xref: /illumos-gate/usr/src/uts/i86pc/os/dtrace_subr.c (revision 4c87aefe8930bd07275b8dd2e96ea5f24d93a52e)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 /*
28  * Copyright (c) 2011, Joyent, Inc. All rights reserved.
29  */
30 
31 #include <sys/dtrace.h>
32 #include <sys/fasttrap.h>
33 #include <sys/x_call.h>
34 #include <sys/cmn_err.h>
35 #include <sys/trap.h>
36 #include <sys/psw.h>
37 #include <sys/privregs.h>
38 #include <sys/machsystm.h>
39 #include <vm/seg_kmem.h>
40 
41 typedef struct dtrace_invop_hdlr {
42 	int (*dtih_func)(uintptr_t, uintptr_t *, uintptr_t);
43 	struct dtrace_invop_hdlr *dtih_next;
44 } dtrace_invop_hdlr_t;
45 
46 dtrace_invop_hdlr_t *dtrace_invop_hdlr;
47 
48 int
49 dtrace_invop(uintptr_t addr, uintptr_t *stack, uintptr_t eax)
50 {
51 	dtrace_invop_hdlr_t *hdlr;
52 	int rval;
53 
54 	for (hdlr = dtrace_invop_hdlr; hdlr != NULL; hdlr = hdlr->dtih_next) {
55 		if ((rval = hdlr->dtih_func(addr, stack, eax)) != 0)
56 			return (rval);
57 	}
58 
59 	return (0);
60 }
61 
62 void
63 dtrace_invop_add(int (*func)(uintptr_t, uintptr_t *, uintptr_t))
64 {
65 	dtrace_invop_hdlr_t *hdlr;
66 
67 	hdlr = kmem_alloc(sizeof (dtrace_invop_hdlr_t), KM_SLEEP);
68 	hdlr->dtih_func = func;
69 	hdlr->dtih_next = dtrace_invop_hdlr;
70 	dtrace_invop_hdlr = hdlr;
71 }
72 
73 void
74 dtrace_invop_remove(int (*func)(uintptr_t, uintptr_t *, uintptr_t))
75 {
76 	dtrace_invop_hdlr_t *hdlr = dtrace_invop_hdlr, *prev = NULL;
77 
78 	for (;;) {
79 		if (hdlr == NULL)
80 			panic("attempt to remove non-existent invop handler");
81 
82 		if (hdlr->dtih_func == func)
83 			break;
84 
85 		prev = hdlr;
86 		hdlr = hdlr->dtih_next;
87 	}
88 
89 	if (prev == NULL) {
90 		ASSERT(dtrace_invop_hdlr == hdlr);
91 		dtrace_invop_hdlr = hdlr->dtih_next;
92 	} else {
93 		ASSERT(dtrace_invop_hdlr != hdlr);
94 		prev->dtih_next = hdlr->dtih_next;
95 	}
96 
97 	kmem_free(hdlr, sizeof (dtrace_invop_hdlr_t));
98 }
99 
100 int
101 dtrace_getipl(void)
102 {
103 	return (CPU->cpu_pri);
104 }
105 
106 /*ARGSUSED*/
107 void
108 dtrace_toxic_ranges(void (*func)(uintptr_t base, uintptr_t limit))
109 {
110 #ifdef __amd64
111 	extern uintptr_t toxic_addr;
112 	extern size_t toxic_size;
113 
114 	(*func)(0, _userlimit);
115 
116 	if (hole_end > hole_start)
117 		(*func)(hole_start, hole_end);
118 	(*func)(toxic_addr, toxic_addr + toxic_size);
119 #else
120 	extern void *device_arena_contains(void *, size_t, size_t *);
121 	caddr_t	vaddr;
122 	size_t	len;
123 
124 	for (vaddr = (caddr_t)kernelbase; vaddr < (caddr_t)KERNEL_TEXT;
125 	    vaddr += len) {
126 		len = (caddr_t)KERNEL_TEXT - vaddr;
127 		vaddr = device_arena_contains(vaddr, len, &len);
128 		if (vaddr == NULL)
129 			break;
130 		(*func)((uintptr_t)vaddr, (uintptr_t)vaddr + len);
131 	}
132 #endif
133 	(*func)(0, _userlimit);
134 }
135 
136 static int
137 dtrace_xcall_func(xc_arg_t arg1, xc_arg_t arg2, xc_arg_t arg3 __unused)
138 {
139 	dtrace_xcall_t func = (dtrace_xcall_t)arg1;
140 	(*func)((void*)arg2);
141 
142 	return (0);
143 }
144 
145 /*ARGSUSED*/
146 void
147 dtrace_xcall(processorid_t cpu, dtrace_xcall_t func, void *arg)
148 {
149 	cpuset_t set;
150 
151 	CPUSET_ZERO(set);
152 
153 	if (cpu == DTRACE_CPUALL) {
154 		CPUSET_ALL(set);
155 	} else {
156 		CPUSET_ADD(set, cpu);
157 	}
158 
159 	kpreempt_disable();
160 	xc_sync((xc_arg_t)func, (xc_arg_t)arg, 0, CPUSET2BV(set),
161 	    dtrace_xcall_func);
162 	kpreempt_enable();
163 }
164 
165 void
166 dtrace_sync_func(void)
167 {}
168 
169 void
170 dtrace_sync(void)
171 {
172 	dtrace_xcall(DTRACE_CPUALL, (dtrace_xcall_t)dtrace_sync_func, NULL);
173 }
174 
175 int (*dtrace_pid_probe_ptr)(struct regs *);
176 int (*dtrace_return_probe_ptr)(struct regs *);
177 
178 void
179 dtrace_user_probe(struct regs *rp, caddr_t addr, processorid_t cpuid)
180 {
181 	krwlock_t *rwp;
182 	proc_t *p = curproc;
183 	extern void trap(struct regs *, caddr_t, processorid_t);
184 
185 	if (USERMODE(rp->r_cs) || (rp->r_ps & PS_VM)) {
186 		if (curthread->t_cred != p->p_cred) {
187 			cred_t *oldcred = curthread->t_cred;
188 			/*
189 			 * DTrace accesses t_cred in probe context.  t_cred
190 			 * must always be either NULL, or point to a valid,
191 			 * allocated cred structure.
192 			 */
193 			curthread->t_cred = crgetcred();
194 			crfree(oldcred);
195 		}
196 	}
197 
198 	if (rp->r_trapno == T_DTRACE_RET) {
199 		uint8_t step = curthread->t_dtrace_step;
200 		uint8_t ret = curthread->t_dtrace_ret;
201 		uintptr_t npc = curthread->t_dtrace_npc;
202 
203 		if (curthread->t_dtrace_ast) {
204 			aston(curthread);
205 			curthread->t_sig_check = 1;
206 		}
207 
208 		/*
209 		 * Clear all user tracing flags.
210 		 */
211 		curthread->t_dtrace_ft = 0;
212 
213 		/*
214 		 * If we weren't expecting to take a return probe trap, kill
215 		 * the process as though it had just executed an unassigned
216 		 * trap instruction.
217 		 */
218 		if (step == 0) {
219 			tsignal(curthread, SIGILL);
220 			return;
221 		}
222 
223 		/*
224 		 * If we hit this trap unrelated to a return probe, we're
225 		 * just here to reset the AST flag since we deferred a signal
226 		 * until after we logically single-stepped the instruction we
227 		 * copied out.
228 		 */
229 		if (ret == 0) {
230 			rp->r_pc = npc;
231 			return;
232 		}
233 
234 		/*
235 		 * We need to wait until after we've called the
236 		 * dtrace_return_probe_ptr function pointer to set %pc.
237 		 */
238 		rwp = &CPU->cpu_ft_lock;
239 		rw_enter(rwp, RW_READER);
240 		if (dtrace_return_probe_ptr != NULL)
241 			(void) (*dtrace_return_probe_ptr)(rp);
242 		rw_exit(rwp);
243 		rp->r_pc = npc;
244 
245 	} else if (rp->r_trapno == T_BPTFLT) {
246 		uint8_t instr, instr2;
247 		caddr_t linearpc;
248 		rwp = &CPU->cpu_ft_lock;
249 
250 		/*
251 		 * The DTrace fasttrap provider uses the breakpoint trap
252 		 * (int 3). We let DTrace take the first crack at handling
253 		 * this trap; if it's not a probe that DTrace knowns about,
254 		 * we call into the trap() routine to handle it like a
255 		 * breakpoint placed by a conventional debugger.
256 		 */
257 		rw_enter(rwp, RW_READER);
258 		if (dtrace_pid_probe_ptr != NULL &&
259 		    (*dtrace_pid_probe_ptr)(rp) == 0) {
260 			rw_exit(rwp);
261 			return;
262 		}
263 		rw_exit(rwp);
264 
265 		if (dtrace_linear_pc(rp, p, &linearpc) != 0) {
266 			trap(rp, addr, cpuid);
267 			return;
268 		}
269 
270 		/*
271 		 * If the instruction that caused the breakpoint trap doesn't
272 		 * look like an int 3 anymore, it may be that this tracepoint
273 		 * was removed just after the user thread executed it. In
274 		 * that case, return to user land to retry the instuction.
275 		 * Note that we assume the length of the instruction to retry
276 		 * is 1 byte because that's the length of FASTTRAP_INSTR.
277 		 * We check for r_pc > 0 and > 2 so that we don't have to
278 		 * deal with segment wraparound.
279 		 */
280 		if (rp->r_pc > 0 && fuword8(linearpc - 1, &instr) == 0 &&
281 		    instr != FASTTRAP_INSTR &&
282 		    (instr != 3 || (rp->r_pc >= 2 &&
283 		    (fuword8(linearpc - 2, &instr2) != 0 || instr2 != 0xCD)))) {
284 			rp->r_pc--;
285 			return;
286 		}
287 
288 		trap(rp, addr, cpuid);
289 
290 	} else {
291 		trap(rp, addr, cpuid);
292 	}
293 }
294 
295 void
296 dtrace_safe_synchronous_signal(void)
297 {
298 	kthread_t *t = curthread;
299 	struct regs *rp = lwptoregs(ttolwp(t));
300 	size_t isz = t->t_dtrace_npc - t->t_dtrace_pc;
301 
302 	ASSERT(t->t_dtrace_on);
303 
304 	/*
305 	 * If we're not in the range of scratch addresses, we're not actually
306 	 * tracing user instructions so turn off the flags. If the instruction
307 	 * we copied out caused a synchonous trap, reset the pc back to its
308 	 * original value and turn off the flags.
309 	 */
310 	if (rp->r_pc < t->t_dtrace_scrpc ||
311 	    rp->r_pc > t->t_dtrace_astpc + isz) {
312 		t->t_dtrace_ft = 0;
313 	} else if (rp->r_pc == t->t_dtrace_scrpc ||
314 	    rp->r_pc == t->t_dtrace_astpc) {
315 		rp->r_pc = t->t_dtrace_pc;
316 		t->t_dtrace_ft = 0;
317 	}
318 }
319 
320 int
321 dtrace_safe_defer_signal(void)
322 {
323 	kthread_t *t = curthread;
324 	struct regs *rp = lwptoregs(ttolwp(t));
325 	size_t isz = t->t_dtrace_npc - t->t_dtrace_pc;
326 
327 	ASSERT(t->t_dtrace_on);
328 
329 	/*
330 	 * If we're not in the range of scratch addresses, we're not actually
331 	 * tracing user instructions so turn off the flags.
332 	 */
333 	if (rp->r_pc < t->t_dtrace_scrpc ||
334 	    rp->r_pc > t->t_dtrace_astpc + isz) {
335 		t->t_dtrace_ft = 0;
336 		return (0);
337 	}
338 
339 	/*
340 	 * If we have executed the original instruction, but we have performed
341 	 * neither the jmp back to t->t_dtrace_npc nor the clean up of any
342 	 * registers used to emulate %rip-relative instructions in 64-bit mode,
343 	 * we'll save ourselves some effort by doing that here and taking the
344 	 * signal right away.  We detect this condition by seeing if the program
345 	 * counter is the range [scrpc + isz, astpc).
346 	 */
347 	if (rp->r_pc >= t->t_dtrace_scrpc + isz &&
348 	    rp->r_pc < t->t_dtrace_astpc) {
349 #ifdef __amd64
350 		/*
351 		 * If there is a scratch register and we're on the
352 		 * instruction immediately after the modified instruction,
353 		 * restore the value of that scratch register.
354 		 */
355 		if (t->t_dtrace_reg != 0 &&
356 		    rp->r_pc == t->t_dtrace_scrpc + isz) {
357 			switch (t->t_dtrace_reg) {
358 			case REG_RAX:
359 				rp->r_rax = t->t_dtrace_regv;
360 				break;
361 			case REG_RCX:
362 				rp->r_rcx = t->t_dtrace_regv;
363 				break;
364 			case REG_R8:
365 				rp->r_r8 = t->t_dtrace_regv;
366 				break;
367 			case REG_R9:
368 				rp->r_r9 = t->t_dtrace_regv;
369 				break;
370 			}
371 		}
372 #endif
373 		rp->r_pc = t->t_dtrace_npc;
374 		t->t_dtrace_ft = 0;
375 		return (0);
376 	}
377 
378 	/*
379 	 * Otherwise, make sure we'll return to the kernel after executing
380 	 * the copied out instruction and defer the signal.
381 	 */
382 	if (!t->t_dtrace_step) {
383 		ASSERT(rp->r_pc < t->t_dtrace_astpc);
384 		rp->r_pc += t->t_dtrace_astpc - t->t_dtrace_scrpc;
385 		t->t_dtrace_step = 1;
386 	}
387 
388 	t->t_dtrace_ast = 1;
389 
390 	return (1);
391 }
392 
393 /*
394  * Additional artificial frames for the machine type. For i86pc, we're already
395  * accounted for, so return 0. On the hypervisor, we have an additional frame
396  * (xen_callback_handler).
397  */
398 int
399 dtrace_mach_aframes(void)
400 {
401 #ifdef __xpv
402 	return (1);
403 #else
404 	return (0);
405 #endif
406 }
407