xref: /illumos-gate/usr/src/uts/i86pc/os/ddi_impl.c (revision d9c5840bd764434fd93f85a52eb4cbc24bff03da)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2012 Garrett D'Amore <garrett@damore.org>
25  * Copyright 2014 Pluribus Networks, Inc.
26  */
27 
28 /*
29  * PC specific DDI implementation
30  */
31 #include <sys/types.h>
32 #include <sys/autoconf.h>
33 #include <sys/avintr.h>
34 #include <sys/bootconf.h>
35 #include <sys/conf.h>
36 #include <sys/cpuvar.h>
37 #include <sys/ddi_impldefs.h>
38 #include <sys/ddi_subrdefs.h>
39 #include <sys/ethernet.h>
40 #include <sys/fp.h>
41 #include <sys/instance.h>
42 #include <sys/kmem.h>
43 #include <sys/machsystm.h>
44 #include <sys/modctl.h>
45 #include <sys/promif.h>
46 #include <sys/prom_plat.h>
47 #include <sys/sunndi.h>
48 #include <sys/ndi_impldefs.h>
49 #include <sys/ddi_impldefs.h>
50 #include <sys/sysmacros.h>
51 #include <sys/systeminfo.h>
52 #include <sys/utsname.h>
53 #include <sys/atomic.h>
54 #include <sys/spl.h>
55 #include <sys/archsystm.h>
56 #include <vm/seg_kmem.h>
57 #include <sys/ontrap.h>
58 #include <sys/fm/protocol.h>
59 #include <sys/ramdisk.h>
60 #include <sys/sunndi.h>
61 #include <sys/vmem.h>
62 #include <sys/pci_impl.h>
63 #if defined(__xpv)
64 #include <sys/hypervisor.h>
65 #endif
66 #include <sys/mach_intr.h>
67 #include <vm/hat_i86.h>
68 #include <sys/x86_archext.h>
69 #include <sys/avl.h>
70 
71 /*
72  * DDI Boot Configuration
73  */
74 
75 /*
76  * Platform drivers on this platform
77  */
78 char *platform_module_list[] = {
79 	"acpippm",
80 	"ppm",
81 	(char *)0
82 };
83 
84 /* pci bus resource maps */
85 struct pci_bus_resource *pci_bus_res;
86 
87 size_t dma_max_copybuf_size = 0x101000;		/* 1M + 4K */
88 
89 uint64_t ramdisk_start, ramdisk_end;
90 
91 int pseudo_isa = 0;
92 
93 /*
94  * Forward declarations
95  */
96 static int getlongprop_buf();
97 static void get_boot_properties(void);
98 static void impl_bus_initialprobe(void);
99 static void impl_bus_reprobe(void);
100 
101 static int poke_mem(peekpoke_ctlops_t *in_args);
102 static int peek_mem(peekpoke_ctlops_t *in_args);
103 
104 static int kmem_override_cache_attrs(caddr_t, size_t, uint_t);
105 
106 #if defined(__amd64) && !defined(__xpv)
107 extern void immu_init(void);
108 #endif
109 
110 /*
111  * We use an AVL tree to store contiguous address allocations made with the
112  * kalloca() routine, so that we can return the size to free with kfreea().
113  * Note that in the future it would be vastly faster if we could eliminate
114  * this lookup by insisting that all callers keep track of their own sizes,
115  * just as for kmem_alloc().
116  */
117 struct ctgas {
118 	avl_node_t ctg_link;
119 	void *ctg_addr;
120 	size_t ctg_size;
121 };
122 
123 static avl_tree_t ctgtree;
124 
125 static kmutex_t		ctgmutex;
126 #define	CTGLOCK()	mutex_enter(&ctgmutex)
127 #define	CTGUNLOCK()	mutex_exit(&ctgmutex)
128 
129 /*
130  * Minimum pfn value of page_t's put on the free list.  This is to simplify
131  * support of ddi dma memory requests which specify small, non-zero addr_lo
132  * values.
133  *
134  * The default value of 2, which corresponds to the only known non-zero addr_lo
135  * value used, means a single page will be sacrificed (pfn typically starts
136  * at 1).  ddiphysmin can be set to 0 to disable. It cannot be set above 0x100
137  * otherwise mp startup panics.
138  */
139 pfn_t	ddiphysmin = 2;
140 
141 static void
142 check_driver_disable(void)
143 {
144 	int proplen = 128;
145 	char *prop_name;
146 	char *drv_name, *propval;
147 	major_t major;
148 
149 	prop_name = kmem_alloc(proplen, KM_SLEEP);
150 	for (major = 0; major < devcnt; major++) {
151 		drv_name = ddi_major_to_name(major);
152 		if (drv_name == NULL)
153 			continue;
154 		(void) snprintf(prop_name, proplen, "disable-%s", drv_name);
155 		if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
156 		    DDI_PROP_DONTPASS, prop_name, &propval) == DDI_SUCCESS) {
157 			if (strcmp(propval, "true") == 0) {
158 				devnamesp[major].dn_flags |= DN_DRIVER_REMOVED;
159 				cmn_err(CE_NOTE, "driver %s disabled",
160 				    drv_name);
161 			}
162 			ddi_prop_free(propval);
163 		}
164 	}
165 	kmem_free(prop_name, proplen);
166 }
167 
168 
169 /*
170  * Configure the hardware on the system.
171  * Called before the rootfs is mounted
172  */
173 void
174 configure(void)
175 {
176 	extern void i_ddi_init_root();
177 
178 #if defined(__i386)
179 	extern int fpu_pentium_fdivbug;
180 #endif	/* __i386 */
181 	extern int fpu_ignored;
182 
183 	/*
184 	 * Determine if an FPU is attached
185 	 */
186 
187 	fpu_probe();
188 
189 #if defined(__i386)
190 	if (fpu_pentium_fdivbug) {
191 		printf("\
192 FP hardware exhibits Pentium floating point divide problem\n");
193 	}
194 #endif	/* __i386 */
195 
196 	if (fpu_ignored) {
197 		printf("FP hardware will not be used\n");
198 	} else if (!fpu_exists) {
199 		printf("No FPU in configuration\n");
200 	}
201 
202 	/*
203 	 * Initialize devices on the machine.
204 	 * Uses configuration tree built by the PROMs to determine what
205 	 * is present, and builds a tree of prototype dev_info nodes
206 	 * corresponding to the hardware which identified itself.
207 	 */
208 
209 	/*
210 	 * Initialize root node.
211 	 */
212 	i_ddi_init_root();
213 
214 	/* reprogram devices not set up by firmware (BIOS) */
215 	impl_bus_reprobe();
216 
217 #if defined(__amd64) && !defined(__xpv)
218 	/*
219 	 * Setup but don't startup the IOMMU
220 	 * Startup happens later via a direct call
221 	 * to IOMMU code by boot code.
222 	 * At this point, all PCI bus renumbering
223 	 * is done, so safe to init the IMMU
224 	 * AKA Intel IOMMU.
225 	 */
226 	immu_init();
227 #endif
228 
229 	/*
230 	 * attach the isa nexus to get ACPI resource usage
231 	 * isa is "kind of" a pseudo node
232 	 */
233 #if defined(__xpv)
234 	if (DOMAIN_IS_INITDOMAIN(xen_info)) {
235 		if (pseudo_isa)
236 			(void) i_ddi_attach_pseudo_node("isa");
237 		else
238 			(void) i_ddi_attach_hw_nodes("isa");
239 	}
240 #else
241 	if (pseudo_isa)
242 		(void) i_ddi_attach_pseudo_node("isa");
243 	else
244 		(void) i_ddi_attach_hw_nodes("isa");
245 #endif
246 }
247 
248 /*
249  * The "status" property indicates the operational status of a device.
250  * If this property is present, the value is a string indicating the
251  * status of the device as follows:
252  *
253  *	"okay"		operational.
254  *	"disabled"	not operational, but might become operational.
255  *	"fail"		not operational because a fault has been detected,
256  *			and it is unlikely that the device will become
257  *			operational without repair. no additional details
258  *			are available.
259  *	"fail-xxx"	not operational because a fault has been detected,
260  *			and it is unlikely that the device will become
261  *			operational without repair. "xxx" is additional
262  *			human-readable information about the particular
263  *			fault condition that was detected.
264  *
265  * The absence of this property means that the operational status is
266  * unknown or okay.
267  *
268  * This routine checks the status property of the specified device node
269  * and returns 0 if the operational status indicates failure, and 1 otherwise.
270  *
271  * The property may exist on plug-in cards the existed before IEEE 1275-1994.
272  * And, in that case, the property may not even be a string. So we carefully
273  * check for the value "fail", in the beginning of the string, noting
274  * the property length.
275  */
276 int
277 status_okay(int id, char *buf, int buflen)
278 {
279 	char status_buf[OBP_MAXPROPNAME];
280 	char *bufp = buf;
281 	int len = buflen;
282 	int proplen;
283 	static const char *status = "status";
284 	static const char *fail = "fail";
285 	int fail_len = (int)strlen(fail);
286 
287 	/*
288 	 * Get the proplen ... if it's smaller than "fail",
289 	 * or doesn't exist ... then we don't care, since
290 	 * the value can't begin with the char string "fail".
291 	 *
292 	 * NB: proplen, if it's a string, includes the NULL in the
293 	 * the size of the property, and fail_len does not.
294 	 */
295 	proplen = prom_getproplen((pnode_t)id, (caddr_t)status);
296 	if (proplen <= fail_len)	/* nonexistant or uninteresting len */
297 		return (1);
298 
299 	/*
300 	 * if a buffer was provided, use it
301 	 */
302 	if ((buf == (char *)NULL) || (buflen <= 0)) {
303 		bufp = status_buf;
304 		len = sizeof (status_buf);
305 	}
306 	*bufp = (char)0;
307 
308 	/*
309 	 * Get the property into the buffer, to the extent of the buffer,
310 	 * and in case the buffer is smaller than the property size,
311 	 * NULL terminate the buffer. (This handles the case where
312 	 * a buffer was passed in and the caller wants to print the
313 	 * value, but the buffer was too small).
314 	 */
315 	(void) prom_bounded_getprop((pnode_t)id, (caddr_t)status,
316 	    (caddr_t)bufp, len);
317 	*(bufp + len - 1) = (char)0;
318 
319 	/*
320 	 * If the value begins with the char string "fail",
321 	 * then it means the node is failed. We don't care
322 	 * about any other values. We assume the node is ok
323 	 * although it might be 'disabled'.
324 	 */
325 	if (strncmp(bufp, fail, fail_len) == 0)
326 		return (0);
327 
328 	return (1);
329 }
330 
331 /*
332  * Check the status of the device node passed as an argument.
333  *
334  *	if ((status is OKAY) || (status is DISABLED))
335  *		return DDI_SUCCESS
336  *	else
337  *		print a warning and return DDI_FAILURE
338  */
339 /*ARGSUSED1*/
340 int
341 check_status(int id, char *name, dev_info_t *parent)
342 {
343 	char status_buf[64];
344 	char devtype_buf[OBP_MAXPROPNAME];
345 	int retval = DDI_FAILURE;
346 
347 	/*
348 	 * is the status okay?
349 	 */
350 	if (status_okay(id, status_buf, sizeof (status_buf)))
351 		return (DDI_SUCCESS);
352 
353 	/*
354 	 * a status property indicating bad memory will be associated
355 	 * with a node which has a "device_type" property with a value of
356 	 * "memory-controller". in this situation, return DDI_SUCCESS
357 	 */
358 	if (getlongprop_buf(id, OBP_DEVICETYPE, devtype_buf,
359 	    sizeof (devtype_buf)) > 0) {
360 		if (strcmp(devtype_buf, "memory-controller") == 0)
361 			retval = DDI_SUCCESS;
362 	}
363 
364 	/*
365 	 * print the status property information
366 	 */
367 	cmn_err(CE_WARN, "status '%s' for '%s'", status_buf, name);
368 	return (retval);
369 }
370 
371 /*ARGSUSED*/
372 uint_t
373 softlevel1(caddr_t arg1, caddr_t arg2)
374 {
375 	softint();
376 	return (1);
377 }
378 
379 /*
380  * Allow for implementation specific correction of PROM property values.
381  */
382 
383 /*ARGSUSED*/
384 void
385 impl_fix_props(dev_info_t *dip, dev_info_t *ch_dip, char *name, int len,
386     caddr_t buffer)
387 {
388 	/*
389 	 * There are no adjustments needed in this implementation.
390 	 */
391 }
392 
393 static int
394 getlongprop_buf(int id, char *name, char *buf, int maxlen)
395 {
396 	int size;
397 
398 	size = prom_getproplen((pnode_t)id, name);
399 	if (size <= 0 || (size > maxlen - 1))
400 		return (-1);
401 
402 	if (-1 == prom_getprop((pnode_t)id, name, buf))
403 		return (-1);
404 
405 	if (strcmp("name", name) == 0) {
406 		if (buf[size - 1] != '\0') {
407 			buf[size] = '\0';
408 			size += 1;
409 		}
410 	}
411 
412 	return (size);
413 }
414 
415 static int
416 get_prop_int_array(dev_info_t *di, char *pname, int **pval, uint_t *plen)
417 {
418 	int ret;
419 
420 	if ((ret = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, di,
421 	    DDI_PROP_DONTPASS, pname, pval, plen))
422 	    == DDI_PROP_SUCCESS) {
423 		*plen = (*plen) * (sizeof (int));
424 	}
425 	return (ret);
426 }
427 
428 
429 /*
430  * Node Configuration
431  */
432 
433 struct prop_ispec {
434 	uint_t	pri, vec;
435 };
436 
437 /*
438  * For the x86, we're prepared to claim that the interrupt string
439  * is in the form of a list of <ipl,vec> specifications.
440  */
441 
442 #define	VEC_MIN	1
443 #define	VEC_MAX	255
444 
445 static int
446 impl_xlate_intrs(dev_info_t *child, int *in,
447     struct ddi_parent_private_data *pdptr)
448 {
449 	size_t size;
450 	int n;
451 	struct intrspec *new;
452 	caddr_t got_prop;
453 	int *inpri;
454 	int got_len;
455 	extern int ignore_hardware_nodes;	/* force flag from ddi_impl.c */
456 
457 	static char bad_intr_fmt[] =
458 	    "bad interrupt spec from %s%d - ipl %d, irq %d\n";
459 
460 	/*
461 	 * determine if the driver is expecting the new style "interrupts"
462 	 * property which just contains the IRQ, or the old style which
463 	 * contains pairs of <IPL,IRQ>.  if it is the new style, we always
464 	 * assign IPL 5 unless an "interrupt-priorities" property exists.
465 	 * in that case, the "interrupt-priorities" property contains the
466 	 * IPL values that match, one for one, the IRQ values in the
467 	 * "interrupts" property.
468 	 */
469 	inpri = NULL;
470 	if ((ddi_getprop(DDI_DEV_T_ANY, child, DDI_PROP_DONTPASS,
471 	    "ignore-hardware-nodes", -1) != -1) || ignore_hardware_nodes) {
472 		/* the old style "interrupts" property... */
473 
474 		/*
475 		 * The list consists of <ipl,vec> elements
476 		 */
477 		if ((n = (*in++ >> 1)) < 1)
478 			return (DDI_FAILURE);
479 
480 		pdptr->par_nintr = n;
481 		size = n * sizeof (struct intrspec);
482 		new = pdptr->par_intr = kmem_zalloc(size, KM_SLEEP);
483 
484 		while (n--) {
485 			int level = *in++;
486 			int vec = *in++;
487 
488 			if (level < 1 || level > MAXIPL ||
489 			    vec < VEC_MIN || vec > VEC_MAX) {
490 				cmn_err(CE_CONT, bad_intr_fmt,
491 				    DEVI(child)->devi_name,
492 				    DEVI(child)->devi_instance, level, vec);
493 				goto broken;
494 			}
495 			new->intrspec_pri = level;
496 			if (vec != 2)
497 				new->intrspec_vec = vec;
498 			else
499 				/*
500 				 * irq 2 on the PC bus is tied to irq 9
501 				 * on ISA, EISA and MicroChannel
502 				 */
503 				new->intrspec_vec = 9;
504 			new++;
505 		}
506 
507 		return (DDI_SUCCESS);
508 	} else {
509 		/* the new style "interrupts" property... */
510 
511 		/*
512 		 * The list consists of <vec> elements
513 		 */
514 		if ((n = (*in++)) < 1)
515 			return (DDI_FAILURE);
516 
517 		pdptr->par_nintr = n;
518 		size = n * sizeof (struct intrspec);
519 		new = pdptr->par_intr = kmem_zalloc(size, KM_SLEEP);
520 
521 		/* XXX check for "interrupt-priorities" property... */
522 		if (ddi_getlongprop(DDI_DEV_T_ANY, child, DDI_PROP_DONTPASS,
523 		    "interrupt-priorities", (caddr_t)&got_prop, &got_len)
524 		    == DDI_PROP_SUCCESS) {
525 			if (n != (got_len / sizeof (int))) {
526 				cmn_err(CE_CONT,
527 				    "bad interrupt-priorities length"
528 				    " from %s%d: expected %d, got %d\n",
529 				    DEVI(child)->devi_name,
530 				    DEVI(child)->devi_instance, n,
531 				    (int)(got_len / sizeof (int)));
532 				goto broken;
533 			}
534 			inpri = (int *)got_prop;
535 		}
536 
537 		while (n--) {
538 			int level;
539 			int vec = *in++;
540 
541 			if (inpri == NULL)
542 				level = 5;
543 			else
544 				level = *inpri++;
545 
546 			if (level < 1 || level > MAXIPL ||
547 			    vec < VEC_MIN || vec > VEC_MAX) {
548 				cmn_err(CE_CONT, bad_intr_fmt,
549 				    DEVI(child)->devi_name,
550 				    DEVI(child)->devi_instance, level, vec);
551 				goto broken;
552 			}
553 			new->intrspec_pri = level;
554 			if (vec != 2)
555 				new->intrspec_vec = vec;
556 			else
557 				/*
558 				 * irq 2 on the PC bus is tied to irq 9
559 				 * on ISA, EISA and MicroChannel
560 				 */
561 				new->intrspec_vec = 9;
562 			new++;
563 		}
564 
565 		if (inpri != NULL)
566 			kmem_free(got_prop, got_len);
567 		return (DDI_SUCCESS);
568 	}
569 
570 broken:
571 	kmem_free(pdptr->par_intr, size);
572 	pdptr->par_intr = NULL;
573 	pdptr->par_nintr = 0;
574 	if (inpri != NULL)
575 		kmem_free(got_prop, got_len);
576 
577 	return (DDI_FAILURE);
578 }
579 
580 /*
581  * Create a ddi_parent_private_data structure from the ddi properties of
582  * the dev_info node.
583  *
584  * The "reg" and either an "intr" or "interrupts" properties are required
585  * if the driver wishes to create mappings or field interrupts on behalf
586  * of the device.
587  *
588  * The "reg" property is assumed to be a list of at least one triple
589  *
590  *	<bustype, address, size>*1
591  *
592  * The "intr" property is assumed to be a list of at least one duple
593  *
594  *	<SPARC ipl, vector#>*1
595  *
596  * The "interrupts" property is assumed to be a list of at least one
597  * n-tuples that describes the interrupt capabilities of the bus the device
598  * is connected to.  For SBus, this looks like
599  *
600  *	<SBus-level>*1
601  *
602  * (This property obsoletes the 'intr' property).
603  *
604  * The "ranges" property is optional.
605  */
606 void
607 make_ddi_ppd(dev_info_t *child, struct ddi_parent_private_data **ppd)
608 {
609 	struct ddi_parent_private_data *pdptr;
610 	int n;
611 	int *reg_prop, *rng_prop, *intr_prop, *irupts_prop;
612 	uint_t reg_len, rng_len, intr_len, irupts_len;
613 
614 	*ppd = pdptr = kmem_zalloc(sizeof (*pdptr), KM_SLEEP);
615 
616 	/*
617 	 * Handle the 'reg' property.
618 	 */
619 	if ((get_prop_int_array(child, "reg", &reg_prop, &reg_len) ==
620 	    DDI_PROP_SUCCESS) && (reg_len != 0)) {
621 		pdptr->par_nreg = reg_len / (int)sizeof (struct regspec);
622 		pdptr->par_reg = (struct regspec *)reg_prop;
623 	}
624 
625 	/*
626 	 * See if I have a range (adding one where needed - this
627 	 * means to add one for sbus node in sun4c, when romvec > 0,
628 	 * if no range is already defined in the PROM node.
629 	 * (Currently no sun4c PROMS define range properties,
630 	 * but they should and may in the future.)  For the SBus
631 	 * node, the range is defined by the SBus reg property.
632 	 */
633 	if (get_prop_int_array(child, "ranges", &rng_prop, &rng_len)
634 	    == DDI_PROP_SUCCESS) {
635 		pdptr->par_nrng = rng_len / (int)(sizeof (struct rangespec));
636 		pdptr->par_rng = (struct rangespec *)rng_prop;
637 	}
638 
639 	/*
640 	 * Handle the 'intr' and 'interrupts' properties
641 	 */
642 
643 	/*
644 	 * For backwards compatibility
645 	 * we first look for the 'intr' property for the device.
646 	 */
647 	if (get_prop_int_array(child, "intr", &intr_prop, &intr_len)
648 	    != DDI_PROP_SUCCESS) {
649 		intr_len = 0;
650 	}
651 
652 	/*
653 	 * If we're to support bus adapters and future platforms cleanly,
654 	 * we need to support the generalized 'interrupts' property.
655 	 */
656 	if (get_prop_int_array(child, "interrupts", &irupts_prop,
657 	    &irupts_len) != DDI_PROP_SUCCESS) {
658 		irupts_len = 0;
659 	} else if (intr_len != 0) {
660 		/*
661 		 * If both 'intr' and 'interrupts' are defined,
662 		 * then 'interrupts' wins and we toss the 'intr' away.
663 		 */
664 		ddi_prop_free((void *)intr_prop);
665 		intr_len = 0;
666 	}
667 
668 	if (intr_len != 0) {
669 
670 		/*
671 		 * Translate the 'intr' property into an array
672 		 * an array of struct intrspec's.  There's not really
673 		 * very much to do here except copy what's out there.
674 		 */
675 
676 		struct intrspec *new;
677 		struct prop_ispec *l;
678 
679 		n = pdptr->par_nintr = intr_len / sizeof (struct prop_ispec);
680 		l = (struct prop_ispec *)intr_prop;
681 		pdptr->par_intr =
682 		    new = kmem_zalloc(n * sizeof (struct intrspec), KM_SLEEP);
683 		while (n--) {
684 			new->intrspec_pri = l->pri;
685 			new->intrspec_vec = l->vec;
686 			new++;
687 			l++;
688 		}
689 		ddi_prop_free((void *)intr_prop);
690 
691 	} else if ((n = irupts_len) != 0) {
692 		size_t size;
693 		int *out;
694 
695 		/*
696 		 * Translate the 'interrupts' property into an array
697 		 * of intrspecs for the rest of the DDI framework to
698 		 * toy with.  Only our ancestors really know how to
699 		 * do this, so ask 'em.  We massage the 'interrupts'
700 		 * property so that it is pre-pended by a count of
701 		 * the number of integers in the argument.
702 		 */
703 		size = sizeof (int) + n;
704 		out = kmem_alloc(size, KM_SLEEP);
705 		*out = n / sizeof (int);
706 		bcopy(irupts_prop, out + 1, (size_t)n);
707 		ddi_prop_free((void *)irupts_prop);
708 		if (impl_xlate_intrs(child, out, pdptr) != DDI_SUCCESS) {
709 			cmn_err(CE_CONT,
710 			    "Unable to translate 'interrupts' for %s%d\n",
711 			    DEVI(child)->devi_binding_name,
712 			    DEVI(child)->devi_instance);
713 		}
714 		kmem_free(out, size);
715 	}
716 }
717 
718 /*
719  * Name a child
720  */
721 static int
722 impl_sunbus_name_child(dev_info_t *child, char *name, int namelen)
723 {
724 	/*
725 	 * Fill in parent-private data and this function returns to us
726 	 * an indication if it used "registers" to fill in the data.
727 	 */
728 	if (ddi_get_parent_data(child) == NULL) {
729 		struct ddi_parent_private_data *pdptr;
730 		make_ddi_ppd(child, &pdptr);
731 		ddi_set_parent_data(child, pdptr);
732 	}
733 
734 	name[0] = '\0';
735 	if (sparc_pd_getnreg(child) > 0) {
736 		(void) snprintf(name, namelen, "%x,%x",
737 		    (uint_t)sparc_pd_getreg(child, 0)->regspec_bustype,
738 		    (uint_t)sparc_pd_getreg(child, 0)->regspec_addr);
739 	}
740 
741 	return (DDI_SUCCESS);
742 }
743 
744 /*
745  * Called from the bus_ctl op of sunbus (sbus, obio, etc) nexus drivers
746  * to implement the DDI_CTLOPS_INITCHILD operation.  That is, it names
747  * the children of sun busses based on the reg spec.
748  *
749  * Handles the following properties (in make_ddi_ppd):
750  *	Property		value
751  *	  Name			type
752  *	reg		register spec
753  *	intr		old-form interrupt spec
754  *	interrupts	new (bus-oriented) interrupt spec
755  *	ranges		range spec
756  */
757 int
758 impl_ddi_sunbus_initchild(dev_info_t *child)
759 {
760 	char name[MAXNAMELEN];
761 	void impl_ddi_sunbus_removechild(dev_info_t *);
762 
763 	/*
764 	 * Name the child, also makes parent private data
765 	 */
766 	(void) impl_sunbus_name_child(child, name, MAXNAMELEN);
767 	ddi_set_name_addr(child, name);
768 
769 	/*
770 	 * Attempt to merge a .conf node; if successful, remove the
771 	 * .conf node.
772 	 */
773 	if ((ndi_dev_is_persistent_node(child) == 0) &&
774 	    (ndi_merge_node(child, impl_sunbus_name_child) == DDI_SUCCESS)) {
775 		/*
776 		 * Return failure to remove node
777 		 */
778 		impl_ddi_sunbus_removechild(child);
779 		return (DDI_FAILURE);
780 	}
781 	return (DDI_SUCCESS);
782 }
783 
784 void
785 impl_free_ddi_ppd(dev_info_t *dip)
786 {
787 	struct ddi_parent_private_data *pdptr;
788 	size_t n;
789 
790 	if ((pdptr = ddi_get_parent_data(dip)) == NULL)
791 		return;
792 
793 	if ((n = (size_t)pdptr->par_nintr) != 0)
794 		/*
795 		 * Note that kmem_free is used here (instead of
796 		 * ddi_prop_free) because the contents of the
797 		 * property were placed into a separate buffer and
798 		 * mucked with a bit before being stored in par_intr.
799 		 * The actual return value from the prop lookup
800 		 * was freed with ddi_prop_free previously.
801 		 */
802 		kmem_free(pdptr->par_intr, n * sizeof (struct intrspec));
803 
804 	if ((n = (size_t)pdptr->par_nrng) != 0)
805 		ddi_prop_free((void *)pdptr->par_rng);
806 
807 	if ((n = pdptr->par_nreg) != 0)
808 		ddi_prop_free((void *)pdptr->par_reg);
809 
810 	kmem_free(pdptr, sizeof (*pdptr));
811 	ddi_set_parent_data(dip, NULL);
812 }
813 
814 void
815 impl_ddi_sunbus_removechild(dev_info_t *dip)
816 {
817 	impl_free_ddi_ppd(dip);
818 	ddi_set_name_addr(dip, NULL);
819 	/*
820 	 * Strip the node to properly convert it back to prototype form
821 	 */
822 	impl_rem_dev_props(dip);
823 }
824 
825 /*
826  * DDI Interrupt
827  */
828 
829 /*
830  * turn this on to force isa, eisa, and mca device to ignore the new
831  * hardware nodes in the device tree (normally turned on only for
832  * drivers that need it by setting the property "ignore-hardware-nodes"
833  * in their driver.conf file).
834  *
835  * 7/31/96 -- Turned off globally.  Leaving variable in for the moment
836  *		as safety valve.
837  */
838 int ignore_hardware_nodes = 0;
839 
840 /*
841  * Local data
842  */
843 static struct impl_bus_promops *impl_busp;
844 
845 
846 /*
847  * New DDI interrupt framework
848  */
849 
850 /*
851  * i_ddi_intr_ops:
852  *
853  * This is the interrupt operator function wrapper for the bus function
854  * bus_intr_op.
855  */
856 int
857 i_ddi_intr_ops(dev_info_t *dip, dev_info_t *rdip, ddi_intr_op_t op,
858     ddi_intr_handle_impl_t *hdlp, void * result)
859 {
860 	dev_info_t	*pdip = (dev_info_t *)DEVI(dip)->devi_parent;
861 	int		ret = DDI_FAILURE;
862 
863 	/* request parent to process this interrupt op */
864 	if (NEXUS_HAS_INTR_OP(pdip))
865 		ret = (*(DEVI(pdip)->devi_ops->devo_bus_ops->bus_intr_op))(
866 		    pdip, rdip, op, hdlp, result);
867 	else
868 		cmn_err(CE_WARN, "Failed to process interrupt "
869 		    "for %s%d due to down-rev nexus driver %s%d",
870 		    ddi_get_name(rdip), ddi_get_instance(rdip),
871 		    ddi_get_name(pdip), ddi_get_instance(pdip));
872 	return (ret);
873 }
874 
875 /*
876  * i_ddi_add_softint - allocate and add a soft interrupt to the system
877  */
878 int
879 i_ddi_add_softint(ddi_softint_hdl_impl_t *hdlp)
880 {
881 	int ret;
882 
883 	/* add soft interrupt handler */
884 	ret = add_avsoftintr((void *)hdlp, hdlp->ih_pri, hdlp->ih_cb_func,
885 	    DEVI(hdlp->ih_dip)->devi_name, hdlp->ih_cb_arg1, hdlp->ih_cb_arg2);
886 	return (ret ? DDI_SUCCESS : DDI_FAILURE);
887 }
888 
889 
890 void
891 i_ddi_remove_softint(ddi_softint_hdl_impl_t *hdlp)
892 {
893 	(void) rem_avsoftintr((void *)hdlp, hdlp->ih_pri, hdlp->ih_cb_func);
894 }
895 
896 
897 extern void (*setsoftint)(int, struct av_softinfo *);
898 extern boolean_t av_check_softint_pending(struct av_softinfo *, boolean_t);
899 
900 int
901 i_ddi_trigger_softint(ddi_softint_hdl_impl_t *hdlp, void *arg2)
902 {
903 	if (av_check_softint_pending(hdlp->ih_pending, B_FALSE))
904 		return (DDI_EPENDING);
905 
906 	update_avsoftintr_args((void *)hdlp, hdlp->ih_pri, arg2);
907 
908 	(*setsoftint)(hdlp->ih_pri, hdlp->ih_pending);
909 	return (DDI_SUCCESS);
910 }
911 
912 /*
913  * i_ddi_set_softint_pri:
914  *
915  * The way this works is that it first tries to add a softint vector
916  * at the new priority in hdlp. If that succeeds; then it removes the
917  * existing softint vector at the old priority.
918  */
919 int
920 i_ddi_set_softint_pri(ddi_softint_hdl_impl_t *hdlp, uint_t old_pri)
921 {
922 	int ret;
923 
924 	/*
925 	 * If a softint is pending at the old priority then fail the request.
926 	 */
927 	if (av_check_softint_pending(hdlp->ih_pending, B_TRUE))
928 		return (DDI_FAILURE);
929 
930 	ret = av_softint_movepri((void *)hdlp, old_pri);
931 	return (ret ? DDI_SUCCESS : DDI_FAILURE);
932 }
933 
934 void
935 i_ddi_alloc_intr_phdl(ddi_intr_handle_impl_t *hdlp)
936 {
937 	hdlp->ih_private = (void *)kmem_zalloc(sizeof (ihdl_plat_t), KM_SLEEP);
938 }
939 
940 void
941 i_ddi_free_intr_phdl(ddi_intr_handle_impl_t *hdlp)
942 {
943 	kmem_free(hdlp->ih_private, sizeof (ihdl_plat_t));
944 	hdlp->ih_private = NULL;
945 }
946 
947 int
948 i_ddi_get_intx_nintrs(dev_info_t *dip)
949 {
950 	struct ddi_parent_private_data *pdp;
951 
952 	if ((pdp = ddi_get_parent_data(dip)) == NULL)
953 		return (0);
954 
955 	return (pdp->par_nintr);
956 }
957 
958 /*
959  * DDI Memory/DMA
960  */
961 
962 /*
963  * Support for allocating DMAable memory to implement
964  * ddi_dma_mem_alloc(9F) interface.
965  */
966 
967 #define	KA_ALIGN_SHIFT	7
968 #define	KA_ALIGN	(1 << KA_ALIGN_SHIFT)
969 #define	KA_NCACHE	(PAGESHIFT + 1 - KA_ALIGN_SHIFT)
970 
971 /*
972  * Dummy DMA attribute template for kmem_io[].kmem_io_attr.  We only
973  * care about addr_lo, addr_hi, and align.  addr_hi will be dynamically set.
974  */
975 
976 static ddi_dma_attr_t kmem_io_attr = {
977 	DMA_ATTR_V0,
978 	0x0000000000000000ULL,		/* dma_attr_addr_lo */
979 	0x0000000000000000ULL,		/* dma_attr_addr_hi */
980 	0x00ffffff,
981 	0x1000,				/* dma_attr_align */
982 	1, 1, 0xffffffffULL, 0xffffffffULL, 0x1, 1, 0
983 };
984 
985 /* kmem io memory ranges and indices */
986 enum {
987 	IO_4P, IO_64G, IO_4G, IO_2G, IO_1G, IO_512M,
988 	IO_256M, IO_128M, IO_64M, IO_32M, IO_16M, MAX_MEM_RANGES
989 };
990 
991 static struct {
992 	vmem_t		*kmem_io_arena;
993 	kmem_cache_t	*kmem_io_cache[KA_NCACHE];
994 	ddi_dma_attr_t	kmem_io_attr;
995 } kmem_io[MAX_MEM_RANGES];
996 
997 static int kmem_io_idx;		/* index of first populated kmem_io[] */
998 
999 static page_t *
1000 page_create_io_wrapper(void *addr, size_t len, int vmflag, void *arg)
1001 {
1002 	extern page_t *page_create_io(vnode_t *, u_offset_t, uint_t,
1003 	    uint_t, struct as *, caddr_t, ddi_dma_attr_t *);
1004 
1005 	return (page_create_io(&kvp, (u_offset_t)(uintptr_t)addr, len,
1006 	    PG_EXCL | ((vmflag & VM_NOSLEEP) ? 0 : PG_WAIT), &kas, addr, arg));
1007 }
1008 
1009 #ifdef __xpv
1010 static void
1011 segkmem_free_io(vmem_t *vmp, void * ptr, size_t size)
1012 {
1013 	extern void page_destroy_io(page_t *);
1014 	segkmem_xfree(vmp, ptr, size, page_destroy_io);
1015 }
1016 #endif
1017 
1018 static void *
1019 segkmem_alloc_io_4P(vmem_t *vmp, size_t size, int vmflag)
1020 {
1021 	return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1022 	    page_create_io_wrapper, &kmem_io[IO_4P].kmem_io_attr));
1023 }
1024 
1025 static void *
1026 segkmem_alloc_io_64G(vmem_t *vmp, size_t size, int vmflag)
1027 {
1028 	return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1029 	    page_create_io_wrapper, &kmem_io[IO_64G].kmem_io_attr));
1030 }
1031 
1032 static void *
1033 segkmem_alloc_io_4G(vmem_t *vmp, size_t size, int vmflag)
1034 {
1035 	return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1036 	    page_create_io_wrapper, &kmem_io[IO_4G].kmem_io_attr));
1037 }
1038 
1039 static void *
1040 segkmem_alloc_io_2G(vmem_t *vmp, size_t size, int vmflag)
1041 {
1042 	return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1043 	    page_create_io_wrapper, &kmem_io[IO_2G].kmem_io_attr));
1044 }
1045 
1046 static void *
1047 segkmem_alloc_io_1G(vmem_t *vmp, size_t size, int vmflag)
1048 {
1049 	return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1050 	    page_create_io_wrapper, &kmem_io[IO_1G].kmem_io_attr));
1051 }
1052 
1053 static void *
1054 segkmem_alloc_io_512M(vmem_t *vmp, size_t size, int vmflag)
1055 {
1056 	return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1057 	    page_create_io_wrapper, &kmem_io[IO_512M].kmem_io_attr));
1058 }
1059 
1060 static void *
1061 segkmem_alloc_io_256M(vmem_t *vmp, size_t size, int vmflag)
1062 {
1063 	return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1064 	    page_create_io_wrapper, &kmem_io[IO_256M].kmem_io_attr));
1065 }
1066 
1067 static void *
1068 segkmem_alloc_io_128M(vmem_t *vmp, size_t size, int vmflag)
1069 {
1070 	return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1071 	    page_create_io_wrapper, &kmem_io[IO_128M].kmem_io_attr));
1072 }
1073 
1074 static void *
1075 segkmem_alloc_io_64M(vmem_t *vmp, size_t size, int vmflag)
1076 {
1077 	return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1078 	    page_create_io_wrapper, &kmem_io[IO_64M].kmem_io_attr));
1079 }
1080 
1081 static void *
1082 segkmem_alloc_io_32M(vmem_t *vmp, size_t size, int vmflag)
1083 {
1084 	return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1085 	    page_create_io_wrapper, &kmem_io[IO_32M].kmem_io_attr));
1086 }
1087 
1088 static void *
1089 segkmem_alloc_io_16M(vmem_t *vmp, size_t size, int vmflag)
1090 {
1091 	return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1092 	    page_create_io_wrapper, &kmem_io[IO_16M].kmem_io_attr));
1093 }
1094 
1095 struct {
1096 	uint64_t	io_limit;
1097 	char		*io_name;
1098 	void		*(*io_alloc)(vmem_t *, size_t, int);
1099 	int		io_initial;	/* kmem_io_init during startup */
1100 } io_arena_params[MAX_MEM_RANGES] = {
1101 	{0x000fffffffffffffULL,	"kmem_io_4P",	segkmem_alloc_io_4P,	1},
1102 	{0x0000000fffffffffULL,	"kmem_io_64G",	segkmem_alloc_io_64G,	0},
1103 	{0x00000000ffffffffULL,	"kmem_io_4G",	segkmem_alloc_io_4G,	1},
1104 	{0x000000007fffffffULL,	"kmem_io_2G",	segkmem_alloc_io_2G,	1},
1105 	{0x000000003fffffffULL,	"kmem_io_1G",	segkmem_alloc_io_1G,	0},
1106 	{0x000000001fffffffULL,	"kmem_io_512M",	segkmem_alloc_io_512M,	0},
1107 	{0x000000000fffffffULL,	"kmem_io_256M",	segkmem_alloc_io_256M,	0},
1108 	{0x0000000007ffffffULL,	"kmem_io_128M",	segkmem_alloc_io_128M,	0},
1109 	{0x0000000003ffffffULL,	"kmem_io_64M",	segkmem_alloc_io_64M,	0},
1110 	{0x0000000001ffffffULL,	"kmem_io_32M",	segkmem_alloc_io_32M,	0},
1111 	{0x0000000000ffffffULL,	"kmem_io_16M",	segkmem_alloc_io_16M,	1}
1112 };
1113 
1114 void
1115 kmem_io_init(int a)
1116 {
1117 	int	c;
1118 	char name[40];
1119 
1120 	kmem_io[a].kmem_io_arena = vmem_create(io_arena_params[a].io_name,
1121 	    NULL, 0, PAGESIZE, io_arena_params[a].io_alloc,
1122 #ifdef __xpv
1123 	    segkmem_free_io,
1124 #else
1125 	    segkmem_free,
1126 #endif
1127 	    heap_arena, 0, VM_SLEEP);
1128 
1129 	for (c = 0; c < KA_NCACHE; c++) {
1130 		size_t size = KA_ALIGN << c;
1131 		(void) sprintf(name, "%s_%lu",
1132 		    io_arena_params[a].io_name, size);
1133 		kmem_io[a].kmem_io_cache[c] = kmem_cache_create(name,
1134 		    size, size, NULL, NULL, NULL, NULL,
1135 		    kmem_io[a].kmem_io_arena, 0);
1136 	}
1137 }
1138 
1139 /*
1140  * Return the index of the highest memory range for addr.
1141  */
1142 static int
1143 kmem_io_index(uint64_t addr)
1144 {
1145 	int n;
1146 
1147 	for (n = kmem_io_idx; n < MAX_MEM_RANGES; n++) {
1148 		if (kmem_io[n].kmem_io_attr.dma_attr_addr_hi <= addr) {
1149 			if (kmem_io[n].kmem_io_arena == NULL)
1150 				kmem_io_init(n);
1151 			return (n);
1152 		}
1153 	}
1154 	panic("kmem_io_index: invalid addr - must be at least 16m");
1155 
1156 	/*NOTREACHED*/
1157 }
1158 
1159 /*
1160  * Return the index of the next kmem_io populated memory range
1161  * after curindex.
1162  */
1163 static int
1164 kmem_io_index_next(int curindex)
1165 {
1166 	int n;
1167 
1168 	for (n = curindex + 1; n < MAX_MEM_RANGES; n++) {
1169 		if (kmem_io[n].kmem_io_arena)
1170 			return (n);
1171 	}
1172 	return (-1);
1173 }
1174 
1175 /*
1176  * allow kmem to be mapped in with different PTE cache attribute settings.
1177  * Used by i_ddi_mem_alloc()
1178  */
1179 int
1180 kmem_override_cache_attrs(caddr_t kva, size_t size, uint_t order)
1181 {
1182 	uint_t hat_flags;
1183 	caddr_t kva_end;
1184 	uint_t hat_attr;
1185 	pfn_t pfn;
1186 
1187 	if (hat_getattr(kas.a_hat, kva, &hat_attr) == -1) {
1188 		return (-1);
1189 	}
1190 
1191 	hat_attr &= ~HAT_ORDER_MASK;
1192 	hat_attr |= order | HAT_NOSYNC;
1193 	hat_flags = HAT_LOAD_LOCK;
1194 
1195 	kva_end = (caddr_t)(((uintptr_t)kva + size + PAGEOFFSET) &
1196 	    (uintptr_t)PAGEMASK);
1197 	kva = (caddr_t)((uintptr_t)kva & (uintptr_t)PAGEMASK);
1198 
1199 	while (kva < kva_end) {
1200 		pfn = hat_getpfnum(kas.a_hat, kva);
1201 		hat_unload(kas.a_hat, kva, PAGESIZE, HAT_UNLOAD_UNLOCK);
1202 		hat_devload(kas.a_hat, kva, PAGESIZE, pfn, hat_attr, hat_flags);
1203 		kva += MMU_PAGESIZE;
1204 	}
1205 
1206 	return (0);
1207 }
1208 
1209 static int
1210 ctgcompare(const void *a1, const void *a2)
1211 {
1212 	/* we just want to compare virtual addresses */
1213 	a1 = ((struct ctgas *)a1)->ctg_addr;
1214 	a2 = ((struct ctgas *)a2)->ctg_addr;
1215 	return (a1 == a2 ? 0 : (a1 < a2 ? -1 : 1));
1216 }
1217 
1218 void
1219 ka_init(void)
1220 {
1221 	int a;
1222 	paddr_t maxphysaddr;
1223 #if !defined(__xpv)
1224 	extern pfn_t physmax;
1225 
1226 	maxphysaddr = mmu_ptob((paddr_t)physmax) + MMU_PAGEOFFSET;
1227 #else
1228 	maxphysaddr = mmu_ptob((paddr_t)HYPERVISOR_memory_op(
1229 	    XENMEM_maximum_ram_page, NULL)) + MMU_PAGEOFFSET;
1230 #endif
1231 
1232 	ASSERT(maxphysaddr <= io_arena_params[0].io_limit);
1233 
1234 	for (a = 0; a < MAX_MEM_RANGES; a++) {
1235 		if (maxphysaddr >= io_arena_params[a + 1].io_limit) {
1236 			if (maxphysaddr > io_arena_params[a + 1].io_limit)
1237 				io_arena_params[a].io_limit = maxphysaddr;
1238 			else
1239 				a++;
1240 			break;
1241 		}
1242 	}
1243 	kmem_io_idx = a;
1244 
1245 	for (; a < MAX_MEM_RANGES; a++) {
1246 		kmem_io[a].kmem_io_attr = kmem_io_attr;
1247 		kmem_io[a].kmem_io_attr.dma_attr_addr_hi =
1248 		    io_arena_params[a].io_limit;
1249 		/*
1250 		 * initialize kmem_io[] arena/cache corresponding to
1251 		 * maxphysaddr and to the "common" io memory ranges that
1252 		 * have io_initial set to a non-zero value.
1253 		 */
1254 		if (io_arena_params[a].io_initial || a == kmem_io_idx)
1255 			kmem_io_init(a);
1256 	}
1257 
1258 	/* initialize ctgtree */
1259 	avl_create(&ctgtree, ctgcompare, sizeof (struct ctgas),
1260 	    offsetof(struct ctgas, ctg_link));
1261 }
1262 
1263 /*
1264  * put contig address/size
1265  */
1266 static void *
1267 putctgas(void *addr, size_t size)
1268 {
1269 	struct ctgas    *ctgp;
1270 	if ((ctgp = kmem_zalloc(sizeof (*ctgp), KM_NOSLEEP)) != NULL) {
1271 		ctgp->ctg_addr = addr;
1272 		ctgp->ctg_size = size;
1273 		CTGLOCK();
1274 		avl_add(&ctgtree, ctgp);
1275 		CTGUNLOCK();
1276 	}
1277 	return (ctgp);
1278 }
1279 
1280 /*
1281  * get contig size by addr
1282  */
1283 static size_t
1284 getctgsz(void *addr)
1285 {
1286 	struct ctgas    *ctgp;
1287 	struct ctgas    find;
1288 	size_t		sz = 0;
1289 
1290 	find.ctg_addr = addr;
1291 	CTGLOCK();
1292 	if ((ctgp = avl_find(&ctgtree, &find, NULL)) != NULL) {
1293 		avl_remove(&ctgtree, ctgp);
1294 	}
1295 	CTGUNLOCK();
1296 
1297 	if (ctgp != NULL) {
1298 		sz = ctgp->ctg_size;
1299 		kmem_free(ctgp, sizeof (*ctgp));
1300 	}
1301 
1302 	return (sz);
1303 }
1304 
1305 /*
1306  * contig_alloc:
1307  *
1308  *	allocates contiguous memory to satisfy the 'size' and dma attributes
1309  *	specified in 'attr'.
1310  *
1311  *	Not all of memory need to be physically contiguous if the
1312  *	scatter-gather list length is greater than 1.
1313  */
1314 
1315 /*ARGSUSED*/
1316 void *
1317 contig_alloc(size_t size, ddi_dma_attr_t *attr, uintptr_t align, int cansleep)
1318 {
1319 	pgcnt_t		pgcnt = btopr(size);
1320 	size_t		asize = pgcnt * PAGESIZE;
1321 	page_t		*ppl;
1322 	int		pflag;
1323 	void		*addr;
1324 
1325 	extern page_t *page_create_io(vnode_t *, u_offset_t, uint_t,
1326 	    uint_t, struct as *, caddr_t, ddi_dma_attr_t *);
1327 
1328 	/* segkmem_xalloc */
1329 
1330 	if (align <= PAGESIZE)
1331 		addr = vmem_alloc(heap_arena, asize,
1332 		    (cansleep) ? VM_SLEEP : VM_NOSLEEP);
1333 	else
1334 		addr = vmem_xalloc(heap_arena, asize, align, 0, 0, NULL, NULL,
1335 		    (cansleep) ? VM_SLEEP : VM_NOSLEEP);
1336 	if (addr) {
1337 		ASSERT(!((uintptr_t)addr & (align - 1)));
1338 
1339 		if (page_resv(pgcnt, (cansleep) ? KM_SLEEP : KM_NOSLEEP) == 0) {
1340 			vmem_free(heap_arena, addr, asize);
1341 			return (NULL);
1342 		}
1343 		pflag = PG_EXCL;
1344 
1345 		if (cansleep)
1346 			pflag |= PG_WAIT;
1347 
1348 		/* 4k req gets from freelists rather than pfn search */
1349 		if (pgcnt > 1 || align > PAGESIZE)
1350 			pflag |= PG_PHYSCONTIG;
1351 
1352 		ppl = page_create_io(&kvp, (u_offset_t)(uintptr_t)addr,
1353 		    asize, pflag, &kas, (caddr_t)addr, attr);
1354 
1355 		if (!ppl) {
1356 			vmem_free(heap_arena, addr, asize);
1357 			page_unresv(pgcnt);
1358 			return (NULL);
1359 		}
1360 
1361 		while (ppl != NULL) {
1362 			page_t	*pp = ppl;
1363 			page_sub(&ppl, pp);
1364 			ASSERT(page_iolock_assert(pp));
1365 			page_io_unlock(pp);
1366 			page_downgrade(pp);
1367 			hat_memload(kas.a_hat, (caddr_t)(uintptr_t)pp->p_offset,
1368 			    pp, (PROT_ALL & ~PROT_USER) |
1369 			    HAT_NOSYNC, HAT_LOAD_LOCK);
1370 		}
1371 	}
1372 	return (addr);
1373 }
1374 
1375 void
1376 contig_free(void *addr, size_t size)
1377 {
1378 	pgcnt_t	pgcnt = btopr(size);
1379 	size_t	asize = pgcnt * PAGESIZE;
1380 	caddr_t	a, ea;
1381 	page_t	*pp;
1382 
1383 	hat_unload(kas.a_hat, addr, asize, HAT_UNLOAD_UNLOCK);
1384 
1385 	for (a = addr, ea = a + asize; a < ea; a += PAGESIZE) {
1386 		pp = page_find(&kvp, (u_offset_t)(uintptr_t)a);
1387 		if (!pp)
1388 			panic("contig_free: contig pp not found");
1389 
1390 		if (!page_tryupgrade(pp)) {
1391 			page_unlock(pp);
1392 			pp = page_lookup(&kvp,
1393 			    (u_offset_t)(uintptr_t)a, SE_EXCL);
1394 			if (pp == NULL)
1395 				panic("contig_free: page freed");
1396 		}
1397 		page_destroy(pp, 0);
1398 	}
1399 
1400 	page_unresv(pgcnt);
1401 	vmem_free(heap_arena, addr, asize);
1402 }
1403 
1404 /*
1405  * Allocate from the system, aligned on a specific boundary.
1406  * The alignment, if non-zero, must be a power of 2.
1407  */
1408 static void *
1409 kalloca(size_t size, size_t align, int cansleep, int physcontig,
1410 	ddi_dma_attr_t *attr)
1411 {
1412 	size_t *addr, *raddr, rsize;
1413 	size_t hdrsize = 4 * sizeof (size_t);	/* must be power of 2 */
1414 	int a, i, c;
1415 	vmem_t *vmp;
1416 	kmem_cache_t *cp = NULL;
1417 
1418 	if (attr->dma_attr_addr_lo > mmu_ptob((uint64_t)ddiphysmin))
1419 		return (NULL);
1420 
1421 	align = MAX(align, hdrsize);
1422 	ASSERT((align & (align - 1)) == 0);
1423 
1424 	/*
1425 	 * All of our allocators guarantee 16-byte alignment, so we don't
1426 	 * need to reserve additional space for the header.
1427 	 * To simplify picking the correct kmem_io_cache, we round up to
1428 	 * a multiple of KA_ALIGN.
1429 	 */
1430 	rsize = P2ROUNDUP_TYPED(size + align, KA_ALIGN, size_t);
1431 
1432 	if (physcontig && rsize > PAGESIZE) {
1433 		if (addr = contig_alloc(size, attr, align, cansleep)) {
1434 			if (!putctgas(addr, size))
1435 				contig_free(addr, size);
1436 			else
1437 				return (addr);
1438 		}
1439 		return (NULL);
1440 	}
1441 
1442 	a = kmem_io_index(attr->dma_attr_addr_hi);
1443 
1444 	if (rsize > PAGESIZE) {
1445 		vmp = kmem_io[a].kmem_io_arena;
1446 		raddr = vmem_alloc(vmp, rsize,
1447 		    (cansleep) ? VM_SLEEP : VM_NOSLEEP);
1448 	} else {
1449 		c = highbit((rsize >> KA_ALIGN_SHIFT) - 1);
1450 		cp = kmem_io[a].kmem_io_cache[c];
1451 		raddr = kmem_cache_alloc(cp, (cansleep) ? KM_SLEEP :
1452 		    KM_NOSLEEP);
1453 	}
1454 
1455 	if (raddr == NULL) {
1456 		int	na;
1457 
1458 		ASSERT(cansleep == 0);
1459 		if (rsize > PAGESIZE)
1460 			return (NULL);
1461 		/*
1462 		 * System does not have memory in the requested range.
1463 		 * Try smaller kmem io ranges and larger cache sizes
1464 		 * to see if there might be memory available in
1465 		 * these other caches.
1466 		 */
1467 
1468 		for (na = kmem_io_index_next(a); na >= 0;
1469 		    na = kmem_io_index_next(na)) {
1470 			ASSERT(kmem_io[na].kmem_io_arena);
1471 			cp = kmem_io[na].kmem_io_cache[c];
1472 			raddr = kmem_cache_alloc(cp, KM_NOSLEEP);
1473 			if (raddr)
1474 				goto kallocdone;
1475 		}
1476 		/* now try the larger kmem io cache sizes */
1477 		for (na = a; na >= 0; na = kmem_io_index_next(na)) {
1478 			for (i = c + 1; i < KA_NCACHE; i++) {
1479 				cp = kmem_io[na].kmem_io_cache[i];
1480 				raddr = kmem_cache_alloc(cp, KM_NOSLEEP);
1481 				if (raddr)
1482 					goto kallocdone;
1483 			}
1484 		}
1485 		return (NULL);
1486 	}
1487 
1488 kallocdone:
1489 	ASSERT(!P2BOUNDARY((uintptr_t)raddr, rsize, PAGESIZE) ||
1490 	    rsize > PAGESIZE);
1491 
1492 	addr = (size_t *)P2ROUNDUP((uintptr_t)raddr + hdrsize, align);
1493 	ASSERT((uintptr_t)addr + size - (uintptr_t)raddr <= rsize);
1494 
1495 	addr[-4] = (size_t)cp;
1496 	addr[-3] = (size_t)vmp;
1497 	addr[-2] = (size_t)raddr;
1498 	addr[-1] = rsize;
1499 
1500 	return (addr);
1501 }
1502 
1503 static void
1504 kfreea(void *addr)
1505 {
1506 	size_t		size;
1507 
1508 	if (!((uintptr_t)addr & PAGEOFFSET) && (size = getctgsz(addr))) {
1509 		contig_free(addr, size);
1510 	} else {
1511 		size_t	*saddr = addr;
1512 		if (saddr[-4] == 0)
1513 			vmem_free((vmem_t *)saddr[-3], (void *)saddr[-2],
1514 			    saddr[-1]);
1515 		else
1516 			kmem_cache_free((kmem_cache_t *)saddr[-4],
1517 			    (void *)saddr[-2]);
1518 	}
1519 }
1520 
1521 /*ARGSUSED*/
1522 void
1523 i_ddi_devacc_to_hatacc(ddi_device_acc_attr_t *devaccp, uint_t *hataccp)
1524 {
1525 }
1526 
1527 /*
1528  * Check if the specified cache attribute is supported on the platform.
1529  * This function must be called before i_ddi_cacheattr_to_hatacc().
1530  */
1531 boolean_t
1532 i_ddi_check_cache_attr(uint_t flags)
1533 {
1534 	/*
1535 	 * The cache attributes are mutually exclusive. Any combination of
1536 	 * the attributes leads to a failure.
1537 	 */
1538 	uint_t cache_attr = IOMEM_CACHE_ATTR(flags);
1539 	if ((cache_attr != 0) && ((cache_attr & (cache_attr - 1)) != 0))
1540 		return (B_FALSE);
1541 
1542 	/* All cache attributes are supported on X86/X64 */
1543 	if (cache_attr & (IOMEM_DATA_UNCACHED | IOMEM_DATA_CACHED |
1544 	    IOMEM_DATA_UC_WR_COMBINE))
1545 		return (B_TRUE);
1546 
1547 	/* undefined attributes */
1548 	return (B_FALSE);
1549 }
1550 
1551 /* set HAT cache attributes from the cache attributes */
1552 void
1553 i_ddi_cacheattr_to_hatacc(uint_t flags, uint_t *hataccp)
1554 {
1555 	uint_t cache_attr = IOMEM_CACHE_ATTR(flags);
1556 	static char *fname = "i_ddi_cacheattr_to_hatacc";
1557 
1558 	/*
1559 	 * If write-combining is not supported, then it falls back
1560 	 * to uncacheable.
1561 	 */
1562 	if (cache_attr == IOMEM_DATA_UC_WR_COMBINE &&
1563 	    !is_x86_feature(x86_featureset, X86FSET_PAT))
1564 		cache_attr = IOMEM_DATA_UNCACHED;
1565 
1566 	/*
1567 	 * set HAT attrs according to the cache attrs.
1568 	 */
1569 	switch (cache_attr) {
1570 	case IOMEM_DATA_UNCACHED:
1571 		*hataccp &= ~HAT_ORDER_MASK;
1572 		*hataccp |= (HAT_STRICTORDER | HAT_PLAT_NOCACHE);
1573 		break;
1574 	case IOMEM_DATA_UC_WR_COMBINE:
1575 		*hataccp &= ~HAT_ORDER_MASK;
1576 		*hataccp |= (HAT_MERGING_OK | HAT_PLAT_NOCACHE);
1577 		break;
1578 	case IOMEM_DATA_CACHED:
1579 		*hataccp &= ~HAT_ORDER_MASK;
1580 		*hataccp |= HAT_UNORDERED_OK;
1581 		break;
1582 	/*
1583 	 * This case must not occur because the cache attribute is scrutinized
1584 	 * before this function is called.
1585 	 */
1586 	default:
1587 		/*
1588 		 * set cacheable to hat attrs.
1589 		 */
1590 		*hataccp &= ~HAT_ORDER_MASK;
1591 		*hataccp |= HAT_UNORDERED_OK;
1592 		cmn_err(CE_WARN, "%s: cache_attr=0x%x is ignored.",
1593 		    fname, cache_attr);
1594 	}
1595 }
1596 
1597 /*
1598  * This should actually be called i_ddi_dma_mem_alloc. There should
1599  * also be an i_ddi_pio_mem_alloc. i_ddi_dma_mem_alloc should call
1600  * through the device tree with the DDI_CTLOPS_DMA_ALIGN ctl ops to
1601  * get alignment requirements for DMA memory. i_ddi_pio_mem_alloc
1602  * should use DDI_CTLOPS_PIO_ALIGN. Since we only have i_ddi_mem_alloc
1603  * so far which is used for both, DMA and PIO, we have to use the DMA
1604  * ctl ops to make everybody happy.
1605  */
1606 /*ARGSUSED*/
1607 int
1608 i_ddi_mem_alloc(dev_info_t *dip, ddi_dma_attr_t *attr,
1609 	size_t length, int cansleep, int flags,
1610 	ddi_device_acc_attr_t *accattrp, caddr_t *kaddrp,
1611 	size_t *real_length, ddi_acc_hdl_t *ap)
1612 {
1613 	caddr_t a;
1614 	int iomin;
1615 	ddi_acc_impl_t *iap;
1616 	int physcontig = 0;
1617 	pgcnt_t npages;
1618 	pgcnt_t minctg;
1619 	uint_t order;
1620 	int e;
1621 
1622 	/*
1623 	 * Check legality of arguments
1624 	 */
1625 	if (length == 0 || kaddrp == NULL || attr == NULL) {
1626 		return (DDI_FAILURE);
1627 	}
1628 
1629 	if (attr->dma_attr_minxfer == 0 || attr->dma_attr_align == 0 ||
1630 	    (attr->dma_attr_align & (attr->dma_attr_align - 1)) ||
1631 	    (attr->dma_attr_minxfer & (attr->dma_attr_minxfer - 1))) {
1632 			return (DDI_FAILURE);
1633 	}
1634 
1635 	/*
1636 	 * figure out most restrictive alignment requirement
1637 	 */
1638 	iomin = attr->dma_attr_minxfer;
1639 	iomin = maxbit(iomin, attr->dma_attr_align);
1640 	if (iomin == 0)
1641 		return (DDI_FAILURE);
1642 
1643 	ASSERT((iomin & (iomin - 1)) == 0);
1644 
1645 	/*
1646 	 * if we allocate memory with IOMEM_DATA_UNCACHED or
1647 	 * IOMEM_DATA_UC_WR_COMBINE, make sure we allocate a page aligned
1648 	 * memory that ends on a page boundry.
1649 	 * Don't want to have to different cache mappings to the same
1650 	 * physical page.
1651 	 */
1652 	if (OVERRIDE_CACHE_ATTR(flags)) {
1653 		iomin = (iomin + MMU_PAGEOFFSET) & MMU_PAGEMASK;
1654 		length = (length + MMU_PAGEOFFSET) & (size_t)MMU_PAGEMASK;
1655 	}
1656 
1657 	/*
1658 	 * Determine if we need to satisfy the request for physically
1659 	 * contiguous memory or alignments larger than pagesize.
1660 	 */
1661 	npages = btopr(length + attr->dma_attr_align);
1662 	minctg = howmany(npages, attr->dma_attr_sgllen);
1663 
1664 	if (minctg > 1) {
1665 		uint64_t pfnseg = attr->dma_attr_seg >> PAGESHIFT;
1666 		/*
1667 		 * verify that the minimum contig requirement for the
1668 		 * actual length does not cross segment boundary.
1669 		 */
1670 		length = P2ROUNDUP_TYPED(length, attr->dma_attr_minxfer,
1671 		    size_t);
1672 		npages = btopr(length);
1673 		minctg = howmany(npages, attr->dma_attr_sgllen);
1674 		if (minctg > pfnseg + 1)
1675 			return (DDI_FAILURE);
1676 		physcontig = 1;
1677 	} else {
1678 		length = P2ROUNDUP_TYPED(length, iomin, size_t);
1679 	}
1680 
1681 	/*
1682 	 * Allocate the requested amount from the system.
1683 	 */
1684 	a = kalloca(length, iomin, cansleep, physcontig, attr);
1685 
1686 	if ((*kaddrp = a) == NULL)
1687 		return (DDI_FAILURE);
1688 
1689 	/*
1690 	 * if we to modify the cache attributes, go back and muck with the
1691 	 * mappings.
1692 	 */
1693 	if (OVERRIDE_CACHE_ATTR(flags)) {
1694 		order = 0;
1695 		i_ddi_cacheattr_to_hatacc(flags, &order);
1696 		e = kmem_override_cache_attrs(a, length, order);
1697 		if (e != 0) {
1698 			kfreea(a);
1699 			return (DDI_FAILURE);
1700 		}
1701 	}
1702 
1703 	if (real_length) {
1704 		*real_length = length;
1705 	}
1706 	if (ap) {
1707 		/*
1708 		 * initialize access handle
1709 		 */
1710 		iap = (ddi_acc_impl_t *)ap->ah_platform_private;
1711 		iap->ahi_acc_attr |= DDI_ACCATTR_CPU_VADDR;
1712 		impl_acc_hdl_init(ap);
1713 	}
1714 
1715 	return (DDI_SUCCESS);
1716 }
1717 
1718 /* ARGSUSED */
1719 void
1720 i_ddi_mem_free(caddr_t kaddr, ddi_acc_hdl_t *ap)
1721 {
1722 	if (ap != NULL) {
1723 		/*
1724 		 * if we modified the cache attributes on alloc, go back and
1725 		 * fix them since this memory could be returned to the
1726 		 * general pool.
1727 		 */
1728 		if (OVERRIDE_CACHE_ATTR(ap->ah_xfermodes)) {
1729 			uint_t order = 0;
1730 			int e;
1731 			i_ddi_cacheattr_to_hatacc(IOMEM_DATA_CACHED, &order);
1732 			e = kmem_override_cache_attrs(kaddr, ap->ah_len, order);
1733 			if (e != 0) {
1734 				cmn_err(CE_WARN, "i_ddi_mem_free() failed to "
1735 				    "override cache attrs, memory leaked\n");
1736 				return;
1737 			}
1738 		}
1739 	}
1740 	kfreea(kaddr);
1741 }
1742 
1743 /*
1744  * Access Barriers
1745  *
1746  */
1747 /*ARGSUSED*/
1748 int
1749 i_ddi_ontrap(ddi_acc_handle_t hp)
1750 {
1751 	return (DDI_FAILURE);
1752 }
1753 
1754 /*ARGSUSED*/
1755 void
1756 i_ddi_notrap(ddi_acc_handle_t hp)
1757 {
1758 }
1759 
1760 
1761 /*
1762  * Misc Functions
1763  */
1764 
1765 /*
1766  * Implementation instance override functions
1767  *
1768  * No override on i86pc
1769  */
1770 /*ARGSUSED*/
1771 uint_t
1772 impl_assign_instance(dev_info_t *dip)
1773 {
1774 	return ((uint_t)-1);
1775 }
1776 
1777 /*ARGSUSED*/
1778 int
1779 impl_keep_instance(dev_info_t *dip)
1780 {
1781 
1782 #if defined(__xpv)
1783 	/*
1784 	 * Do not persist instance numbers assigned to devices in dom0
1785 	 */
1786 	dev_info_t *pdip;
1787 	if (DOMAIN_IS_INITDOMAIN(xen_info)) {
1788 		if (((pdip = ddi_get_parent(dip)) != NULL) &&
1789 		    (strcmp(ddi_get_name(pdip), "xpvd") == 0))
1790 			return (DDI_SUCCESS);
1791 	}
1792 #endif
1793 	return (DDI_FAILURE);
1794 }
1795 
1796 /*ARGSUSED*/
1797 int
1798 impl_free_instance(dev_info_t *dip)
1799 {
1800 	return (DDI_FAILURE);
1801 }
1802 
1803 /*ARGSUSED*/
1804 int
1805 impl_check_cpu(dev_info_t *devi)
1806 {
1807 	return (DDI_SUCCESS);
1808 }
1809 
1810 /*
1811  * Referenced in common/cpr_driver.c: Power off machine.
1812  * Don't know how to power off i86pc.
1813  */
1814 void
1815 arch_power_down()
1816 {}
1817 
1818 /*
1819  * Copy name to property_name, since name
1820  * is in the low address range below kernelbase.
1821  */
1822 static void
1823 copy_boot_str(const char *boot_str, char *kern_str, int len)
1824 {
1825 	int i = 0;
1826 
1827 	while (i < len - 1 && boot_str[i] != '\0') {
1828 		kern_str[i] = boot_str[i];
1829 		i++;
1830 	}
1831 
1832 	kern_str[i] = 0;	/* null terminate */
1833 	if (boot_str[i] != '\0')
1834 		cmn_err(CE_WARN,
1835 		    "boot property string is truncated to %s", kern_str);
1836 }
1837 
1838 static void
1839 get_boot_properties(void)
1840 {
1841 	extern char hw_provider[];
1842 	dev_info_t *devi;
1843 	char *name;
1844 	int length;
1845 	char property_name[50], property_val[50];
1846 	void *bop_staging_area;
1847 
1848 	bop_staging_area = kmem_zalloc(MMU_PAGESIZE, KM_NOSLEEP);
1849 
1850 	/*
1851 	 * Import "root" properties from the boot.
1852 	 *
1853 	 * We do this by invoking BOP_NEXTPROP until the list
1854 	 * is completely copied in.
1855 	 */
1856 
1857 	devi = ddi_root_node();
1858 	for (name = BOP_NEXTPROP(bootops, "");		/* get first */
1859 	    name;					/* NULL => DONE */
1860 	    name = BOP_NEXTPROP(bootops, name)) {	/* get next */
1861 
1862 		/* copy string to memory above kernelbase */
1863 		copy_boot_str(name, property_name, 50);
1864 
1865 		/*
1866 		 * Skip vga properties. They will be picked up later
1867 		 * by get_vga_properties.
1868 		 */
1869 		if (strcmp(property_name, "display-edif-block") == 0 ||
1870 		    strcmp(property_name, "display-edif-id") == 0) {
1871 			continue;
1872 		}
1873 
1874 		length = BOP_GETPROPLEN(bootops, property_name);
1875 		if (length == 0)
1876 			continue;
1877 		if (length > MMU_PAGESIZE) {
1878 			cmn_err(CE_NOTE,
1879 			    "boot property %s longer than 0x%x, ignored\n",
1880 			    property_name, MMU_PAGESIZE);
1881 			continue;
1882 		}
1883 		BOP_GETPROP(bootops, property_name, bop_staging_area);
1884 
1885 		/*
1886 		 * special properties:
1887 		 * si-machine, si-hw-provider
1888 		 *	goes to kernel data structures.
1889 		 * bios-boot-device and stdout
1890 		 *	goes to hardware property list so it may show up
1891 		 *	in the prtconf -vp output. This is needed by
1892 		 *	Install/Upgrade. Once we fix install upgrade,
1893 		 *	this can be taken out.
1894 		 */
1895 		if (strcmp(name, "si-machine") == 0) {
1896 			(void) strncpy(utsname.machine, bop_staging_area,
1897 			    SYS_NMLN);
1898 			utsname.machine[SYS_NMLN - 1] = (char)NULL;
1899 		} else if (strcmp(name, "si-hw-provider") == 0) {
1900 			(void) strncpy(hw_provider, bop_staging_area, SYS_NMLN);
1901 			hw_provider[SYS_NMLN - 1] = (char)NULL;
1902 		} else if (strcmp(name, "bios-boot-device") == 0) {
1903 			copy_boot_str(bop_staging_area, property_val, 50);
1904 			(void) ndi_prop_update_string(DDI_DEV_T_NONE, devi,
1905 			    property_name, property_val);
1906 		} else if (strcmp(name, "stdout") == 0) {
1907 			(void) ndi_prop_update_int(DDI_DEV_T_NONE, devi,
1908 			    property_name, *((int *)bop_staging_area));
1909 		} else {
1910 			/* Property type unknown, use old prop interface */
1911 			(void) e_ddi_prop_create(DDI_DEV_T_NONE, devi,
1912 			    DDI_PROP_CANSLEEP, property_name, bop_staging_area,
1913 			    length);
1914 		}
1915 	}
1916 
1917 	kmem_free(bop_staging_area, MMU_PAGESIZE);
1918 }
1919 
1920 static void
1921 get_vga_properties(void)
1922 {
1923 	dev_info_t *devi;
1924 	major_t major;
1925 	char *name;
1926 	int length;
1927 	char property_val[50];
1928 	void *bop_staging_area;
1929 
1930 	/*
1931 	 * XXXX Hack Allert!
1932 	 * There really needs to be a better way for identifying various
1933 	 * console framebuffers and their related issues.  Till then,
1934 	 * check for this one as a replacement to vgatext.
1935 	 */
1936 	major = ddi_name_to_major("ragexl");
1937 	if (major == (major_t)-1) {
1938 		major = ddi_name_to_major("vgatext");
1939 		if (major == (major_t)-1)
1940 			return;
1941 	}
1942 	devi = devnamesp[major].dn_head;
1943 	if (devi == NULL)
1944 		return;
1945 
1946 	bop_staging_area = kmem_zalloc(MMU_PAGESIZE, KM_SLEEP);
1947 
1948 	/*
1949 	 * Import "vga" properties from the boot.
1950 	 */
1951 	name = "display-edif-block";
1952 	length = BOP_GETPROPLEN(bootops, name);
1953 	if (length > 0 && length < MMU_PAGESIZE) {
1954 		BOP_GETPROP(bootops, name, bop_staging_area);
1955 		(void) ndi_prop_update_byte_array(DDI_DEV_T_NONE,
1956 		    devi, name, bop_staging_area, length);
1957 	}
1958 
1959 	/*
1960 	 * kdmconfig is also looking for display-type and
1961 	 * video-adapter-type. We default to color and svga.
1962 	 *
1963 	 * Could it be "monochrome", "vga"?
1964 	 * Nah, you've got to come to the 21st century...
1965 	 * And you can set monitor type manually in kdmconfig
1966 	 * if you are really an old junky.
1967 	 */
1968 	(void) ndi_prop_update_string(DDI_DEV_T_NONE,
1969 	    devi, "display-type", "color");
1970 	(void) ndi_prop_update_string(DDI_DEV_T_NONE,
1971 	    devi, "video-adapter-type", "svga");
1972 
1973 	name = "display-edif-id";
1974 	length = BOP_GETPROPLEN(bootops, name);
1975 	if (length > 0 && length < MMU_PAGESIZE) {
1976 		BOP_GETPROP(bootops, name, bop_staging_area);
1977 		copy_boot_str(bop_staging_area, property_val, length);
1978 		(void) ndi_prop_update_string(DDI_DEV_T_NONE,
1979 		    devi, name, property_val);
1980 	}
1981 
1982 	kmem_free(bop_staging_area, MMU_PAGESIZE);
1983 }
1984 
1985 
1986 /*
1987  * This is temporary, but absolutely necessary.  If we are being
1988  * booted with a device tree created by the DevConf project's bootconf
1989  * program, then we have device information nodes that reflect
1990  * reality.  At this point in time in the Solaris release schedule, the
1991  * kernel drivers aren't prepared for reality.  They still depend on their
1992  * own ad-hoc interpretations of the properties created when their .conf
1993  * files were interpreted. These drivers use an "ignore-hardware-nodes"
1994  * property to prevent them from using the nodes passed up from the bootconf
1995  * device tree.
1996  *
1997  * Trying to assemble root file system drivers as we are booting from
1998  * devconf will fail if the kernel driver is basing its name_addr's on the
1999  * psuedo-node device info while the bootpath passed up from bootconf is using
2000  * reality-based name_addrs.  We help the boot along in this case by
2001  * looking at the pre-bootconf bootpath and determining if we would have
2002  * successfully matched if that had been the bootpath we had chosen.
2003  *
2004  * Note that we only even perform this extra check if we've booted
2005  * using bootconf's 1275 compliant bootpath, this is the boot device, and
2006  * we're trying to match the name_addr specified in the 1275 bootpath.
2007  */
2008 
2009 #define	MAXCOMPONENTLEN	32
2010 
2011 int
2012 x86_old_bootpath_name_addr_match(dev_info_t *cdip, char *caddr, char *naddr)
2013 {
2014 	/*
2015 	 *  There are multiple criteria to be met before we can even
2016 	 *  consider allowing a name_addr match here.
2017 	 *
2018 	 *  1) We must have been booted such that the bootconf program
2019 	 *	created device tree nodes and properties.  This can be
2020 	 *	determined by examining the 'bootpath' property.  This
2021 	 *	property will be a non-null string iff bootconf was
2022 	 *	involved in the boot.
2023 	 *
2024 	 *  2) The module that we want to match must be the boot device.
2025 	 *
2026 	 *  3) The instance of the module we are thinking of letting be
2027 	 *	our match must be ignoring hardware nodes.
2028 	 *
2029 	 *  4) The name_addr we want to match must be the name_addr
2030 	 *	specified in the 1275 bootpath.
2031 	 */
2032 	static char bootdev_module[MAXCOMPONENTLEN];
2033 	static char bootdev_oldmod[MAXCOMPONENTLEN];
2034 	static char bootdev_newaddr[MAXCOMPONENTLEN];
2035 	static char bootdev_oldaddr[MAXCOMPONENTLEN];
2036 	static int  quickexit;
2037 
2038 	char *daddr;
2039 	int dlen;
2040 
2041 	char	*lkupname;
2042 	int	rv = DDI_FAILURE;
2043 
2044 	if ((ddi_getlongprop(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS,
2045 	    "devconf-addr", (caddr_t)&daddr, &dlen) == DDI_PROP_SUCCESS) &&
2046 	    (ddi_getprop(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS,
2047 	    "ignore-hardware-nodes", -1) != -1)) {
2048 		if (strcmp(daddr, caddr) == 0) {
2049 			return (DDI_SUCCESS);
2050 		}
2051 	}
2052 
2053 	if (quickexit)
2054 		return (rv);
2055 
2056 	if (bootdev_module[0] == '\0') {
2057 		char *addrp, *eoaddrp;
2058 		char *busp, *modp, *atp;
2059 		char *bp1275, *bp;
2060 		int  bp1275len, bplen;
2061 
2062 		bp1275 = bp = addrp = eoaddrp = busp = modp = atp = NULL;
2063 
2064 		if (ddi_getlongprop(DDI_DEV_T_ANY,
2065 		    ddi_root_node(), 0, "bootpath",
2066 		    (caddr_t)&bp1275, &bp1275len) != DDI_PROP_SUCCESS ||
2067 		    bp1275len <= 1) {
2068 			/*
2069 			 * We didn't boot from bootconf so we never need to
2070 			 * do any special matches.
2071 			 */
2072 			quickexit = 1;
2073 			if (bp1275)
2074 				kmem_free(bp1275, bp1275len);
2075 			return (rv);
2076 		}
2077 
2078 		if (ddi_getlongprop(DDI_DEV_T_ANY,
2079 		    ddi_root_node(), 0, "boot-path",
2080 		    (caddr_t)&bp, &bplen) != DDI_PROP_SUCCESS || bplen <= 1) {
2081 			/*
2082 			 * No fallback position for matching. This is
2083 			 * certainly unexpected, but we'll handle it
2084 			 * just in case.
2085 			 */
2086 			quickexit = 1;
2087 			kmem_free(bp1275, bp1275len);
2088 			if (bp)
2089 				kmem_free(bp, bplen);
2090 			return (rv);
2091 		}
2092 
2093 		/*
2094 		 *  Determine boot device module and 1275 name_addr
2095 		 *
2096 		 *  bootpath assumed to be of the form /bus/module@name_addr
2097 		 */
2098 		if (busp = strchr(bp1275, '/')) {
2099 			if (modp = strchr(busp + 1, '/')) {
2100 				if (atp = strchr(modp + 1, '@')) {
2101 					*atp = '\0';
2102 					addrp = atp + 1;
2103 					if (eoaddrp = strchr(addrp, '/'))
2104 						*eoaddrp = '\0';
2105 				}
2106 			}
2107 		}
2108 
2109 		if (modp && addrp) {
2110 			(void) strncpy(bootdev_module, modp + 1,
2111 			    MAXCOMPONENTLEN);
2112 			bootdev_module[MAXCOMPONENTLEN - 1] = '\0';
2113 
2114 			(void) strncpy(bootdev_newaddr, addrp, MAXCOMPONENTLEN);
2115 			bootdev_newaddr[MAXCOMPONENTLEN - 1] = '\0';
2116 		} else {
2117 			quickexit = 1;
2118 			kmem_free(bp1275, bp1275len);
2119 			kmem_free(bp, bplen);
2120 			return (rv);
2121 		}
2122 
2123 		/*
2124 		 *  Determine fallback name_addr
2125 		 *
2126 		 *  10/3/96 - Also save fallback module name because it
2127 		 *  might actually be different than the current module
2128 		 *  name.  E.G., ISA pnp drivers have new names.
2129 		 *
2130 		 *  bootpath assumed to be of the form /bus/module@name_addr
2131 		 */
2132 		addrp = NULL;
2133 		if (busp = strchr(bp, '/')) {
2134 			if (modp = strchr(busp + 1, '/')) {
2135 				if (atp = strchr(modp + 1, '@')) {
2136 					*atp = '\0';
2137 					addrp = atp + 1;
2138 					if (eoaddrp = strchr(addrp, '/'))
2139 						*eoaddrp = '\0';
2140 				}
2141 			}
2142 		}
2143 
2144 		if (modp && addrp) {
2145 			(void) strncpy(bootdev_oldmod, modp + 1,
2146 			    MAXCOMPONENTLEN);
2147 			bootdev_module[MAXCOMPONENTLEN - 1] = '\0';
2148 
2149 			(void) strncpy(bootdev_oldaddr, addrp, MAXCOMPONENTLEN);
2150 			bootdev_oldaddr[MAXCOMPONENTLEN - 1] = '\0';
2151 		}
2152 
2153 		/* Free up the bootpath storage now that we're done with it. */
2154 		kmem_free(bp1275, bp1275len);
2155 		kmem_free(bp, bplen);
2156 
2157 		if (bootdev_oldaddr[0] == '\0') {
2158 			quickexit = 1;
2159 			return (rv);
2160 		}
2161 	}
2162 
2163 	if (((lkupname = ddi_get_name(cdip)) != NULL) &&
2164 	    (strcmp(bootdev_module, lkupname) == 0 ||
2165 	    strcmp(bootdev_oldmod, lkupname) == 0) &&
2166 	    ((ddi_getprop(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS,
2167 	    "ignore-hardware-nodes", -1) != -1) ||
2168 	    ignore_hardware_nodes) &&
2169 	    strcmp(bootdev_newaddr, caddr) == 0 &&
2170 	    strcmp(bootdev_oldaddr, naddr) == 0) {
2171 		rv = DDI_SUCCESS;
2172 	}
2173 
2174 	return (rv);
2175 }
2176 
2177 /*
2178  * Perform a copy from a memory mapped device (whose devinfo pointer is devi)
2179  * separately mapped at devaddr in the kernel to a kernel buffer at kaddr.
2180  */
2181 /*ARGSUSED*/
2182 int
2183 e_ddi_copyfromdev(dev_info_t *devi,
2184     off_t off, const void *devaddr, void *kaddr, size_t len)
2185 {
2186 	bcopy(devaddr, kaddr, len);
2187 	return (0);
2188 }
2189 
2190 /*
2191  * Perform a copy to a memory mapped device (whose devinfo pointer is devi)
2192  * separately mapped at devaddr in the kernel from a kernel buffer at kaddr.
2193  */
2194 /*ARGSUSED*/
2195 int
2196 e_ddi_copytodev(dev_info_t *devi,
2197     off_t off, const void *kaddr, void *devaddr, size_t len)
2198 {
2199 	bcopy(kaddr, devaddr, len);
2200 	return (0);
2201 }
2202 
2203 
2204 static int
2205 poke_mem(peekpoke_ctlops_t *in_args)
2206 {
2207 	int err = DDI_SUCCESS;
2208 	on_trap_data_t otd;
2209 
2210 	/* Set up protected environment. */
2211 	if (!on_trap(&otd, OT_DATA_ACCESS)) {
2212 		switch (in_args->size) {
2213 		case sizeof (uint8_t):
2214 			*(uint8_t *)(in_args->dev_addr) =
2215 			    *(uint8_t *)in_args->host_addr;
2216 			break;
2217 
2218 		case sizeof (uint16_t):
2219 			*(uint16_t *)(in_args->dev_addr) =
2220 			    *(uint16_t *)in_args->host_addr;
2221 			break;
2222 
2223 		case sizeof (uint32_t):
2224 			*(uint32_t *)(in_args->dev_addr) =
2225 			    *(uint32_t *)in_args->host_addr;
2226 			break;
2227 
2228 		case sizeof (uint64_t):
2229 			*(uint64_t *)(in_args->dev_addr) =
2230 			    *(uint64_t *)in_args->host_addr;
2231 			break;
2232 
2233 		default:
2234 			err = DDI_FAILURE;
2235 			break;
2236 		}
2237 	} else
2238 		err = DDI_FAILURE;
2239 
2240 	/* Take down protected environment. */
2241 	no_trap();
2242 
2243 	return (err);
2244 }
2245 
2246 
2247 static int
2248 peek_mem(peekpoke_ctlops_t *in_args)
2249 {
2250 	int err = DDI_SUCCESS;
2251 	on_trap_data_t otd;
2252 
2253 	if (!on_trap(&otd, OT_DATA_ACCESS)) {
2254 		switch (in_args->size) {
2255 		case sizeof (uint8_t):
2256 			*(uint8_t *)in_args->host_addr =
2257 			    *(uint8_t *)in_args->dev_addr;
2258 			break;
2259 
2260 		case sizeof (uint16_t):
2261 			*(uint16_t *)in_args->host_addr =
2262 			    *(uint16_t *)in_args->dev_addr;
2263 			break;
2264 
2265 		case sizeof (uint32_t):
2266 			*(uint32_t *)in_args->host_addr =
2267 			    *(uint32_t *)in_args->dev_addr;
2268 			break;
2269 
2270 		case sizeof (uint64_t):
2271 			*(uint64_t *)in_args->host_addr =
2272 			    *(uint64_t *)in_args->dev_addr;
2273 			break;
2274 
2275 		default:
2276 			err = DDI_FAILURE;
2277 			break;
2278 		}
2279 	} else
2280 		err = DDI_FAILURE;
2281 
2282 	no_trap();
2283 	return (err);
2284 }
2285 
2286 
2287 /*
2288  * This is called only to process peek/poke when the DIP is NULL.
2289  * Assume that this is for memory, as nexi take care of device safe accesses.
2290  */
2291 int
2292 peekpoke_mem(ddi_ctl_enum_t cmd, peekpoke_ctlops_t *in_args)
2293 {
2294 	return (cmd == DDI_CTLOPS_PEEK ? peek_mem(in_args) : poke_mem(in_args));
2295 }
2296 
2297 /*
2298  * we've just done a cautious put/get. Check if it was successful by
2299  * calling pci_ereport_post() on all puts and for any gets that return -1
2300  */
2301 static int
2302 pci_peekpoke_check_fma(dev_info_t *dip, void *arg, ddi_ctl_enum_t ctlop,
2303     void (*scan)(dev_info_t *, ddi_fm_error_t *))
2304 {
2305 	int	rval = DDI_SUCCESS;
2306 	peekpoke_ctlops_t *in_args = (peekpoke_ctlops_t *)arg;
2307 	ddi_fm_error_t de;
2308 	ddi_acc_impl_t *hp = (ddi_acc_impl_t *)in_args->handle;
2309 	ddi_acc_hdl_t *hdlp = (ddi_acc_hdl_t *)in_args->handle;
2310 	int check_err = 0;
2311 	int repcount = in_args->repcount;
2312 
2313 	if (ctlop == DDI_CTLOPS_POKE &&
2314 	    hdlp->ah_acc.devacc_attr_access != DDI_CAUTIOUS_ACC)
2315 		return (DDI_SUCCESS);
2316 
2317 	if (ctlop == DDI_CTLOPS_PEEK &&
2318 	    hdlp->ah_acc.devacc_attr_access != DDI_CAUTIOUS_ACC) {
2319 		for (; repcount; repcount--) {
2320 			switch (in_args->size) {
2321 			case sizeof (uint8_t):
2322 				if (*(uint8_t *)in_args->host_addr == 0xff)
2323 					check_err = 1;
2324 				break;
2325 			case sizeof (uint16_t):
2326 				if (*(uint16_t *)in_args->host_addr == 0xffff)
2327 					check_err = 1;
2328 				break;
2329 			case sizeof (uint32_t):
2330 				if (*(uint32_t *)in_args->host_addr ==
2331 				    0xffffffff)
2332 					check_err = 1;
2333 				break;
2334 			case sizeof (uint64_t):
2335 				if (*(uint64_t *)in_args->host_addr ==
2336 				    0xffffffffffffffff)
2337 					check_err = 1;
2338 				break;
2339 			}
2340 		}
2341 		if (check_err == 0)
2342 			return (DDI_SUCCESS);
2343 	}
2344 	/*
2345 	 * for a cautious put or get or a non-cautious get that returned -1 call
2346 	 * io framework to see if there really was an error
2347 	 */
2348 	bzero(&de, sizeof (ddi_fm_error_t));
2349 	de.fme_version = DDI_FME_VERSION;
2350 	de.fme_ena = fm_ena_generate(0, FM_ENA_FMT1);
2351 	if (hdlp->ah_acc.devacc_attr_access == DDI_CAUTIOUS_ACC) {
2352 		de.fme_flag = DDI_FM_ERR_EXPECTED;
2353 		de.fme_acc_handle = in_args->handle;
2354 	} else if (hdlp->ah_acc.devacc_attr_access == DDI_DEFAULT_ACC) {
2355 		/*
2356 		 * We only get here with DDI_DEFAULT_ACC for config space gets.
2357 		 * Non-hardened drivers may be probing the hardware and
2358 		 * expecting -1 returned. So need to treat errors on
2359 		 * DDI_DEFAULT_ACC as DDI_FM_ERR_EXPECTED.
2360 		 */
2361 		de.fme_flag = DDI_FM_ERR_EXPECTED;
2362 		de.fme_acc_handle = in_args->handle;
2363 	} else {
2364 		/*
2365 		 * Hardened driver doing protected accesses shouldn't
2366 		 * get errors unless there's a hardware problem. Treat
2367 		 * as nonfatal if there's an error, but set UNEXPECTED
2368 		 * so we raise ereports on any errors and potentially
2369 		 * fault the device
2370 		 */
2371 		de.fme_flag = DDI_FM_ERR_UNEXPECTED;
2372 	}
2373 	(void) scan(dip, &de);
2374 	if (hdlp->ah_acc.devacc_attr_access != DDI_DEFAULT_ACC &&
2375 	    de.fme_status != DDI_FM_OK) {
2376 		ndi_err_t *errp = (ndi_err_t *)hp->ahi_err;
2377 		rval = DDI_FAILURE;
2378 		errp->err_ena = de.fme_ena;
2379 		errp->err_expected = de.fme_flag;
2380 		errp->err_status = DDI_FM_NONFATAL;
2381 	}
2382 	return (rval);
2383 }
2384 
2385 /*
2386  * pci_peekpoke_check_nofma() is for when an error occurs on a register access
2387  * during pci_ereport_post(). We can't call pci_ereport_post() again or we'd
2388  * recurse, so assume all puts are OK and gets have failed if they return -1
2389  */
2390 static int
2391 pci_peekpoke_check_nofma(void *arg, ddi_ctl_enum_t ctlop)
2392 {
2393 	int rval = DDI_SUCCESS;
2394 	peekpoke_ctlops_t *in_args = (peekpoke_ctlops_t *)arg;
2395 	ddi_acc_impl_t *hp = (ddi_acc_impl_t *)in_args->handle;
2396 	ddi_acc_hdl_t *hdlp = (ddi_acc_hdl_t *)in_args->handle;
2397 	int repcount = in_args->repcount;
2398 
2399 	if (ctlop == DDI_CTLOPS_POKE)
2400 		return (rval);
2401 
2402 	for (; repcount; repcount--) {
2403 		switch (in_args->size) {
2404 		case sizeof (uint8_t):
2405 			if (*(uint8_t *)in_args->host_addr == 0xff)
2406 				rval = DDI_FAILURE;
2407 			break;
2408 		case sizeof (uint16_t):
2409 			if (*(uint16_t *)in_args->host_addr == 0xffff)
2410 				rval = DDI_FAILURE;
2411 			break;
2412 		case sizeof (uint32_t):
2413 			if (*(uint32_t *)in_args->host_addr == 0xffffffff)
2414 				rval = DDI_FAILURE;
2415 			break;
2416 		case sizeof (uint64_t):
2417 			if (*(uint64_t *)in_args->host_addr ==
2418 			    0xffffffffffffffff)
2419 				rval = DDI_FAILURE;
2420 			break;
2421 		}
2422 	}
2423 	if (hdlp->ah_acc.devacc_attr_access != DDI_DEFAULT_ACC &&
2424 	    rval == DDI_FAILURE) {
2425 		ndi_err_t *errp = (ndi_err_t *)hp->ahi_err;
2426 		errp->err_ena = fm_ena_generate(0, FM_ENA_FMT1);
2427 		errp->err_expected = DDI_FM_ERR_UNEXPECTED;
2428 		errp->err_status = DDI_FM_NONFATAL;
2429 	}
2430 	return (rval);
2431 }
2432 
2433 int
2434 pci_peekpoke_check(dev_info_t *dip, dev_info_t *rdip,
2435 	ddi_ctl_enum_t ctlop, void *arg, void *result,
2436 	int (*handler)(dev_info_t *, dev_info_t *, ddi_ctl_enum_t, void *,
2437 	void *), kmutex_t *err_mutexp, kmutex_t *peek_poke_mutexp,
2438 	void (*scan)(dev_info_t *, ddi_fm_error_t *))
2439 {
2440 	int rval;
2441 	peekpoke_ctlops_t *in_args = (peekpoke_ctlops_t *)arg;
2442 	ddi_acc_impl_t *hp = (ddi_acc_impl_t *)in_args->handle;
2443 
2444 	/*
2445 	 * this function only supports cautious accesses, not peeks/pokes
2446 	 * which don't have a handle
2447 	 */
2448 	if (hp == NULL)
2449 		return (DDI_FAILURE);
2450 
2451 	if (hp->ahi_acc_attr & DDI_ACCATTR_CONFIG_SPACE) {
2452 		if (!mutex_tryenter(err_mutexp)) {
2453 			/*
2454 			 * As this may be a recursive call from within
2455 			 * pci_ereport_post() we can't wait for the mutexes.
2456 			 * Fortunately we know someone is already calling
2457 			 * pci_ereport_post() which will handle the error bits
2458 			 * for us, and as this is a config space access we can
2459 			 * just do the access and check return value for -1
2460 			 * using pci_peekpoke_check_nofma().
2461 			 */
2462 			rval = handler(dip, rdip, ctlop, arg, result);
2463 			if (rval == DDI_SUCCESS)
2464 				rval = pci_peekpoke_check_nofma(arg, ctlop);
2465 			return (rval);
2466 		}
2467 		/*
2468 		 * This can't be a recursive call. Drop the err_mutex and get
2469 		 * both mutexes in the right order. If an error hasn't already
2470 		 * been detected by the ontrap code, use pci_peekpoke_check_fma
2471 		 * which will call pci_ereport_post() to check error status.
2472 		 */
2473 		mutex_exit(err_mutexp);
2474 	}
2475 	mutex_enter(peek_poke_mutexp);
2476 	rval = handler(dip, rdip, ctlop, arg, result);
2477 	if (rval == DDI_SUCCESS) {
2478 		mutex_enter(err_mutexp);
2479 		rval = pci_peekpoke_check_fma(dip, arg, ctlop, scan);
2480 		mutex_exit(err_mutexp);
2481 	}
2482 	mutex_exit(peek_poke_mutexp);
2483 	return (rval);
2484 }
2485 
2486 void
2487 impl_setup_ddi(void)
2488 {
2489 #if !defined(__xpv)
2490 	extern void startup_bios_disk(void);
2491 	extern int post_fastreboot;
2492 #endif
2493 	dev_info_t *xdip, *isa_dip;
2494 	rd_existing_t rd_mem_prop;
2495 	int err;
2496 
2497 	ndi_devi_alloc_sleep(ddi_root_node(), "ramdisk",
2498 	    (pnode_t)DEVI_SID_NODEID, &xdip);
2499 
2500 	(void) BOP_GETPROP(bootops,
2501 	    "ramdisk_start", (void *)&ramdisk_start);
2502 	(void) BOP_GETPROP(bootops,
2503 	    "ramdisk_end", (void *)&ramdisk_end);
2504 
2505 #ifdef __xpv
2506 	ramdisk_start -= ONE_GIG;
2507 	ramdisk_end -= ONE_GIG;
2508 #endif
2509 	rd_mem_prop.phys = ramdisk_start;
2510 	rd_mem_prop.size = ramdisk_end - ramdisk_start + 1;
2511 
2512 	(void) ndi_prop_update_byte_array(DDI_DEV_T_NONE, xdip,
2513 	    RD_EXISTING_PROP_NAME, (uchar_t *)&rd_mem_prop,
2514 	    sizeof (rd_mem_prop));
2515 	err = ndi_devi_bind_driver(xdip, 0);
2516 	ASSERT(err == 0);
2517 
2518 	/* isa node */
2519 	if (pseudo_isa) {
2520 		ndi_devi_alloc_sleep(ddi_root_node(), "isa",
2521 		    (pnode_t)DEVI_SID_NODEID, &isa_dip);
2522 		(void) ndi_prop_update_string(DDI_DEV_T_NONE, isa_dip,
2523 		    "device_type", "isa");
2524 		(void) ndi_prop_update_string(DDI_DEV_T_NONE, isa_dip,
2525 		    "bus-type", "isa");
2526 		(void) ndi_devi_bind_driver(isa_dip, 0);
2527 	}
2528 
2529 	/*
2530 	 * Read in the properties from the boot.
2531 	 */
2532 	get_boot_properties();
2533 
2534 	/* not framebuffer should be enumerated, if present */
2535 	get_vga_properties();
2536 
2537 	/*
2538 	 * Check for administratively disabled drivers.
2539 	 */
2540 	check_driver_disable();
2541 
2542 #if !defined(__xpv)
2543 	if (!post_fastreboot)
2544 		startup_bios_disk();
2545 #endif
2546 	/* do bus dependent probes. */
2547 	impl_bus_initialprobe();
2548 }
2549 
2550 dev_t
2551 getrootdev(void)
2552 {
2553 	/*
2554 	 * Precedence given to rootdev if set in /etc/system
2555 	 */
2556 	if (root_is_svm == B_TRUE) {
2557 		return (ddi_pathname_to_dev_t(svm_bootpath));
2558 	}
2559 
2560 	/*
2561 	 * Usually rootfs.bo_name is initialized by the
2562 	 * the bootpath property from bootenv.rc, but
2563 	 * defaults to "/ramdisk:a" otherwise.
2564 	 */
2565 	return (ddi_pathname_to_dev_t(rootfs.bo_name));
2566 }
2567 
2568 static struct bus_probe {
2569 	struct bus_probe *next;
2570 	void (*probe)(int);
2571 } *bus_probes;
2572 
2573 void
2574 impl_bus_add_probe(void (*func)(int))
2575 {
2576 	struct bus_probe *probe;
2577 	struct bus_probe *lastprobe = NULL;
2578 
2579 	probe = kmem_alloc(sizeof (*probe), KM_SLEEP);
2580 	probe->probe = func;
2581 	probe->next = NULL;
2582 
2583 	if (!bus_probes) {
2584 		bus_probes = probe;
2585 		return;
2586 	}
2587 
2588 	lastprobe = bus_probes;
2589 	while (lastprobe->next)
2590 		lastprobe = lastprobe->next;
2591 	lastprobe->next = probe;
2592 }
2593 
2594 /*ARGSUSED*/
2595 void
2596 impl_bus_delete_probe(void (*func)(int))
2597 {
2598 	struct bus_probe *prev = NULL;
2599 	struct bus_probe *probe = bus_probes;
2600 
2601 	while (probe) {
2602 		if (probe->probe == func)
2603 			break;
2604 		prev = probe;
2605 		probe = probe->next;
2606 	}
2607 
2608 	if (probe == NULL)
2609 		return;
2610 
2611 	if (prev)
2612 		prev->next = probe->next;
2613 	else
2614 		bus_probes = probe->next;
2615 
2616 	kmem_free(probe, sizeof (struct bus_probe));
2617 }
2618 
2619 /*
2620  * impl_bus_initialprobe
2621  *	Modload the prom simulator, then let it probe to verify existence
2622  *	and type of PCI support.
2623  */
2624 static void
2625 impl_bus_initialprobe(void)
2626 {
2627 	struct bus_probe *probe;
2628 
2629 	/* load modules to install bus probes */
2630 #if defined(__xpv)
2631 	if (DOMAIN_IS_INITDOMAIN(xen_info)) {
2632 		if (modload("misc", "pci_autoconfig") < 0) {
2633 			panic("failed to load misc/pci_autoconfig");
2634 		}
2635 
2636 		if (modload("drv", "isa") < 0)
2637 			panic("failed to load drv/isa");
2638 	}
2639 
2640 	(void) modload("misc", "xpv_autoconfig");
2641 #else
2642 	if (modload("misc", "pci_autoconfig") < 0) {
2643 		panic("failed to load misc/pci_autoconfig");
2644 	}
2645 
2646 	(void) modload("misc", "acpidev");
2647 
2648 	if (modload("drv", "isa") < 0)
2649 		panic("failed to load drv/isa");
2650 #endif
2651 
2652 	probe = bus_probes;
2653 	while (probe) {
2654 		/* run the probe functions */
2655 		(*probe->probe)(0);
2656 		probe = probe->next;
2657 	}
2658 }
2659 
2660 /*
2661  * impl_bus_reprobe
2662  *	Reprogram devices not set up by firmware.
2663  */
2664 static void
2665 impl_bus_reprobe(void)
2666 {
2667 	struct bus_probe *probe;
2668 
2669 	probe = bus_probes;
2670 	while (probe) {
2671 		/* run the probe function */
2672 		(*probe->probe)(1);
2673 		probe = probe->next;
2674 	}
2675 }
2676 
2677 
2678 /*
2679  * The following functions ready a cautious request to go up to the nexus
2680  * driver.  It is up to the nexus driver to decide how to process the request.
2681  * It may choose to call i_ddi_do_caut_get/put in this file, or do it
2682  * differently.
2683  */
2684 
2685 static void
2686 i_ddi_caut_getput_ctlops(ddi_acc_impl_t *hp, uint64_t host_addr,
2687     uint64_t dev_addr, size_t size, size_t repcount, uint_t flags,
2688     ddi_ctl_enum_t cmd)
2689 {
2690 	peekpoke_ctlops_t	cautacc_ctlops_arg;
2691 
2692 	cautacc_ctlops_arg.size = size;
2693 	cautacc_ctlops_arg.dev_addr = dev_addr;
2694 	cautacc_ctlops_arg.host_addr = host_addr;
2695 	cautacc_ctlops_arg.handle = (ddi_acc_handle_t)hp;
2696 	cautacc_ctlops_arg.repcount = repcount;
2697 	cautacc_ctlops_arg.flags = flags;
2698 
2699 	(void) ddi_ctlops(hp->ahi_common.ah_dip, hp->ahi_common.ah_dip, cmd,
2700 	    &cautacc_ctlops_arg, NULL);
2701 }
2702 
2703 uint8_t
2704 i_ddi_caut_get8(ddi_acc_impl_t *hp, uint8_t *addr)
2705 {
2706 	uint8_t value;
2707 	i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr,
2708 	    sizeof (uint8_t), 1, 0, DDI_CTLOPS_PEEK);
2709 
2710 	return (value);
2711 }
2712 
2713 uint16_t
2714 i_ddi_caut_get16(ddi_acc_impl_t *hp, uint16_t *addr)
2715 {
2716 	uint16_t value;
2717 	i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr,
2718 	    sizeof (uint16_t), 1, 0, DDI_CTLOPS_PEEK);
2719 
2720 	return (value);
2721 }
2722 
2723 uint32_t
2724 i_ddi_caut_get32(ddi_acc_impl_t *hp, uint32_t *addr)
2725 {
2726 	uint32_t value;
2727 	i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr,
2728 	    sizeof (uint32_t), 1, 0, DDI_CTLOPS_PEEK);
2729 
2730 	return (value);
2731 }
2732 
2733 uint64_t
2734 i_ddi_caut_get64(ddi_acc_impl_t *hp, uint64_t *addr)
2735 {
2736 	uint64_t value;
2737 	i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr,
2738 	    sizeof (uint64_t), 1, 0, DDI_CTLOPS_PEEK);
2739 
2740 	return (value);
2741 }
2742 
2743 void
2744 i_ddi_caut_put8(ddi_acc_impl_t *hp, uint8_t *addr, uint8_t value)
2745 {
2746 	i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr,
2747 	    sizeof (uint8_t), 1, 0, DDI_CTLOPS_POKE);
2748 }
2749 
2750 void
2751 i_ddi_caut_put16(ddi_acc_impl_t *hp, uint16_t *addr, uint16_t value)
2752 {
2753 	i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr,
2754 	    sizeof (uint16_t), 1, 0, DDI_CTLOPS_POKE);
2755 }
2756 
2757 void
2758 i_ddi_caut_put32(ddi_acc_impl_t *hp, uint32_t *addr, uint32_t value)
2759 {
2760 	i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr,
2761 	    sizeof (uint32_t), 1, 0, DDI_CTLOPS_POKE);
2762 }
2763 
2764 void
2765 i_ddi_caut_put64(ddi_acc_impl_t *hp, uint64_t *addr, uint64_t value)
2766 {
2767 	i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr,
2768 	    sizeof (uint64_t), 1, 0, DDI_CTLOPS_POKE);
2769 }
2770 
2771 void
2772 i_ddi_caut_rep_get8(ddi_acc_impl_t *hp, uint8_t *host_addr, uint8_t *dev_addr,
2773 	size_t repcount, uint_t flags)
2774 {
2775 	i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr,
2776 	    sizeof (uint8_t), repcount, flags, DDI_CTLOPS_PEEK);
2777 }
2778 
2779 void
2780 i_ddi_caut_rep_get16(ddi_acc_impl_t *hp, uint16_t *host_addr,
2781     uint16_t *dev_addr, size_t repcount, uint_t flags)
2782 {
2783 	i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr,
2784 	    sizeof (uint16_t), repcount, flags, DDI_CTLOPS_PEEK);
2785 }
2786 
2787 void
2788 i_ddi_caut_rep_get32(ddi_acc_impl_t *hp, uint32_t *host_addr,
2789     uint32_t *dev_addr, size_t repcount, uint_t flags)
2790 {
2791 	i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr,
2792 	    sizeof (uint32_t), repcount, flags, DDI_CTLOPS_PEEK);
2793 }
2794 
2795 void
2796 i_ddi_caut_rep_get64(ddi_acc_impl_t *hp, uint64_t *host_addr,
2797     uint64_t *dev_addr, size_t repcount, uint_t flags)
2798 {
2799 	i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr,
2800 	    sizeof (uint64_t), repcount, flags, DDI_CTLOPS_PEEK);
2801 }
2802 
2803 void
2804 i_ddi_caut_rep_put8(ddi_acc_impl_t *hp, uint8_t *host_addr, uint8_t *dev_addr,
2805 	size_t repcount, uint_t flags)
2806 {
2807 	i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr,
2808 	    sizeof (uint8_t), repcount, flags, DDI_CTLOPS_POKE);
2809 }
2810 
2811 void
2812 i_ddi_caut_rep_put16(ddi_acc_impl_t *hp, uint16_t *host_addr,
2813     uint16_t *dev_addr, size_t repcount, uint_t flags)
2814 {
2815 	i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr,
2816 	    sizeof (uint16_t), repcount, flags, DDI_CTLOPS_POKE);
2817 }
2818 
2819 void
2820 i_ddi_caut_rep_put32(ddi_acc_impl_t *hp, uint32_t *host_addr,
2821     uint32_t *dev_addr, size_t repcount, uint_t flags)
2822 {
2823 	i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr,
2824 	    sizeof (uint32_t), repcount, flags, DDI_CTLOPS_POKE);
2825 }
2826 
2827 void
2828 i_ddi_caut_rep_put64(ddi_acc_impl_t *hp, uint64_t *host_addr,
2829     uint64_t *dev_addr, size_t repcount, uint_t flags)
2830 {
2831 	i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr,
2832 	    sizeof (uint64_t), repcount, flags, DDI_CTLOPS_POKE);
2833 }
2834 
2835 boolean_t
2836 i_ddi_copybuf_required(ddi_dma_attr_t *attrp)
2837 {
2838 	uint64_t hi_pa;
2839 
2840 	hi_pa = ((uint64_t)physmax + 1ull) << PAGESHIFT;
2841 	if (attrp->dma_attr_addr_hi < hi_pa) {
2842 		return (B_TRUE);
2843 	}
2844 
2845 	return (B_FALSE);
2846 }
2847 
2848 size_t
2849 i_ddi_copybuf_size()
2850 {
2851 	return (dma_max_copybuf_size);
2852 }
2853 
2854 /*
2855  * i_ddi_dma_max()
2856  *    returns the maximum DMA size which can be performed in a single DMA
2857  *    window taking into account the devices DMA contraints (attrp), the
2858  *    maximum copy buffer size (if applicable), and the worse case buffer
2859  *    fragmentation.
2860  */
2861 /*ARGSUSED*/
2862 uint32_t
2863 i_ddi_dma_max(dev_info_t *dip, ddi_dma_attr_t *attrp)
2864 {
2865 	uint64_t maxxfer;
2866 
2867 
2868 	/*
2869 	 * take the min of maxxfer and the the worse case fragementation
2870 	 * (e.g. every cookie <= 1 page)
2871 	 */
2872 	maxxfer = MIN(attrp->dma_attr_maxxfer,
2873 	    ((uint64_t)(attrp->dma_attr_sgllen - 1) << PAGESHIFT));
2874 
2875 	/*
2876 	 * If the DMA engine can't reach all off memory, we also need to take
2877 	 * the max size of the copybuf into consideration.
2878 	 */
2879 	if (i_ddi_copybuf_required(attrp)) {
2880 		maxxfer = MIN(i_ddi_copybuf_size(), maxxfer);
2881 	}
2882 
2883 	/*
2884 	 * we only return a 32-bit value. Make sure it's not -1. Round to a
2885 	 * page so it won't be mistaken for an error value during debug.
2886 	 */
2887 	if (maxxfer >= 0xFFFFFFFF) {
2888 		maxxfer = 0xFFFFF000;
2889 	}
2890 
2891 	/*
2892 	 * make sure the value we return is a whole multiple of the
2893 	 * granlarity.
2894 	 */
2895 	if (attrp->dma_attr_granular > 1) {
2896 		maxxfer = maxxfer - (maxxfer % attrp->dma_attr_granular);
2897 	}
2898 
2899 	return ((uint32_t)maxxfer);
2900 }
2901 
2902 /*ARGSUSED*/
2903 void
2904 translate_devid(dev_info_t *dip)
2905 {
2906 }
2907 
2908 pfn_t
2909 i_ddi_paddr_to_pfn(paddr_t paddr)
2910 {
2911 	pfn_t pfn;
2912 
2913 #ifdef __xpv
2914 	if (DOMAIN_IS_INITDOMAIN(xen_info)) {
2915 		pfn = xen_assign_pfn(mmu_btop(paddr));
2916 	} else {
2917 		pfn = mmu_btop(paddr);
2918 	}
2919 #else
2920 	pfn = mmu_btop(paddr);
2921 #endif
2922 
2923 	return (pfn);
2924 }
2925