1301 	{ "beastie", sizeof ("beastie") },
1302 	{ "bemenu", sizeof ("bemenu") },
1303 	{ "boot.", sizeof ("boot.") },
1304 	{ "bootenv", sizeof ("bootenv") },
1305 	{ "currdev", sizeof ("currdev") },
1306 	{ "dhcp.", sizeof ("dhcp.") },
1307 	{ "interpret", sizeof ("interpret") },
1308 	{ "kernel", sizeof ("kernel") },
1309 	{ "loaddev", sizeof ("loaddev") },
1310 	{ "loader_", sizeof ("loader_") },
1311 	{ "module_path", sizeof ("module_path") },
1312 	{ "nfs.", sizeof ("nfs.") },
1313 	{ "pcibios", sizeof ("pcibios") },
1314 	{ "prompt", sizeof ("prompt") },
1315 	{ "smbios", sizeof ("smbios") },
1316 	{ "tem", sizeof ("tem") },
1317 	{ "twiddle_divisor", sizeof ("twiddle_divisor") },
1318 	{ "zfs_be", sizeof ("zfs_be") },
1319 };
1320 
1321 /*
1322  * Match the name against prefixes in above blacklist. If the match was
1323  * found, this name is blacklisted.
1324  */
1325 static boolean_t
1326 name_is_blacklisted(const char *name)
1327 {
1328 	int i, n;
1329 
1330 	n = sizeof (bop_prop_blacklist) / sizeof (bop_prop_blacklist[0]);
1331 	for (i = 0; i < n; i++) {
1332 		if (strncmp(bop_prop_blacklist[i].bl_name, name,
1333 		    bop_prop_blacklist[i].bl_name_len - 1) == 0) {
1334 			return (B_TRUE);
1335 		}
1336 	}
1337 	return (B_FALSE);
1338 }
1339 
1340 static void
1341 process_boot_environment(struct boot_modules *benv)
1342 {
1343 	char *env, *ptr, *name, *value;
1344 	uint32_t size, name_len, value_len;
1345 
1346 	if (benv == NULL || benv->bm_type != BMT_ENV)
1347 		return;
1348 	ptr = env = benv->bm_addr;
1349 	size = benv->bm_size;
1350 	do {
1351 		name = ptr;
1352 		/* find '=' */
1353 		while (*ptr != '=') {
1354 			ptr++;
1355 			if (ptr > env + size) /* Something is very wrong. */
1356 				return;
1357 		}
1358 		name_len = ptr - name;
1359 		if (sizeof (buffer) <= name_len)
1360 			continue;
1361 
1362 		(void) strncpy(buffer, name, sizeof (buffer));
1363 		buffer[name_len] = '\0';
1364 		name = buffer;
1365 
1366 		value_len = 0;
1367 		value = ++ptr;
1368 		while ((uintptr_t)ptr - (uintptr_t)env < size) {
1369 			if (*ptr == '\0') {
1370 				ptr++;
1371 				value_len = (uintptr_t)ptr - (uintptr_t)env;
1372 				break;
1373 			}
1374 			ptr++;
1375 		}
1376 
1377 		/* Did we reach the end of the module? */
1378 		if (value_len == 0)
1379 			return;
1380 
1381 		if (*value == '\0')
1382 			continue;
1383 
1384 		/* Is this property already set? */
1385 		if (do_bsys_getproplen(NULL, name) >= 0)
1386 			continue;
1387 
1388 		/* Translate netboot variables */
1389 		if (strcmp(name, "boot.netif.gateway") == 0) {
1390 			bsetprops(BP_ROUTER_IP, value);
1391 			continue;
1392 		}
1393 		if (strcmp(name, "boot.netif.hwaddr") == 0) {
1394 			bsetprops(BP_BOOT_MAC, value);
1395 			continue;
1396 		}
1397 		if (strcmp(name, "boot.netif.ip") == 0) {
1398 			bsetprops(BP_HOST_IP, value);
1399 			continue;
1400 		}
1401 		if (strcmp(name, "boot.netif.netmask") == 0) {
1402 			bsetprops(BP_SUBNET_MASK, value);
1403 			continue;
1404 		}
1405 		if (strcmp(name, "boot.netif.server") == 0) {
1406 			bsetprops(BP_SERVER_IP, value);
1407 			continue;
1408 		}
1409 		if (strcmp(name, "boot.netif.server") == 0) {
1410 			if (do_bsys_getproplen(NULL, BP_SERVER_IP) < 0)
1411 				bsetprops(BP_SERVER_IP, value);
1412 			continue;
1413 		}
1414 		if (strcmp(name, "boot.nfsroot.server") == 0) {
1415 			if (do_bsys_getproplen(NULL, BP_SERVER_IP) < 0)
1416 				bsetprops(BP_SERVER_IP, value);
1417 			continue;
1418 		}
1419 		if (strcmp(name, "boot.nfsroot.path") == 0) {
1420 			bsetprops(BP_SERVER_PATH, value);
1421 			continue;
1422 		}
1423 
1424 		if (name_is_blacklisted(name) == B_TRUE)
1425 			continue;
1426 
1427 		/* Create new property. */
1428 		bsetprops(name, value);
1429 
1430 		/* Avoid reading past the module end. */
1431 		if (size <= (uintptr_t)ptr - (uintptr_t)env)
1432 			return;
1433 	} while (*ptr != '\0');
1434 }
1435 
1436 /*
1437  * 1st pass at building the table of boot properties. This includes:
1438  * - values set on the command line: -B a=x,b=y,c=z ....
1439  * - known values we just compute (ie. from xbp)
1440  * - values from /boot/solaris/bootenv.rc (ie. eeprom(1m) values)
1441  *
1442  * the grub command line looked like:
1443  * kernel boot-file [-B prop=value[,prop=value]...] [boot-args]
1444  *
1445  * whoami is the same as boot-file
1446  */
1447 static void
1448 build_boot_properties(struct xboot_info *xbp)
1449 {
1450 	char *name;
1451 	int name_len;
1452 	char *value;
1453 	int value_len;
1454 	struct boot_modules *bm, *rdbm, *benv = NULL;
1455 	char *propbuf;
1456 	int quoted = 0;
1457 	int boot_arg_len;
1458 	uint_t i, midx;
1459 	char modid[32];
1460 #ifndef __xpv
1461 	static int stdout_val = 0;
1462 	uchar_t boot_device;
1463 	char str[3];
1464 #endif
1465 
1466 	/*
1467 	 * These have to be done first, so that kobj_mount_root() works
1468 	 */
1469 	DBG_MSG("Building boot properties\n");
1470 	propbuf = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, 0);
1471 	DBG((uintptr_t)propbuf);
1472 	if (xbp->bi_module_cnt > 0) {
1473 		bm = xbp->bi_modules;
1474 		rdbm = NULL;
1475 		for (midx = i = 0; i < xbp->bi_module_cnt; i++) {
1476 			if (bm[i].bm_type == BMT_ROOTFS) {
1477 				rdbm = &bm[i];
1478 				continue;
1479 			}
1480 			if (bm[i].bm_type == BMT_HASH || bm[i].bm_name == NULL)
1481 				continue;
1482 
1483 			if (bm[i].bm_type == BMT_ENV) {
1484 				if (benv == NULL)
1485 					benv = &bm[i];
1486 				else
1487 					continue;
1488 			}
1489 
1490 			(void) snprintf(modid, sizeof (modid),
1491 			    "module-name-%u", midx);
1492 			bsetprops(modid, (char *)bm[i].bm_name);
1493 			(void) snprintf(modid, sizeof (modid),
1494 			    "module-addr-%u", midx);
1495 			bsetprop64(modid, (uint64_t)(uintptr_t)bm[i].bm_addr);
1496 			(void) snprintf(modid, sizeof (modid),
1497 			    "module-size-%u", midx);
1498 			bsetprop64(modid, (uint64_t)bm[i].bm_size);
1499 			++midx;
1500 		}
1501 		if (rdbm != NULL) {
1502 			bsetprop64("ramdisk_start",
1503 			    (uint64_t)(uintptr_t)rdbm->bm_addr);
1504 			bsetprop64("ramdisk_end",
1505 			    (uint64_t)(uintptr_t)rdbm->bm_addr + rdbm->bm_size);
1506 		}
1507 	}
1508 
1509 	/*
1510 	 * If there are any boot time modules or hashes present, then disable
1511 	 * fast reboot.
1512 	 */
1513 	if (xbp->bi_module_cnt > 1) {
1514 		fastreboot_disable(FBNS_BOOTMOD);
1515 	}
1516 
1517 #ifndef __xpv
1518 	/*
1519 	 * Disable fast reboot if we're using the Multiboot 2 boot protocol,
1520 	 * since we don't currently support MB2 info and module relocation.
1521 	 * Note that fast reboot will have already been disabled if multiple
1522 	 * modules are present, since the current implementation assumes that
1523 	 * we only have a single module, the boot_archive.
1524 	 */
1525 	if (xbp->bi_mb_version != 1) {
1526 		fastreboot_disable(FBNS_MULTIBOOT2);
1527 	}
1528 #endif
1529 
1530 	DBG_MSG("Parsing command line for boot properties\n");
1531 	value = xbp->bi_cmdline;
1532 
1533 	/*
1534 	 * allocate memory to collect boot_args into
1535 	 */
1536 	boot_arg_len = strlen(xbp->bi_cmdline) + 1;
1537 	boot_args = do_bsys_alloc(NULL, NULL, boot_arg_len, MMU_PAGESIZE);
1538 	boot_args[0] = 0;
1539 	boot_arg_len = 0;
1540 
1541 #ifdef __xpv
1542 	/*
1543 	 * Xen puts a lot of device information in front of the kernel name
1544 	 * let's grab them and make them boot properties.  The first
1545 	 * string w/o an "=" in it will be the boot-file property.
1546 	 */
1547 	(void) strcpy(namebuf, "xpv-");
1548 	for (;;) {
1549 		/*
1550 		 * get to next property
1551 		 */
1552 		while (ISSPACE(*value))
1553 			++value;
1554 		name = value;
1555 		/*
1556 		 * look for an "="
1557 		 */
1558 		while (*value && !ISSPACE(*value) && *value != '=') {
1559 			value++;
1560 		}
1561 		if (*value != '=') { /* no "=" in the property */
1562 			value = name;
1563 			break;
1564 		}
1565 		name_len = value - name;
1566 		value_len = 0;
1567 		/*
1568 		 * skip over the "="
1569 		 */
1570 		value++;
1571 		while (value[value_len] && !ISSPACE(value[value_len])) {
1572 			++value_len;
1573 		}
1574 		/*
1575 		 * build property name with "xpv-" prefix
1576 		 */
1577 		if (name_len + 4 > 32) { /* skip if name too long */
1578 			value += value_len;
1579 			continue;
1580 		}
1581 		bcopy(name, &namebuf[4], name_len);
1582 		name_len += 4;
1583 		namebuf[name_len] = 0;
1584 		bcopy(value, propbuf, value_len);
1585 		propbuf[value_len] = 0;
1586 		bsetprops(namebuf, propbuf);
1587 
1588 		/*
1589 		 * xpv-root is set to the logical disk name of the xen
1590 		 * VBD when booting from a disk-based filesystem.
1591 		 */
1592 		if (strcmp(namebuf, "xpv-root") == 0)
1593 			xen_vbdroot_props(propbuf);
1594 		/*
1595 		 * While we're here, if we have a "xpv-nfsroot" property
1596 		 * then we need to set "fstype" to "nfs" so we mount
1597 		 * our root from the nfs server.  Also parse the xpv-nfsroot
1598 		 * property to create the properties that nfs_mountroot will
1599 		 * need to find the root and mount it.
1600 		 */
1601 		if (strcmp(namebuf, "xpv-nfsroot") == 0)
1602 			xen_nfsroot_props(propbuf);
1603 
1604 		if (strcmp(namebuf, "xpv-ip") == 0)
1605 			xen_ip_props(propbuf);
1606 		value += value_len;
1607 	}
1608 #endif
1609 
1610 	while (ISSPACE(*value))
1611 		++value;
1612 	/*
1613 	 * value now points at the boot-file
1614 	 */
1615 	value_len = 0;
1616 	while (value[value_len] && !ISSPACE(value[value_len]))
1617 		++value_len;
1618 	if (value_len > 0) {
1619 		whoami = propbuf;
1620 		bcopy(value, whoami, value_len);
1621 		whoami[value_len] = 0;
1622 		bsetprops("boot-file", whoami);
1623 		/*
1624 		 * strip leading path stuff from whoami, so running from
1625 		 * PXE/miniroot makes sense.
1626 		 */
1627 		if (strstr(whoami, "/platform/") != NULL)
1628 			whoami = strstr(whoami, "/platform/");
1629 		bsetprops("whoami", whoami);
1630 	}
1631 
1632 	/*
1633 	 * Values forcibly set boot properties on the command line via -B.
1634 	 * Allow use of quotes in values. Other stuff goes on kernel
1635 	 * command line.
1636 	 */
1637 	name = value + value_len;
1638 	while (*name != 0) {
1639 		/*
1640 		 * anything not " -B" is copied to the command line
1641 		 */
1642 		if (!ISSPACE(name[0]) || name[1] != '-' || name[2] != 'B') {
1643 			boot_args[boot_arg_len++] = *name;
1644 			boot_args[boot_arg_len] = 0;
1645 			++name;
1646 			continue;
1647 		}
1648 
1649 		/*
1650 		 * skip the " -B" and following white space
1651 		 */
1652 		name += 3;
1653 		while (ISSPACE(*name))
1654 			++name;
1655 		while (*name && !ISSPACE(*name)) {
1656 			value = strstr(name, "=");
1657 			if (value == NULL)
1658 				break;
1659 			name_len = value - name;
1660 			++value;
1661 			value_len = 0;
1662 			quoted = 0;
1663 			for (; ; ++value_len) {
1664 				if (!value[value_len])
1665 					break;
1666 
1667 				/*
1668 				 * is this value quoted?
1669 				 */
1670 				if (value_len == 0 &&
1671 				    (value[0] == '\'' || value[0] == '"')) {
1672 					quoted = value[0];
1673 					++value_len;
1674 				}
1675 
1676 				/*
1677 				 * In the quote accept any character,
1678 				 * but look for ending quote.
1679 				 */
1680 				if (quoted) {
1681 					if (value[value_len] == quoted)
1682 						quoted = 0;
1683 					continue;
1684 				}
1685 
1686 				/*
1687 				 * a comma or white space ends the value
1688 				 */
1689 				if (value[value_len] == ',' ||
1690 				    ISSPACE(value[value_len]))
1691 					break;
1692 			}
1693 
1694 			if (value_len == 0) {
1695 				bsetprop(DDI_PROP_TYPE_ANY, name, name_len,
1696 				    NULL, 0);
1697 			} else {
1698 				char *v = value;
1699 				int l = value_len;
1700 				if (v[0] == v[l - 1] &&
1701 				    (v[0] == '\'' || v[0] == '"')) {
1702 					++v;
1703 					l -= 2;
1704 				}
1705 				bcopy(v, propbuf, l);
1706 				propbuf[l] = '\0';
1707 				bsetprop(DDI_PROP_TYPE_STRING, name, name_len,
1708 				    propbuf, l + 1);
1709 			}
1710 			name = value + value_len;
1711 			while (*name == ',')
1712 				++name;
1713 		}
1714 	}
1715 
1716 	/*
1717 	 * set boot-args property
1718 	 * 1275 name is bootargs, so set
1719 	 * that too
1720 	 */
1721 	bsetprops("boot-args", boot_args);
1722 	bsetprops("bootargs", boot_args);
1723 
1724 	process_boot_environment(benv);
1725 
1726 #ifndef __xpv
1727 	/*
1728 	 * Build boot command line for Fast Reboot
1729 	 */
1730 	build_fastboot_cmdline(xbp);
1731 
1732 	if (xbp->bi_mb_version == 1) {
1733 		multiboot_info_t *mbi = xbp->bi_mb_info;
1734 		int netboot;
1735 		struct sol_netinfo *sip;
1736 
1737 		/*
1738 		 * set the BIOS boot device from GRUB
1739 		 */
1740 		netboot = 0;
1741 
1742 		/*
1743 		 * Save various boot information for Fast Reboot
1744 		 */
1745 		save_boot_info(xbp);
1746 
1747 		if (mbi != NULL && mbi->flags & MB_INFO_BOOTDEV) {
1748 			boot_device = mbi->boot_device >> 24;
1749 			if (boot_device == 0x20)
1750 				netboot++;
1751 			str[0] = (boot_device >> 4) + '0';
1752 			str[1] = (boot_device & 0xf) + '0';
1753 			str[2] = 0;
1754 			bsetprops("bios-boot-device", str);
1755 		} else {
1756 			netboot = 1;
1757 		}
1758 
1759 		/*
1760 		 * In the netboot case, drives_info is overloaded with the
1761 		 * dhcp ack. This is not multiboot compliant and requires
1762 		 * special pxegrub!
1763 		 */
1764 		if (netboot && mbi->drives_length != 0) {
1765 			sip = (struct sol_netinfo *)(uintptr_t)mbi->drives_addr;
1766 			if (sip->sn_infotype == SN_TYPE_BOOTP)
1767 				bsetprop(DDI_PROP_TYPE_BYTE,
1768 				    "bootp-response",
1769 				    sizeof ("bootp-response"),
1770 				    (void *)(uintptr_t)mbi->drives_addr,
1771 				    mbi->drives_length);
1772 			else if (sip->sn_infotype == SN_TYPE_RARP)
1773 				setup_rarp_props(sip);
1774 		}
1775 	} else {
1776 		multiboot2_info_header_t *mbi = xbp->bi_mb_info;
1777 		multiboot_tag_bootdev_t *bootdev = NULL;
1778 		multiboot_tag_network_t *netdev = NULL;
1779 
1780 		if (mbi != NULL) {
1781 			bootdev = dboot_multiboot2_find_tag(mbi,
1782 			    MULTIBOOT_TAG_TYPE_BOOTDEV);
1783 			netdev = dboot_multiboot2_find_tag(mbi,
1784 			    MULTIBOOT_TAG_TYPE_NETWORK);
1785 		}
1786 		if (bootdev != NULL) {
1787 			DBG(bootdev->mb_biosdev);
1788 			boot_device = bootdev->mb_biosdev;
1789 			str[0] = (boot_device >> 4) + '0';
1790 			str[1] = (boot_device & 0xf) + '0';
1791 			str[2] = 0;
1792 			bsetprops("bios-boot-device", str);
1793 		}
1794 		if (netdev != NULL) {
1795 			bsetprop(DDI_PROP_TYPE_BYTE,
1796 			    "bootp-response", sizeof ("bootp-response"),
1797 			    (void *)(uintptr_t)netdev->mb_dhcpack,
1798 			    netdev->mb_size -
1799 			    sizeof (multiboot_tag_network_t));
1800 		}
1801 	}
1802 
1803 	bsetprop32("stdout", stdout_val);
1804 #endif /* __xpv */
1805 
1806 	/*
1807 	 * more conjured up values for made up things....
1808 	 */
1809 #if defined(__xpv)
1810 	bsetprops("mfg-name", "i86xpv");
1811 	bsetprops("impl-arch-name", "i86xpv");
1812 #else
1813 	bsetprops("mfg-name", "i86pc");
1814 	bsetprops("impl-arch-name", "i86pc");
1815 #endif
1816 
1817 	/*
1818 	 * Build firmware-provided system properties
1819 	 */
1820 	build_firmware_properties(xbp);
1821 
1822 	/*
1823 	 * XXPV
1824 	 *
1825 	 * Find out what these are:
1826 	 * - cpuid_feature_ecx_include
1827 	 * - cpuid_feature_ecx_exclude
1828 	 * - cpuid_feature_edx_include
1829 	 * - cpuid_feature_edx_exclude
1830 	 *
1831 	 * Find out what these are in multiboot:
1832 	 * - netdev-path
1833 	 * - fstype
1834 	 */
1835 }
1836 
1837 #ifdef __xpv
1838 /*
1839  * Under the Hypervisor, memory usable for DMA may be scarce. One
1840  * very likely large pool of DMA friendly memory is occupied by
1841  * the boot_archive, as it was loaded by grub into low MFNs.
1842  *
1843  * Here we free up that memory by copying the boot archive to what are
1844  * likely higher MFN pages and then swapping the mfn/pfn mappings.
1845  */
1846 #define	PFN_2GIG	0x80000
1847 static void
1848 relocate_boot_archive(struct xboot_info *xbp)
1849 {
1850 	mfn_t max_mfn = HYPERVISOR_memory_op(XENMEM_maximum_ram_page, NULL);
1851 	struct boot_modules *bm = xbp->bi_modules;
1852 	uintptr_t va;
1853 	pfn_t va_pfn;
1854 	mfn_t va_mfn;
1855 	caddr_t copy;
1856 	pfn_t copy_pfn;
1857 	mfn_t copy_mfn;
1858 	size_t	len;
1859 	int slop;
1860 	int total = 0;
1861 	int relocated = 0;
1862 	int mmu_update_return;
1863 	mmu_update_t t[2];
1864 	x86pte_t pte;
1865 
1866 	/*
1867 	 * If all MFN's are below 2Gig, don't bother doing this.
1868 	 */
1869 	if (max_mfn < PFN_2GIG)
1870 		return;
1871 	if (xbp->bi_module_cnt < 1) {
1872 		DBG_MSG("no boot_archive!");
1873 		return;
1874 	}
1875 
1876 	DBG_MSG("moving boot_archive to high MFN memory\n");
1877 	va = (uintptr_t)bm->bm_addr;
1878 	len = bm->bm_size;
1879 	slop = va & MMU_PAGEOFFSET;
1880 	if (slop) {
1881 		va += MMU_PAGESIZE - slop;
1882 		len -= MMU_PAGESIZE - slop;
1883 	}
1884 	len = P2ALIGN(len, MMU_PAGESIZE);
1885 
1886 	/*
1887 	 * Go through all boot_archive pages, swapping any low MFN pages
1888 	 * with memory at next_phys.
1889 	 */
1890 	while (len != 0) {
1891 		++total;
1892 		va_pfn = mmu_btop(va - ONE_GIG);
1893 		va_mfn = mfn_list[va_pfn];
1894 		if (mfn_list[va_pfn] < PFN_2GIG) {
1895 			copy = kbm_remap_window(next_phys, 1);
1896 			bcopy((void *)va, copy, MMU_PAGESIZE);
1897 			copy_pfn = mmu_btop(next_phys);
1898 			copy_mfn = mfn_list[copy_pfn];
1899 
1900 			pte = mfn_to_ma(copy_mfn) | PT_NOCONSIST | PT_VALID;
1901 			if (HYPERVISOR_update_va_mapping(va, pte,
1902 			    UVMF_INVLPG | UVMF_LOCAL))
1903 				bop_panic("relocate_boot_archive():  "
1904 				    "HYPERVISOR_update_va_mapping() failed");
1905 
1906 			mfn_list[va_pfn] = copy_mfn;
1907 			mfn_list[copy_pfn] = va_mfn;
1908 
1909 			t[0].ptr = mfn_to_ma(copy_mfn) | MMU_MACHPHYS_UPDATE;
1910 			t[0].val = va_pfn;
1911 			t[1].ptr = mfn_to_ma(va_mfn) | MMU_MACHPHYS_UPDATE;
1912 			t[1].val = copy_pfn;
1913 			if (HYPERVISOR_mmu_update(t, 2, &mmu_update_return,
1914 			    DOMID_SELF) != 0 || mmu_update_return != 2)
1915 				bop_panic("relocate_boot_archive():  "
1916 				    "HYPERVISOR_mmu_update() failed");
1917 
1918 			next_phys += MMU_PAGESIZE;
1919 			++relocated;
1920 		}
1921 		len -= MMU_PAGESIZE;
1922 		va += MMU_PAGESIZE;
1923 	}
1924 	DBG_MSG("Relocated pages:\n");
1925 	DBG(relocated);
1926 	DBG_MSG("Out of total pages:\n");
1927 	DBG(total);
1928 }
1929 #endif /* __xpv */
1930 
1931 #if !defined(__xpv)
1932 /*
1933  * simple description of a stack frame (args are 32 bit only currently)
1934  */
1935 typedef struct bop_frame {
1936 	struct bop_frame *old_frame;
1937 	pc_t retaddr;
1938 	long arg[1];
1939 } bop_frame_t;
1940 
1941 void
1942 bop_traceback(bop_frame_t *frame)
1943 {
1944 	pc_t pc;
1945 	int cnt;
1946 	char *ksym;
1947 	ulong_t off;
1948 
1949 	bop_printf(NULL, "Stack traceback:\n");
1950 	for (cnt = 0; cnt < 30; ++cnt) {	/* up to 30 frames */
1951 		pc = frame->retaddr;
1952 		if (pc == 0)
1953 			break;
1954 		ksym = kobj_getsymname(pc, &off);
1955 		if (ksym)
1956 			bop_printf(NULL, "  %s+%lx", ksym, off);
1957 		else
1958 			bop_printf(NULL, "  0x%lx", pc);
1959 
1960 		frame = frame->old_frame;
1961 		if (frame == 0) {
1962 			bop_printf(NULL, "\n");
1963 			break;
1964 		}
1965 		bop_printf(NULL, "\n");
1966 	}
1967 }
1968 
1969 struct trapframe {
1970 	ulong_t error_code;	/* optional */
1971 	ulong_t inst_ptr;
1972 	ulong_t code_seg;
1973 	ulong_t flags_reg;
1974 	ulong_t stk_ptr;
1975 	ulong_t stk_seg;
1976 };
1977 
1978 void
1979 bop_trap(ulong_t *tfp)
1980 {
1981 	struct trapframe *tf = (struct trapframe *)tfp;
1982 	bop_frame_t fakeframe;
1983 	static int depth = 0;
1984 
1985 	/*
1986 	 * Check for an infinite loop of traps.
1987 	 */
1988 	if (++depth > 2)
1989 		bop_panic("Nested trap");
1990 
1991 	bop_printf(NULL, "Unexpected trap\n");
1992 
1993 	/*
1994 	 * adjust the tf for optional error_code by detecting the code selector
1995 	 */
1996 	if (tf->code_seg != B64CODE_SEL)
1997 		tf = (struct trapframe *)(tfp - 1);
1998 	else
1999 		bop_printf(NULL, "error code           0x%lx\n",
2000 		    tf->error_code & 0xffffffff);
2001 
2002 	bop_printf(NULL, "instruction pointer  0x%lx\n", tf->inst_ptr);
2003 	bop_printf(NULL, "code segment         0x%lx\n", tf->code_seg & 0xffff);
2004 	bop_printf(NULL, "flags register       0x%lx\n", tf->flags_reg);
2005 	bop_printf(NULL, "return %%rsp          0x%lx\n", tf->stk_ptr);
2006 	bop_printf(NULL, "return %%ss           0x%lx\n", tf->stk_seg & 0xffff);
2007 
2008 	/* grab %[er]bp pushed by our code from the stack */
2009 	fakeframe.old_frame = (bop_frame_t *)*(tfp - 3);
2010 	fakeframe.retaddr = (pc_t)tf->inst_ptr;
2011 	bop_printf(NULL, "Attempting stack backtrace:\n");
2012 	bop_traceback(&fakeframe);
2013 	bop_panic("unexpected trap in early boot");
2014 }
2015 
2016 extern void bop_trap_handler(void);
2017 
2018 static gate_desc_t *bop_idt;
2019 
2020 static desctbr_t bop_idt_info;
2021 
2022 /*
2023  * Install a temporary IDT that lets us catch errors in the boot time code.
2024  * We shouldn't get any faults at all while this is installed, so we'll
2025  * just generate a traceback and exit.
2026  */
2027 static void
2028 bop_idt_init(void)
2029 {
2030 	int t;
2031 
2032 	bop_idt = (gate_desc_t *)
2033 	    do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE);
2034 	bzero(bop_idt, MMU_PAGESIZE);
2035 	for (t = 0; t < NIDT; ++t) {
2036 		/*
2037 		 * Note that since boot runs without a TSS, the
2038 		 * double fault handler cannot use an alternate stack (64-bit).
2039 		 */
2040 		set_gatesegd(&bop_idt[t], &bop_trap_handler, B64CODE_SEL,
2041 		    SDT_SYSIGT, TRP_KPL, 0);
2042 	}
2043 	bop_idt_info.dtr_limit = (NIDT * sizeof (gate_desc_t)) - 1;
2044 	bop_idt_info.dtr_base = (uintptr_t)bop_idt;
2045 	wr_idtr(&bop_idt_info);
2046 }
2047 #endif	/* !defined(__xpv) */
2048 
2049 /*
2050  * This is where we enter the kernel. It dummies up the boot_ops and
2051  * boot_syscalls vectors and jumps off to _kobj_boot()
2052  */
2053 void
2054 _start(struct xboot_info *xbp)
2055 {
2056 	bootops_t *bops = &bootop;
2057 	extern void _kobj_boot();
2058 
2059 	/*
2060 	 * 1st off - initialize the console for any error messages
2061 	 */
2062 	xbootp = xbp;
2063 #ifdef __xpv
2064 	HYPERVISOR_shared_info = (void *)xbp->bi_shared_info;
2065 	xen_info = xbp->bi_xen_start_info;
2066 #endif
2067 
2068 #ifndef __xpv
2069 	if (*((uint32_t *)(FASTBOOT_SWTCH_PA + FASTBOOT_STACK_OFFSET)) ==
2070 	    FASTBOOT_MAGIC) {
2071 		post_fastreboot = 1;
2072 		*((uint32_t *)(FASTBOOT_SWTCH_PA + FASTBOOT_STACK_OFFSET)) = 0;
2073 	}
2074 #endif
2075 
2076 	bcons_init(xbp);
2077 	have_console = 1;
2078 
2079 	/*
2080 	 * enable debugging
2081 	 */
2082 	if (find_boot_prop("kbm_debug") != NULL)
2083 		kbm_debug = 1;
2084 
2085 	DBG_MSG("\n\n*** Entered Solaris in _start() cmdline is: ");
2086 	DBG_MSG((char *)xbp->bi_cmdline);
2087 	DBG_MSG("\n\n\n");
2088 
2089 	/*
2090 	 * physavail is no longer used by startup
2091 	 */
2092 	bm.physinstalled = xbp->bi_phys_install;
2093 	bm.pcimem = xbp->bi_pcimem;
2094 	bm.rsvdmem = xbp->bi_rsvdmem;
2095 	bm.physavail = NULL;
2096 
2097 	/*
2098 	 * initialize the boot time allocator
2099 	 */
2100 	next_phys = xbp->bi_next_paddr;
2101 	DBG(next_phys);
2102 	next_virt = (uintptr_t)xbp->bi_next_vaddr;
2103 	DBG(next_virt);
2104 	DBG_MSG("Initializing boot time memory management...");
2105 #ifdef __xpv
2106 	{
2107 		xen_platform_parameters_t p;
2108 
2109 		/* This call shouldn't fail, dboot already did it once. */
2110 		(void) HYPERVISOR_xen_version(XENVER_platform_parameters, &p);
2111 		mfn_to_pfn_mapping = (pfn_t *)(xen_virt_start = p.virt_start);
2112 		DBG(xen_virt_start);
2113 	}
2114 #endif
2115 	kbm_init(xbp);
2116 	DBG_MSG("done\n");
2117 
2118 	/*
2119 	 * Fill in the bootops vector
2120 	 */
2121 	bops->bsys_version = BO_VERSION;
2122 	bops->boot_mem = &bm;
2123 	bops->bsys_alloc = do_bsys_alloc;
2124 	bops->bsys_free = do_bsys_free;
2125 	bops->bsys_getproplen = do_bsys_getproplen;
2126 	bops->bsys_getprop = do_bsys_getprop;
2127 	bops->bsys_nextprop = do_bsys_nextprop;
2128 	bops->bsys_printf = bop_printf;
2129 	bops->bsys_doint = do_bsys_doint;
2130 
2131 	/*
2132 	 * BOP_EALLOC() is no longer needed
2133 	 */
2134 	bops->bsys_ealloc = do_bsys_ealloc;
2135 
2136 #ifdef __xpv
2137 	/*
2138 	 * On domain 0 we need to free up some physical memory that is
2139 	 * usable for DMA. Since GRUB loaded the boot_archive, it is
2140 	 * sitting in low MFN memory. We'll relocated the boot archive
2141 	 * pages to high PFN memory.
2142 	 */
2143 	if (DOMAIN_IS_INITDOMAIN(xen_info))
2144 		relocate_boot_archive(xbp);
2145 #endif
2146 
2147 #ifndef __xpv
2148 	/*
2149 	 * Install an IDT to catch early pagefaults (shouldn't have any).
2150 	 * Also needed for kmdb.
2151 	 */
2152 	bop_idt_init();
2153 #endif
2154 	/* Set up the shadow fb for framebuffer console */
2155 	boot_fb_shadow_init(bops);
2156 
2157 	/*
2158 	 * Start building the boot properties from the command line
2159 	 */
2160 	DBG_MSG("Initializing boot properties:\n");
2161 	build_boot_properties(xbp);
2162 
2163 	if (find_boot_prop("prom_debug") || kbm_debug) {
2164 		char *value;
2165 
2166 		value = do_bsys_alloc(NULL, NULL, MMU_PAGESIZE, MMU_PAGESIZE);
2167 		boot_prop_display(value);
2168 	}
2169 
2170 	/*
2171 	 * jump into krtld...
2172 	 */
2173 	_kobj_boot(&bop_sysp, NULL, bops, NULL);
2174 }
2175 
2176 
2177 /*ARGSUSED*/
2178 static caddr_t
2179 no_more_alloc(bootops_t *bop, caddr_t virthint, size_t size, int align)
2180 {
2181 	panic("Attempt to bsys_alloc() too late\n");
2182 	return (NULL);
2183 }
2184 
2185 /*ARGSUSED*/
2186 static void
2187 no_more_free(bootops_t *bop, caddr_t virt, size_t size)
2188 {
2189 	panic("Attempt to bsys_free() too late\n");
2190 }
2191 
2192 void
2193 bop_no_more_mem(void)
2194 {
2195 	DBG(total_bop_alloc_scratch);
2196 	DBG(total_bop_alloc_kernel);
2197 	bootops->bsys_alloc = no_more_alloc;
2198 	bootops->bsys_free = no_more_free;
2199 }
2200 
2201 
2202 /*
2203  * Set ACPI firmware properties
2204  */
2205 
2206 static caddr_t
2207 vmap_phys(size_t length, paddr_t pa)
2208 {
2209 	paddr_t	start, end;
2210 	caddr_t	va;
2211 	size_t	len, page;
2212 
2213 #ifdef __xpv
2214 	pa = pfn_to_pa(xen_assign_pfn(mmu_btop(pa))) | (pa & MMU_PAGEOFFSET);
2215 #endif
2216 	start = P2ALIGN(pa, MMU_PAGESIZE);
2217 	end = P2ROUNDUP(pa + length, MMU_PAGESIZE);
2218 	len = end - start;
2219 	va = (caddr_t)alloc_vaddr(len, MMU_PAGESIZE);
2220 	for (page = 0; page < len; page += MMU_PAGESIZE)
2221 		kbm_map((uintptr_t)va + page, start + page, 0, 0);
2222 	return (va + (pa & MMU_PAGEOFFSET));
2223 }
2224 
2225 static uint8_t
2226 checksum_table(uint8_t *tp, size_t len)
2227 {
2228 	uint8_t sum = 0;
2229 
2230 	while (len-- > 0)
2231 		sum += *tp++;
2232 
2233 	return (sum);
2234 }
2235 
2236 static int
2237 valid_rsdp(ACPI_TABLE_RSDP *rp)
2238 {
2239 
2240 	/* validate the V1.x checksum */
2241 	if (checksum_table((uint8_t *)rp, ACPI_RSDP_CHECKSUM_LENGTH) != 0)
2242 		return (0);
2243 
2244 	/* If pre-ACPI 2.0, this is a valid RSDP */
2245 	if (rp->Revision < 2)
2246 		return (1);
2247 
2248 	/* validate the V2.x checksum */
2249 	if (checksum_table((uint8_t *)rp, ACPI_RSDP_XCHECKSUM_LENGTH) != 0)
2250 		return (0);
2251 
2252 	return (1);
2253 }
2254 
2255 /*
2256  * Scan memory range for an RSDP;
2257  * see ACPI 3.0 Spec, 5.2.5.1
2258  */
2259 static ACPI_TABLE_RSDP *
2260 scan_rsdp(paddr_t start, paddr_t end)
2261 {
2262 	ssize_t len  = end - start;
2263 	caddr_t ptr;
2264 
2265 	ptr = vmap_phys(len, start);
2266 	while (len > 0) {
2267 		if (strncmp(ptr, ACPI_SIG_RSDP, strlen(ACPI_SIG_RSDP)) == 0 &&
2268 		    valid_rsdp((ACPI_TABLE_RSDP *)ptr))
2269 			return ((ACPI_TABLE_RSDP *)ptr);
2270 
2271 		ptr += ACPI_RSDP_SCAN_STEP;
2272 		len -= ACPI_RSDP_SCAN_STEP;
2273 	}
2274 
2275 	return (NULL);
2276 }
2277 
2278 /*
2279  * Refer to ACPI 3.0 Spec, section 5.2.5.1 to understand this function
2280  */
2281 static ACPI_TABLE_RSDP *
2282 find_rsdp()
2283 {
2284 	ACPI_TABLE_RSDP *rsdp;
2285 	uint64_t rsdp_val = 0;
2286 	uint16_t *ebda_seg;
2287 	paddr_t  ebda_addr;
2288 
2289 	/* check for "acpi-root-tab" property */
2290 	if (do_bsys_getproplen(NULL, "acpi-root-tab") == sizeof (uint64_t)) {
2291 		(void) do_bsys_getprop(NULL, "acpi-root-tab", &rsdp_val);
2292 		if (rsdp_val != 0) {
2293 			rsdp = scan_rsdp(rsdp_val, rsdp_val + sizeof (*rsdp));
2294 			if (rsdp != NULL) {
2295 				if (kbm_debug) {
2296 					bop_printf(NULL,
2297 					    "Using RSDP from bootloader: "
2298 					    "0x%p\n", (void *)rsdp);
2299 				}
2300 				return (rsdp);
2301 			}
2302 		}
2303 	}
2304 
2305 	/*
2306 	 * Get the EBDA segment and scan the first 1K
2307 	 */
2308 	ebda_seg = (uint16_t *)vmap_phys(sizeof (uint16_t),
2309 	    ACPI_EBDA_PTR_LOCATION);
2310 	ebda_addr = *ebda_seg << 4;
2311 	rsdp = scan_rsdp(ebda_addr, ebda_addr + ACPI_EBDA_WINDOW_SIZE);
2312 	if (rsdp == NULL)
2313 		/* if EBDA doesn't contain RSDP, look in BIOS memory */
2314 		rsdp = scan_rsdp(ACPI_HI_RSDP_WINDOW_BASE,
2315 		    ACPI_HI_RSDP_WINDOW_BASE + ACPI_HI_RSDP_WINDOW_SIZE);
2316 	return (rsdp);
2317 }
2318 
2319 static ACPI_TABLE_HEADER *
2320 map_fw_table(paddr_t table_addr)
2321 {
2322 	ACPI_TABLE_HEADER *tp;
2323 	size_t len = MAX(sizeof (*tp), MMU_PAGESIZE);
2324 
2325 	/*
2326 	 * Map at least a page; if the table is larger than this, remap it
2327 	 */
2328 	tp = (ACPI_TABLE_HEADER *)vmap_phys(len, table_addr);
2329 	if (tp->Length > len)
2330 		tp = (ACPI_TABLE_HEADER *)vmap_phys(tp->Length, table_addr);
2331 	return (tp);
2332 }
2333 
2334 static ACPI_TABLE_HEADER *
2335 find_fw_table(char *signature)
2336 {
2337 	static int revision = 0;
2338 	static ACPI_TABLE_XSDT *xsdt;
2339 	static int len;
2340 	paddr_t xsdt_addr;
2341 	ACPI_TABLE_RSDP *rsdp;
2342 	ACPI_TABLE_HEADER *tp;
2343 	paddr_t table_addr;
2344 	int	n;
2345 
2346 	if (strlen(signature) != ACPI_NAME_SIZE)
2347 		return (NULL);
2348 
2349 	/*
2350 	 * Reading the ACPI 3.0 Spec, section 5.2.5.3 will help
2351 	 * understand this code.  If we haven't already found the RSDT/XSDT,
2352 	 * revision will be 0. Find the RSDP and check the revision
2353 	 * to find out whether to use the RSDT or XSDT.  If revision is
2354 	 * 0 or 1, use the RSDT and set internal revision to 1; if it is 2,
2355 	 * use the XSDT.  If the XSDT address is 0, though, fall back to
2356 	 * revision 1 and use the RSDT.
2357 	 */
2358 	if (revision == 0) {
2359 		if ((rsdp = find_rsdp()) != NULL) {
2360 			revision = rsdp->Revision;
2361 			/*
2362 			 * ACPI 6.0 states that current revision is 2
2363 			 * from acpi_table_rsdp definition:
2364 			 * Must be (0) for ACPI 1.0 or (2) for ACPI 2.0+
2365 			 */
2366 			if (revision > 2)
2367 				revision = 2;
2368 			switch (revision) {
2369 			case 2:
2370 				/*
2371 				 * Use the XSDT unless BIOS is buggy and
2372 				 * claims to be rev 2 but has a null XSDT
2373 				 * address
2374 				 */
2375 				xsdt_addr = rsdp->XsdtPhysicalAddress;
2376 				if (xsdt_addr != 0)
2377 					break;
2378 				/* FALLTHROUGH */
2379 			case 0:
2380 				/* treat RSDP rev 0 as revision 1 internally */
2381 				revision = 1;
2382 				/* FALLTHROUGH */
2383 			case 1:
2384 				/* use the RSDT for rev 0/1 */
2385 				xsdt_addr = rsdp->RsdtPhysicalAddress;
2386 				break;
2387 			default:
2388 				/* unknown revision */
2389 				revision = 0;
2390 				break;
2391 			}
2392 		}
2393 		if (revision == 0)
2394 			return (NULL);
2395 
2396 		/* cache the XSDT info */
2397 		xsdt = (ACPI_TABLE_XSDT *)map_fw_table(xsdt_addr);
2398 		len = (xsdt->Header.Length - sizeof (xsdt->Header)) /
2399 		    ((revision == 1) ? sizeof (uint32_t) : sizeof (uint64_t));
2400 	}
2401 
2402 	/*
2403 	 * Scan the table headers looking for a signature match
2404 	 */
2405 	for (n = 0; n < len; n++) {
2406 		ACPI_TABLE_RSDT *rsdt = (ACPI_TABLE_RSDT *)xsdt;
2407 		table_addr = (revision == 1) ? rsdt->TableOffsetEntry[n] :
2408 		    xsdt->TableOffsetEntry[n];
2409 
2410 		if (table_addr == 0)
2411 			continue;
2412 		tp = map_fw_table(table_addr);
2413 		if (strncmp(tp->Signature, signature, ACPI_NAME_SIZE) == 0) {
2414 			return (tp);
2415 		}
2416 	}
2417 	return (NULL);
2418 }
2419 
2420 static void
2421 process_mcfg(ACPI_TABLE_MCFG *tp)
2422 {
2423 	ACPI_MCFG_ALLOCATION *cfg_baap;
2424 	char *cfg_baa_endp;
2425 	int64_t ecfginfo[4];
2426 
2427 	cfg_baap = (ACPI_MCFG_ALLOCATION *)((uintptr_t)tp + sizeof (*tp));
2428 	cfg_baa_endp = ((char *)tp) + tp->Header.Length;
2429 	while ((char *)cfg_baap < cfg_baa_endp) {
2430 		if (cfg_baap->Address != 0 && cfg_baap->PciSegment == 0) {
2431 			ecfginfo[0] = cfg_baap->Address;
2432 			ecfginfo[1] = cfg_baap->PciSegment;
2433 			ecfginfo[2] = cfg_baap->StartBusNumber;
2434 			ecfginfo[3] = cfg_baap->EndBusNumber;
2435 			bsetprop(DDI_PROP_TYPE_INT64,
2436 			    MCFG_PROPNAME, strlen(MCFG_PROPNAME),
2437 			    ecfginfo, sizeof (ecfginfo));
2438 			break;
2439 		}
2440 		cfg_baap++;
2441 	}
2442 }
2443 
2444 #ifndef __xpv
2445 static void
2446 process_madt_entries(ACPI_TABLE_MADT *tp, uint32_t *cpu_countp,
2447     uint32_t *cpu_possible_countp, uint32_t *cpu_apicid_array)
2448 {
2449 	ACPI_SUBTABLE_HEADER *item, *end;
2450 	uint32_t cpu_count = 0;
2451 	uint32_t cpu_possible_count = 0;
2452 
2453 	/*
2454 	 * Determine number of CPUs and keep track of "final" APIC ID
2455 	 * for each CPU by walking through ACPI MADT processor list
2456 	 */
2457 	end = (ACPI_SUBTABLE_HEADER *)(tp->Header.Length + (uintptr_t)tp);
2458 	item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)tp + sizeof (*tp));
2459 
2460 	while (item < end) {
2461 		switch (item->Type) {
2462 		case ACPI_MADT_TYPE_LOCAL_APIC: {
2463 			ACPI_MADT_LOCAL_APIC *cpu =
2464 			    (ACPI_MADT_LOCAL_APIC *) item;
2465 
2466 			if (cpu->LapicFlags & ACPI_MADT_ENABLED) {
2467 				if (cpu_apicid_array != NULL)
2468 					cpu_apicid_array[cpu_count] = cpu->Id;
2469 				cpu_count++;
2470 			}
2471 			cpu_possible_count++;
2472 			break;
2473 		}
2474 		case ACPI_MADT_TYPE_LOCAL_X2APIC: {
2475 			ACPI_MADT_LOCAL_X2APIC *cpu =
2476 			    (ACPI_MADT_LOCAL_X2APIC *) item;
2477 
2478 			if (cpu->LapicFlags & ACPI_MADT_ENABLED) {
2479 				if (cpu_apicid_array != NULL)
2480 					cpu_apicid_array[cpu_count] =
2481 					    cpu->LocalApicId;
2482 				cpu_count++;
2483 			}
2484 			cpu_possible_count++;
2485 			break;
2486 		}
2487 		default:
2488 			if (kbm_debug)
2489 				bop_printf(NULL, "MADT type %d\n", item->Type);
2490 			break;
2491 		}
2492 
2493 		item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)item + item->Length);
2494 	}
2495 	if (cpu_countp)
2496 		*cpu_countp = cpu_count;
2497 	if (cpu_possible_countp)
2498 		*cpu_possible_countp = cpu_possible_count;
2499 }
2500 
2501 static void
2502 process_madt(ACPI_TABLE_MADT *tp)
2503 {
2504 	uint32_t cpu_count = 0;
2505 	uint32_t cpu_possible_count = 0;
2506 	uint32_t *cpu_apicid_array; /* x2APIC ID is 32bit! */
2507 
2508 	if (tp != NULL) {
2509 		/* count cpu's */
2510 		process_madt_entries(tp, &cpu_count, &cpu_possible_count, NULL);
2511 
2512 		cpu_apicid_array = (uint32_t *)do_bsys_alloc(NULL, NULL,
2513 		    cpu_count * sizeof (*cpu_apicid_array), MMU_PAGESIZE);
2514 		if (cpu_apicid_array == NULL)
2515 			bop_panic("Not enough memory for APIC ID array");
2516 
2517 		/* copy IDs */
2518 		process_madt_entries(tp, NULL, NULL, cpu_apicid_array);
2519 
2520 		/*
2521 		 * Make boot property for array of "final" APIC IDs for each
2522 		 * CPU
2523 		 */
2524 		bsetprop(DDI_PROP_TYPE_INT,
2525 		    BP_CPU_APICID_ARRAY, strlen(BP_CPU_APICID_ARRAY),
2526 		    cpu_apicid_array, cpu_count * sizeof (*cpu_apicid_array));
2527 	}
2528 
2529 	/*
2530 	 * Check whether property plat-max-ncpus is already set.
2531 	 */
2532 	if (do_bsys_getproplen(NULL, PLAT_MAX_NCPUS_NAME) < 0) {
2533 		/*
2534 		 * Set plat-max-ncpus to number of maximum possible CPUs given
2535 		 * in MADT if it hasn't been set.
2536 		 * There's no formal way to detect max possible CPUs supported
2537 		 * by platform according to ACPI spec3.0b. So current CPU
2538 		 * hotplug implementation expects that all possible CPUs will
2539 		 * have an entry in MADT table and set plat-max-ncpus to number
2540 		 * of entries in MADT.
2541 		 * With introducing of ACPI4.0, Maximum System Capability Table
2542 		 * (MSCT) provides maximum number of CPUs supported by platform.
2543 		 * If MSCT is unavailable, fall back to old way.
2544 		 */
2545 		if (tp != NULL)
2546 			bsetpropsi(PLAT_MAX_NCPUS_NAME, cpu_possible_count);
2547 	}
2548 
2549 	/*
2550 	 * Set boot property boot-max-ncpus to number of CPUs existing at
2551 	 * boot time. boot-max-ncpus is mainly used for optimization.
2552 	 */
2553 	if (tp != NULL)
2554 		bsetpropsi(BOOT_MAX_NCPUS_NAME, cpu_count);
2555 
2556 	/*
2557 	 * User-set boot-ncpus overrides firmware count
2558 	 */
2559 	if (do_bsys_getproplen(NULL, BOOT_NCPUS_NAME) >= 0)
2560 		return;
2561 
2562 	/*
2563 	 * Set boot property boot-ncpus to number of active CPUs given in MADT
2564 	 * if it hasn't been set yet.
2565 	 */
2566 	if (tp != NULL)
2567 		bsetpropsi(BOOT_NCPUS_NAME, cpu_count);
2568 }
2569 
2570 static void
2571 process_srat(ACPI_TABLE_SRAT *tp)
2572 {
2573 	ACPI_SUBTABLE_HEADER *item, *end;
2574 	int i;
2575 	int proc_num, mem_num;
2576 #pragma pack(1)
2577 	struct {
2578 		uint32_t domain;
2579 		uint32_t apic_id;
2580 		uint32_t sapic_id;
2581 	} processor;
2582 	struct {
2583 		uint32_t domain;
2584 		uint32_t x2apic_id;
2585 	} x2apic;
2586 	struct {
2587 		uint32_t domain;
2588 		uint64_t addr;
2589 		uint64_t length;
2590 		uint32_t flags;
2591 	} memory;
2592 #pragma pack()
2593 	char prop_name[30];
2594 	uint64_t maxmem = 0;
2595 
2596 	if (tp == NULL)
2597 		return;
2598 
2599 	proc_num = mem_num = 0;
2600 	end = (ACPI_SUBTABLE_HEADER *)(tp->Header.Length + (uintptr_t)tp);
2601 	item = (ACPI_SUBTABLE_HEADER *)((uintptr_t)tp + sizeof (*tp));
2602 	while (item < end) {
2603 		switch (item->Type) {
2604 		case ACPI_SRAT_TYPE_CPU_AFFINITY: {
2605 			ACPI_SRAT_CPU_AFFINITY *cpu =
2606 			    (ACPI_SRAT_CPU_AFFINITY *) item;
2607 
2608 			if (!(cpu->Flags & ACPI_SRAT_CPU_ENABLED))
2609 				break;
2610 			processor.domain = cpu->ProximityDomainLo;
2611 			for (i = 0; i < 3; i++)
2612 				processor.domain +=
2613 				    cpu->ProximityDomainHi[i] << ((i + 1) * 8);
2614 			processor.apic_id = cpu->ApicId;
2615 			processor.sapic_id = cpu->LocalSapicEid;
2616 			(void) snprintf(prop_name, 30, "acpi-srat-processor-%d",
2617 			    proc_num);
2618 			bsetprop(DDI_PROP_TYPE_INT,
2619 			    prop_name, strlen(prop_name), &processor,
2620 			    sizeof (processor));
2621 			proc_num++;
2622 			break;
2623 		}
2624 		case ACPI_SRAT_TYPE_MEMORY_AFFINITY: {
2625 			ACPI_SRAT_MEM_AFFINITY *mem =
2626 			    (ACPI_SRAT_MEM_AFFINITY *)item;
2627 
2628 			if (!(mem->Flags & ACPI_SRAT_MEM_ENABLED))
2629 				break;
2630 			memory.domain = mem->ProximityDomain;
2631 			memory.addr = mem->BaseAddress;
2632 			memory.length = mem->Length;
2633 			memory.flags = mem->Flags;
2634 			(void) snprintf(prop_name, 30, "acpi-srat-memory-%d",
2635 			    mem_num);
2636 			bsetprop(DDI_PROP_TYPE_INT,
2637 			    prop_name, strlen(prop_name), &memory,
2638 			    sizeof (memory));
2639 			if ((mem->Flags & ACPI_SRAT_MEM_HOT_PLUGGABLE) &&
2640 			    (memory.addr + memory.length > maxmem)) {
2641 				maxmem = memory.addr + memory.length;
2642 			}
2643 			mem_num++;
2644 			break;
2645 		}
2646 		case ACPI_SRAT_TYPE_X2APIC_CPU_AFFINITY: {
2647 			ACPI_SRAT_X2APIC_CPU_AFFINITY *x2cpu =
2648 			    (ACPI_SRAT_X2APIC_CPU_AFFINITY *) item;
2649 
2650 			if (!(x2cpu->Flags & ACPI_SRAT_CPU_ENABLED))
2651 				break;
2652 			x2apic.domain = x2cpu->ProximityDomain;
2653 			x2apic.x2apic_id = x2cpu->ApicId;
2654 			(void) snprintf(prop_name, 30, "acpi-srat-processor-%d",
2655 			    proc_num);
2656 			bsetprop(DDI_PROP_TYPE_INT,
2657 			    prop_name, strlen(prop_name), &x2apic,
2658 			    sizeof (x2apic));
2659 			proc_num++;
2660 			break;
2661 		}
2662 		default:
2663 			if (kbm_debug)
2664 				bop_printf(NULL, "SRAT type %d\n", item->Type);
2665 			break;
2666 		}
2667 
2668 		item = (ACPI_SUBTABLE_HEADER *)
2669 		    (item->Length + (uintptr_t)item);
2670 	}
2671 
2672 	/*
2673 	 * The maximum physical address calculated from the SRAT table is more
2674 	 * accurate than that calculated from the MSCT table.
2675 	 */
2676 	if (maxmem != 0) {
2677 		plat_dr_physmax = btop(maxmem);
2678 	}
2679 }
2680 
2681 static void
2682 process_slit(ACPI_TABLE_SLIT *tp)
2683 {
2684 
2685 	/*
2686 	 * Check the number of localities; if it's too huge, we just
2687 	 * return and locality enumeration code will handle this later,
2688 	 * if possible.
2689 	 *
2690 	 * Note that the size of the table is the square of the
2691 	 * number of localities; if the number of localities exceeds
2692 	 * UINT16_MAX, the table size may overflow an int when being
2693 	 * passed to bsetprop() below.
2694 	 */
2695 	if (tp->LocalityCount >= SLIT_LOCALITIES_MAX)
2696 		return;
2697 
2698 	bsetprop64(SLIT_NUM_PROPNAME, tp->LocalityCount);
2699 	bsetprop(DDI_PROP_TYPE_BYTE,
2700 	    SLIT_PROPNAME, strlen(SLIT_PROPNAME), &tp->Entry,
2701 	    tp->LocalityCount * tp->LocalityCount);
2702 }
2703 
2704 static ACPI_TABLE_MSCT *
2705 process_msct(ACPI_TABLE_MSCT *tp)
2706 {
2707 	int last_seen = 0;
2708 	int proc_num = 0;
2709 	ACPI_MSCT_PROXIMITY *item, *end;
2710 	extern uint64_t plat_dr_options;
2711 
2712 	ASSERT(tp != NULL);
2713 
2714 	end = (ACPI_MSCT_PROXIMITY *)(tp->Header.Length + (uintptr_t)tp);
2715 	for (item = (void *)((uintptr_t)tp + tp->ProximityOffset);
2716 	    item < end;
2717 	    item = (void *)(item->Length + (uintptr_t)item)) {
2718 		/*
2719 		 * Sanity check according to section 5.2.19.1 of ACPI 4.0.
2720 		 * Revision	1
2721 		 * Length	22
2722 		 */
2723 		if (item->Revision != 1 || item->Length != 22) {
2724 			cmn_err(CE_CONT,
2725 			    "?boot: unknown proximity domain structure in MSCT "
2726 			    "with Revision(%d), Length(%d).\n",
2727 			    (int)item->Revision, (int)item->Length);
2728 			return (NULL);
2729 		} else if (item->RangeStart > item->RangeEnd) {
2730 			cmn_err(CE_CONT,
2731 			    "?boot: invalid proximity domain structure in MSCT "
2732 			    "with RangeStart(%u), RangeEnd(%u).\n",
2733 			    item->RangeStart, item->RangeEnd);
2734 			return (NULL);
2735 		} else if (item->RangeStart != last_seen) {
2736 			/*
2737 			 * Items must be organized in ascending order of the
2738 			 * proximity domain enumerations.
2739 			 */
2740 			cmn_err(CE_CONT,
2741 			    "?boot: invalid proximity domain structure in MSCT,"
2742 			    " items are not orginized in ascending order.\n");
2743 			return (NULL);
2744 		}
2745 
2746 		/*
2747 		 * If ProcessorCapacity is 0 then there would be no CPUs in this
2748 		 * domain.
2749 		 */
2750 		if (item->ProcessorCapacity != 0) {
2751 			proc_num += (item->RangeEnd - item->RangeStart + 1) *
2752 			    item->ProcessorCapacity;
2753 		}
2754 
2755 		last_seen = item->RangeEnd - item->RangeStart + 1;
2756 		/*
2757 		 * Break out if all proximity domains have been processed.
2758 		 * Some BIOSes may have unused items at the end of MSCT table.
2759 		 */
2760 		if (last_seen > tp->MaxProximityDomains) {
2761 			break;
2762 		}
2763 	}
2764 	if (last_seen != tp->MaxProximityDomains + 1) {
2765 		cmn_err(CE_CONT,
2766 		    "?boot: invalid proximity domain structure in MSCT, "
2767 		    "proximity domain count doesn't match.\n");
2768 		return (NULL);
2769 	}
2770 
2771 	/*
2772 	 * Set plat-max-ncpus property if it hasn't been set yet.
2773 	 */
2774 	if (do_bsys_getproplen(NULL, PLAT_MAX_NCPUS_NAME) < 0) {
2775 		if (proc_num != 0) {
2776 			bsetpropsi(PLAT_MAX_NCPUS_NAME, proc_num);
2777 		}
2778 	}
2779 
2780 	/*
2781 	 * Use Maximum Physical Address from the MSCT table as upper limit for
2782 	 * memory hot-adding by default. It may be overridden by value from
2783 	 * the SRAT table or the "plat-dr-physmax" boot option.
2784 	 */
2785 	plat_dr_physmax = btop(tp->MaxAddress + 1);
2786 
2787 	/*
2788 	 * Existence of MSCT implies CPU/memory hotplug-capability for the
2789 	 * platform.
2790 	 */
2791 	plat_dr_options |= PLAT_DR_FEATURE_CPU;
2792 	plat_dr_options |= PLAT_DR_FEATURE_MEMORY;
2793 
2794 	return (tp);
2795 }
2796 
2797 #else /* __xpv */
2798 static void
2799 enumerate_xen_cpus()
2800 {
2801 	processorid_t	id, max_id;
2802 
2803 	/*
2804 	 * User-set boot-ncpus overrides enumeration
2805 	 */
2806 	if (do_bsys_getproplen(NULL, BOOT_NCPUS_NAME) >= 0)
2807 		return;
2808 
2809 	/*
2810 	 * Probe every possible virtual CPU id and remember the
2811 	 * highest id present; the count of CPUs is one greater
2812 	 * than this.  This tacitly assumes at least cpu 0 is present.
2813 	 */
2814 	max_id = 0;
2815 	for (id = 0; id < MAX_VIRT_CPUS; id++)
2816 		if (HYPERVISOR_vcpu_op(VCPUOP_is_up, id, NULL) == 0)
2817 			max_id = id;
2818 
2819 	bsetpropsi(BOOT_NCPUS_NAME, max_id+1);
2820 
2821 }
2822 #endif /* __xpv */
2823 
2824 /*ARGSUSED*/
2825 static void
2826 build_firmware_properties(struct xboot_info *xbp)
2827 {
2828 	ACPI_TABLE_HEADER *tp = NULL;
2829 
2830 #ifndef __xpv
2831 	if (xbp->bi_uefi_arch == XBI_UEFI_ARCH_64) {
2832 		bsetprops("efi-systype", "64");
2833 		bsetprop64("efi-systab",
2834 		    (uint64_t)(uintptr_t)xbp->bi_uefi_systab);
2835 		if (kbm_debug)
2836 			bop_printf(NULL, "64-bit UEFI detected.\n");
2837 	} else if (xbp->bi_uefi_arch == XBI_UEFI_ARCH_32) {
2838 		bsetprops("efi-systype", "32");
2839 		bsetprop64("efi-systab",
2840 		    (uint64_t)(uintptr_t)xbp->bi_uefi_systab);
2841 		if (kbm_debug)
2842 			bop_printf(NULL, "32-bit UEFI detected.\n");
2843 	}
2844 
2845 	if (xbp->bi_acpi_rsdp != NULL) {
2846 		bsetprop64("acpi-root-tab",
2847 		    (uint64_t)(uintptr_t)xbp->bi_acpi_rsdp);
2848 	}
2849 
2850 	if (xbp->bi_smbios != NULL) {
2851 		bsetprop64("smbios-address",
2852 		    (uint64_t)(uintptr_t)xbp->bi_smbios);
2853 	}
2854 
2855 	if ((tp = find_fw_table(ACPI_SIG_MSCT)) != NULL)
2856 		msct_ptr = process_msct((ACPI_TABLE_MSCT *)tp);
2857 	else
2858 		msct_ptr = NULL;
2859 
2860 	if ((tp = find_fw_table(ACPI_SIG_MADT)) != NULL)
2861 		process_madt((ACPI_TABLE_MADT *)tp);
2862 
2863 	if ((srat_ptr = (ACPI_TABLE_SRAT *)
2864 	    find_fw_table(ACPI_SIG_SRAT)) != NULL)
2865 		process_srat(srat_ptr);
2866 
2867 	if (slit_ptr = (ACPI_TABLE_SLIT *)find_fw_table(ACPI_SIG_SLIT))
2868 		process_slit(slit_ptr);
2869 
2870 	tp = find_fw_table(ACPI_SIG_MCFG);
2871 #else /* __xpv */
2872 	enumerate_xen_cpus();
2873 	if (DOMAIN_IS_INITDOMAIN(xen_info))
2874 		tp = find_fw_table(ACPI_SIG_MCFG);
2875 #endif /* __xpv */
2876 	if (tp != NULL)
2877 		process_mcfg((ACPI_TABLE_MCFG *)tp);
2878 }
2879 
2880 /*
2881  * fake up a boot property for deferred early console output
2882  * this is used by both graphical boot and the (developer only)
2883  * USB serial console
2884  */
2885 void *
2886 defcons_init(size_t size)
2887 {
2888 	static char *p = NULL;
2889 
2890 	p = do_bsys_alloc(NULL, NULL, size, MMU_PAGESIZE);
2891 	*p = 0;
2892 	bsetprop32("deferred-console-buf", (uint32_t)((uintptr_t)&p));
2893 	return (p);
2894 }
2895 
2896 /*ARGSUSED*/
2897 int
2898 boot_compinfo(int fd, struct compinfo *cbp)
2899 {
2900 	cbp->iscmp = 0;
2901 	cbp->blksize = MAXBSIZE;
2902 	return (0);
2903 }
2904 
2905 #define	BP_MAX_STRLEN	32
2906 
2907 /*
2908  * Get value for given boot property
2909  */
2910 int
2911 bootprop_getval(const char *prop_name, u_longlong_t *prop_value)
2912 {
2913 	int		boot_prop_len;
2914 	char		str[BP_MAX_STRLEN];
2915 	u_longlong_t	value;
2916 
2917 	boot_prop_len = BOP_GETPROPLEN(bootops, prop_name);
2918 	if (boot_prop_len < 0 || boot_prop_len > sizeof (str) ||
2919 	    BOP_GETPROP(bootops, prop_name, str) < 0 ||
2920 	    kobj_getvalue(str, &value) == -1)
2921 		return (-1);
2922 
2923 	if (prop_value)
2924 		*prop_value = value;
2925 
2926 	return (0);
2927 }
2928