xref: /illumos-gate/usr/src/uts/i86pc/os/ddi_impl.c (revision f689bed18bbb72c93b14a451e959b18f7ccfb7d1)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 
26 /*
27  * PC specific DDI implementation
28  */
29 #include <sys/types.h>
30 #include <sys/autoconf.h>
31 #include <sys/avintr.h>
32 #include <sys/bootconf.h>
33 #include <sys/conf.h>
34 #include <sys/cpuvar.h>
35 #include <sys/ddi_impldefs.h>
36 #include <sys/ddi_subrdefs.h>
37 #include <sys/ethernet.h>
38 #include <sys/fp.h>
39 #include <sys/instance.h>
40 #include <sys/kmem.h>
41 #include <sys/machsystm.h>
42 #include <sys/modctl.h>
43 #include <sys/promif.h>
44 #include <sys/prom_plat.h>
45 #include <sys/sunndi.h>
46 #include <sys/ndi_impldefs.h>
47 #include <sys/ddi_impldefs.h>
48 #include <sys/sysmacros.h>
49 #include <sys/systeminfo.h>
50 #include <sys/utsname.h>
51 #include <sys/atomic.h>
52 #include <sys/spl.h>
53 #include <sys/archsystm.h>
54 #include <vm/seg_kmem.h>
55 #include <sys/ontrap.h>
56 #include <sys/fm/protocol.h>
57 #include <sys/ramdisk.h>
58 #include <sys/sunndi.h>
59 #include <sys/vmem.h>
60 #include <sys/pci_impl.h>
61 #if defined(__xpv)
62 #include <sys/hypervisor.h>
63 #endif
64 #include <sys/mach_intr.h>
65 #include <vm/hat_i86.h>
66 #include <sys/x86_archext.h>
67 
68 /*
69  * DDI Boot Configuration
70  */
71 
72 /*
73  * Platform drivers on this platform
74  */
75 char *platform_module_list[] = {
76 	"acpippm",
77 	"ppm",
78 	(char *)0
79 };
80 
81 /* pci bus resource maps */
82 struct pci_bus_resource *pci_bus_res;
83 
84 size_t dma_max_copybuf_size = 0x101000;		/* 1M + 4K */
85 
86 uint64_t ramdisk_start, ramdisk_end;
87 
88 int pseudo_isa = 0;
89 
90 /*
91  * Forward declarations
92  */
93 static int getlongprop_buf();
94 static void get_boot_properties(void);
95 static void impl_bus_initialprobe(void);
96 static void impl_bus_reprobe(void);
97 
98 static int poke_mem(peekpoke_ctlops_t *in_args);
99 static int peek_mem(peekpoke_ctlops_t *in_args);
100 
101 static int kmem_override_cache_attrs(caddr_t, size_t, uint_t);
102 
103 #if defined(__amd64) && !defined(__xpv)
104 extern void immu_init(void);
105 #endif
106 
107 #define	CTGENTRIES	15
108 
109 static struct ctgas {
110 	struct ctgas	*ctg_next;
111 	int		ctg_index;
112 	void		*ctg_addr[CTGENTRIES];
113 	size_t		ctg_size[CTGENTRIES];
114 } ctglist;
115 
116 static kmutex_t		ctgmutex;
117 #define	CTGLOCK()	mutex_enter(&ctgmutex)
118 #define	CTGUNLOCK()	mutex_exit(&ctgmutex)
119 
120 /*
121  * Minimum pfn value of page_t's put on the free list.  This is to simplify
122  * support of ddi dma memory requests which specify small, non-zero addr_lo
123  * values.
124  *
125  * The default value of 2, which corresponds to the only known non-zero addr_lo
126  * value used, means a single page will be sacrificed (pfn typically starts
127  * at 1).  ddiphysmin can be set to 0 to disable. It cannot be set above 0x100
128  * otherwise mp startup panics.
129  */
130 pfn_t	ddiphysmin = 2;
131 
132 static void
133 check_driver_disable(void)
134 {
135 	int proplen = 128;
136 	char *prop_name;
137 	char *drv_name, *propval;
138 	major_t major;
139 
140 	prop_name = kmem_alloc(proplen, KM_SLEEP);
141 	for (major = 0; major < devcnt; major++) {
142 		drv_name = ddi_major_to_name(major);
143 		if (drv_name == NULL)
144 			continue;
145 		(void) snprintf(prop_name, proplen, "disable-%s", drv_name);
146 		if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
147 		    DDI_PROP_DONTPASS, prop_name, &propval) == DDI_SUCCESS) {
148 			if (strcmp(propval, "true") == 0) {
149 				devnamesp[major].dn_flags |= DN_DRIVER_REMOVED;
150 				cmn_err(CE_NOTE, "driver %s disabled",
151 				    drv_name);
152 			}
153 			ddi_prop_free(propval);
154 		}
155 	}
156 	kmem_free(prop_name, proplen);
157 }
158 
159 
160 /*
161  * Configure the hardware on the system.
162  * Called before the rootfs is mounted
163  */
164 void
165 configure(void)
166 {
167 	extern void i_ddi_init_root();
168 
169 #if defined(__i386)
170 	extern int fpu_pentium_fdivbug;
171 #endif	/* __i386 */
172 	extern int fpu_ignored;
173 
174 	/*
175 	 * Determine if an FPU is attached
176 	 */
177 
178 	fpu_probe();
179 
180 #if defined(__i386)
181 	if (fpu_pentium_fdivbug) {
182 		printf("\
183 FP hardware exhibits Pentium floating point divide problem\n");
184 	}
185 #endif	/* __i386 */
186 
187 	if (fpu_ignored) {
188 		printf("FP hardware will not be used\n");
189 	} else if (!fpu_exists) {
190 		printf("No FPU in configuration\n");
191 	}
192 
193 	/*
194 	 * Initialize devices on the machine.
195 	 * Uses configuration tree built by the PROMs to determine what
196 	 * is present, and builds a tree of prototype dev_info nodes
197 	 * corresponding to the hardware which identified itself.
198 	 */
199 
200 	/*
201 	 * Initialize root node.
202 	 */
203 	i_ddi_init_root();
204 
205 	/* reprogram devices not set up by firmware (BIOS) */
206 	impl_bus_reprobe();
207 
208 #if defined(__amd64) && !defined(__xpv)
209 	/*
210 	 * Setup but don't startup the IOMMU
211 	 * Startup happens later via a direct call
212 	 * to IOMMU code by boot code.
213 	 * At this point, all PCI bus renumbering
214 	 * is done, so safe to init the IMMU
215 	 * AKA Intel IOMMU.
216 	 */
217 	immu_init();
218 #endif
219 
220 	/*
221 	 * attach the isa nexus to get ACPI resource usage
222 	 * isa is "kind of" a pseudo node
223 	 */
224 #if defined(__xpv)
225 	if (DOMAIN_IS_INITDOMAIN(xen_info)) {
226 		if (pseudo_isa)
227 			(void) i_ddi_attach_pseudo_node("isa");
228 		else
229 			(void) i_ddi_attach_hw_nodes("isa");
230 	}
231 #else
232 	if (pseudo_isa)
233 		(void) i_ddi_attach_pseudo_node("isa");
234 	else
235 		(void) i_ddi_attach_hw_nodes("isa");
236 #endif
237 }
238 
239 /*
240  * The "status" property indicates the operational status of a device.
241  * If this property is present, the value is a string indicating the
242  * status of the device as follows:
243  *
244  *	"okay"		operational.
245  *	"disabled"	not operational, but might become operational.
246  *	"fail"		not operational because a fault has been detected,
247  *			and it is unlikely that the device will become
248  *			operational without repair. no additional details
249  *			are available.
250  *	"fail-xxx"	not operational because a fault has been detected,
251  *			and it is unlikely that the device will become
252  *			operational without repair. "xxx" is additional
253  *			human-readable information about the particular
254  *			fault condition that was detected.
255  *
256  * The absence of this property means that the operational status is
257  * unknown or okay.
258  *
259  * This routine checks the status property of the specified device node
260  * and returns 0 if the operational status indicates failure, and 1 otherwise.
261  *
262  * The property may exist on plug-in cards the existed before IEEE 1275-1994.
263  * And, in that case, the property may not even be a string. So we carefully
264  * check for the value "fail", in the beginning of the string, noting
265  * the property length.
266  */
267 int
268 status_okay(int id, char *buf, int buflen)
269 {
270 	char status_buf[OBP_MAXPROPNAME];
271 	char *bufp = buf;
272 	int len = buflen;
273 	int proplen;
274 	static const char *status = "status";
275 	static const char *fail = "fail";
276 	int fail_len = (int)strlen(fail);
277 
278 	/*
279 	 * Get the proplen ... if it's smaller than "fail",
280 	 * or doesn't exist ... then we don't care, since
281 	 * the value can't begin with the char string "fail".
282 	 *
283 	 * NB: proplen, if it's a string, includes the NULL in the
284 	 * the size of the property, and fail_len does not.
285 	 */
286 	proplen = prom_getproplen((pnode_t)id, (caddr_t)status);
287 	if (proplen <= fail_len)	/* nonexistant or uninteresting len */
288 		return (1);
289 
290 	/*
291 	 * if a buffer was provided, use it
292 	 */
293 	if ((buf == (char *)NULL) || (buflen <= 0)) {
294 		bufp = status_buf;
295 		len = sizeof (status_buf);
296 	}
297 	*bufp = (char)0;
298 
299 	/*
300 	 * Get the property into the buffer, to the extent of the buffer,
301 	 * and in case the buffer is smaller than the property size,
302 	 * NULL terminate the buffer. (This handles the case where
303 	 * a buffer was passed in and the caller wants to print the
304 	 * value, but the buffer was too small).
305 	 */
306 	(void) prom_bounded_getprop((pnode_t)id, (caddr_t)status,
307 	    (caddr_t)bufp, len);
308 	*(bufp + len - 1) = (char)0;
309 
310 	/*
311 	 * If the value begins with the char string "fail",
312 	 * then it means the node is failed. We don't care
313 	 * about any other values. We assume the node is ok
314 	 * although it might be 'disabled'.
315 	 */
316 	if (strncmp(bufp, fail, fail_len) == 0)
317 		return (0);
318 
319 	return (1);
320 }
321 
322 /*
323  * Check the status of the device node passed as an argument.
324  *
325  *	if ((status is OKAY) || (status is DISABLED))
326  *		return DDI_SUCCESS
327  *	else
328  *		print a warning and return DDI_FAILURE
329  */
330 /*ARGSUSED1*/
331 int
332 check_status(int id, char *name, dev_info_t *parent)
333 {
334 	char status_buf[64];
335 	char devtype_buf[OBP_MAXPROPNAME];
336 	int retval = DDI_FAILURE;
337 
338 	/*
339 	 * is the status okay?
340 	 */
341 	if (status_okay(id, status_buf, sizeof (status_buf)))
342 		return (DDI_SUCCESS);
343 
344 	/*
345 	 * a status property indicating bad memory will be associated
346 	 * with a node which has a "device_type" property with a value of
347 	 * "memory-controller". in this situation, return DDI_SUCCESS
348 	 */
349 	if (getlongprop_buf(id, OBP_DEVICETYPE, devtype_buf,
350 	    sizeof (devtype_buf)) > 0) {
351 		if (strcmp(devtype_buf, "memory-controller") == 0)
352 			retval = DDI_SUCCESS;
353 	}
354 
355 	/*
356 	 * print the status property information
357 	 */
358 	cmn_err(CE_WARN, "status '%s' for '%s'", status_buf, name);
359 	return (retval);
360 }
361 
362 /*ARGSUSED*/
363 uint_t
364 softlevel1(caddr_t arg1, caddr_t arg2)
365 {
366 	softint();
367 	return (1);
368 }
369 
370 /*
371  * Allow for implementation specific correction of PROM property values.
372  */
373 
374 /*ARGSUSED*/
375 void
376 impl_fix_props(dev_info_t *dip, dev_info_t *ch_dip, char *name, int len,
377     caddr_t buffer)
378 {
379 	/*
380 	 * There are no adjustments needed in this implementation.
381 	 */
382 }
383 
384 static int
385 getlongprop_buf(int id, char *name, char *buf, int maxlen)
386 {
387 	int size;
388 
389 	size = prom_getproplen((pnode_t)id, name);
390 	if (size <= 0 || (size > maxlen - 1))
391 		return (-1);
392 
393 	if (-1 == prom_getprop((pnode_t)id, name, buf))
394 		return (-1);
395 
396 	if (strcmp("name", name) == 0) {
397 		if (buf[size - 1] != '\0') {
398 			buf[size] = '\0';
399 			size += 1;
400 		}
401 	}
402 
403 	return (size);
404 }
405 
406 static int
407 get_prop_int_array(dev_info_t *di, char *pname, int **pval, uint_t *plen)
408 {
409 	int ret;
410 
411 	if ((ret = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, di,
412 	    DDI_PROP_DONTPASS, pname, pval, plen))
413 	    == DDI_PROP_SUCCESS) {
414 		*plen = (*plen) * (sizeof (int));
415 	}
416 	return (ret);
417 }
418 
419 
420 /*
421  * Node Configuration
422  */
423 
424 struct prop_ispec {
425 	uint_t	pri, vec;
426 };
427 
428 /*
429  * For the x86, we're prepared to claim that the interrupt string
430  * is in the form of a list of <ipl,vec> specifications.
431  */
432 
433 #define	VEC_MIN	1
434 #define	VEC_MAX	255
435 
436 static int
437 impl_xlate_intrs(dev_info_t *child, int *in,
438     struct ddi_parent_private_data *pdptr)
439 {
440 	size_t size;
441 	int n;
442 	struct intrspec *new;
443 	caddr_t got_prop;
444 	int *inpri;
445 	int got_len;
446 	extern int ignore_hardware_nodes;	/* force flag from ddi_impl.c */
447 
448 	static char bad_intr_fmt[] =
449 	    "bad interrupt spec from %s%d - ipl %d, irq %d\n";
450 
451 	/*
452 	 * determine if the driver is expecting the new style "interrupts"
453 	 * property which just contains the IRQ, or the old style which
454 	 * contains pairs of <IPL,IRQ>.  if it is the new style, we always
455 	 * assign IPL 5 unless an "interrupt-priorities" property exists.
456 	 * in that case, the "interrupt-priorities" property contains the
457 	 * IPL values that match, one for one, the IRQ values in the
458 	 * "interrupts" property.
459 	 */
460 	inpri = NULL;
461 	if ((ddi_getprop(DDI_DEV_T_ANY, child, DDI_PROP_DONTPASS,
462 	    "ignore-hardware-nodes", -1) != -1) || ignore_hardware_nodes) {
463 		/* the old style "interrupts" property... */
464 
465 		/*
466 		 * The list consists of <ipl,vec> elements
467 		 */
468 		if ((n = (*in++ >> 1)) < 1)
469 			return (DDI_FAILURE);
470 
471 		pdptr->par_nintr = n;
472 		size = n * sizeof (struct intrspec);
473 		new = pdptr->par_intr = kmem_zalloc(size, KM_SLEEP);
474 
475 		while (n--) {
476 			int level = *in++;
477 			int vec = *in++;
478 
479 			if (level < 1 || level > MAXIPL ||
480 			    vec < VEC_MIN || vec > VEC_MAX) {
481 				cmn_err(CE_CONT, bad_intr_fmt,
482 				    DEVI(child)->devi_name,
483 				    DEVI(child)->devi_instance, level, vec);
484 				goto broken;
485 			}
486 			new->intrspec_pri = level;
487 			if (vec != 2)
488 				new->intrspec_vec = vec;
489 			else
490 				/*
491 				 * irq 2 on the PC bus is tied to irq 9
492 				 * on ISA, EISA and MicroChannel
493 				 */
494 				new->intrspec_vec = 9;
495 			new++;
496 		}
497 
498 		return (DDI_SUCCESS);
499 	} else {
500 		/* the new style "interrupts" property... */
501 
502 		/*
503 		 * The list consists of <vec> elements
504 		 */
505 		if ((n = (*in++)) < 1)
506 			return (DDI_FAILURE);
507 
508 		pdptr->par_nintr = n;
509 		size = n * sizeof (struct intrspec);
510 		new = pdptr->par_intr = kmem_zalloc(size, KM_SLEEP);
511 
512 		/* XXX check for "interrupt-priorities" property... */
513 		if (ddi_getlongprop(DDI_DEV_T_ANY, child, DDI_PROP_DONTPASS,
514 		    "interrupt-priorities", (caddr_t)&got_prop, &got_len)
515 		    == DDI_PROP_SUCCESS) {
516 			if (n != (got_len / sizeof (int))) {
517 				cmn_err(CE_CONT,
518 				    "bad interrupt-priorities length"
519 				    " from %s%d: expected %d, got %d\n",
520 				    DEVI(child)->devi_name,
521 				    DEVI(child)->devi_instance, n,
522 				    (int)(got_len / sizeof (int)));
523 				goto broken;
524 			}
525 			inpri = (int *)got_prop;
526 		}
527 
528 		while (n--) {
529 			int level;
530 			int vec = *in++;
531 
532 			if (inpri == NULL)
533 				level = 5;
534 			else
535 				level = *inpri++;
536 
537 			if (level < 1 || level > MAXIPL ||
538 			    vec < VEC_MIN || vec > VEC_MAX) {
539 				cmn_err(CE_CONT, bad_intr_fmt,
540 				    DEVI(child)->devi_name,
541 				    DEVI(child)->devi_instance, level, vec);
542 				goto broken;
543 			}
544 			new->intrspec_pri = level;
545 			if (vec != 2)
546 				new->intrspec_vec = vec;
547 			else
548 				/*
549 				 * irq 2 on the PC bus is tied to irq 9
550 				 * on ISA, EISA and MicroChannel
551 				 */
552 				new->intrspec_vec = 9;
553 			new++;
554 		}
555 
556 		if (inpri != NULL)
557 			kmem_free(got_prop, got_len);
558 		return (DDI_SUCCESS);
559 	}
560 
561 broken:
562 	kmem_free(pdptr->par_intr, size);
563 	pdptr->par_intr = NULL;
564 	pdptr->par_nintr = 0;
565 	if (inpri != NULL)
566 		kmem_free(got_prop, got_len);
567 
568 	return (DDI_FAILURE);
569 }
570 
571 /*
572  * Create a ddi_parent_private_data structure from the ddi properties of
573  * the dev_info node.
574  *
575  * The "reg" and either an "intr" or "interrupts" properties are required
576  * if the driver wishes to create mappings or field interrupts on behalf
577  * of the device.
578  *
579  * The "reg" property is assumed to be a list of at least one triple
580  *
581  *	<bustype, address, size>*1
582  *
583  * The "intr" property is assumed to be a list of at least one duple
584  *
585  *	<SPARC ipl, vector#>*1
586  *
587  * The "interrupts" property is assumed to be a list of at least one
588  * n-tuples that describes the interrupt capabilities of the bus the device
589  * is connected to.  For SBus, this looks like
590  *
591  *	<SBus-level>*1
592  *
593  * (This property obsoletes the 'intr' property).
594  *
595  * The "ranges" property is optional.
596  */
597 void
598 make_ddi_ppd(dev_info_t *child, struct ddi_parent_private_data **ppd)
599 {
600 	struct ddi_parent_private_data *pdptr;
601 	int n;
602 	int *reg_prop, *rng_prop, *intr_prop, *irupts_prop;
603 	uint_t reg_len, rng_len, intr_len, irupts_len;
604 
605 	*ppd = pdptr = kmem_zalloc(sizeof (*pdptr), KM_SLEEP);
606 
607 	/*
608 	 * Handle the 'reg' property.
609 	 */
610 	if ((get_prop_int_array(child, "reg", &reg_prop, &reg_len) ==
611 	    DDI_PROP_SUCCESS) && (reg_len != 0)) {
612 		pdptr->par_nreg = reg_len / (int)sizeof (struct regspec);
613 		pdptr->par_reg = (struct regspec *)reg_prop;
614 	}
615 
616 	/*
617 	 * See if I have a range (adding one where needed - this
618 	 * means to add one for sbus node in sun4c, when romvec > 0,
619 	 * if no range is already defined in the PROM node.
620 	 * (Currently no sun4c PROMS define range properties,
621 	 * but they should and may in the future.)  For the SBus
622 	 * node, the range is defined by the SBus reg property.
623 	 */
624 	if (get_prop_int_array(child, "ranges", &rng_prop, &rng_len)
625 	    == DDI_PROP_SUCCESS) {
626 		pdptr->par_nrng = rng_len / (int)(sizeof (struct rangespec));
627 		pdptr->par_rng = (struct rangespec *)rng_prop;
628 	}
629 
630 	/*
631 	 * Handle the 'intr' and 'interrupts' properties
632 	 */
633 
634 	/*
635 	 * For backwards compatibility
636 	 * we first look for the 'intr' property for the device.
637 	 */
638 	if (get_prop_int_array(child, "intr", &intr_prop, &intr_len)
639 	    != DDI_PROP_SUCCESS) {
640 		intr_len = 0;
641 	}
642 
643 	/*
644 	 * If we're to support bus adapters and future platforms cleanly,
645 	 * we need to support the generalized 'interrupts' property.
646 	 */
647 	if (get_prop_int_array(child, "interrupts", &irupts_prop,
648 	    &irupts_len) != DDI_PROP_SUCCESS) {
649 		irupts_len = 0;
650 	} else if (intr_len != 0) {
651 		/*
652 		 * If both 'intr' and 'interrupts' are defined,
653 		 * then 'interrupts' wins and we toss the 'intr' away.
654 		 */
655 		ddi_prop_free((void *)intr_prop);
656 		intr_len = 0;
657 	}
658 
659 	if (intr_len != 0) {
660 
661 		/*
662 		 * Translate the 'intr' property into an array
663 		 * an array of struct intrspec's.  There's not really
664 		 * very much to do here except copy what's out there.
665 		 */
666 
667 		struct intrspec *new;
668 		struct prop_ispec *l;
669 
670 		n = pdptr->par_nintr = intr_len / sizeof (struct prop_ispec);
671 		l = (struct prop_ispec *)intr_prop;
672 		pdptr->par_intr =
673 		    new = kmem_zalloc(n * sizeof (struct intrspec), KM_SLEEP);
674 		while (n--) {
675 			new->intrspec_pri = l->pri;
676 			new->intrspec_vec = l->vec;
677 			new++;
678 			l++;
679 		}
680 		ddi_prop_free((void *)intr_prop);
681 
682 	} else if ((n = irupts_len) != 0) {
683 		size_t size;
684 		int *out;
685 
686 		/*
687 		 * Translate the 'interrupts' property into an array
688 		 * of intrspecs for the rest of the DDI framework to
689 		 * toy with.  Only our ancestors really know how to
690 		 * do this, so ask 'em.  We massage the 'interrupts'
691 		 * property so that it is pre-pended by a count of
692 		 * the number of integers in the argument.
693 		 */
694 		size = sizeof (int) + n;
695 		out = kmem_alloc(size, KM_SLEEP);
696 		*out = n / sizeof (int);
697 		bcopy(irupts_prop, out + 1, (size_t)n);
698 		ddi_prop_free((void *)irupts_prop);
699 		if (impl_xlate_intrs(child, out, pdptr) != DDI_SUCCESS) {
700 			cmn_err(CE_CONT,
701 			    "Unable to translate 'interrupts' for %s%d\n",
702 			    DEVI(child)->devi_binding_name,
703 			    DEVI(child)->devi_instance);
704 		}
705 		kmem_free(out, size);
706 	}
707 }
708 
709 /*
710  * Name a child
711  */
712 static int
713 impl_sunbus_name_child(dev_info_t *child, char *name, int namelen)
714 {
715 	/*
716 	 * Fill in parent-private data and this function returns to us
717 	 * an indication if it used "registers" to fill in the data.
718 	 */
719 	if (ddi_get_parent_data(child) == NULL) {
720 		struct ddi_parent_private_data *pdptr;
721 		make_ddi_ppd(child, &pdptr);
722 		ddi_set_parent_data(child, pdptr);
723 	}
724 
725 	name[0] = '\0';
726 	if (sparc_pd_getnreg(child) > 0) {
727 		(void) snprintf(name, namelen, "%x,%x",
728 		    (uint_t)sparc_pd_getreg(child, 0)->regspec_bustype,
729 		    (uint_t)sparc_pd_getreg(child, 0)->regspec_addr);
730 	}
731 
732 	return (DDI_SUCCESS);
733 }
734 
735 /*
736  * Called from the bus_ctl op of sunbus (sbus, obio, etc) nexus drivers
737  * to implement the DDI_CTLOPS_INITCHILD operation.  That is, it names
738  * the children of sun busses based on the reg spec.
739  *
740  * Handles the following properties (in make_ddi_ppd):
741  *	Property		value
742  *	  Name			type
743  *	reg		register spec
744  *	intr		old-form interrupt spec
745  *	interrupts	new (bus-oriented) interrupt spec
746  *	ranges		range spec
747  */
748 int
749 impl_ddi_sunbus_initchild(dev_info_t *child)
750 {
751 	char name[MAXNAMELEN];
752 	void impl_ddi_sunbus_removechild(dev_info_t *);
753 
754 	/*
755 	 * Name the child, also makes parent private data
756 	 */
757 	(void) impl_sunbus_name_child(child, name, MAXNAMELEN);
758 	ddi_set_name_addr(child, name);
759 
760 	/*
761 	 * Attempt to merge a .conf node; if successful, remove the
762 	 * .conf node.
763 	 */
764 	if ((ndi_dev_is_persistent_node(child) == 0) &&
765 	    (ndi_merge_node(child, impl_sunbus_name_child) == DDI_SUCCESS)) {
766 		/*
767 		 * Return failure to remove node
768 		 */
769 		impl_ddi_sunbus_removechild(child);
770 		return (DDI_FAILURE);
771 	}
772 	return (DDI_SUCCESS);
773 }
774 
775 void
776 impl_free_ddi_ppd(dev_info_t *dip)
777 {
778 	struct ddi_parent_private_data *pdptr;
779 	size_t n;
780 
781 	if ((pdptr = ddi_get_parent_data(dip)) == NULL)
782 		return;
783 
784 	if ((n = (size_t)pdptr->par_nintr) != 0)
785 		/*
786 		 * Note that kmem_free is used here (instead of
787 		 * ddi_prop_free) because the contents of the
788 		 * property were placed into a separate buffer and
789 		 * mucked with a bit before being stored in par_intr.
790 		 * The actual return value from the prop lookup
791 		 * was freed with ddi_prop_free previously.
792 		 */
793 		kmem_free(pdptr->par_intr, n * sizeof (struct intrspec));
794 
795 	if ((n = (size_t)pdptr->par_nrng) != 0)
796 		ddi_prop_free((void *)pdptr->par_rng);
797 
798 	if ((n = pdptr->par_nreg) != 0)
799 		ddi_prop_free((void *)pdptr->par_reg);
800 
801 	kmem_free(pdptr, sizeof (*pdptr));
802 	ddi_set_parent_data(dip, NULL);
803 }
804 
805 void
806 impl_ddi_sunbus_removechild(dev_info_t *dip)
807 {
808 	impl_free_ddi_ppd(dip);
809 	ddi_set_name_addr(dip, NULL);
810 	/*
811 	 * Strip the node to properly convert it back to prototype form
812 	 */
813 	impl_rem_dev_props(dip);
814 }
815 
816 /*
817  * DDI Interrupt
818  */
819 
820 /*
821  * turn this on to force isa, eisa, and mca device to ignore the new
822  * hardware nodes in the device tree (normally turned on only for
823  * drivers that need it by setting the property "ignore-hardware-nodes"
824  * in their driver.conf file).
825  *
826  * 7/31/96 -- Turned off globally.  Leaving variable in for the moment
827  *		as safety valve.
828  */
829 int ignore_hardware_nodes = 0;
830 
831 /*
832  * Local data
833  */
834 static struct impl_bus_promops *impl_busp;
835 
836 
837 /*
838  * New DDI interrupt framework
839  */
840 
841 /*
842  * i_ddi_intr_ops:
843  *
844  * This is the interrupt operator function wrapper for the bus function
845  * bus_intr_op.
846  */
847 int
848 i_ddi_intr_ops(dev_info_t *dip, dev_info_t *rdip, ddi_intr_op_t op,
849     ddi_intr_handle_impl_t *hdlp, void * result)
850 {
851 	dev_info_t	*pdip = (dev_info_t *)DEVI(dip)->devi_parent;
852 	int		ret = DDI_FAILURE;
853 
854 	/* request parent to process this interrupt op */
855 	if (NEXUS_HAS_INTR_OP(pdip))
856 		ret = (*(DEVI(pdip)->devi_ops->devo_bus_ops->bus_intr_op))(
857 		    pdip, rdip, op, hdlp, result);
858 	else
859 		cmn_err(CE_WARN, "Failed to process interrupt "
860 		    "for %s%d due to down-rev nexus driver %s%d",
861 		    ddi_get_name(rdip), ddi_get_instance(rdip),
862 		    ddi_get_name(pdip), ddi_get_instance(pdip));
863 	return (ret);
864 }
865 
866 /*
867  * i_ddi_add_softint - allocate and add a soft interrupt to the system
868  */
869 int
870 i_ddi_add_softint(ddi_softint_hdl_impl_t *hdlp)
871 {
872 	int ret;
873 
874 	/* add soft interrupt handler */
875 	ret = add_avsoftintr((void *)hdlp, hdlp->ih_pri, hdlp->ih_cb_func,
876 	    DEVI(hdlp->ih_dip)->devi_name, hdlp->ih_cb_arg1, hdlp->ih_cb_arg2);
877 	return (ret ? DDI_SUCCESS : DDI_FAILURE);
878 }
879 
880 
881 void
882 i_ddi_remove_softint(ddi_softint_hdl_impl_t *hdlp)
883 {
884 	(void) rem_avsoftintr((void *)hdlp, hdlp->ih_pri, hdlp->ih_cb_func);
885 }
886 
887 
888 extern void (*setsoftint)(int, struct av_softinfo *);
889 extern boolean_t av_check_softint_pending(struct av_softinfo *, boolean_t);
890 
891 int
892 i_ddi_trigger_softint(ddi_softint_hdl_impl_t *hdlp, void *arg2)
893 {
894 	if (av_check_softint_pending(hdlp->ih_pending, B_FALSE))
895 		return (DDI_EPENDING);
896 
897 	update_avsoftintr_args((void *)hdlp, hdlp->ih_pri, arg2);
898 
899 	(*setsoftint)(hdlp->ih_pri, hdlp->ih_pending);
900 	return (DDI_SUCCESS);
901 }
902 
903 /*
904  * i_ddi_set_softint_pri:
905  *
906  * The way this works is that it first tries to add a softint vector
907  * at the new priority in hdlp. If that succeeds; then it removes the
908  * existing softint vector at the old priority.
909  */
910 int
911 i_ddi_set_softint_pri(ddi_softint_hdl_impl_t *hdlp, uint_t old_pri)
912 {
913 	int ret;
914 
915 	/*
916 	 * If a softint is pending at the old priority then fail the request.
917 	 */
918 	if (av_check_softint_pending(hdlp->ih_pending, B_TRUE))
919 		return (DDI_FAILURE);
920 
921 	ret = av_softint_movepri((void *)hdlp, old_pri);
922 	return (ret ? DDI_SUCCESS : DDI_FAILURE);
923 }
924 
925 void
926 i_ddi_alloc_intr_phdl(ddi_intr_handle_impl_t *hdlp)
927 {
928 	hdlp->ih_private = (void *)kmem_zalloc(sizeof (ihdl_plat_t), KM_SLEEP);
929 }
930 
931 void
932 i_ddi_free_intr_phdl(ddi_intr_handle_impl_t *hdlp)
933 {
934 	kmem_free(hdlp->ih_private, sizeof (ihdl_plat_t));
935 	hdlp->ih_private = NULL;
936 }
937 
938 int
939 i_ddi_get_intx_nintrs(dev_info_t *dip)
940 {
941 	struct ddi_parent_private_data *pdp;
942 
943 	if ((pdp = ddi_get_parent_data(dip)) == NULL)
944 		return (0);
945 
946 	return (pdp->par_nintr);
947 }
948 
949 /*
950  * DDI Memory/DMA
951  */
952 
953 /*
954  * Support for allocating DMAable memory to implement
955  * ddi_dma_mem_alloc(9F) interface.
956  */
957 
958 #define	KA_ALIGN_SHIFT	7
959 #define	KA_ALIGN	(1 << KA_ALIGN_SHIFT)
960 #define	KA_NCACHE	(PAGESHIFT + 1 - KA_ALIGN_SHIFT)
961 
962 /*
963  * Dummy DMA attribute template for kmem_io[].kmem_io_attr.  We only
964  * care about addr_lo, addr_hi, and align.  addr_hi will be dynamically set.
965  */
966 
967 static ddi_dma_attr_t kmem_io_attr = {
968 	DMA_ATTR_V0,
969 	0x0000000000000000ULL,		/* dma_attr_addr_lo */
970 	0x0000000000000000ULL,		/* dma_attr_addr_hi */
971 	0x00ffffff,
972 	0x1000,				/* dma_attr_align */
973 	1, 1, 0xffffffffULL, 0xffffffffULL, 0x1, 1, 0
974 };
975 
976 /* kmem io memory ranges and indices */
977 enum {
978 	IO_4P, IO_64G, IO_4G, IO_2G, IO_1G, IO_512M,
979 	IO_256M, IO_128M, IO_64M, IO_32M, IO_16M, MAX_MEM_RANGES
980 };
981 
982 static struct {
983 	vmem_t		*kmem_io_arena;
984 	kmem_cache_t	*kmem_io_cache[KA_NCACHE];
985 	ddi_dma_attr_t	kmem_io_attr;
986 } kmem_io[MAX_MEM_RANGES];
987 
988 static int kmem_io_idx;		/* index of first populated kmem_io[] */
989 
990 static page_t *
991 page_create_io_wrapper(void *addr, size_t len, int vmflag, void *arg)
992 {
993 	extern page_t *page_create_io(vnode_t *, u_offset_t, uint_t,
994 	    uint_t, struct as *, caddr_t, ddi_dma_attr_t *);
995 
996 	return (page_create_io(&kvp, (u_offset_t)(uintptr_t)addr, len,
997 	    PG_EXCL | ((vmflag & VM_NOSLEEP) ? 0 : PG_WAIT), &kas, addr, arg));
998 }
999 
1000 #ifdef __xpv
1001 static void
1002 segkmem_free_io(vmem_t *vmp, void * ptr, size_t size)
1003 {
1004 	extern void page_destroy_io(page_t *);
1005 	segkmem_xfree(vmp, ptr, size, page_destroy_io);
1006 }
1007 #endif
1008 
1009 static void *
1010 segkmem_alloc_io_4P(vmem_t *vmp, size_t size, int vmflag)
1011 {
1012 	return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1013 	    page_create_io_wrapper, &kmem_io[IO_4P].kmem_io_attr));
1014 }
1015 
1016 static void *
1017 segkmem_alloc_io_64G(vmem_t *vmp, size_t size, int vmflag)
1018 {
1019 	return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1020 	    page_create_io_wrapper, &kmem_io[IO_64G].kmem_io_attr));
1021 }
1022 
1023 static void *
1024 segkmem_alloc_io_4G(vmem_t *vmp, size_t size, int vmflag)
1025 {
1026 	return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1027 	    page_create_io_wrapper, &kmem_io[IO_4G].kmem_io_attr));
1028 }
1029 
1030 static void *
1031 segkmem_alloc_io_2G(vmem_t *vmp, size_t size, int vmflag)
1032 {
1033 	return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1034 	    page_create_io_wrapper, &kmem_io[IO_2G].kmem_io_attr));
1035 }
1036 
1037 static void *
1038 segkmem_alloc_io_1G(vmem_t *vmp, size_t size, int vmflag)
1039 {
1040 	return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1041 	    page_create_io_wrapper, &kmem_io[IO_1G].kmem_io_attr));
1042 }
1043 
1044 static void *
1045 segkmem_alloc_io_512M(vmem_t *vmp, size_t size, int vmflag)
1046 {
1047 	return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1048 	    page_create_io_wrapper, &kmem_io[IO_512M].kmem_io_attr));
1049 }
1050 
1051 static void *
1052 segkmem_alloc_io_256M(vmem_t *vmp, size_t size, int vmflag)
1053 {
1054 	return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1055 	    page_create_io_wrapper, &kmem_io[IO_256M].kmem_io_attr));
1056 }
1057 
1058 static void *
1059 segkmem_alloc_io_128M(vmem_t *vmp, size_t size, int vmflag)
1060 {
1061 	return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1062 	    page_create_io_wrapper, &kmem_io[IO_128M].kmem_io_attr));
1063 }
1064 
1065 static void *
1066 segkmem_alloc_io_64M(vmem_t *vmp, size_t size, int vmflag)
1067 {
1068 	return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1069 	    page_create_io_wrapper, &kmem_io[IO_64M].kmem_io_attr));
1070 }
1071 
1072 static void *
1073 segkmem_alloc_io_32M(vmem_t *vmp, size_t size, int vmflag)
1074 {
1075 	return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1076 	    page_create_io_wrapper, &kmem_io[IO_32M].kmem_io_attr));
1077 }
1078 
1079 static void *
1080 segkmem_alloc_io_16M(vmem_t *vmp, size_t size, int vmflag)
1081 {
1082 	return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1083 	    page_create_io_wrapper, &kmem_io[IO_16M].kmem_io_attr));
1084 }
1085 
1086 struct {
1087 	uint64_t	io_limit;
1088 	char		*io_name;
1089 	void		*(*io_alloc)(vmem_t *, size_t, int);
1090 	int		io_initial;	/* kmem_io_init during startup */
1091 } io_arena_params[MAX_MEM_RANGES] = {
1092 	{0x000fffffffffffffULL,	"kmem_io_4P",	segkmem_alloc_io_4P,	1},
1093 	{0x0000000fffffffffULL,	"kmem_io_64G",	segkmem_alloc_io_64G,	0},
1094 	{0x00000000ffffffffULL,	"kmem_io_4G",	segkmem_alloc_io_4G,	1},
1095 	{0x000000007fffffffULL,	"kmem_io_2G",	segkmem_alloc_io_2G,	1},
1096 	{0x000000003fffffffULL,	"kmem_io_1G",	segkmem_alloc_io_1G,	0},
1097 	{0x000000001fffffffULL,	"kmem_io_512M",	segkmem_alloc_io_512M,	0},
1098 	{0x000000000fffffffULL,	"kmem_io_256M",	segkmem_alloc_io_256M,	0},
1099 	{0x0000000007ffffffULL,	"kmem_io_128M",	segkmem_alloc_io_128M,	0},
1100 	{0x0000000003ffffffULL,	"kmem_io_64M",	segkmem_alloc_io_64M,	0},
1101 	{0x0000000001ffffffULL,	"kmem_io_32M",	segkmem_alloc_io_32M,	0},
1102 	{0x0000000000ffffffULL,	"kmem_io_16M",	segkmem_alloc_io_16M,	1}
1103 };
1104 
1105 void
1106 kmem_io_init(int a)
1107 {
1108 	int	c;
1109 	char name[40];
1110 
1111 	kmem_io[a].kmem_io_arena = vmem_create(io_arena_params[a].io_name,
1112 	    NULL, 0, PAGESIZE, io_arena_params[a].io_alloc,
1113 #ifdef __xpv
1114 	    segkmem_free_io,
1115 #else
1116 	    segkmem_free,
1117 #endif
1118 	    heap_arena, 0, VM_SLEEP);
1119 
1120 	for (c = 0; c < KA_NCACHE; c++) {
1121 		size_t size = KA_ALIGN << c;
1122 		(void) sprintf(name, "%s_%lu",
1123 		    io_arena_params[a].io_name, size);
1124 		kmem_io[a].kmem_io_cache[c] = kmem_cache_create(name,
1125 		    size, size, NULL, NULL, NULL, NULL,
1126 		    kmem_io[a].kmem_io_arena, 0);
1127 	}
1128 }
1129 
1130 /*
1131  * Return the index of the highest memory range for addr.
1132  */
1133 static int
1134 kmem_io_index(uint64_t addr)
1135 {
1136 	int n;
1137 
1138 	for (n = kmem_io_idx; n < MAX_MEM_RANGES; n++) {
1139 		if (kmem_io[n].kmem_io_attr.dma_attr_addr_hi <= addr) {
1140 			if (kmem_io[n].kmem_io_arena == NULL)
1141 				kmem_io_init(n);
1142 			return (n);
1143 		}
1144 	}
1145 	panic("kmem_io_index: invalid addr - must be at least 16m");
1146 
1147 	/*NOTREACHED*/
1148 }
1149 
1150 /*
1151  * Return the index of the next kmem_io populated memory range
1152  * after curindex.
1153  */
1154 static int
1155 kmem_io_index_next(int curindex)
1156 {
1157 	int n;
1158 
1159 	for (n = curindex + 1; n < MAX_MEM_RANGES; n++) {
1160 		if (kmem_io[n].kmem_io_arena)
1161 			return (n);
1162 	}
1163 	return (-1);
1164 }
1165 
1166 /*
1167  * allow kmem to be mapped in with different PTE cache attribute settings.
1168  * Used by i_ddi_mem_alloc()
1169  */
1170 int
1171 kmem_override_cache_attrs(caddr_t kva, size_t size, uint_t order)
1172 {
1173 	uint_t hat_flags;
1174 	caddr_t kva_end;
1175 	uint_t hat_attr;
1176 	pfn_t pfn;
1177 
1178 	if (hat_getattr(kas.a_hat, kva, &hat_attr) == -1) {
1179 		return (-1);
1180 	}
1181 
1182 	hat_attr &= ~HAT_ORDER_MASK;
1183 	hat_attr |= order | HAT_NOSYNC;
1184 	hat_flags = HAT_LOAD_LOCK;
1185 
1186 	kva_end = (caddr_t)(((uintptr_t)kva + size + PAGEOFFSET) &
1187 	    (uintptr_t)PAGEMASK);
1188 	kva = (caddr_t)((uintptr_t)kva & (uintptr_t)PAGEMASK);
1189 
1190 	while (kva < kva_end) {
1191 		pfn = hat_getpfnum(kas.a_hat, kva);
1192 		hat_unload(kas.a_hat, kva, PAGESIZE, HAT_UNLOAD_UNLOCK);
1193 		hat_devload(kas.a_hat, kva, PAGESIZE, pfn, hat_attr, hat_flags);
1194 		kva += MMU_PAGESIZE;
1195 	}
1196 
1197 	return (0);
1198 }
1199 
1200 void
1201 ka_init(void)
1202 {
1203 	int a;
1204 	paddr_t maxphysaddr;
1205 #if !defined(__xpv)
1206 	extern pfn_t physmax;
1207 
1208 	maxphysaddr = mmu_ptob((paddr_t)physmax) + MMU_PAGEOFFSET;
1209 #else
1210 	maxphysaddr = mmu_ptob((paddr_t)HYPERVISOR_memory_op(
1211 	    XENMEM_maximum_ram_page, NULL)) + MMU_PAGEOFFSET;
1212 #endif
1213 
1214 	ASSERT(maxphysaddr <= io_arena_params[0].io_limit);
1215 
1216 	for (a = 0; a < MAX_MEM_RANGES; a++) {
1217 		if (maxphysaddr >= io_arena_params[a + 1].io_limit) {
1218 			if (maxphysaddr > io_arena_params[a + 1].io_limit)
1219 				io_arena_params[a].io_limit = maxphysaddr;
1220 			else
1221 				a++;
1222 			break;
1223 		}
1224 	}
1225 	kmem_io_idx = a;
1226 
1227 	for (; a < MAX_MEM_RANGES; a++) {
1228 		kmem_io[a].kmem_io_attr = kmem_io_attr;
1229 		kmem_io[a].kmem_io_attr.dma_attr_addr_hi =
1230 		    io_arena_params[a].io_limit;
1231 		/*
1232 		 * initialize kmem_io[] arena/cache corresponding to
1233 		 * maxphysaddr and to the "common" io memory ranges that
1234 		 * have io_initial set to a non-zero value.
1235 		 */
1236 		if (io_arena_params[a].io_initial || a == kmem_io_idx)
1237 			kmem_io_init(a);
1238 	}
1239 }
1240 
1241 /*
1242  * put contig address/size
1243  */
1244 static void *
1245 putctgas(void *addr, size_t size)
1246 {
1247 	struct ctgas	*ctgp = &ctglist;
1248 	int		i;
1249 
1250 	CTGLOCK();
1251 	do {
1252 		if ((i = ctgp->ctg_index) < CTGENTRIES) {
1253 			ctgp->ctg_addr[i] = addr;
1254 			ctgp->ctg_size[i] = size;
1255 			ctgp->ctg_index++;
1256 			break;
1257 		}
1258 		if (!ctgp->ctg_next)
1259 			ctgp->ctg_next = kmem_zalloc(sizeof (struct ctgas),
1260 			    KM_NOSLEEP);
1261 		ctgp = ctgp->ctg_next;
1262 	} while (ctgp);
1263 
1264 	CTGUNLOCK();
1265 	return (ctgp);
1266 }
1267 
1268 /*
1269  * get contig size by addr
1270  */
1271 static size_t
1272 getctgsz(void *addr)
1273 {
1274 	struct ctgas	*ctgp = &ctglist;
1275 	int		i, j;
1276 	size_t		sz;
1277 
1278 	ASSERT(addr);
1279 	CTGLOCK();
1280 
1281 	while (ctgp) {
1282 		for (i = 0; i < ctgp->ctg_index; i++) {
1283 			if (addr != ctgp->ctg_addr[i])
1284 				continue;
1285 
1286 			sz = ctgp->ctg_size[i];
1287 			j = --ctgp->ctg_index;
1288 			if (i != j) {
1289 				ctgp->ctg_size[i] = ctgp->ctg_size[j];
1290 				ctgp->ctg_addr[i] = ctgp->ctg_addr[j];
1291 			}
1292 			CTGUNLOCK();
1293 			return (sz);
1294 		}
1295 		ctgp = ctgp->ctg_next;
1296 	}
1297 
1298 	CTGUNLOCK();
1299 	return (0);
1300 }
1301 
1302 /*
1303  * contig_alloc:
1304  *
1305  *	allocates contiguous memory to satisfy the 'size' and dma attributes
1306  *	specified in 'attr'.
1307  *
1308  *	Not all of memory need to be physically contiguous if the
1309  *	scatter-gather list length is greater than 1.
1310  */
1311 
1312 /*ARGSUSED*/
1313 void *
1314 contig_alloc(size_t size, ddi_dma_attr_t *attr, uintptr_t align, int cansleep)
1315 {
1316 	pgcnt_t		pgcnt = btopr(size);
1317 	size_t		asize = pgcnt * PAGESIZE;
1318 	page_t		*ppl;
1319 	int		pflag;
1320 	void		*addr;
1321 
1322 	extern page_t *page_create_io(vnode_t *, u_offset_t, uint_t,
1323 	    uint_t, struct as *, caddr_t, ddi_dma_attr_t *);
1324 
1325 	/* segkmem_xalloc */
1326 
1327 	if (align <= PAGESIZE)
1328 		addr = vmem_alloc(heap_arena, asize,
1329 		    (cansleep) ? VM_SLEEP : VM_NOSLEEP);
1330 	else
1331 		addr = vmem_xalloc(heap_arena, asize, align, 0, 0, NULL, NULL,
1332 		    (cansleep) ? VM_SLEEP : VM_NOSLEEP);
1333 	if (addr) {
1334 		ASSERT(!((uintptr_t)addr & (align - 1)));
1335 
1336 		if (page_resv(pgcnt, (cansleep) ? KM_SLEEP : KM_NOSLEEP) == 0) {
1337 			vmem_free(heap_arena, addr, asize);
1338 			return (NULL);
1339 		}
1340 		pflag = PG_EXCL;
1341 
1342 		if (cansleep)
1343 			pflag |= PG_WAIT;
1344 
1345 		/* 4k req gets from freelists rather than pfn search */
1346 		if (pgcnt > 1 || align > PAGESIZE)
1347 			pflag |= PG_PHYSCONTIG;
1348 
1349 		ppl = page_create_io(&kvp, (u_offset_t)(uintptr_t)addr,
1350 		    asize, pflag, &kas, (caddr_t)addr, attr);
1351 
1352 		if (!ppl) {
1353 			vmem_free(heap_arena, addr, asize);
1354 			page_unresv(pgcnt);
1355 			return (NULL);
1356 		}
1357 
1358 		while (ppl != NULL) {
1359 			page_t	*pp = ppl;
1360 			page_sub(&ppl, pp);
1361 			ASSERT(page_iolock_assert(pp));
1362 			page_io_unlock(pp);
1363 			page_downgrade(pp);
1364 			hat_memload(kas.a_hat, (caddr_t)(uintptr_t)pp->p_offset,
1365 			    pp, (PROT_ALL & ~PROT_USER) |
1366 			    HAT_NOSYNC, HAT_LOAD_LOCK);
1367 		}
1368 	}
1369 	return (addr);
1370 }
1371 
1372 void
1373 contig_free(void *addr, size_t size)
1374 {
1375 	pgcnt_t	pgcnt = btopr(size);
1376 	size_t	asize = pgcnt * PAGESIZE;
1377 	caddr_t	a, ea;
1378 	page_t	*pp;
1379 
1380 	hat_unload(kas.a_hat, addr, asize, HAT_UNLOAD_UNLOCK);
1381 
1382 	for (a = addr, ea = a + asize; a < ea; a += PAGESIZE) {
1383 		pp = page_find(&kvp, (u_offset_t)(uintptr_t)a);
1384 		if (!pp)
1385 			panic("contig_free: contig pp not found");
1386 
1387 		if (!page_tryupgrade(pp)) {
1388 			page_unlock(pp);
1389 			pp = page_lookup(&kvp,
1390 			    (u_offset_t)(uintptr_t)a, SE_EXCL);
1391 			if (pp == NULL)
1392 				panic("contig_free: page freed");
1393 		}
1394 		page_destroy(pp, 0);
1395 	}
1396 
1397 	page_unresv(pgcnt);
1398 	vmem_free(heap_arena, addr, asize);
1399 }
1400 
1401 /*
1402  * Allocate from the system, aligned on a specific boundary.
1403  * The alignment, if non-zero, must be a power of 2.
1404  */
1405 static void *
1406 kalloca(size_t size, size_t align, int cansleep, int physcontig,
1407 	ddi_dma_attr_t *attr)
1408 {
1409 	size_t *addr, *raddr, rsize;
1410 	size_t hdrsize = 4 * sizeof (size_t);	/* must be power of 2 */
1411 	int a, i, c;
1412 	vmem_t *vmp;
1413 	kmem_cache_t *cp = NULL;
1414 
1415 	if (attr->dma_attr_addr_lo > mmu_ptob((uint64_t)ddiphysmin))
1416 		return (NULL);
1417 
1418 	align = MAX(align, hdrsize);
1419 	ASSERT((align & (align - 1)) == 0);
1420 
1421 	/*
1422 	 * All of our allocators guarantee 16-byte alignment, so we don't
1423 	 * need to reserve additional space for the header.
1424 	 * To simplify picking the correct kmem_io_cache, we round up to
1425 	 * a multiple of KA_ALIGN.
1426 	 */
1427 	rsize = P2ROUNDUP_TYPED(size + align, KA_ALIGN, size_t);
1428 
1429 	if (physcontig && rsize > PAGESIZE) {
1430 		if (addr = contig_alloc(size, attr, align, cansleep)) {
1431 			if (!putctgas(addr, size))
1432 				contig_free(addr, size);
1433 			else
1434 				return (addr);
1435 		}
1436 		return (NULL);
1437 	}
1438 
1439 	a = kmem_io_index(attr->dma_attr_addr_hi);
1440 
1441 	if (rsize > PAGESIZE) {
1442 		vmp = kmem_io[a].kmem_io_arena;
1443 		raddr = vmem_alloc(vmp, rsize,
1444 		    (cansleep) ? VM_SLEEP : VM_NOSLEEP);
1445 	} else {
1446 		c = highbit((rsize >> KA_ALIGN_SHIFT) - 1);
1447 		cp = kmem_io[a].kmem_io_cache[c];
1448 		raddr = kmem_cache_alloc(cp, (cansleep) ? KM_SLEEP :
1449 		    KM_NOSLEEP);
1450 	}
1451 
1452 	if (raddr == NULL) {
1453 		int	na;
1454 
1455 		ASSERT(cansleep == 0);
1456 		if (rsize > PAGESIZE)
1457 			return (NULL);
1458 		/*
1459 		 * System does not have memory in the requested range.
1460 		 * Try smaller kmem io ranges and larger cache sizes
1461 		 * to see if there might be memory available in
1462 		 * these other caches.
1463 		 */
1464 
1465 		for (na = kmem_io_index_next(a); na >= 0;
1466 		    na = kmem_io_index_next(na)) {
1467 			ASSERT(kmem_io[na].kmem_io_arena);
1468 			cp = kmem_io[na].kmem_io_cache[c];
1469 			raddr = kmem_cache_alloc(cp, KM_NOSLEEP);
1470 			if (raddr)
1471 				goto kallocdone;
1472 		}
1473 		/* now try the larger kmem io cache sizes */
1474 		for (na = a; na >= 0; na = kmem_io_index_next(na)) {
1475 			for (i = c + 1; i < KA_NCACHE; i++) {
1476 				cp = kmem_io[na].kmem_io_cache[i];
1477 				raddr = kmem_cache_alloc(cp, KM_NOSLEEP);
1478 				if (raddr)
1479 					goto kallocdone;
1480 			}
1481 		}
1482 		return (NULL);
1483 	}
1484 
1485 kallocdone:
1486 	ASSERT(!P2BOUNDARY((uintptr_t)raddr, rsize, PAGESIZE) ||
1487 	    rsize > PAGESIZE);
1488 
1489 	addr = (size_t *)P2ROUNDUP((uintptr_t)raddr + hdrsize, align);
1490 	ASSERT((uintptr_t)addr + size - (uintptr_t)raddr <= rsize);
1491 
1492 	addr[-4] = (size_t)cp;
1493 	addr[-3] = (size_t)vmp;
1494 	addr[-2] = (size_t)raddr;
1495 	addr[-1] = rsize;
1496 
1497 	return (addr);
1498 }
1499 
1500 static void
1501 kfreea(void *addr)
1502 {
1503 	size_t		size;
1504 
1505 	if (!((uintptr_t)addr & PAGEOFFSET) && (size = getctgsz(addr))) {
1506 		contig_free(addr, size);
1507 	} else {
1508 		size_t	*saddr = addr;
1509 		if (saddr[-4] == 0)
1510 			vmem_free((vmem_t *)saddr[-3], (void *)saddr[-2],
1511 			    saddr[-1]);
1512 		else
1513 			kmem_cache_free((kmem_cache_t *)saddr[-4],
1514 			    (void *)saddr[-2]);
1515 	}
1516 }
1517 
1518 /*ARGSUSED*/
1519 void
1520 i_ddi_devacc_to_hatacc(ddi_device_acc_attr_t *devaccp, uint_t *hataccp)
1521 {
1522 }
1523 
1524 /*
1525  * Check if the specified cache attribute is supported on the platform.
1526  * This function must be called before i_ddi_cacheattr_to_hatacc().
1527  */
1528 boolean_t
1529 i_ddi_check_cache_attr(uint_t flags)
1530 {
1531 	/*
1532 	 * The cache attributes are mutually exclusive. Any combination of
1533 	 * the attributes leads to a failure.
1534 	 */
1535 	uint_t cache_attr = IOMEM_CACHE_ATTR(flags);
1536 	if ((cache_attr != 0) && ((cache_attr & (cache_attr - 1)) != 0))
1537 		return (B_FALSE);
1538 
1539 	/* All cache attributes are supported on X86/X64 */
1540 	if (cache_attr & (IOMEM_DATA_UNCACHED | IOMEM_DATA_CACHED |
1541 	    IOMEM_DATA_UC_WR_COMBINE))
1542 		return (B_TRUE);
1543 
1544 	/* undefined attributes */
1545 	return (B_FALSE);
1546 }
1547 
1548 /* set HAT cache attributes from the cache attributes */
1549 void
1550 i_ddi_cacheattr_to_hatacc(uint_t flags, uint_t *hataccp)
1551 {
1552 	uint_t cache_attr = IOMEM_CACHE_ATTR(flags);
1553 	static char *fname = "i_ddi_cacheattr_to_hatacc";
1554 
1555 	/*
1556 	 * If write-combining is not supported, then it falls back
1557 	 * to uncacheable.
1558 	 */
1559 	if (cache_attr == IOMEM_DATA_UC_WR_COMBINE &&
1560 	    !is_x86_feature(x86_featureset, X86FSET_PAT))
1561 		cache_attr = IOMEM_DATA_UNCACHED;
1562 
1563 	/*
1564 	 * set HAT attrs according to the cache attrs.
1565 	 */
1566 	switch (cache_attr) {
1567 	case IOMEM_DATA_UNCACHED:
1568 		*hataccp &= ~HAT_ORDER_MASK;
1569 		*hataccp |= (HAT_STRICTORDER | HAT_PLAT_NOCACHE);
1570 		break;
1571 	case IOMEM_DATA_UC_WR_COMBINE:
1572 		*hataccp &= ~HAT_ORDER_MASK;
1573 		*hataccp |= (HAT_MERGING_OK | HAT_PLAT_NOCACHE);
1574 		break;
1575 	case IOMEM_DATA_CACHED:
1576 		*hataccp &= ~HAT_ORDER_MASK;
1577 		*hataccp |= HAT_UNORDERED_OK;
1578 		break;
1579 	/*
1580 	 * This case must not occur because the cache attribute is scrutinized
1581 	 * before this function is called.
1582 	 */
1583 	default:
1584 		/*
1585 		 * set cacheable to hat attrs.
1586 		 */
1587 		*hataccp &= ~HAT_ORDER_MASK;
1588 		*hataccp |= HAT_UNORDERED_OK;
1589 		cmn_err(CE_WARN, "%s: cache_attr=0x%x is ignored.",
1590 		    fname, cache_attr);
1591 	}
1592 }
1593 
1594 /*
1595  * This should actually be called i_ddi_dma_mem_alloc. There should
1596  * also be an i_ddi_pio_mem_alloc. i_ddi_dma_mem_alloc should call
1597  * through the device tree with the DDI_CTLOPS_DMA_ALIGN ctl ops to
1598  * get alignment requirements for DMA memory. i_ddi_pio_mem_alloc
1599  * should use DDI_CTLOPS_PIO_ALIGN. Since we only have i_ddi_mem_alloc
1600  * so far which is used for both, DMA and PIO, we have to use the DMA
1601  * ctl ops to make everybody happy.
1602  */
1603 /*ARGSUSED*/
1604 int
1605 i_ddi_mem_alloc(dev_info_t *dip, ddi_dma_attr_t *attr,
1606 	size_t length, int cansleep, int flags,
1607 	ddi_device_acc_attr_t *accattrp, caddr_t *kaddrp,
1608 	size_t *real_length, ddi_acc_hdl_t *ap)
1609 {
1610 	caddr_t a;
1611 	int iomin;
1612 	ddi_acc_impl_t *iap;
1613 	int physcontig = 0;
1614 	pgcnt_t npages;
1615 	pgcnt_t minctg;
1616 	uint_t order;
1617 	int e;
1618 
1619 	/*
1620 	 * Check legality of arguments
1621 	 */
1622 	if (length == 0 || kaddrp == NULL || attr == NULL) {
1623 		return (DDI_FAILURE);
1624 	}
1625 
1626 	if (attr->dma_attr_minxfer == 0 || attr->dma_attr_align == 0 ||
1627 	    (attr->dma_attr_align & (attr->dma_attr_align - 1)) ||
1628 	    (attr->dma_attr_minxfer & (attr->dma_attr_minxfer - 1))) {
1629 			return (DDI_FAILURE);
1630 	}
1631 
1632 	/*
1633 	 * figure out most restrictive alignment requirement
1634 	 */
1635 	iomin = attr->dma_attr_minxfer;
1636 	iomin = maxbit(iomin, attr->dma_attr_align);
1637 	if (iomin == 0)
1638 		return (DDI_FAILURE);
1639 
1640 	ASSERT((iomin & (iomin - 1)) == 0);
1641 
1642 	/*
1643 	 * if we allocate memory with IOMEM_DATA_UNCACHED or
1644 	 * IOMEM_DATA_UC_WR_COMBINE, make sure we allocate a page aligned
1645 	 * memory that ends on a page boundry.
1646 	 * Don't want to have to different cache mappings to the same
1647 	 * physical page.
1648 	 */
1649 	if (OVERRIDE_CACHE_ATTR(flags)) {
1650 		iomin = (iomin + MMU_PAGEOFFSET) & MMU_PAGEMASK;
1651 		length = (length + MMU_PAGEOFFSET) & (size_t)MMU_PAGEMASK;
1652 	}
1653 
1654 	/*
1655 	 * Determine if we need to satisfy the request for physically
1656 	 * contiguous memory or alignments larger than pagesize.
1657 	 */
1658 	npages = btopr(length + attr->dma_attr_align);
1659 	minctg = howmany(npages, attr->dma_attr_sgllen);
1660 
1661 	if (minctg > 1) {
1662 		uint64_t pfnseg = attr->dma_attr_seg >> PAGESHIFT;
1663 		/*
1664 		 * verify that the minimum contig requirement for the
1665 		 * actual length does not cross segment boundary.
1666 		 */
1667 		length = P2ROUNDUP_TYPED(length, attr->dma_attr_minxfer,
1668 		    size_t);
1669 		npages = btopr(length);
1670 		minctg = howmany(npages, attr->dma_attr_sgllen);
1671 		if (minctg > pfnseg + 1)
1672 			return (DDI_FAILURE);
1673 		physcontig = 1;
1674 	} else {
1675 		length = P2ROUNDUP_TYPED(length, iomin, size_t);
1676 	}
1677 
1678 	/*
1679 	 * Allocate the requested amount from the system.
1680 	 */
1681 	a = kalloca(length, iomin, cansleep, physcontig, attr);
1682 
1683 	if ((*kaddrp = a) == NULL)
1684 		return (DDI_FAILURE);
1685 
1686 	/*
1687 	 * if we to modify the cache attributes, go back and muck with the
1688 	 * mappings.
1689 	 */
1690 	if (OVERRIDE_CACHE_ATTR(flags)) {
1691 		order = 0;
1692 		i_ddi_cacheattr_to_hatacc(flags, &order);
1693 		e = kmem_override_cache_attrs(a, length, order);
1694 		if (e != 0) {
1695 			kfreea(a);
1696 			return (DDI_FAILURE);
1697 		}
1698 	}
1699 
1700 	if (real_length) {
1701 		*real_length = length;
1702 	}
1703 	if (ap) {
1704 		/*
1705 		 * initialize access handle
1706 		 */
1707 		iap = (ddi_acc_impl_t *)ap->ah_platform_private;
1708 		iap->ahi_acc_attr |= DDI_ACCATTR_CPU_VADDR;
1709 		impl_acc_hdl_init(ap);
1710 	}
1711 
1712 	return (DDI_SUCCESS);
1713 }
1714 
1715 /*
1716  * covert old DMA limits structure to DMA attribute structure
1717  * and continue
1718  */
1719 int
1720 i_ddi_mem_alloc_lim(dev_info_t *dip, ddi_dma_lim_t *limits,
1721 	size_t length, int cansleep, int streaming,
1722 	ddi_device_acc_attr_t *accattrp, caddr_t *kaddrp,
1723 	uint_t *real_length, ddi_acc_hdl_t *ap)
1724 {
1725 	ddi_dma_attr_t dma_attr, *attrp;
1726 	size_t rlen;
1727 	int ret;
1728 
1729 	if (limits == NULL) {
1730 		return (DDI_FAILURE);
1731 	}
1732 
1733 	/*
1734 	 * set up DMA attribute structure to pass to i_ddi_mem_alloc()
1735 	 */
1736 	attrp = &dma_attr;
1737 	attrp->dma_attr_version = DMA_ATTR_V0;
1738 	attrp->dma_attr_addr_lo = (uint64_t)limits->dlim_addr_lo;
1739 	attrp->dma_attr_addr_hi = (uint64_t)limits->dlim_addr_hi;
1740 	attrp->dma_attr_count_max = (uint64_t)limits->dlim_ctreg_max;
1741 	attrp->dma_attr_align = 1;
1742 	attrp->dma_attr_burstsizes = (uint_t)limits->dlim_burstsizes;
1743 	attrp->dma_attr_minxfer = (uint32_t)limits->dlim_minxfer;
1744 	attrp->dma_attr_maxxfer = (uint64_t)limits->dlim_reqsize;
1745 	attrp->dma_attr_seg = (uint64_t)limits->dlim_adreg_max;
1746 	attrp->dma_attr_sgllen = limits->dlim_sgllen;
1747 	attrp->dma_attr_granular = (uint32_t)limits->dlim_granular;
1748 	attrp->dma_attr_flags = 0;
1749 
1750 	ret = i_ddi_mem_alloc(dip, attrp, length, cansleep, streaming,
1751 	    accattrp, kaddrp, &rlen, ap);
1752 	if (ret == DDI_SUCCESS) {
1753 		if (real_length)
1754 			*real_length = (uint_t)rlen;
1755 	}
1756 	return (ret);
1757 }
1758 
1759 /* ARGSUSED */
1760 void
1761 i_ddi_mem_free(caddr_t kaddr, ddi_acc_hdl_t *ap)
1762 {
1763 	if (ap != NULL) {
1764 		/*
1765 		 * if we modified the cache attributes on alloc, go back and
1766 		 * fix them since this memory could be returned to the
1767 		 * general pool.
1768 		 */
1769 		if (OVERRIDE_CACHE_ATTR(ap->ah_xfermodes)) {
1770 			uint_t order = 0;
1771 			int e;
1772 			i_ddi_cacheattr_to_hatacc(IOMEM_DATA_CACHED, &order);
1773 			e = kmem_override_cache_attrs(kaddr, ap->ah_len, order);
1774 			if (e != 0) {
1775 				cmn_err(CE_WARN, "i_ddi_mem_free() failed to "
1776 				    "override cache attrs, memory leaked\n");
1777 				return;
1778 			}
1779 		}
1780 	}
1781 	kfreea(kaddr);
1782 }
1783 
1784 /*
1785  * Access Barriers
1786  *
1787  */
1788 /*ARGSUSED*/
1789 int
1790 i_ddi_ontrap(ddi_acc_handle_t hp)
1791 {
1792 	return (DDI_FAILURE);
1793 }
1794 
1795 /*ARGSUSED*/
1796 void
1797 i_ddi_notrap(ddi_acc_handle_t hp)
1798 {
1799 }
1800 
1801 
1802 /*
1803  * Misc Functions
1804  */
1805 
1806 /*
1807  * Implementation instance override functions
1808  *
1809  * No override on i86pc
1810  */
1811 /*ARGSUSED*/
1812 uint_t
1813 impl_assign_instance(dev_info_t *dip)
1814 {
1815 	return ((uint_t)-1);
1816 }
1817 
1818 /*ARGSUSED*/
1819 int
1820 impl_keep_instance(dev_info_t *dip)
1821 {
1822 
1823 #if defined(__xpv)
1824 	/*
1825 	 * Do not persist instance numbers assigned to devices in dom0
1826 	 */
1827 	dev_info_t *pdip;
1828 	if (DOMAIN_IS_INITDOMAIN(xen_info)) {
1829 		if (((pdip = ddi_get_parent(dip)) != NULL) &&
1830 		    (strcmp(ddi_get_name(pdip), "xpvd") == 0))
1831 			return (DDI_SUCCESS);
1832 	}
1833 #endif
1834 	return (DDI_FAILURE);
1835 }
1836 
1837 /*ARGSUSED*/
1838 int
1839 impl_free_instance(dev_info_t *dip)
1840 {
1841 	return (DDI_FAILURE);
1842 }
1843 
1844 /*ARGSUSED*/
1845 int
1846 impl_check_cpu(dev_info_t *devi)
1847 {
1848 	return (DDI_SUCCESS);
1849 }
1850 
1851 /*
1852  * Referenced in common/cpr_driver.c: Power off machine.
1853  * Don't know how to power off i86pc.
1854  */
1855 void
1856 arch_power_down()
1857 {}
1858 
1859 /*
1860  * Copy name to property_name, since name
1861  * is in the low address range below kernelbase.
1862  */
1863 static void
1864 copy_boot_str(const char *boot_str, char *kern_str, int len)
1865 {
1866 	int i = 0;
1867 
1868 	while (i < len - 1 && boot_str[i] != '\0') {
1869 		kern_str[i] = boot_str[i];
1870 		i++;
1871 	}
1872 
1873 	kern_str[i] = 0;	/* null terminate */
1874 	if (boot_str[i] != '\0')
1875 		cmn_err(CE_WARN,
1876 		    "boot property string is truncated to %s", kern_str);
1877 }
1878 
1879 static void
1880 get_boot_properties(void)
1881 {
1882 	extern char hw_provider[];
1883 	dev_info_t *devi;
1884 	char *name;
1885 	int length;
1886 	char property_name[50], property_val[50];
1887 	void *bop_staging_area;
1888 
1889 	bop_staging_area = kmem_zalloc(MMU_PAGESIZE, KM_NOSLEEP);
1890 
1891 	/*
1892 	 * Import "root" properties from the boot.
1893 	 *
1894 	 * We do this by invoking BOP_NEXTPROP until the list
1895 	 * is completely copied in.
1896 	 */
1897 
1898 	devi = ddi_root_node();
1899 	for (name = BOP_NEXTPROP(bootops, "");		/* get first */
1900 	    name;					/* NULL => DONE */
1901 	    name = BOP_NEXTPROP(bootops, name)) {	/* get next */
1902 
1903 		/* copy string to memory above kernelbase */
1904 		copy_boot_str(name, property_name, 50);
1905 
1906 		/*
1907 		 * Skip vga properties. They will be picked up later
1908 		 * by get_vga_properties.
1909 		 */
1910 		if (strcmp(property_name, "display-edif-block") == 0 ||
1911 		    strcmp(property_name, "display-edif-id") == 0) {
1912 			continue;
1913 		}
1914 
1915 		length = BOP_GETPROPLEN(bootops, property_name);
1916 		if (length == 0)
1917 			continue;
1918 		if (length > MMU_PAGESIZE) {
1919 			cmn_err(CE_NOTE,
1920 			    "boot property %s longer than 0x%x, ignored\n",
1921 			    property_name, MMU_PAGESIZE);
1922 			continue;
1923 		}
1924 		BOP_GETPROP(bootops, property_name, bop_staging_area);
1925 
1926 		/*
1927 		 * special properties:
1928 		 * si-machine, si-hw-provider
1929 		 *	goes to kernel data structures.
1930 		 * bios-boot-device and stdout
1931 		 *	goes to hardware property list so it may show up
1932 		 *	in the prtconf -vp output. This is needed by
1933 		 *	Install/Upgrade. Once we fix install upgrade,
1934 		 *	this can be taken out.
1935 		 */
1936 		if (strcmp(name, "si-machine") == 0) {
1937 			(void) strncpy(utsname.machine, bop_staging_area,
1938 			    SYS_NMLN);
1939 			utsname.machine[SYS_NMLN - 1] = (char)NULL;
1940 		} else if (strcmp(name, "si-hw-provider") == 0) {
1941 			(void) strncpy(hw_provider, bop_staging_area, SYS_NMLN);
1942 			hw_provider[SYS_NMLN - 1] = (char)NULL;
1943 		} else if (strcmp(name, "bios-boot-device") == 0) {
1944 			copy_boot_str(bop_staging_area, property_val, 50);
1945 			(void) ndi_prop_update_string(DDI_DEV_T_NONE, devi,
1946 			    property_name, property_val);
1947 		} else if (strcmp(name, "stdout") == 0) {
1948 			(void) ndi_prop_update_int(DDI_DEV_T_NONE, devi,
1949 			    property_name, *((int *)bop_staging_area));
1950 		} else {
1951 			/* Property type unknown, use old prop interface */
1952 			(void) e_ddi_prop_create(DDI_DEV_T_NONE, devi,
1953 			    DDI_PROP_CANSLEEP, property_name, bop_staging_area,
1954 			    length);
1955 		}
1956 	}
1957 
1958 	kmem_free(bop_staging_area, MMU_PAGESIZE);
1959 }
1960 
1961 static void
1962 get_vga_properties(void)
1963 {
1964 	dev_info_t *devi;
1965 	major_t major;
1966 	char *name;
1967 	int length;
1968 	char property_val[50];
1969 	void *bop_staging_area;
1970 
1971 	/*
1972 	 * XXXX Hack Allert!
1973 	 * There really needs to be a better way for identifying various
1974 	 * console framebuffers and their related issues.  Till then,
1975 	 * check for this one as a replacement to vgatext.
1976 	 */
1977 	major = ddi_name_to_major("ragexl");
1978 	if (major == (major_t)-1) {
1979 		major = ddi_name_to_major("vgatext");
1980 		if (major == (major_t)-1)
1981 			return;
1982 	}
1983 	devi = devnamesp[major].dn_head;
1984 	if (devi == NULL)
1985 		return;
1986 
1987 	bop_staging_area = kmem_zalloc(MMU_PAGESIZE, KM_SLEEP);
1988 
1989 	/*
1990 	 * Import "vga" properties from the boot.
1991 	 */
1992 	name = "display-edif-block";
1993 	length = BOP_GETPROPLEN(bootops, name);
1994 	if (length > 0 && length < MMU_PAGESIZE) {
1995 		BOP_GETPROP(bootops, name, bop_staging_area);
1996 		(void) ndi_prop_update_byte_array(DDI_DEV_T_NONE,
1997 		    devi, name, bop_staging_area, length);
1998 	}
1999 
2000 	/*
2001 	 * kdmconfig is also looking for display-type and
2002 	 * video-adapter-type. We default to color and svga.
2003 	 *
2004 	 * Could it be "monochrome", "vga"?
2005 	 * Nah, you've got to come to the 21st century...
2006 	 * And you can set monitor type manually in kdmconfig
2007 	 * if you are really an old junky.
2008 	 */
2009 	(void) ndi_prop_update_string(DDI_DEV_T_NONE,
2010 	    devi, "display-type", "color");
2011 	(void) ndi_prop_update_string(DDI_DEV_T_NONE,
2012 	    devi, "video-adapter-type", "svga");
2013 
2014 	name = "display-edif-id";
2015 	length = BOP_GETPROPLEN(bootops, name);
2016 	if (length > 0 && length < MMU_PAGESIZE) {
2017 		BOP_GETPROP(bootops, name, bop_staging_area);
2018 		copy_boot_str(bop_staging_area, property_val, length);
2019 		(void) ndi_prop_update_string(DDI_DEV_T_NONE,
2020 		    devi, name, property_val);
2021 	}
2022 
2023 	kmem_free(bop_staging_area, MMU_PAGESIZE);
2024 }
2025 
2026 
2027 /*
2028  * This is temporary, but absolutely necessary.  If we are being
2029  * booted with a device tree created by the DevConf project's bootconf
2030  * program, then we have device information nodes that reflect
2031  * reality.  At this point in time in the Solaris release schedule, the
2032  * kernel drivers aren't prepared for reality.  They still depend on their
2033  * own ad-hoc interpretations of the properties created when their .conf
2034  * files were interpreted. These drivers use an "ignore-hardware-nodes"
2035  * property to prevent them from using the nodes passed up from the bootconf
2036  * device tree.
2037  *
2038  * Trying to assemble root file system drivers as we are booting from
2039  * devconf will fail if the kernel driver is basing its name_addr's on the
2040  * psuedo-node device info while the bootpath passed up from bootconf is using
2041  * reality-based name_addrs.  We help the boot along in this case by
2042  * looking at the pre-bootconf bootpath and determining if we would have
2043  * successfully matched if that had been the bootpath we had chosen.
2044  *
2045  * Note that we only even perform this extra check if we've booted
2046  * using bootconf's 1275 compliant bootpath, this is the boot device, and
2047  * we're trying to match the name_addr specified in the 1275 bootpath.
2048  */
2049 
2050 #define	MAXCOMPONENTLEN	32
2051 
2052 int
2053 x86_old_bootpath_name_addr_match(dev_info_t *cdip, char *caddr, char *naddr)
2054 {
2055 	/*
2056 	 *  There are multiple criteria to be met before we can even
2057 	 *  consider allowing a name_addr match here.
2058 	 *
2059 	 *  1) We must have been booted such that the bootconf program
2060 	 *	created device tree nodes and properties.  This can be
2061 	 *	determined by examining the 'bootpath' property.  This
2062 	 *	property will be a non-null string iff bootconf was
2063 	 *	involved in the boot.
2064 	 *
2065 	 *  2) The module that we want to match must be the boot device.
2066 	 *
2067 	 *  3) The instance of the module we are thinking of letting be
2068 	 *	our match must be ignoring hardware nodes.
2069 	 *
2070 	 *  4) The name_addr we want to match must be the name_addr
2071 	 *	specified in the 1275 bootpath.
2072 	 */
2073 	static char bootdev_module[MAXCOMPONENTLEN];
2074 	static char bootdev_oldmod[MAXCOMPONENTLEN];
2075 	static char bootdev_newaddr[MAXCOMPONENTLEN];
2076 	static char bootdev_oldaddr[MAXCOMPONENTLEN];
2077 	static int  quickexit;
2078 
2079 	char *daddr;
2080 	int dlen;
2081 
2082 	char	*lkupname;
2083 	int	rv = DDI_FAILURE;
2084 
2085 	if ((ddi_getlongprop(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS,
2086 	    "devconf-addr", (caddr_t)&daddr, &dlen) == DDI_PROP_SUCCESS) &&
2087 	    (ddi_getprop(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS,
2088 	    "ignore-hardware-nodes", -1) != -1)) {
2089 		if (strcmp(daddr, caddr) == 0) {
2090 			return (DDI_SUCCESS);
2091 		}
2092 	}
2093 
2094 	if (quickexit)
2095 		return (rv);
2096 
2097 	if (bootdev_module[0] == '\0') {
2098 		char *addrp, *eoaddrp;
2099 		char *busp, *modp, *atp;
2100 		char *bp1275, *bp;
2101 		int  bp1275len, bplen;
2102 
2103 		bp1275 = bp = addrp = eoaddrp = busp = modp = atp = NULL;
2104 
2105 		if (ddi_getlongprop(DDI_DEV_T_ANY,
2106 		    ddi_root_node(), 0, "bootpath",
2107 		    (caddr_t)&bp1275, &bp1275len) != DDI_PROP_SUCCESS ||
2108 		    bp1275len <= 1) {
2109 			/*
2110 			 * We didn't boot from bootconf so we never need to
2111 			 * do any special matches.
2112 			 */
2113 			quickexit = 1;
2114 			if (bp1275)
2115 				kmem_free(bp1275, bp1275len);
2116 			return (rv);
2117 		}
2118 
2119 		if (ddi_getlongprop(DDI_DEV_T_ANY,
2120 		    ddi_root_node(), 0, "boot-path",
2121 		    (caddr_t)&bp, &bplen) != DDI_PROP_SUCCESS || bplen <= 1) {
2122 			/*
2123 			 * No fallback position for matching. This is
2124 			 * certainly unexpected, but we'll handle it
2125 			 * just in case.
2126 			 */
2127 			quickexit = 1;
2128 			kmem_free(bp1275, bp1275len);
2129 			if (bp)
2130 				kmem_free(bp, bplen);
2131 			return (rv);
2132 		}
2133 
2134 		/*
2135 		 *  Determine boot device module and 1275 name_addr
2136 		 *
2137 		 *  bootpath assumed to be of the form /bus/module@name_addr
2138 		 */
2139 		if (busp = strchr(bp1275, '/')) {
2140 			if (modp = strchr(busp + 1, '/')) {
2141 				if (atp = strchr(modp + 1, '@')) {
2142 					*atp = '\0';
2143 					addrp = atp + 1;
2144 					if (eoaddrp = strchr(addrp, '/'))
2145 						*eoaddrp = '\0';
2146 				}
2147 			}
2148 		}
2149 
2150 		if (modp && addrp) {
2151 			(void) strncpy(bootdev_module, modp + 1,
2152 			    MAXCOMPONENTLEN);
2153 			bootdev_module[MAXCOMPONENTLEN - 1] = '\0';
2154 
2155 			(void) strncpy(bootdev_newaddr, addrp, MAXCOMPONENTLEN);
2156 			bootdev_newaddr[MAXCOMPONENTLEN - 1] = '\0';
2157 		} else {
2158 			quickexit = 1;
2159 			kmem_free(bp1275, bp1275len);
2160 			kmem_free(bp, bplen);
2161 			return (rv);
2162 		}
2163 
2164 		/*
2165 		 *  Determine fallback name_addr
2166 		 *
2167 		 *  10/3/96 - Also save fallback module name because it
2168 		 *  might actually be different than the current module
2169 		 *  name.  E.G., ISA pnp drivers have new names.
2170 		 *
2171 		 *  bootpath assumed to be of the form /bus/module@name_addr
2172 		 */
2173 		addrp = NULL;
2174 		if (busp = strchr(bp, '/')) {
2175 			if (modp = strchr(busp + 1, '/')) {
2176 				if (atp = strchr(modp + 1, '@')) {
2177 					*atp = '\0';
2178 					addrp = atp + 1;
2179 					if (eoaddrp = strchr(addrp, '/'))
2180 						*eoaddrp = '\0';
2181 				}
2182 			}
2183 		}
2184 
2185 		if (modp && addrp) {
2186 			(void) strncpy(bootdev_oldmod, modp + 1,
2187 			    MAXCOMPONENTLEN);
2188 			bootdev_module[MAXCOMPONENTLEN - 1] = '\0';
2189 
2190 			(void) strncpy(bootdev_oldaddr, addrp, MAXCOMPONENTLEN);
2191 			bootdev_oldaddr[MAXCOMPONENTLEN - 1] = '\0';
2192 		}
2193 
2194 		/* Free up the bootpath storage now that we're done with it. */
2195 		kmem_free(bp1275, bp1275len);
2196 		kmem_free(bp, bplen);
2197 
2198 		if (bootdev_oldaddr[0] == '\0') {
2199 			quickexit = 1;
2200 			return (rv);
2201 		}
2202 	}
2203 
2204 	if (((lkupname = ddi_get_name(cdip)) != NULL) &&
2205 	    (strcmp(bootdev_module, lkupname) == 0 ||
2206 	    strcmp(bootdev_oldmod, lkupname) == 0) &&
2207 	    ((ddi_getprop(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS,
2208 	    "ignore-hardware-nodes", -1) != -1) ||
2209 	    ignore_hardware_nodes) &&
2210 	    strcmp(bootdev_newaddr, caddr) == 0 &&
2211 	    strcmp(bootdev_oldaddr, naddr) == 0) {
2212 		rv = DDI_SUCCESS;
2213 	}
2214 
2215 	return (rv);
2216 }
2217 
2218 /*
2219  * Perform a copy from a memory mapped device (whose devinfo pointer is devi)
2220  * separately mapped at devaddr in the kernel to a kernel buffer at kaddr.
2221  */
2222 /*ARGSUSED*/
2223 int
2224 e_ddi_copyfromdev(dev_info_t *devi,
2225     off_t off, const void *devaddr, void *kaddr, size_t len)
2226 {
2227 	bcopy(devaddr, kaddr, len);
2228 	return (0);
2229 }
2230 
2231 /*
2232  * Perform a copy to a memory mapped device (whose devinfo pointer is devi)
2233  * separately mapped at devaddr in the kernel from a kernel buffer at kaddr.
2234  */
2235 /*ARGSUSED*/
2236 int
2237 e_ddi_copytodev(dev_info_t *devi,
2238     off_t off, const void *kaddr, void *devaddr, size_t len)
2239 {
2240 	bcopy(kaddr, devaddr, len);
2241 	return (0);
2242 }
2243 
2244 
2245 static int
2246 poke_mem(peekpoke_ctlops_t *in_args)
2247 {
2248 	int err = DDI_SUCCESS;
2249 	on_trap_data_t otd;
2250 
2251 	/* Set up protected environment. */
2252 	if (!on_trap(&otd, OT_DATA_ACCESS)) {
2253 		switch (in_args->size) {
2254 		case sizeof (uint8_t):
2255 			*(uint8_t *)(in_args->dev_addr) =
2256 			    *(uint8_t *)in_args->host_addr;
2257 			break;
2258 
2259 		case sizeof (uint16_t):
2260 			*(uint16_t *)(in_args->dev_addr) =
2261 			    *(uint16_t *)in_args->host_addr;
2262 			break;
2263 
2264 		case sizeof (uint32_t):
2265 			*(uint32_t *)(in_args->dev_addr) =
2266 			    *(uint32_t *)in_args->host_addr;
2267 			break;
2268 
2269 		case sizeof (uint64_t):
2270 			*(uint64_t *)(in_args->dev_addr) =
2271 			    *(uint64_t *)in_args->host_addr;
2272 			break;
2273 
2274 		default:
2275 			err = DDI_FAILURE;
2276 			break;
2277 		}
2278 	} else
2279 		err = DDI_FAILURE;
2280 
2281 	/* Take down protected environment. */
2282 	no_trap();
2283 
2284 	return (err);
2285 }
2286 
2287 
2288 static int
2289 peek_mem(peekpoke_ctlops_t *in_args)
2290 {
2291 	int err = DDI_SUCCESS;
2292 	on_trap_data_t otd;
2293 
2294 	if (!on_trap(&otd, OT_DATA_ACCESS)) {
2295 		switch (in_args->size) {
2296 		case sizeof (uint8_t):
2297 			*(uint8_t *)in_args->host_addr =
2298 			    *(uint8_t *)in_args->dev_addr;
2299 			break;
2300 
2301 		case sizeof (uint16_t):
2302 			*(uint16_t *)in_args->host_addr =
2303 			    *(uint16_t *)in_args->dev_addr;
2304 			break;
2305 
2306 		case sizeof (uint32_t):
2307 			*(uint32_t *)in_args->host_addr =
2308 			    *(uint32_t *)in_args->dev_addr;
2309 			break;
2310 
2311 		case sizeof (uint64_t):
2312 			*(uint64_t *)in_args->host_addr =
2313 			    *(uint64_t *)in_args->dev_addr;
2314 			break;
2315 
2316 		default:
2317 			err = DDI_FAILURE;
2318 			break;
2319 		}
2320 	} else
2321 		err = DDI_FAILURE;
2322 
2323 	no_trap();
2324 	return (err);
2325 }
2326 
2327 
2328 /*
2329  * This is called only to process peek/poke when the DIP is NULL.
2330  * Assume that this is for memory, as nexi take care of device safe accesses.
2331  */
2332 int
2333 peekpoke_mem(ddi_ctl_enum_t cmd, peekpoke_ctlops_t *in_args)
2334 {
2335 	return (cmd == DDI_CTLOPS_PEEK ? peek_mem(in_args) : poke_mem(in_args));
2336 }
2337 
2338 /*
2339  * we've just done a cautious put/get. Check if it was successful by
2340  * calling pci_ereport_post() on all puts and for any gets that return -1
2341  */
2342 static int
2343 pci_peekpoke_check_fma(dev_info_t *dip, void *arg, ddi_ctl_enum_t ctlop,
2344     void (*scan)(dev_info_t *, ddi_fm_error_t *))
2345 {
2346 	int	rval = DDI_SUCCESS;
2347 	peekpoke_ctlops_t *in_args = (peekpoke_ctlops_t *)arg;
2348 	ddi_fm_error_t de;
2349 	ddi_acc_impl_t *hp = (ddi_acc_impl_t *)in_args->handle;
2350 	ddi_acc_hdl_t *hdlp = (ddi_acc_hdl_t *)in_args->handle;
2351 	int check_err = 0;
2352 	int repcount = in_args->repcount;
2353 
2354 	if (ctlop == DDI_CTLOPS_POKE &&
2355 	    hdlp->ah_acc.devacc_attr_access != DDI_CAUTIOUS_ACC)
2356 		return (DDI_SUCCESS);
2357 
2358 	if (ctlop == DDI_CTLOPS_PEEK &&
2359 	    hdlp->ah_acc.devacc_attr_access != DDI_CAUTIOUS_ACC) {
2360 		for (; repcount; repcount--) {
2361 			switch (in_args->size) {
2362 			case sizeof (uint8_t):
2363 				if (*(uint8_t *)in_args->host_addr == 0xff)
2364 					check_err = 1;
2365 				break;
2366 			case sizeof (uint16_t):
2367 				if (*(uint16_t *)in_args->host_addr == 0xffff)
2368 					check_err = 1;
2369 				break;
2370 			case sizeof (uint32_t):
2371 				if (*(uint32_t *)in_args->host_addr ==
2372 				    0xffffffff)
2373 					check_err = 1;
2374 				break;
2375 			case sizeof (uint64_t):
2376 				if (*(uint64_t *)in_args->host_addr ==
2377 				    0xffffffffffffffff)
2378 					check_err = 1;
2379 				break;
2380 			}
2381 		}
2382 		if (check_err == 0)
2383 			return (DDI_SUCCESS);
2384 	}
2385 	/*
2386 	 * for a cautious put or get or a non-cautious get that returned -1 call
2387 	 * io framework to see if there really was an error
2388 	 */
2389 	bzero(&de, sizeof (ddi_fm_error_t));
2390 	de.fme_version = DDI_FME_VERSION;
2391 	de.fme_ena = fm_ena_generate(0, FM_ENA_FMT1);
2392 	if (hdlp->ah_acc.devacc_attr_access == DDI_CAUTIOUS_ACC) {
2393 		de.fme_flag = DDI_FM_ERR_EXPECTED;
2394 		de.fme_acc_handle = in_args->handle;
2395 	} else if (hdlp->ah_acc.devacc_attr_access == DDI_DEFAULT_ACC) {
2396 		/*
2397 		 * We only get here with DDI_DEFAULT_ACC for config space gets.
2398 		 * Non-hardened drivers may be probing the hardware and
2399 		 * expecting -1 returned. So need to treat errors on
2400 		 * DDI_DEFAULT_ACC as DDI_FM_ERR_EXPECTED.
2401 		 */
2402 		de.fme_flag = DDI_FM_ERR_EXPECTED;
2403 		de.fme_acc_handle = in_args->handle;
2404 	} else {
2405 		/*
2406 		 * Hardened driver doing protected accesses shouldn't
2407 		 * get errors unless there's a hardware problem. Treat
2408 		 * as nonfatal if there's an error, but set UNEXPECTED
2409 		 * so we raise ereports on any errors and potentially
2410 		 * fault the device
2411 		 */
2412 		de.fme_flag = DDI_FM_ERR_UNEXPECTED;
2413 	}
2414 	(void) scan(dip, &de);
2415 	if (hdlp->ah_acc.devacc_attr_access != DDI_DEFAULT_ACC &&
2416 	    de.fme_status != DDI_FM_OK) {
2417 		ndi_err_t *errp = (ndi_err_t *)hp->ahi_err;
2418 		rval = DDI_FAILURE;
2419 		errp->err_ena = de.fme_ena;
2420 		errp->err_expected = de.fme_flag;
2421 		errp->err_status = DDI_FM_NONFATAL;
2422 	}
2423 	return (rval);
2424 }
2425 
2426 /*
2427  * pci_peekpoke_check_nofma() is for when an error occurs on a register access
2428  * during pci_ereport_post(). We can't call pci_ereport_post() again or we'd
2429  * recurse, so assume all puts are OK and gets have failed if they return -1
2430  */
2431 static int
2432 pci_peekpoke_check_nofma(void *arg, ddi_ctl_enum_t ctlop)
2433 {
2434 	int rval = DDI_SUCCESS;
2435 	peekpoke_ctlops_t *in_args = (peekpoke_ctlops_t *)arg;
2436 	ddi_acc_impl_t *hp = (ddi_acc_impl_t *)in_args->handle;
2437 	ddi_acc_hdl_t *hdlp = (ddi_acc_hdl_t *)in_args->handle;
2438 	int repcount = in_args->repcount;
2439 
2440 	if (ctlop == DDI_CTLOPS_POKE)
2441 		return (rval);
2442 
2443 	for (; repcount; repcount--) {
2444 		switch (in_args->size) {
2445 		case sizeof (uint8_t):
2446 			if (*(uint8_t *)in_args->host_addr == 0xff)
2447 				rval = DDI_FAILURE;
2448 			break;
2449 		case sizeof (uint16_t):
2450 			if (*(uint16_t *)in_args->host_addr == 0xffff)
2451 				rval = DDI_FAILURE;
2452 			break;
2453 		case sizeof (uint32_t):
2454 			if (*(uint32_t *)in_args->host_addr == 0xffffffff)
2455 				rval = DDI_FAILURE;
2456 			break;
2457 		case sizeof (uint64_t):
2458 			if (*(uint64_t *)in_args->host_addr ==
2459 			    0xffffffffffffffff)
2460 				rval = DDI_FAILURE;
2461 			break;
2462 		}
2463 	}
2464 	if (hdlp->ah_acc.devacc_attr_access != DDI_DEFAULT_ACC &&
2465 	    rval == DDI_FAILURE) {
2466 		ndi_err_t *errp = (ndi_err_t *)hp->ahi_err;
2467 		errp->err_ena = fm_ena_generate(0, FM_ENA_FMT1);
2468 		errp->err_expected = DDI_FM_ERR_UNEXPECTED;
2469 		errp->err_status = DDI_FM_NONFATAL;
2470 	}
2471 	return (rval);
2472 }
2473 
2474 int
2475 pci_peekpoke_check(dev_info_t *dip, dev_info_t *rdip,
2476 	ddi_ctl_enum_t ctlop, void *arg, void *result,
2477 	int (*handler)(dev_info_t *, dev_info_t *, ddi_ctl_enum_t, void *,
2478 	void *), kmutex_t *err_mutexp, kmutex_t *peek_poke_mutexp,
2479 	void (*scan)(dev_info_t *, ddi_fm_error_t *))
2480 {
2481 	int rval;
2482 	peekpoke_ctlops_t *in_args = (peekpoke_ctlops_t *)arg;
2483 	ddi_acc_impl_t *hp = (ddi_acc_impl_t *)in_args->handle;
2484 
2485 	/*
2486 	 * this function only supports cautious accesses, not peeks/pokes
2487 	 * which don't have a handle
2488 	 */
2489 	if (hp == NULL)
2490 		return (DDI_FAILURE);
2491 
2492 	if (hp->ahi_acc_attr & DDI_ACCATTR_CONFIG_SPACE) {
2493 		if (!mutex_tryenter(err_mutexp)) {
2494 			/*
2495 			 * As this may be a recursive call from within
2496 			 * pci_ereport_post() we can't wait for the mutexes.
2497 			 * Fortunately we know someone is already calling
2498 			 * pci_ereport_post() which will handle the error bits
2499 			 * for us, and as this is a config space access we can
2500 			 * just do the access and check return value for -1
2501 			 * using pci_peekpoke_check_nofma().
2502 			 */
2503 			rval = handler(dip, rdip, ctlop, arg, result);
2504 			if (rval == DDI_SUCCESS)
2505 				rval = pci_peekpoke_check_nofma(arg, ctlop);
2506 			return (rval);
2507 		}
2508 		/*
2509 		 * This can't be a recursive call. Drop the err_mutex and get
2510 		 * both mutexes in the right order. If an error hasn't already
2511 		 * been detected by the ontrap code, use pci_peekpoke_check_fma
2512 		 * which will call pci_ereport_post() to check error status.
2513 		 */
2514 		mutex_exit(err_mutexp);
2515 	}
2516 	mutex_enter(peek_poke_mutexp);
2517 	rval = handler(dip, rdip, ctlop, arg, result);
2518 	if (rval == DDI_SUCCESS) {
2519 		mutex_enter(err_mutexp);
2520 		rval = pci_peekpoke_check_fma(dip, arg, ctlop, scan);
2521 		mutex_exit(err_mutexp);
2522 	}
2523 	mutex_exit(peek_poke_mutexp);
2524 	return (rval);
2525 }
2526 
2527 void
2528 impl_setup_ddi(void)
2529 {
2530 #if !defined(__xpv)
2531 	extern void startup_bios_disk(void);
2532 	extern int post_fastreboot;
2533 #endif
2534 	dev_info_t *xdip, *isa_dip;
2535 	rd_existing_t rd_mem_prop;
2536 	int err;
2537 
2538 	ndi_devi_alloc_sleep(ddi_root_node(), "ramdisk",
2539 	    (pnode_t)DEVI_SID_NODEID, &xdip);
2540 
2541 	(void) BOP_GETPROP(bootops,
2542 	    "ramdisk_start", (void *)&ramdisk_start);
2543 	(void) BOP_GETPROP(bootops,
2544 	    "ramdisk_end", (void *)&ramdisk_end);
2545 
2546 #ifdef __xpv
2547 	ramdisk_start -= ONE_GIG;
2548 	ramdisk_end -= ONE_GIG;
2549 #endif
2550 	rd_mem_prop.phys = ramdisk_start;
2551 	rd_mem_prop.size = ramdisk_end - ramdisk_start + 1;
2552 
2553 	(void) ndi_prop_update_byte_array(DDI_DEV_T_NONE, xdip,
2554 	    RD_EXISTING_PROP_NAME, (uchar_t *)&rd_mem_prop,
2555 	    sizeof (rd_mem_prop));
2556 	err = ndi_devi_bind_driver(xdip, 0);
2557 	ASSERT(err == 0);
2558 
2559 	/* isa node */
2560 	if (pseudo_isa) {
2561 		ndi_devi_alloc_sleep(ddi_root_node(), "isa",
2562 		    (pnode_t)DEVI_SID_NODEID, &isa_dip);
2563 		(void) ndi_prop_update_string(DDI_DEV_T_NONE, isa_dip,
2564 		    "device_type", "isa");
2565 		(void) ndi_prop_update_string(DDI_DEV_T_NONE, isa_dip,
2566 		    "bus-type", "isa");
2567 		(void) ndi_devi_bind_driver(isa_dip, 0);
2568 	}
2569 
2570 	/*
2571 	 * Read in the properties from the boot.
2572 	 */
2573 	get_boot_properties();
2574 
2575 	/* not framebuffer should be enumerated, if present */
2576 	get_vga_properties();
2577 
2578 	/*
2579 	 * Check for administratively disabled drivers.
2580 	 */
2581 	check_driver_disable();
2582 
2583 #if !defined(__xpv)
2584 	if (!post_fastreboot)
2585 		startup_bios_disk();
2586 #endif
2587 	/* do bus dependent probes. */
2588 	impl_bus_initialprobe();
2589 }
2590 
2591 dev_t
2592 getrootdev(void)
2593 {
2594 	/*
2595 	 * Precedence given to rootdev if set in /etc/system
2596 	 */
2597 	if (root_is_svm == B_TRUE) {
2598 		return (ddi_pathname_to_dev_t(svm_bootpath));
2599 	}
2600 
2601 	/*
2602 	 * Usually rootfs.bo_name is initialized by the
2603 	 * the bootpath property from bootenv.rc, but
2604 	 * defaults to "/ramdisk:a" otherwise.
2605 	 */
2606 	return (ddi_pathname_to_dev_t(rootfs.bo_name));
2607 }
2608 
2609 static struct bus_probe {
2610 	struct bus_probe *next;
2611 	void (*probe)(int);
2612 } *bus_probes;
2613 
2614 void
2615 impl_bus_add_probe(void (*func)(int))
2616 {
2617 	struct bus_probe *probe;
2618 	struct bus_probe *lastprobe = NULL;
2619 
2620 	probe = kmem_alloc(sizeof (*probe), KM_SLEEP);
2621 	probe->probe = func;
2622 	probe->next = NULL;
2623 
2624 	if (!bus_probes) {
2625 		bus_probes = probe;
2626 		return;
2627 	}
2628 
2629 	lastprobe = bus_probes;
2630 	while (lastprobe->next)
2631 		lastprobe = lastprobe->next;
2632 	lastprobe->next = probe;
2633 }
2634 
2635 /*ARGSUSED*/
2636 void
2637 impl_bus_delete_probe(void (*func)(int))
2638 {
2639 	struct bus_probe *prev = NULL;
2640 	struct bus_probe *probe = bus_probes;
2641 
2642 	while (probe) {
2643 		if (probe->probe == func)
2644 			break;
2645 		prev = probe;
2646 		probe = probe->next;
2647 	}
2648 
2649 	if (probe == NULL)
2650 		return;
2651 
2652 	if (prev)
2653 		prev->next = probe->next;
2654 	else
2655 		bus_probes = probe->next;
2656 
2657 	kmem_free(probe, sizeof (struct bus_probe));
2658 }
2659 
2660 /*
2661  * impl_bus_initialprobe
2662  *	Modload the prom simulator, then let it probe to verify existence
2663  *	and type of PCI support.
2664  */
2665 static void
2666 impl_bus_initialprobe(void)
2667 {
2668 	struct bus_probe *probe;
2669 
2670 	/* load modules to install bus probes */
2671 #if defined(__xpv)
2672 	if (DOMAIN_IS_INITDOMAIN(xen_info)) {
2673 		if (modload("misc", "pci_autoconfig") < 0) {
2674 			panic("failed to load misc/pci_autoconfig");
2675 		}
2676 
2677 		if (modload("drv", "isa") < 0)
2678 			panic("failed to load drv/isa");
2679 	}
2680 
2681 	(void) modload("misc", "xpv_autoconfig");
2682 #else
2683 	if (modload("misc", "pci_autoconfig") < 0) {
2684 		panic("failed to load misc/pci_autoconfig");
2685 	}
2686 
2687 	(void) modload("misc", "acpidev");
2688 
2689 	if (modload("drv", "isa") < 0)
2690 		panic("failed to load drv/isa");
2691 #endif
2692 
2693 	probe = bus_probes;
2694 	while (probe) {
2695 		/* run the probe functions */
2696 		(*probe->probe)(0);
2697 		probe = probe->next;
2698 	}
2699 }
2700 
2701 /*
2702  * impl_bus_reprobe
2703  *	Reprogram devices not set up by firmware.
2704  */
2705 static void
2706 impl_bus_reprobe(void)
2707 {
2708 	struct bus_probe *probe;
2709 
2710 	probe = bus_probes;
2711 	while (probe) {
2712 		/* run the probe function */
2713 		(*probe->probe)(1);
2714 		probe = probe->next;
2715 	}
2716 }
2717 
2718 
2719 /*
2720  * The following functions ready a cautious request to go up to the nexus
2721  * driver.  It is up to the nexus driver to decide how to process the request.
2722  * It may choose to call i_ddi_do_caut_get/put in this file, or do it
2723  * differently.
2724  */
2725 
2726 static void
2727 i_ddi_caut_getput_ctlops(ddi_acc_impl_t *hp, uint64_t host_addr,
2728     uint64_t dev_addr, size_t size, size_t repcount, uint_t flags,
2729     ddi_ctl_enum_t cmd)
2730 {
2731 	peekpoke_ctlops_t	cautacc_ctlops_arg;
2732 
2733 	cautacc_ctlops_arg.size = size;
2734 	cautacc_ctlops_arg.dev_addr = dev_addr;
2735 	cautacc_ctlops_arg.host_addr = host_addr;
2736 	cautacc_ctlops_arg.handle = (ddi_acc_handle_t)hp;
2737 	cautacc_ctlops_arg.repcount = repcount;
2738 	cautacc_ctlops_arg.flags = flags;
2739 
2740 	(void) ddi_ctlops(hp->ahi_common.ah_dip, hp->ahi_common.ah_dip, cmd,
2741 	    &cautacc_ctlops_arg, NULL);
2742 }
2743 
2744 uint8_t
2745 i_ddi_caut_get8(ddi_acc_impl_t *hp, uint8_t *addr)
2746 {
2747 	uint8_t value;
2748 	i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr,
2749 	    sizeof (uint8_t), 1, 0, DDI_CTLOPS_PEEK);
2750 
2751 	return (value);
2752 }
2753 
2754 uint16_t
2755 i_ddi_caut_get16(ddi_acc_impl_t *hp, uint16_t *addr)
2756 {
2757 	uint16_t value;
2758 	i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr,
2759 	    sizeof (uint16_t), 1, 0, DDI_CTLOPS_PEEK);
2760 
2761 	return (value);
2762 }
2763 
2764 uint32_t
2765 i_ddi_caut_get32(ddi_acc_impl_t *hp, uint32_t *addr)
2766 {
2767 	uint32_t value;
2768 	i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr,
2769 	    sizeof (uint32_t), 1, 0, DDI_CTLOPS_PEEK);
2770 
2771 	return (value);
2772 }
2773 
2774 uint64_t
2775 i_ddi_caut_get64(ddi_acc_impl_t *hp, uint64_t *addr)
2776 {
2777 	uint64_t value;
2778 	i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr,
2779 	    sizeof (uint64_t), 1, 0, DDI_CTLOPS_PEEK);
2780 
2781 	return (value);
2782 }
2783 
2784 void
2785 i_ddi_caut_put8(ddi_acc_impl_t *hp, uint8_t *addr, uint8_t value)
2786 {
2787 	i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr,
2788 	    sizeof (uint8_t), 1, 0, DDI_CTLOPS_POKE);
2789 }
2790 
2791 void
2792 i_ddi_caut_put16(ddi_acc_impl_t *hp, uint16_t *addr, uint16_t value)
2793 {
2794 	i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr,
2795 	    sizeof (uint16_t), 1, 0, DDI_CTLOPS_POKE);
2796 }
2797 
2798 void
2799 i_ddi_caut_put32(ddi_acc_impl_t *hp, uint32_t *addr, uint32_t value)
2800 {
2801 	i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr,
2802 	    sizeof (uint32_t), 1, 0, DDI_CTLOPS_POKE);
2803 }
2804 
2805 void
2806 i_ddi_caut_put64(ddi_acc_impl_t *hp, uint64_t *addr, uint64_t value)
2807 {
2808 	i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr,
2809 	    sizeof (uint64_t), 1, 0, DDI_CTLOPS_POKE);
2810 }
2811 
2812 void
2813 i_ddi_caut_rep_get8(ddi_acc_impl_t *hp, uint8_t *host_addr, uint8_t *dev_addr,
2814 	size_t repcount, uint_t flags)
2815 {
2816 	i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr,
2817 	    sizeof (uint8_t), repcount, flags, DDI_CTLOPS_PEEK);
2818 }
2819 
2820 void
2821 i_ddi_caut_rep_get16(ddi_acc_impl_t *hp, uint16_t *host_addr,
2822     uint16_t *dev_addr, size_t repcount, uint_t flags)
2823 {
2824 	i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr,
2825 	    sizeof (uint16_t), repcount, flags, DDI_CTLOPS_PEEK);
2826 }
2827 
2828 void
2829 i_ddi_caut_rep_get32(ddi_acc_impl_t *hp, uint32_t *host_addr,
2830     uint32_t *dev_addr, size_t repcount, uint_t flags)
2831 {
2832 	i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr,
2833 	    sizeof (uint32_t), repcount, flags, DDI_CTLOPS_PEEK);
2834 }
2835 
2836 void
2837 i_ddi_caut_rep_get64(ddi_acc_impl_t *hp, uint64_t *host_addr,
2838     uint64_t *dev_addr, size_t repcount, uint_t flags)
2839 {
2840 	i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr,
2841 	    sizeof (uint64_t), repcount, flags, DDI_CTLOPS_PEEK);
2842 }
2843 
2844 void
2845 i_ddi_caut_rep_put8(ddi_acc_impl_t *hp, uint8_t *host_addr, uint8_t *dev_addr,
2846 	size_t repcount, uint_t flags)
2847 {
2848 	i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr,
2849 	    sizeof (uint8_t), repcount, flags, DDI_CTLOPS_POKE);
2850 }
2851 
2852 void
2853 i_ddi_caut_rep_put16(ddi_acc_impl_t *hp, uint16_t *host_addr,
2854     uint16_t *dev_addr, size_t repcount, uint_t flags)
2855 {
2856 	i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr,
2857 	    sizeof (uint16_t), repcount, flags, DDI_CTLOPS_POKE);
2858 }
2859 
2860 void
2861 i_ddi_caut_rep_put32(ddi_acc_impl_t *hp, uint32_t *host_addr,
2862     uint32_t *dev_addr, size_t repcount, uint_t flags)
2863 {
2864 	i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr,
2865 	    sizeof (uint32_t), repcount, flags, DDI_CTLOPS_POKE);
2866 }
2867 
2868 void
2869 i_ddi_caut_rep_put64(ddi_acc_impl_t *hp, uint64_t *host_addr,
2870     uint64_t *dev_addr, size_t repcount, uint_t flags)
2871 {
2872 	i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr,
2873 	    sizeof (uint64_t), repcount, flags, DDI_CTLOPS_POKE);
2874 }
2875 
2876 boolean_t
2877 i_ddi_copybuf_required(ddi_dma_attr_t *attrp)
2878 {
2879 	uint64_t hi_pa;
2880 
2881 	hi_pa = ((uint64_t)physmax + 1ull) << PAGESHIFT;
2882 	if (attrp->dma_attr_addr_hi < hi_pa) {
2883 		return (B_TRUE);
2884 	}
2885 
2886 	return (B_FALSE);
2887 }
2888 
2889 size_t
2890 i_ddi_copybuf_size()
2891 {
2892 	return (dma_max_copybuf_size);
2893 }
2894 
2895 /*
2896  * i_ddi_dma_max()
2897  *    returns the maximum DMA size which can be performed in a single DMA
2898  *    window taking into account the devices DMA contraints (attrp), the
2899  *    maximum copy buffer size (if applicable), and the worse case buffer
2900  *    fragmentation.
2901  */
2902 /*ARGSUSED*/
2903 uint32_t
2904 i_ddi_dma_max(dev_info_t *dip, ddi_dma_attr_t *attrp)
2905 {
2906 	uint64_t maxxfer;
2907 
2908 
2909 	/*
2910 	 * take the min of maxxfer and the the worse case fragementation
2911 	 * (e.g. every cookie <= 1 page)
2912 	 */
2913 	maxxfer = MIN(attrp->dma_attr_maxxfer,
2914 	    ((uint64_t)(attrp->dma_attr_sgllen - 1) << PAGESHIFT));
2915 
2916 	/*
2917 	 * If the DMA engine can't reach all off memory, we also need to take
2918 	 * the max size of the copybuf into consideration.
2919 	 */
2920 	if (i_ddi_copybuf_required(attrp)) {
2921 		maxxfer = MIN(i_ddi_copybuf_size(), maxxfer);
2922 	}
2923 
2924 	/*
2925 	 * we only return a 32-bit value. Make sure it's not -1. Round to a
2926 	 * page so it won't be mistaken for an error value during debug.
2927 	 */
2928 	if (maxxfer >= 0xFFFFFFFF) {
2929 		maxxfer = 0xFFFFF000;
2930 	}
2931 
2932 	/*
2933 	 * make sure the value we return is a whole multiple of the
2934 	 * granlarity.
2935 	 */
2936 	if (attrp->dma_attr_granular > 1) {
2937 		maxxfer = maxxfer - (maxxfer % attrp->dma_attr_granular);
2938 	}
2939 
2940 	return ((uint32_t)maxxfer);
2941 }
2942 
2943 /*ARGSUSED*/
2944 void
2945 translate_devid(dev_info_t *dip)
2946 {
2947 }
2948 
2949 pfn_t
2950 i_ddi_paddr_to_pfn(paddr_t paddr)
2951 {
2952 	pfn_t pfn;
2953 
2954 #ifdef __xpv
2955 	if (DOMAIN_IS_INITDOMAIN(xen_info)) {
2956 		pfn = xen_assign_pfn(mmu_btop(paddr));
2957 	} else {
2958 		pfn = mmu_btop(paddr);
2959 	}
2960 #else
2961 	pfn = mmu_btop(paddr);
2962 #endif
2963 
2964 	return (pfn);
2965 }
2966