1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2012 Garrett D'Amore <garrett@damore.org>
25 * Copyright 2014 Pluribus Networks, Inc.
26 * Copyright 2016 Nexenta Systems, Inc.
27 * Copyright 2018 Joyent, Inc.
28 */
29
30 /*
31 * PC specific DDI implementation
32 */
33 #include <sys/types.h>
34 #include <sys/autoconf.h>
35 #include <sys/avintr.h>
36 #include <sys/bootconf.h>
37 #include <sys/conf.h>
38 #include <sys/cpuvar.h>
39 #include <sys/ddi_impldefs.h>
40 #include <sys/ddi_subrdefs.h>
41 #include <sys/ethernet.h>
42 #include <sys/fp.h>
43 #include <sys/instance.h>
44 #include <sys/kmem.h>
45 #include <sys/machsystm.h>
46 #include <sys/modctl.h>
47 #include <sys/promif.h>
48 #include <sys/prom_plat.h>
49 #include <sys/sunndi.h>
50 #include <sys/ndi_impldefs.h>
51 #include <sys/ddi_impldefs.h>
52 #include <sys/sysmacros.h>
53 #include <sys/systeminfo.h>
54 #include <sys/utsname.h>
55 #include <sys/atomic.h>
56 #include <sys/spl.h>
57 #include <sys/archsystm.h>
58 #include <vm/seg_kmem.h>
59 #include <sys/ontrap.h>
60 #include <sys/fm/protocol.h>
61 #include <sys/ramdisk.h>
62 #include <sys/sunndi.h>
63 #include <sys/vmem.h>
64 #include <sys/pci_impl.h>
65 #if defined(__xpv)
66 #include <sys/hypervisor.h>
67 #endif
68 #include <sys/mach_intr.h>
69 #include <vm/hat_i86.h>
70 #include <sys/x86_archext.h>
71 #include <sys/avl.h>
72 #include <sys/font.h>
73
74 /*
75 * DDI Boot Configuration
76 */
77
78 /*
79 * Platform drivers on this platform
80 */
81 char *platform_module_list[] = {
82 "acpippm",
83 "ppm",
84 (char *)0
85 };
86
87 /* pci bus resource maps */
88 struct pci_bus_resource *pci_bus_res;
89
90 size_t dma_max_copybuf_size = 0x101000; /* 1M + 4K */
91
92 uint64_t ramdisk_start, ramdisk_end;
93
94 int pseudo_isa = 0;
95
96 /*
97 * Forward declarations
98 */
99 static int getlongprop_buf();
100 static void get_boot_properties(void);
101 static void impl_bus_initialprobe(void);
102 static void impl_bus_reprobe(void);
103
104 static int poke_mem(peekpoke_ctlops_t *in_args);
105 static int peek_mem(peekpoke_ctlops_t *in_args);
106
107 static int kmem_override_cache_attrs(caddr_t, size_t, uint_t);
108
109 #if !defined(__xpv)
110 extern void immu_init(void);
111 #endif
112
113 /*
114 * We use an AVL tree to store contiguous address allocations made with the
115 * kalloca() routine, so that we can return the size to free with kfreea().
116 * Note that in the future it would be vastly faster if we could eliminate
117 * this lookup by insisting that all callers keep track of their own sizes,
118 * just as for kmem_alloc().
119 */
120 struct ctgas {
121 avl_node_t ctg_link;
122 void *ctg_addr;
123 size_t ctg_size;
124 };
125
126 static avl_tree_t ctgtree;
127
128 static kmutex_t ctgmutex;
129 #define CTGLOCK() mutex_enter(&ctgmutex)
130 #define CTGUNLOCK() mutex_exit(&ctgmutex)
131
132 /*
133 * Minimum pfn value of page_t's put on the free list. This is to simplify
134 * support of ddi dma memory requests which specify small, non-zero addr_lo
135 * values.
136 *
137 * The default value of 2, which corresponds to the only known non-zero addr_lo
138 * value used, means a single page will be sacrificed (pfn typically starts
139 * at 1). ddiphysmin can be set to 0 to disable. It cannot be set above 0x100
140 * otherwise mp startup panics.
141 */
142 pfn_t ddiphysmin = 2;
143
144 static void
check_driver_disable(void)145 check_driver_disable(void)
146 {
147 int proplen = 128;
148 char *prop_name;
149 char *drv_name, *propval;
150 major_t major;
151
152 prop_name = kmem_alloc(proplen, KM_SLEEP);
153 for (major = 0; major < devcnt; major++) {
154 drv_name = ddi_major_to_name(major);
155 if (drv_name == NULL)
156 continue;
157 (void) snprintf(prop_name, proplen, "disable-%s", drv_name);
158 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
159 DDI_PROP_DONTPASS, prop_name, &propval) == DDI_SUCCESS) {
160 if (strcmp(propval, "true") == 0) {
161 devnamesp[major].dn_flags |= DN_DRIVER_REMOVED;
162 cmn_err(CE_NOTE, "driver %s disabled",
163 drv_name);
164 }
165 ddi_prop_free(propval);
166 }
167 }
168 kmem_free(prop_name, proplen);
169 }
170
171
172 /*
173 * Configure the hardware on the system.
174 * Called before the rootfs is mounted
175 */
176 void
configure(void)177 configure(void)
178 {
179 extern void i_ddi_init_root();
180
181 extern int fpu_ignored;
182
183 /*
184 * Determine if an FPU is attached
185 */
186
187 fpu_probe();
188
189
190 if (fpu_ignored) {
191 printf("FP hardware will not be used\n");
192 } else if (!fpu_exists) {
193 printf("No FPU in configuration\n");
194 }
195
196 /*
197 * Initialize devices on the machine.
198 * Uses configuration tree built by the PROMs to determine what
199 * is present, and builds a tree of prototype dev_info nodes
200 * corresponding to the hardware which identified itself.
201 */
202
203 /*
204 * Initialize root node.
205 */
206 i_ddi_init_root();
207
208 /* reprogram devices not set up by firmware (BIOS) */
209 impl_bus_reprobe();
210
211 #if !defined(__xpv)
212 /*
213 * Setup but don't startup the IOMMU
214 * Startup happens later via a direct call
215 * to IOMMU code by boot code.
216 * At this point, all PCI bus renumbering
217 * is done, so safe to init the IMMU
218 * AKA Intel IOMMU.
219 */
220 immu_init();
221 #endif
222
223 /*
224 * attach the isa nexus to get ACPI resource usage
225 * isa is "kind of" a pseudo node
226 */
227 #if defined(__xpv)
228 if (DOMAIN_IS_INITDOMAIN(xen_info)) {
229 if (pseudo_isa)
230 (void) i_ddi_attach_pseudo_node("isa");
231 else
232 (void) i_ddi_attach_hw_nodes("isa");
233 }
234 #else
235 if (pseudo_isa)
236 (void) i_ddi_attach_pseudo_node("isa");
237 else
238 (void) i_ddi_attach_hw_nodes("isa");
239 #endif
240 }
241
242 /*
243 * The "status" property indicates the operational status of a device.
244 * If this property is present, the value is a string indicating the
245 * status of the device as follows:
246 *
247 * "okay" operational.
248 * "disabled" not operational, but might become operational.
249 * "fail" not operational because a fault has been detected,
250 * and it is unlikely that the device will become
251 * operational without repair. no additional details
252 * are available.
253 * "fail-xxx" not operational because a fault has been detected,
254 * and it is unlikely that the device will become
255 * operational without repair. "xxx" is additional
256 * human-readable information about the particular
257 * fault condition that was detected.
258 *
259 * The absence of this property means that the operational status is
260 * unknown or okay.
261 *
262 * This routine checks the status property of the specified device node
263 * and returns 0 if the operational status indicates failure, and 1 otherwise.
264 *
265 * The property may exist on plug-in cards the existed before IEEE 1275-1994.
266 * And, in that case, the property may not even be a string. So we carefully
267 * check for the value "fail", in the beginning of the string, noting
268 * the property length.
269 */
270 int
status_okay(int id,char * buf,int buflen)271 status_okay(int id, char *buf, int buflen)
272 {
273 char status_buf[OBP_MAXPROPNAME];
274 char *bufp = buf;
275 int len = buflen;
276 int proplen;
277 static const char *status = "status";
278 static const char *fail = "fail";
279 int fail_len = (int)strlen(fail);
280
281 /*
282 * Get the proplen ... if it's smaller than "fail",
283 * or doesn't exist ... then we don't care, since
284 * the value can't begin with the char string "fail".
285 *
286 * NB: proplen, if it's a string, includes the NULL in the
287 * the size of the property, and fail_len does not.
288 */
289 proplen = prom_getproplen((pnode_t)id, (caddr_t)status);
290 if (proplen <= fail_len) /* nonexistant or uninteresting len */
291 return (1);
292
293 /*
294 * if a buffer was provided, use it
295 */
296 if ((buf == (char *)NULL) || (buflen <= 0)) {
297 bufp = status_buf;
298 len = sizeof (status_buf);
299 }
300 *bufp = (char)0;
301
302 /*
303 * Get the property into the buffer, to the extent of the buffer,
304 * and in case the buffer is smaller than the property size,
305 * NULL terminate the buffer. (This handles the case where
306 * a buffer was passed in and the caller wants to print the
307 * value, but the buffer was too small).
308 */
309 (void) prom_bounded_getprop((pnode_t)id, (caddr_t)status,
310 (caddr_t)bufp, len);
311 *(bufp + len - 1) = (char)0;
312
313 /*
314 * If the value begins with the char string "fail",
315 * then it means the node is failed. We don't care
316 * about any other values. We assume the node is ok
317 * although it might be 'disabled'.
318 */
319 if (strncmp(bufp, fail, fail_len) == 0)
320 return (0);
321
322 return (1);
323 }
324
325 /*
326 * Check the status of the device node passed as an argument.
327 *
328 * if ((status is OKAY) || (status is DISABLED))
329 * return DDI_SUCCESS
330 * else
331 * print a warning and return DDI_FAILURE
332 */
333 /*ARGSUSED1*/
334 int
check_status(int id,char * name,dev_info_t * parent)335 check_status(int id, char *name, dev_info_t *parent)
336 {
337 char status_buf[64];
338 char devtype_buf[OBP_MAXPROPNAME];
339 int retval = DDI_FAILURE;
340
341 /*
342 * is the status okay?
343 */
344 if (status_okay(id, status_buf, sizeof (status_buf)))
345 return (DDI_SUCCESS);
346
347 /*
348 * a status property indicating bad memory will be associated
349 * with a node which has a "device_type" property with a value of
350 * "memory-controller". in this situation, return DDI_SUCCESS
351 */
352 if (getlongprop_buf(id, OBP_DEVICETYPE, devtype_buf,
353 sizeof (devtype_buf)) > 0) {
354 if (strcmp(devtype_buf, "memory-controller") == 0)
355 retval = DDI_SUCCESS;
356 }
357
358 /*
359 * print the status property information
360 */
361 cmn_err(CE_WARN, "status '%s' for '%s'", status_buf, name);
362 return (retval);
363 }
364
365 /*ARGSUSED*/
366 uint_t
softlevel1(caddr_t arg1,caddr_t arg2)367 softlevel1(caddr_t arg1, caddr_t arg2)
368 {
369 softint();
370 return (1);
371 }
372
373 /*
374 * Allow for implementation specific correction of PROM property values.
375 */
376
377 /*ARGSUSED*/
378 void
impl_fix_props(dev_info_t * dip,dev_info_t * ch_dip,char * name,int len,caddr_t buffer)379 impl_fix_props(dev_info_t *dip, dev_info_t *ch_dip, char *name, int len,
380 caddr_t buffer)
381 {
382 /*
383 * There are no adjustments needed in this implementation.
384 */
385 }
386
387 static int
getlongprop_buf(int id,char * name,char * buf,int maxlen)388 getlongprop_buf(int id, char *name, char *buf, int maxlen)
389 {
390 int size;
391
392 size = prom_getproplen((pnode_t)id, name);
393 if (size <= 0 || (size > maxlen - 1))
394 return (-1);
395
396 if (-1 == prom_getprop((pnode_t)id, name, buf))
397 return (-1);
398
399 if (strcmp("name", name) == 0) {
400 if (buf[size - 1] != '\0') {
401 buf[size] = '\0';
402 size += 1;
403 }
404 }
405
406 return (size);
407 }
408
409 static int
get_prop_int_array(dev_info_t * di,char * pname,int ** pval,uint_t * plen)410 get_prop_int_array(dev_info_t *di, char *pname, int **pval, uint_t *plen)
411 {
412 int ret;
413
414 if ((ret = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, di,
415 DDI_PROP_DONTPASS, pname, pval, plen))
416 == DDI_PROP_SUCCESS) {
417 *plen = (*plen) * (sizeof (int));
418 }
419 return (ret);
420 }
421
422
423 /*
424 * Node Configuration
425 */
426
427 struct prop_ispec {
428 uint_t pri, vec;
429 };
430
431 /*
432 * For the x86, we're prepared to claim that the interrupt string
433 * is in the form of a list of <ipl,vec> specifications.
434 */
435
436 #define VEC_MIN 1
437 #define VEC_MAX 255
438
439 static int
impl_xlate_intrs(dev_info_t * child,int * in,struct ddi_parent_private_data * pdptr)440 impl_xlate_intrs(dev_info_t *child, int *in,
441 struct ddi_parent_private_data *pdptr)
442 {
443 size_t size;
444 int n;
445 struct intrspec *new;
446 caddr_t got_prop;
447 int *inpri;
448 int got_len;
449 extern int ignore_hardware_nodes; /* force flag from ddi_impl.c */
450
451 static char bad_intr_fmt[] =
452 "bad interrupt spec from %s%d - ipl %d, irq %d\n";
453
454 /*
455 * determine if the driver is expecting the new style "interrupts"
456 * property which just contains the IRQ, or the old style which
457 * contains pairs of <IPL,IRQ>. if it is the new style, we always
458 * assign IPL 5 unless an "interrupt-priorities" property exists.
459 * in that case, the "interrupt-priorities" property contains the
460 * IPL values that match, one for one, the IRQ values in the
461 * "interrupts" property.
462 */
463 inpri = NULL;
464 if ((ddi_getprop(DDI_DEV_T_ANY, child, DDI_PROP_DONTPASS,
465 "ignore-hardware-nodes", -1) != -1) || ignore_hardware_nodes) {
466 /* the old style "interrupts" property... */
467
468 /*
469 * The list consists of <ipl,vec> elements
470 */
471 if ((n = (*in++ >> 1)) < 1)
472 return (DDI_FAILURE);
473
474 pdptr->par_nintr = n;
475 size = n * sizeof (struct intrspec);
476 new = pdptr->par_intr = kmem_zalloc(size, KM_SLEEP);
477
478 while (n--) {
479 int level = *in++;
480 int vec = *in++;
481
482 if (level < 1 || level > MAXIPL ||
483 vec < VEC_MIN || vec > VEC_MAX) {
484 cmn_err(CE_CONT, bad_intr_fmt,
485 DEVI(child)->devi_name,
486 DEVI(child)->devi_instance, level, vec);
487 goto broken;
488 }
489 new->intrspec_pri = level;
490 if (vec != 2)
491 new->intrspec_vec = vec;
492 else
493 /*
494 * irq 2 on the PC bus is tied to irq 9
495 * on ISA, EISA and MicroChannel
496 */
497 new->intrspec_vec = 9;
498 new++;
499 }
500
501 return (DDI_SUCCESS);
502 } else {
503 /* the new style "interrupts" property... */
504
505 /*
506 * The list consists of <vec> elements
507 */
508 if ((n = (*in++)) < 1)
509 return (DDI_FAILURE);
510
511 pdptr->par_nintr = n;
512 size = n * sizeof (struct intrspec);
513 new = pdptr->par_intr = kmem_zalloc(size, KM_SLEEP);
514
515 /* XXX check for "interrupt-priorities" property... */
516 if (ddi_getlongprop(DDI_DEV_T_ANY, child, DDI_PROP_DONTPASS,
517 "interrupt-priorities", (caddr_t)&got_prop, &got_len)
518 == DDI_PROP_SUCCESS) {
519 if (n != (got_len / sizeof (int))) {
520 cmn_err(CE_CONT,
521 "bad interrupt-priorities length"
522 " from %s%d: expected %d, got %d\n",
523 DEVI(child)->devi_name,
524 DEVI(child)->devi_instance, n,
525 (int)(got_len / sizeof (int)));
526 goto broken;
527 }
528 inpri = (int *)got_prop;
529 }
530
531 while (n--) {
532 int level;
533 int vec = *in++;
534
535 if (inpri == NULL)
536 level = 5;
537 else
538 level = *inpri++;
539
540 if (level < 1 || level > MAXIPL ||
541 vec < VEC_MIN || vec > VEC_MAX) {
542 cmn_err(CE_CONT, bad_intr_fmt,
543 DEVI(child)->devi_name,
544 DEVI(child)->devi_instance, level, vec);
545 goto broken;
546 }
547 new->intrspec_pri = level;
548 if (vec != 2)
549 new->intrspec_vec = vec;
550 else
551 /*
552 * irq 2 on the PC bus is tied to irq 9
553 * on ISA, EISA and MicroChannel
554 */
555 new->intrspec_vec = 9;
556 new++;
557 }
558
559 if (inpri != NULL)
560 kmem_free(got_prop, got_len);
561 return (DDI_SUCCESS);
562 }
563
564 broken:
565 kmem_free(pdptr->par_intr, size);
566 pdptr->par_intr = NULL;
567 pdptr->par_nintr = 0;
568 if (inpri != NULL)
569 kmem_free(got_prop, got_len);
570
571 return (DDI_FAILURE);
572 }
573
574 /*
575 * Create a ddi_parent_private_data structure from the ddi properties of
576 * the dev_info node.
577 *
578 * The "reg" and either an "intr" or "interrupts" properties are required
579 * if the driver wishes to create mappings or field interrupts on behalf
580 * of the device.
581 *
582 * The "reg" property is assumed to be a list of at least one triple
583 *
584 * <bustype, address, size>*1
585 *
586 * The "intr" property is assumed to be a list of at least one duple
587 *
588 * <SPARC ipl, vector#>*1
589 *
590 * The "interrupts" property is assumed to be a list of at least one
591 * n-tuples that describes the interrupt capabilities of the bus the device
592 * is connected to. For SBus, this looks like
593 *
594 * <SBus-level>*1
595 *
596 * (This property obsoletes the 'intr' property).
597 *
598 * The "ranges" property is optional.
599 */
600 void
make_ddi_ppd(dev_info_t * child,struct ddi_parent_private_data ** ppd)601 make_ddi_ppd(dev_info_t *child, struct ddi_parent_private_data **ppd)
602 {
603 struct ddi_parent_private_data *pdptr;
604 int n;
605 int *reg_prop, *rng_prop, *intr_prop, *irupts_prop;
606 uint_t reg_len, rng_len, intr_len, irupts_len;
607
608 *ppd = pdptr = kmem_zalloc(sizeof (*pdptr), KM_SLEEP);
609
610 /*
611 * Handle the 'reg' property.
612 */
613 if ((get_prop_int_array(child, "reg", ®_prop, ®_len) ==
614 DDI_PROP_SUCCESS) && (reg_len != 0)) {
615 pdptr->par_nreg = reg_len / (int)sizeof (struct regspec);
616 pdptr->par_reg = (struct regspec *)reg_prop;
617 }
618
619 /*
620 * See if I have a range (adding one where needed - this
621 * means to add one for sbus node in sun4c, when romvec > 0,
622 * if no range is already defined in the PROM node.
623 * (Currently no sun4c PROMS define range properties,
624 * but they should and may in the future.) For the SBus
625 * node, the range is defined by the SBus reg property.
626 */
627 if (get_prop_int_array(child, "ranges", &rng_prop, &rng_len)
628 == DDI_PROP_SUCCESS) {
629 pdptr->par_nrng = rng_len / (int)(sizeof (struct rangespec));
630 pdptr->par_rng = (struct rangespec *)rng_prop;
631 }
632
633 /*
634 * Handle the 'intr' and 'interrupts' properties
635 */
636
637 /*
638 * For backwards compatibility
639 * we first look for the 'intr' property for the device.
640 */
641 if (get_prop_int_array(child, "intr", &intr_prop, &intr_len)
642 != DDI_PROP_SUCCESS) {
643 intr_len = 0;
644 }
645
646 /*
647 * If we're to support bus adapters and future platforms cleanly,
648 * we need to support the generalized 'interrupts' property.
649 */
650 if (get_prop_int_array(child, "interrupts", &irupts_prop,
651 &irupts_len) != DDI_PROP_SUCCESS) {
652 irupts_len = 0;
653 } else if (intr_len != 0) {
654 /*
655 * If both 'intr' and 'interrupts' are defined,
656 * then 'interrupts' wins and we toss the 'intr' away.
657 */
658 ddi_prop_free((void *)intr_prop);
659 intr_len = 0;
660 }
661
662 if (intr_len != 0) {
663
664 /*
665 * Translate the 'intr' property into an array
666 * an array of struct intrspec's. There's not really
667 * very much to do here except copy what's out there.
668 */
669
670 struct intrspec *new;
671 struct prop_ispec *l;
672
673 n = pdptr->par_nintr = intr_len / sizeof (struct prop_ispec);
674 l = (struct prop_ispec *)intr_prop;
675 pdptr->par_intr =
676 new = kmem_zalloc(n * sizeof (struct intrspec), KM_SLEEP);
677 while (n--) {
678 new->intrspec_pri = l->pri;
679 new->intrspec_vec = l->vec;
680 new++;
681 l++;
682 }
683 ddi_prop_free((void *)intr_prop);
684
685 } else if ((n = irupts_len) != 0) {
686 size_t size;
687 int *out;
688
689 /*
690 * Translate the 'interrupts' property into an array
691 * of intrspecs for the rest of the DDI framework to
692 * toy with. Only our ancestors really know how to
693 * do this, so ask 'em. We massage the 'interrupts'
694 * property so that it is pre-pended by a count of
695 * the number of integers in the argument.
696 */
697 size = sizeof (int) + n;
698 out = kmem_alloc(size, KM_SLEEP);
699 *out = n / sizeof (int);
700 bcopy(irupts_prop, out + 1, (size_t)n);
701 ddi_prop_free((void *)irupts_prop);
702 if (impl_xlate_intrs(child, out, pdptr) != DDI_SUCCESS) {
703 cmn_err(CE_CONT,
704 "Unable to translate 'interrupts' for %s%d\n",
705 DEVI(child)->devi_binding_name,
706 DEVI(child)->devi_instance);
707 }
708 kmem_free(out, size);
709 }
710 }
711
712 /*
713 * Name a child
714 */
715 static int
impl_sunbus_name_child(dev_info_t * child,char * name,int namelen)716 impl_sunbus_name_child(dev_info_t *child, char *name, int namelen)
717 {
718 /*
719 * Fill in parent-private data and this function returns to us
720 * an indication if it used "registers" to fill in the data.
721 */
722 if (ddi_get_parent_data(child) == NULL) {
723 struct ddi_parent_private_data *pdptr;
724 make_ddi_ppd(child, &pdptr);
725 ddi_set_parent_data(child, pdptr);
726 }
727
728 name[0] = '\0';
729 if (sparc_pd_getnreg(child) > 0) {
730 (void) snprintf(name, namelen, "%x,%x",
731 (uint_t)sparc_pd_getreg(child, 0)->regspec_bustype,
732 (uint_t)sparc_pd_getreg(child, 0)->regspec_addr);
733 }
734
735 return (DDI_SUCCESS);
736 }
737
738 /*
739 * Called from the bus_ctl op of sunbus (sbus, obio, etc) nexus drivers
740 * to implement the DDI_CTLOPS_INITCHILD operation. That is, it names
741 * the children of sun busses based on the reg spec.
742 *
743 * Handles the following properties (in make_ddi_ppd):
744 * Property value
745 * Name type
746 * reg register spec
747 * intr old-form interrupt spec
748 * interrupts new (bus-oriented) interrupt spec
749 * ranges range spec
750 */
751 int
impl_ddi_sunbus_initchild(dev_info_t * child)752 impl_ddi_sunbus_initchild(dev_info_t *child)
753 {
754 char name[MAXNAMELEN];
755 void impl_ddi_sunbus_removechild(dev_info_t *);
756
757 /*
758 * Name the child, also makes parent private data
759 */
760 (void) impl_sunbus_name_child(child, name, MAXNAMELEN);
761 ddi_set_name_addr(child, name);
762
763 /*
764 * Attempt to merge a .conf node; if successful, remove the
765 * .conf node.
766 */
767 if ((ndi_dev_is_persistent_node(child) == 0) &&
768 (ndi_merge_node(child, impl_sunbus_name_child) == DDI_SUCCESS)) {
769 /*
770 * Return failure to remove node
771 */
772 impl_ddi_sunbus_removechild(child);
773 return (DDI_FAILURE);
774 }
775 return (DDI_SUCCESS);
776 }
777
778 void
impl_free_ddi_ppd(dev_info_t * dip)779 impl_free_ddi_ppd(dev_info_t *dip)
780 {
781 struct ddi_parent_private_data *pdptr;
782 size_t n;
783
784 if ((pdptr = ddi_get_parent_data(dip)) == NULL)
785 return;
786
787 if ((n = (size_t)pdptr->par_nintr) != 0)
788 /*
789 * Note that kmem_free is used here (instead of
790 * ddi_prop_free) because the contents of the
791 * property were placed into a separate buffer and
792 * mucked with a bit before being stored in par_intr.
793 * The actual return value from the prop lookup
794 * was freed with ddi_prop_free previously.
795 */
796 kmem_free(pdptr->par_intr, n * sizeof (struct intrspec));
797
798 if ((n = (size_t)pdptr->par_nrng) != 0)
799 ddi_prop_free((void *)pdptr->par_rng);
800
801 if ((n = pdptr->par_nreg) != 0)
802 ddi_prop_free((void *)pdptr->par_reg);
803
804 kmem_free(pdptr, sizeof (*pdptr));
805 ddi_set_parent_data(dip, NULL);
806 }
807
808 void
impl_ddi_sunbus_removechild(dev_info_t * dip)809 impl_ddi_sunbus_removechild(dev_info_t *dip)
810 {
811 impl_free_ddi_ppd(dip);
812 ddi_set_name_addr(dip, NULL);
813 /*
814 * Strip the node to properly convert it back to prototype form
815 */
816 impl_rem_dev_props(dip);
817 }
818
819 /*
820 * DDI Interrupt
821 */
822
823 /*
824 * turn this on to force isa, eisa, and mca device to ignore the new
825 * hardware nodes in the device tree (normally turned on only for
826 * drivers that need it by setting the property "ignore-hardware-nodes"
827 * in their driver.conf file).
828 *
829 * 7/31/96 -- Turned off globally. Leaving variable in for the moment
830 * as safety valve.
831 */
832 int ignore_hardware_nodes = 0;
833
834 /*
835 * New DDI interrupt framework
836 */
837
838 /*
839 * i_ddi_intr_ops:
840 *
841 * This is the interrupt operator function wrapper for the bus function
842 * bus_intr_op.
843 */
844 int
i_ddi_intr_ops(dev_info_t * dip,dev_info_t * rdip,ddi_intr_op_t op,ddi_intr_handle_impl_t * hdlp,void * result)845 i_ddi_intr_ops(dev_info_t *dip, dev_info_t *rdip, ddi_intr_op_t op,
846 ddi_intr_handle_impl_t *hdlp, void * result)
847 {
848 dev_info_t *pdip = (dev_info_t *)DEVI(dip)->devi_parent;
849 int ret = DDI_FAILURE;
850
851 /* request parent to process this interrupt op */
852 if (NEXUS_HAS_INTR_OP(pdip))
853 ret = (*(DEVI(pdip)->devi_ops->devo_bus_ops->bus_intr_op))(
854 pdip, rdip, op, hdlp, result);
855 else
856 cmn_err(CE_WARN, "Failed to process interrupt "
857 "for %s%d due to down-rev nexus driver %s%d",
858 ddi_get_name(rdip), ddi_get_instance(rdip),
859 ddi_get_name(pdip), ddi_get_instance(pdip));
860 return (ret);
861 }
862
863 /*
864 * i_ddi_add_softint - allocate and add a soft interrupt to the system
865 */
866 int
i_ddi_add_softint(ddi_softint_hdl_impl_t * hdlp)867 i_ddi_add_softint(ddi_softint_hdl_impl_t *hdlp)
868 {
869 int ret;
870
871 /* add soft interrupt handler */
872 ret = add_avsoftintr((void *)hdlp, hdlp->ih_pri, hdlp->ih_cb_func,
873 DEVI(hdlp->ih_dip)->devi_name, hdlp->ih_cb_arg1, hdlp->ih_cb_arg2);
874 return (ret ? DDI_SUCCESS : DDI_FAILURE);
875 }
876
877
878 void
i_ddi_remove_softint(ddi_softint_hdl_impl_t * hdlp)879 i_ddi_remove_softint(ddi_softint_hdl_impl_t *hdlp)
880 {
881 (void) rem_avsoftintr((void *)hdlp, hdlp->ih_pri, hdlp->ih_cb_func);
882 }
883
884
885 extern void (*setsoftint)(int, struct av_softinfo *);
886 extern boolean_t av_check_softint_pending(struct av_softinfo *, boolean_t);
887
888 int
i_ddi_trigger_softint(ddi_softint_hdl_impl_t * hdlp,void * arg2)889 i_ddi_trigger_softint(ddi_softint_hdl_impl_t *hdlp, void *arg2)
890 {
891 if (av_check_softint_pending(hdlp->ih_pending, B_FALSE))
892 return (DDI_EPENDING);
893
894 update_avsoftintr_args((void *)hdlp, hdlp->ih_pri, arg2);
895
896 (*setsoftint)(hdlp->ih_pri, hdlp->ih_pending);
897 return (DDI_SUCCESS);
898 }
899
900 /*
901 * i_ddi_set_softint_pri:
902 *
903 * The way this works is that it first tries to add a softint vector
904 * at the new priority in hdlp. If that succeeds; then it removes the
905 * existing softint vector at the old priority.
906 */
907 int
i_ddi_set_softint_pri(ddi_softint_hdl_impl_t * hdlp,uint_t old_pri)908 i_ddi_set_softint_pri(ddi_softint_hdl_impl_t *hdlp, uint_t old_pri)
909 {
910 int ret;
911
912 /*
913 * If a softint is pending at the old priority then fail the request.
914 */
915 if (av_check_softint_pending(hdlp->ih_pending, B_TRUE))
916 return (DDI_FAILURE);
917
918 ret = av_softint_movepri((void *)hdlp, old_pri);
919 return (ret ? DDI_SUCCESS : DDI_FAILURE);
920 }
921
922 void
i_ddi_alloc_intr_phdl(ddi_intr_handle_impl_t * hdlp)923 i_ddi_alloc_intr_phdl(ddi_intr_handle_impl_t *hdlp)
924 {
925 hdlp->ih_private = (void *)kmem_zalloc(sizeof (ihdl_plat_t), KM_SLEEP);
926 }
927
928 void
i_ddi_free_intr_phdl(ddi_intr_handle_impl_t * hdlp)929 i_ddi_free_intr_phdl(ddi_intr_handle_impl_t *hdlp)
930 {
931 kmem_free(hdlp->ih_private, sizeof (ihdl_plat_t));
932 hdlp->ih_private = NULL;
933 }
934
935 int
i_ddi_get_intx_nintrs(dev_info_t * dip)936 i_ddi_get_intx_nintrs(dev_info_t *dip)
937 {
938 struct ddi_parent_private_data *pdp;
939
940 if ((pdp = ddi_get_parent_data(dip)) == NULL)
941 return (0);
942
943 return (pdp->par_nintr);
944 }
945
946 /*
947 * DDI Memory/DMA
948 */
949
950 /*
951 * Support for allocating DMAable memory to implement
952 * ddi_dma_mem_alloc(9F) interface.
953 */
954
955 #define KA_ALIGN_SHIFT 7
956 #define KA_ALIGN (1 << KA_ALIGN_SHIFT)
957 #define KA_NCACHE (PAGESHIFT + 1 - KA_ALIGN_SHIFT)
958
959 /*
960 * Dummy DMA attribute template for kmem_io[].kmem_io_attr. We only
961 * care about addr_lo, addr_hi, and align. addr_hi will be dynamically set.
962 */
963
964 static ddi_dma_attr_t kmem_io_attr = {
965 DMA_ATTR_V0,
966 0x0000000000000000ULL, /* dma_attr_addr_lo */
967 0x0000000000000000ULL, /* dma_attr_addr_hi */
968 0x00ffffff,
969 0x1000, /* dma_attr_align */
970 1, 1, 0xffffffffULL, 0xffffffffULL, 0x1, 1, 0
971 };
972
973 /* kmem io memory ranges and indices */
974 enum {
975 IO_4P, IO_64G, IO_4G, IO_2G, IO_1G, IO_512M,
976 IO_256M, IO_128M, IO_64M, IO_32M, IO_16M, MAX_MEM_RANGES
977 };
978
979 static struct {
980 vmem_t *kmem_io_arena;
981 kmem_cache_t *kmem_io_cache[KA_NCACHE];
982 ddi_dma_attr_t kmem_io_attr;
983 } kmem_io[MAX_MEM_RANGES];
984
985 static int kmem_io_idx; /* index of first populated kmem_io[] */
986
987 static page_t *
page_create_io_wrapper(void * addr,size_t len,int vmflag,void * arg)988 page_create_io_wrapper(void *addr, size_t len, int vmflag, void *arg)
989 {
990 extern page_t *page_create_io(vnode_t *, u_offset_t, uint_t,
991 uint_t, struct as *, caddr_t, ddi_dma_attr_t *);
992
993 return (page_create_io(&kvp, (u_offset_t)(uintptr_t)addr, len,
994 PG_EXCL | ((vmflag & VM_NOSLEEP) ? 0 : PG_WAIT), &kas, addr, arg));
995 }
996
997 #ifdef __xpv
998 static void
segkmem_free_io(vmem_t * vmp,void * ptr,size_t size)999 segkmem_free_io(vmem_t *vmp, void *ptr, size_t size)
1000 {
1001 extern void page_destroy_io(page_t *);
1002 segkmem_xfree(vmp, ptr, size, &kvp, page_destroy_io);
1003 }
1004 #endif
1005
1006 static void *
segkmem_alloc_io_4P(vmem_t * vmp,size_t size,int vmflag)1007 segkmem_alloc_io_4P(vmem_t *vmp, size_t size, int vmflag)
1008 {
1009 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1010 page_create_io_wrapper, &kmem_io[IO_4P].kmem_io_attr));
1011 }
1012
1013 static void *
segkmem_alloc_io_64G(vmem_t * vmp,size_t size,int vmflag)1014 segkmem_alloc_io_64G(vmem_t *vmp, size_t size, int vmflag)
1015 {
1016 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1017 page_create_io_wrapper, &kmem_io[IO_64G].kmem_io_attr));
1018 }
1019
1020 static void *
segkmem_alloc_io_4G(vmem_t * vmp,size_t size,int vmflag)1021 segkmem_alloc_io_4G(vmem_t *vmp, size_t size, int vmflag)
1022 {
1023 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1024 page_create_io_wrapper, &kmem_io[IO_4G].kmem_io_attr));
1025 }
1026
1027 static void *
segkmem_alloc_io_2G(vmem_t * vmp,size_t size,int vmflag)1028 segkmem_alloc_io_2G(vmem_t *vmp, size_t size, int vmflag)
1029 {
1030 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1031 page_create_io_wrapper, &kmem_io[IO_2G].kmem_io_attr));
1032 }
1033
1034 static void *
segkmem_alloc_io_1G(vmem_t * vmp,size_t size,int vmflag)1035 segkmem_alloc_io_1G(vmem_t *vmp, size_t size, int vmflag)
1036 {
1037 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1038 page_create_io_wrapper, &kmem_io[IO_1G].kmem_io_attr));
1039 }
1040
1041 static void *
segkmem_alloc_io_512M(vmem_t * vmp,size_t size,int vmflag)1042 segkmem_alloc_io_512M(vmem_t *vmp, size_t size, int vmflag)
1043 {
1044 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1045 page_create_io_wrapper, &kmem_io[IO_512M].kmem_io_attr));
1046 }
1047
1048 static void *
segkmem_alloc_io_256M(vmem_t * vmp,size_t size,int vmflag)1049 segkmem_alloc_io_256M(vmem_t *vmp, size_t size, int vmflag)
1050 {
1051 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1052 page_create_io_wrapper, &kmem_io[IO_256M].kmem_io_attr));
1053 }
1054
1055 static void *
segkmem_alloc_io_128M(vmem_t * vmp,size_t size,int vmflag)1056 segkmem_alloc_io_128M(vmem_t *vmp, size_t size, int vmflag)
1057 {
1058 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1059 page_create_io_wrapper, &kmem_io[IO_128M].kmem_io_attr));
1060 }
1061
1062 static void *
segkmem_alloc_io_64M(vmem_t * vmp,size_t size,int vmflag)1063 segkmem_alloc_io_64M(vmem_t *vmp, size_t size, int vmflag)
1064 {
1065 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1066 page_create_io_wrapper, &kmem_io[IO_64M].kmem_io_attr));
1067 }
1068
1069 static void *
segkmem_alloc_io_32M(vmem_t * vmp,size_t size,int vmflag)1070 segkmem_alloc_io_32M(vmem_t *vmp, size_t size, int vmflag)
1071 {
1072 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1073 page_create_io_wrapper, &kmem_io[IO_32M].kmem_io_attr));
1074 }
1075
1076 static void *
segkmem_alloc_io_16M(vmem_t * vmp,size_t size,int vmflag)1077 segkmem_alloc_io_16M(vmem_t *vmp, size_t size, int vmflag)
1078 {
1079 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0,
1080 page_create_io_wrapper, &kmem_io[IO_16M].kmem_io_attr));
1081 }
1082
1083 struct {
1084 uint64_t io_limit;
1085 char *io_name;
1086 void *(*io_alloc)(vmem_t *, size_t, int);
1087 int io_initial; /* kmem_io_init during startup */
1088 } io_arena_params[MAX_MEM_RANGES] = {
1089 {0x000fffffffffffffULL, "kmem_io_4P", segkmem_alloc_io_4P, 1},
1090 {0x0000000fffffffffULL, "kmem_io_64G", segkmem_alloc_io_64G, 0},
1091 {0x00000000ffffffffULL, "kmem_io_4G", segkmem_alloc_io_4G, 1},
1092 {0x000000007fffffffULL, "kmem_io_2G", segkmem_alloc_io_2G, 1},
1093 {0x000000003fffffffULL, "kmem_io_1G", segkmem_alloc_io_1G, 0},
1094 {0x000000001fffffffULL, "kmem_io_512M", segkmem_alloc_io_512M, 0},
1095 {0x000000000fffffffULL, "kmem_io_256M", segkmem_alloc_io_256M, 0},
1096 {0x0000000007ffffffULL, "kmem_io_128M", segkmem_alloc_io_128M, 0},
1097 {0x0000000003ffffffULL, "kmem_io_64M", segkmem_alloc_io_64M, 0},
1098 {0x0000000001ffffffULL, "kmem_io_32M", segkmem_alloc_io_32M, 0},
1099 {0x0000000000ffffffULL, "kmem_io_16M", segkmem_alloc_io_16M, 1}
1100 };
1101
1102 void
kmem_io_init(int a)1103 kmem_io_init(int a)
1104 {
1105 int c;
1106 char name[40];
1107
1108 kmem_io[a].kmem_io_arena = vmem_create(io_arena_params[a].io_name,
1109 NULL, 0, PAGESIZE, io_arena_params[a].io_alloc,
1110 #ifdef __xpv
1111 segkmem_free_io,
1112 #else
1113 segkmem_free,
1114 #endif
1115 heap_arena, 0, VM_SLEEP);
1116
1117 for (c = 0; c < KA_NCACHE; c++) {
1118 size_t size = KA_ALIGN << c;
1119 (void) sprintf(name, "%s_%lu",
1120 io_arena_params[a].io_name, size);
1121 kmem_io[a].kmem_io_cache[c] = kmem_cache_create(name,
1122 size, size, NULL, NULL, NULL, NULL,
1123 kmem_io[a].kmem_io_arena, 0);
1124 }
1125 }
1126
1127 /*
1128 * Return the index of the highest memory range for addr.
1129 */
1130 static int
kmem_io_index(uint64_t addr)1131 kmem_io_index(uint64_t addr)
1132 {
1133 int n;
1134
1135 for (n = kmem_io_idx; n < MAX_MEM_RANGES; n++) {
1136 if (kmem_io[n].kmem_io_attr.dma_attr_addr_hi <= addr) {
1137 if (kmem_io[n].kmem_io_arena == NULL)
1138 kmem_io_init(n);
1139 return (n);
1140 }
1141 }
1142 panic("kmem_io_index: invalid addr - must be at least 16m");
1143
1144 /*NOTREACHED*/
1145 }
1146
1147 /*
1148 * Return the index of the next kmem_io populated memory range
1149 * after curindex.
1150 */
1151 static int
kmem_io_index_next(int curindex)1152 kmem_io_index_next(int curindex)
1153 {
1154 int n;
1155
1156 for (n = curindex + 1; n < MAX_MEM_RANGES; n++) {
1157 if (kmem_io[n].kmem_io_arena)
1158 return (n);
1159 }
1160 return (-1);
1161 }
1162
1163 /*
1164 * allow kmem to be mapped in with different PTE cache attribute settings.
1165 * Used by i_ddi_mem_alloc()
1166 */
1167 int
kmem_override_cache_attrs(caddr_t kva,size_t size,uint_t order)1168 kmem_override_cache_attrs(caddr_t kva, size_t size, uint_t order)
1169 {
1170 uint_t hat_flags;
1171 caddr_t kva_end;
1172 uint_t hat_attr;
1173 pfn_t pfn;
1174
1175 if (hat_getattr(kas.a_hat, kva, &hat_attr) == -1) {
1176 return (-1);
1177 }
1178
1179 hat_attr &= ~HAT_ORDER_MASK;
1180 hat_attr |= order | HAT_NOSYNC;
1181 hat_flags = HAT_LOAD_LOCK;
1182
1183 kva_end = (caddr_t)(((uintptr_t)kva + size + PAGEOFFSET) &
1184 (uintptr_t)PAGEMASK);
1185 kva = (caddr_t)((uintptr_t)kva & (uintptr_t)PAGEMASK);
1186
1187 while (kva < kva_end) {
1188 pfn = hat_getpfnum(kas.a_hat, kva);
1189 hat_unload(kas.a_hat, kva, PAGESIZE, HAT_UNLOAD_UNLOCK);
1190 hat_devload(kas.a_hat, kva, PAGESIZE, pfn, hat_attr, hat_flags);
1191 kva += MMU_PAGESIZE;
1192 }
1193
1194 return (0);
1195 }
1196
1197 static int
ctgcompare(const void * a1,const void * a2)1198 ctgcompare(const void *a1, const void *a2)
1199 {
1200 /* we just want to compare virtual addresses */
1201 a1 = ((struct ctgas *)a1)->ctg_addr;
1202 a2 = ((struct ctgas *)a2)->ctg_addr;
1203 return (a1 == a2 ? 0 : (a1 < a2 ? -1 : 1));
1204 }
1205
1206 void
ka_init(void)1207 ka_init(void)
1208 {
1209 int a;
1210 paddr_t maxphysaddr;
1211 #if !defined(__xpv)
1212 extern pfn_t physmax;
1213
1214 maxphysaddr = mmu_ptob((paddr_t)physmax) + MMU_PAGEOFFSET;
1215 #else
1216 maxphysaddr = mmu_ptob((paddr_t)HYPERVISOR_memory_op(
1217 XENMEM_maximum_ram_page, NULL)) + MMU_PAGEOFFSET;
1218 #endif
1219
1220 ASSERT(maxphysaddr <= io_arena_params[0].io_limit);
1221
1222 for (a = 0; a < MAX_MEM_RANGES; a++) {
1223 if (maxphysaddr >= io_arena_params[a + 1].io_limit) {
1224 if (maxphysaddr > io_arena_params[a + 1].io_limit)
1225 io_arena_params[a].io_limit = maxphysaddr;
1226 else
1227 a++;
1228 break;
1229 }
1230 }
1231 kmem_io_idx = a;
1232
1233 for (; a < MAX_MEM_RANGES; a++) {
1234 kmem_io[a].kmem_io_attr = kmem_io_attr;
1235 kmem_io[a].kmem_io_attr.dma_attr_addr_hi =
1236 io_arena_params[a].io_limit;
1237 /*
1238 * initialize kmem_io[] arena/cache corresponding to
1239 * maxphysaddr and to the "common" io memory ranges that
1240 * have io_initial set to a non-zero value.
1241 */
1242 if (io_arena_params[a].io_initial || a == kmem_io_idx)
1243 kmem_io_init(a);
1244 }
1245
1246 /* initialize ctgtree */
1247 avl_create(&ctgtree, ctgcompare, sizeof (struct ctgas),
1248 offsetof(struct ctgas, ctg_link));
1249 }
1250
1251 /*
1252 * put contig address/size
1253 */
1254 static void *
putctgas(void * addr,size_t size)1255 putctgas(void *addr, size_t size)
1256 {
1257 struct ctgas *ctgp;
1258 if ((ctgp = kmem_zalloc(sizeof (*ctgp), KM_NOSLEEP)) != NULL) {
1259 ctgp->ctg_addr = addr;
1260 ctgp->ctg_size = size;
1261 CTGLOCK();
1262 avl_add(&ctgtree, ctgp);
1263 CTGUNLOCK();
1264 }
1265 return (ctgp);
1266 }
1267
1268 /*
1269 * get contig size by addr
1270 */
1271 static size_t
getctgsz(void * addr)1272 getctgsz(void *addr)
1273 {
1274 struct ctgas *ctgp;
1275 struct ctgas find;
1276 size_t sz = 0;
1277
1278 find.ctg_addr = addr;
1279 CTGLOCK();
1280 if ((ctgp = avl_find(&ctgtree, &find, NULL)) != NULL) {
1281 avl_remove(&ctgtree, ctgp);
1282 }
1283 CTGUNLOCK();
1284
1285 if (ctgp != NULL) {
1286 sz = ctgp->ctg_size;
1287 kmem_free(ctgp, sizeof (*ctgp));
1288 }
1289
1290 return (sz);
1291 }
1292
1293 /*
1294 * contig_alloc:
1295 *
1296 * allocates contiguous memory to satisfy the 'size' and dma attributes
1297 * specified in 'attr'.
1298 *
1299 * Not all of memory need to be physically contiguous if the
1300 * scatter-gather list length is greater than 1.
1301 */
1302
1303 /*ARGSUSED*/
1304 void *
contig_alloc(size_t size,ddi_dma_attr_t * attr,uintptr_t align,int cansleep)1305 contig_alloc(size_t size, ddi_dma_attr_t *attr, uintptr_t align, int cansleep)
1306 {
1307 pgcnt_t pgcnt = btopr(size);
1308 size_t asize = pgcnt * PAGESIZE;
1309 page_t *ppl;
1310 int pflag;
1311 void *addr;
1312
1313 extern page_t *page_create_io(vnode_t *, u_offset_t, uint_t,
1314 uint_t, struct as *, caddr_t, ddi_dma_attr_t *);
1315
1316 /* segkmem_xalloc */
1317
1318 if (align <= PAGESIZE)
1319 addr = vmem_alloc(heap_arena, asize,
1320 (cansleep) ? VM_SLEEP : VM_NOSLEEP);
1321 else
1322 addr = vmem_xalloc(heap_arena, asize, align, 0, 0, NULL, NULL,
1323 (cansleep) ? VM_SLEEP : VM_NOSLEEP);
1324 if (addr) {
1325 ASSERT(!((uintptr_t)addr & (align - 1)));
1326
1327 if (page_resv(pgcnt, (cansleep) ? KM_SLEEP : KM_NOSLEEP) == 0) {
1328 vmem_free(heap_arena, addr, asize);
1329 return (NULL);
1330 }
1331 pflag = PG_EXCL;
1332
1333 if (cansleep)
1334 pflag |= PG_WAIT;
1335
1336 /* 4k req gets from freelists rather than pfn search */
1337 if (pgcnt > 1 || align > PAGESIZE)
1338 pflag |= PG_PHYSCONTIG;
1339
1340 ppl = page_create_io(&kvp, (u_offset_t)(uintptr_t)addr,
1341 asize, pflag, &kas, (caddr_t)addr, attr);
1342
1343 if (!ppl) {
1344 vmem_free(heap_arena, addr, asize);
1345 page_unresv(pgcnt);
1346 return (NULL);
1347 }
1348
1349 while (ppl != NULL) {
1350 page_t *pp = ppl;
1351 page_sub(&ppl, pp);
1352 ASSERT(page_iolock_assert(pp));
1353 page_io_unlock(pp);
1354 page_downgrade(pp);
1355 hat_memload(kas.a_hat, (caddr_t)(uintptr_t)pp->p_offset,
1356 pp, (PROT_ALL & ~PROT_USER) |
1357 HAT_NOSYNC, HAT_LOAD_LOCK);
1358 }
1359 }
1360 return (addr);
1361 }
1362
1363 void
contig_free(void * addr,size_t size)1364 contig_free(void *addr, size_t size)
1365 {
1366 pgcnt_t pgcnt = btopr(size);
1367 size_t asize = pgcnt * PAGESIZE;
1368 caddr_t a, ea;
1369 page_t *pp;
1370
1371 hat_unload(kas.a_hat, addr, asize, HAT_UNLOAD_UNLOCK);
1372
1373 for (a = addr, ea = a + asize; a < ea; a += PAGESIZE) {
1374 pp = page_find(&kvp, (u_offset_t)(uintptr_t)a);
1375 if (!pp)
1376 panic("contig_free: contig pp not found");
1377
1378 if (!page_tryupgrade(pp)) {
1379 page_unlock(pp);
1380 pp = page_lookup(&kvp,
1381 (u_offset_t)(uintptr_t)a, SE_EXCL);
1382 if (pp == NULL)
1383 panic("contig_free: page freed");
1384 }
1385 page_destroy(pp, 0);
1386 }
1387
1388 page_unresv(pgcnt);
1389 vmem_free(heap_arena, addr, asize);
1390 }
1391
1392 /*
1393 * Allocate from the system, aligned on a specific boundary.
1394 * The alignment, if non-zero, must be a power of 2.
1395 */
1396 static void *
kalloca(size_t size,size_t align,int cansleep,int physcontig,ddi_dma_attr_t * attr)1397 kalloca(size_t size, size_t align, int cansleep, int physcontig,
1398 ddi_dma_attr_t *attr)
1399 {
1400 size_t *addr, *raddr, rsize;
1401 size_t hdrsize = 4 * sizeof (size_t); /* must be power of 2 */
1402 int a, i, c;
1403 vmem_t *vmp = NULL;
1404 kmem_cache_t *cp = NULL;
1405
1406 if (attr->dma_attr_addr_lo > mmu_ptob((uint64_t)ddiphysmin))
1407 return (NULL);
1408
1409 align = MAX(align, hdrsize);
1410 ASSERT((align & (align - 1)) == 0);
1411
1412 /*
1413 * All of our allocators guarantee 16-byte alignment, so we don't
1414 * need to reserve additional space for the header.
1415 * To simplify picking the correct kmem_io_cache, we round up to
1416 * a multiple of KA_ALIGN.
1417 */
1418 rsize = P2ROUNDUP_TYPED(size + align, KA_ALIGN, size_t);
1419
1420 if (physcontig && rsize > PAGESIZE) {
1421 if ((addr = contig_alloc(size, attr, align, cansleep)) !=
1422 NULL) {
1423 if (!putctgas(addr, size))
1424 contig_free(addr, size);
1425 else
1426 return (addr);
1427 }
1428 return (NULL);
1429 }
1430
1431 a = kmem_io_index(attr->dma_attr_addr_hi);
1432
1433 if (rsize > PAGESIZE) {
1434 vmp = kmem_io[a].kmem_io_arena;
1435 raddr = vmem_alloc(vmp, rsize,
1436 (cansleep) ? VM_SLEEP : VM_NOSLEEP);
1437 } else {
1438 c = highbit((rsize >> KA_ALIGN_SHIFT) - 1);
1439 cp = kmem_io[a].kmem_io_cache[c];
1440 raddr = kmem_cache_alloc(cp, (cansleep) ? KM_SLEEP :
1441 KM_NOSLEEP);
1442 }
1443
1444 if (raddr == NULL) {
1445 int na;
1446
1447 ASSERT(cansleep == 0);
1448 if (rsize > PAGESIZE)
1449 return (NULL);
1450 /*
1451 * System does not have memory in the requested range.
1452 * Try smaller kmem io ranges and larger cache sizes
1453 * to see if there might be memory available in
1454 * these other caches.
1455 */
1456
1457 for (na = kmem_io_index_next(a); na >= 0;
1458 na = kmem_io_index_next(na)) {
1459 ASSERT(kmem_io[na].kmem_io_arena);
1460 cp = kmem_io[na].kmem_io_cache[c];
1461 raddr = kmem_cache_alloc(cp, KM_NOSLEEP);
1462 if (raddr)
1463 goto kallocdone;
1464 }
1465 /* now try the larger kmem io cache sizes */
1466 for (na = a; na >= 0; na = kmem_io_index_next(na)) {
1467 for (i = c + 1; i < KA_NCACHE; i++) {
1468 cp = kmem_io[na].kmem_io_cache[i];
1469 raddr = kmem_cache_alloc(cp, KM_NOSLEEP);
1470 if (raddr)
1471 goto kallocdone;
1472 }
1473 }
1474 return (NULL);
1475 }
1476
1477 kallocdone:
1478 ASSERT(!P2BOUNDARY((uintptr_t)raddr, rsize, PAGESIZE) ||
1479 rsize > PAGESIZE);
1480
1481 addr = (size_t *)P2ROUNDUP((uintptr_t)raddr + hdrsize, align);
1482 ASSERT((uintptr_t)addr + size - (uintptr_t)raddr <= rsize);
1483
1484 addr[-4] = (size_t)cp;
1485 addr[-3] = (size_t)vmp;
1486 addr[-2] = (size_t)raddr;
1487 addr[-1] = rsize;
1488
1489 return (addr);
1490 }
1491
1492 static void
kfreea(void * addr)1493 kfreea(void *addr)
1494 {
1495 size_t size;
1496
1497 if (!((uintptr_t)addr & PAGEOFFSET) && (size = getctgsz(addr))) {
1498 contig_free(addr, size);
1499 } else {
1500 size_t *saddr = addr;
1501 if (saddr[-4] == 0)
1502 vmem_free((vmem_t *)saddr[-3], (void *)saddr[-2],
1503 saddr[-1]);
1504 else
1505 kmem_cache_free((kmem_cache_t *)saddr[-4],
1506 (void *)saddr[-2]);
1507 }
1508 }
1509
1510 /*ARGSUSED*/
1511 void
i_ddi_devacc_to_hatacc(const ddi_device_acc_attr_t * devaccp,uint_t * hataccp)1512 i_ddi_devacc_to_hatacc(const ddi_device_acc_attr_t *devaccp, uint_t *hataccp)
1513 {
1514 }
1515
1516 /*
1517 * Check if the specified cache attribute is supported on the platform.
1518 * This function must be called before i_ddi_cacheattr_to_hatacc().
1519 */
1520 boolean_t
i_ddi_check_cache_attr(uint_t flags)1521 i_ddi_check_cache_attr(uint_t flags)
1522 {
1523 /*
1524 * The cache attributes are mutually exclusive. Any combination of
1525 * the attributes leads to a failure.
1526 */
1527 uint_t cache_attr = IOMEM_CACHE_ATTR(flags);
1528 if ((cache_attr != 0) && !ISP2(cache_attr))
1529 return (B_FALSE);
1530
1531 /* All cache attributes are supported on X86/X64 */
1532 if (cache_attr & (IOMEM_DATA_UNCACHED | IOMEM_DATA_CACHED |
1533 IOMEM_DATA_UC_WR_COMBINE))
1534 return (B_TRUE);
1535
1536 /* undefined attributes */
1537 return (B_FALSE);
1538 }
1539
1540 /* set HAT cache attributes from the cache attributes */
1541 void
i_ddi_cacheattr_to_hatacc(uint_t flags,uint_t * hataccp)1542 i_ddi_cacheattr_to_hatacc(uint_t flags, uint_t *hataccp)
1543 {
1544 uint_t cache_attr = IOMEM_CACHE_ATTR(flags);
1545 static char *fname = "i_ddi_cacheattr_to_hatacc";
1546
1547 /*
1548 * If write-combining is not supported, then it falls back
1549 * to uncacheable.
1550 */
1551 if (cache_attr == IOMEM_DATA_UC_WR_COMBINE &&
1552 !is_x86_feature(x86_featureset, X86FSET_PAT))
1553 cache_attr = IOMEM_DATA_UNCACHED;
1554
1555 /*
1556 * set HAT attrs according to the cache attrs.
1557 */
1558 switch (cache_attr) {
1559 case IOMEM_DATA_UNCACHED:
1560 *hataccp &= ~HAT_ORDER_MASK;
1561 *hataccp |= (HAT_STRICTORDER | HAT_PLAT_NOCACHE);
1562 break;
1563 case IOMEM_DATA_UC_WR_COMBINE:
1564 *hataccp &= ~HAT_ORDER_MASK;
1565 *hataccp |= (HAT_MERGING_OK | HAT_PLAT_NOCACHE);
1566 break;
1567 case IOMEM_DATA_CACHED:
1568 *hataccp &= ~HAT_ORDER_MASK;
1569 *hataccp |= HAT_UNORDERED_OK;
1570 break;
1571 /*
1572 * This case must not occur because the cache attribute is scrutinized
1573 * before this function is called.
1574 */
1575 default:
1576 /*
1577 * set cacheable to hat attrs.
1578 */
1579 *hataccp &= ~HAT_ORDER_MASK;
1580 *hataccp |= HAT_UNORDERED_OK;
1581 cmn_err(CE_WARN, "%s: cache_attr=0x%x is ignored.",
1582 fname, cache_attr);
1583 }
1584 }
1585
1586 /*
1587 * This should actually be called i_ddi_dma_mem_alloc. There should
1588 * also be an i_ddi_pio_mem_alloc. i_ddi_dma_mem_alloc should call
1589 * through the device tree with the DDI_CTLOPS_DMA_ALIGN ctl ops to
1590 * get alignment requirements for DMA memory. i_ddi_pio_mem_alloc
1591 * should use DDI_CTLOPS_PIO_ALIGN. Since we only have i_ddi_mem_alloc
1592 * so far which is used for both, DMA and PIO, we have to use the DMA
1593 * ctl ops to make everybody happy.
1594 */
1595 /*ARGSUSED*/
1596 int
i_ddi_mem_alloc(dev_info_t * dip,ddi_dma_attr_t * attr,size_t length,int cansleep,int flags,const ddi_device_acc_attr_t * accattrp,caddr_t * kaddrp,size_t * real_length,ddi_acc_hdl_t * ap)1597 i_ddi_mem_alloc(dev_info_t *dip, ddi_dma_attr_t *attr,
1598 size_t length, int cansleep, int flags,
1599 const ddi_device_acc_attr_t *accattrp, caddr_t *kaddrp,
1600 size_t *real_length, ddi_acc_hdl_t *ap)
1601 {
1602 caddr_t a;
1603 int iomin;
1604 ddi_acc_impl_t *iap;
1605 int physcontig = 0;
1606 pgcnt_t npages;
1607 pgcnt_t minctg;
1608 uint_t order;
1609 int e;
1610
1611 /*
1612 * Check legality of arguments
1613 */
1614 if (length == 0 || kaddrp == NULL || attr == NULL) {
1615 return (DDI_FAILURE);
1616 }
1617
1618 if (attr->dma_attr_minxfer == 0 || attr->dma_attr_align == 0 ||
1619 !ISP2(attr->dma_attr_align) || !ISP2(attr->dma_attr_minxfer)) {
1620 return (DDI_FAILURE);
1621 }
1622
1623 /*
1624 * figure out most restrictive alignment requirement
1625 */
1626 iomin = attr->dma_attr_minxfer;
1627 iomin = maxbit(iomin, attr->dma_attr_align);
1628 if (iomin == 0)
1629 return (DDI_FAILURE);
1630
1631 ASSERT((iomin & (iomin - 1)) == 0);
1632
1633 /*
1634 * if we allocate memory with IOMEM_DATA_UNCACHED or
1635 * IOMEM_DATA_UC_WR_COMBINE, make sure we allocate a page aligned
1636 * memory that ends on a page boundry.
1637 * Don't want to have to different cache mappings to the same
1638 * physical page.
1639 */
1640 if (OVERRIDE_CACHE_ATTR(flags)) {
1641 iomin = (iomin + MMU_PAGEOFFSET) & MMU_PAGEMASK;
1642 length = (length + MMU_PAGEOFFSET) & (size_t)MMU_PAGEMASK;
1643 }
1644
1645 /*
1646 * Determine if we need to satisfy the request for physically
1647 * contiguous memory or alignments larger than pagesize.
1648 */
1649 npages = btopr(length + attr->dma_attr_align);
1650 minctg = howmany(npages, attr->dma_attr_sgllen);
1651
1652 if (minctg > 1) {
1653 uint64_t pfnseg = attr->dma_attr_seg >> PAGESHIFT;
1654 /*
1655 * verify that the minimum contig requirement for the
1656 * actual length does not cross segment boundary.
1657 */
1658 length = P2ROUNDUP_TYPED(length, attr->dma_attr_minxfer,
1659 size_t);
1660 npages = btopr(length);
1661 minctg = howmany(npages, attr->dma_attr_sgllen);
1662 if (minctg > pfnseg + 1)
1663 return (DDI_FAILURE);
1664 physcontig = 1;
1665 } else {
1666 length = P2ROUNDUP_TYPED(length, iomin, size_t);
1667 }
1668
1669 /*
1670 * Allocate the requested amount from the system.
1671 */
1672 a = kalloca(length, iomin, cansleep, physcontig, attr);
1673
1674 if ((*kaddrp = a) == NULL)
1675 return (DDI_FAILURE);
1676
1677 /*
1678 * if we to modify the cache attributes, go back and muck with the
1679 * mappings.
1680 */
1681 if (OVERRIDE_CACHE_ATTR(flags)) {
1682 order = 0;
1683 i_ddi_cacheattr_to_hatacc(flags, &order);
1684 e = kmem_override_cache_attrs(a, length, order);
1685 if (e != 0) {
1686 kfreea(a);
1687 return (DDI_FAILURE);
1688 }
1689 }
1690
1691 if (real_length) {
1692 *real_length = length;
1693 }
1694 if (ap) {
1695 /*
1696 * initialize access handle
1697 */
1698 iap = (ddi_acc_impl_t *)ap->ah_platform_private;
1699 iap->ahi_acc_attr |= DDI_ACCATTR_CPU_VADDR;
1700 impl_acc_hdl_init(ap);
1701 }
1702
1703 return (DDI_SUCCESS);
1704 }
1705
1706 /* ARGSUSED */
1707 void
i_ddi_mem_free(caddr_t kaddr,ddi_acc_hdl_t * ap)1708 i_ddi_mem_free(caddr_t kaddr, ddi_acc_hdl_t *ap)
1709 {
1710 if (ap != NULL) {
1711 /*
1712 * if we modified the cache attributes on alloc, go back and
1713 * fix them since this memory could be returned to the
1714 * general pool.
1715 */
1716 if (OVERRIDE_CACHE_ATTR(ap->ah_xfermodes)) {
1717 uint_t order = 0;
1718 int e;
1719 i_ddi_cacheattr_to_hatacc(IOMEM_DATA_CACHED, &order);
1720 e = kmem_override_cache_attrs(kaddr, ap->ah_len, order);
1721 if (e != 0) {
1722 cmn_err(CE_WARN, "i_ddi_mem_free() failed to "
1723 "override cache attrs, memory leaked\n");
1724 return;
1725 }
1726 }
1727 }
1728 kfreea(kaddr);
1729 }
1730
1731 /*
1732 * Access Barriers
1733 *
1734 */
1735 /*ARGSUSED*/
1736 int
i_ddi_ontrap(ddi_acc_handle_t hp)1737 i_ddi_ontrap(ddi_acc_handle_t hp)
1738 {
1739 return (DDI_FAILURE);
1740 }
1741
1742 /*ARGSUSED*/
1743 void
i_ddi_notrap(ddi_acc_handle_t hp)1744 i_ddi_notrap(ddi_acc_handle_t hp)
1745 {
1746 }
1747
1748
1749 /*
1750 * Misc Functions
1751 */
1752
1753 /*
1754 * Implementation instance override functions
1755 *
1756 * No override on i86pc
1757 */
1758 /*ARGSUSED*/
1759 uint_t
impl_assign_instance(dev_info_t * dip)1760 impl_assign_instance(dev_info_t *dip)
1761 {
1762 return ((uint_t)-1);
1763 }
1764
1765 /*ARGSUSED*/
1766 int
impl_keep_instance(dev_info_t * dip)1767 impl_keep_instance(dev_info_t *dip)
1768 {
1769
1770 #if defined(__xpv)
1771 /*
1772 * Do not persist instance numbers assigned to devices in dom0
1773 */
1774 dev_info_t *pdip;
1775 if (DOMAIN_IS_INITDOMAIN(xen_info)) {
1776 if (((pdip = ddi_get_parent(dip)) != NULL) &&
1777 (strcmp(ddi_get_name(pdip), "xpvd") == 0))
1778 return (DDI_SUCCESS);
1779 }
1780 #endif
1781 return (DDI_FAILURE);
1782 }
1783
1784 /*ARGSUSED*/
1785 int
impl_free_instance(dev_info_t * dip)1786 impl_free_instance(dev_info_t *dip)
1787 {
1788 return (DDI_FAILURE);
1789 }
1790
1791 /*ARGSUSED*/
1792 int
impl_check_cpu(dev_info_t * devi)1793 impl_check_cpu(dev_info_t *devi)
1794 {
1795 return (DDI_SUCCESS);
1796 }
1797
1798 /*
1799 * Referenced in common/cpr_driver.c: Power off machine.
1800 * Don't know how to power off i86pc.
1801 */
1802 void
arch_power_down()1803 arch_power_down()
1804 {}
1805
1806 /*
1807 * Copy name to property_name, since name
1808 * is in the low address range below kernelbase.
1809 */
1810 static void
copy_boot_str(const char * boot_str,char * kern_str,int len)1811 copy_boot_str(const char *boot_str, char *kern_str, int len)
1812 {
1813 int i = 0;
1814
1815 while (i < len - 1 && boot_str[i] != '\0') {
1816 kern_str[i] = boot_str[i];
1817 i++;
1818 }
1819
1820 kern_str[i] = 0; /* null terminate */
1821 if (boot_str[i] != '\0')
1822 cmn_err(CE_WARN,
1823 "boot property string is truncated to %s", kern_str);
1824 }
1825
1826 static void
get_boot_properties(void)1827 get_boot_properties(void)
1828 {
1829 extern char hw_provider[];
1830 dev_info_t *devi;
1831 char *name;
1832 int length, flags;
1833 char property_name[50], property_val[50];
1834 void *bop_staging_area;
1835
1836 bop_staging_area = kmem_zalloc(MMU_PAGESIZE, KM_NOSLEEP);
1837
1838 /*
1839 * Import "root" properties from the boot.
1840 *
1841 * We do this by invoking BOP_NEXTPROP until the list
1842 * is completely copied in.
1843 */
1844
1845 devi = ddi_root_node();
1846 for (name = BOP_NEXTPROP(bootops, ""); /* get first */
1847 name; /* NULL => DONE */
1848 name = BOP_NEXTPROP(bootops, name)) { /* get next */
1849
1850 /* copy string to memory above kernelbase */
1851 copy_boot_str(name, property_name, 50);
1852
1853 /*
1854 * Skip vga properties. They will be picked up later
1855 * by get_vga_properties.
1856 */
1857 if (strcmp(property_name, "display-edif-block") == 0 ||
1858 strcmp(property_name, "display-edif-id") == 0) {
1859 continue;
1860 }
1861
1862 length = BOP_GETPROPLEN(bootops, property_name);
1863 if (length < 0)
1864 continue;
1865 if (length > MMU_PAGESIZE) {
1866 cmn_err(CE_NOTE,
1867 "boot property %s longer than 0x%x, ignored\n",
1868 property_name, MMU_PAGESIZE);
1869 continue;
1870 }
1871 BOP_GETPROP(bootops, property_name, bop_staging_area);
1872 flags = do_bsys_getproptype(bootops, property_name);
1873
1874 /*
1875 * special properties:
1876 * si-machine, si-hw-provider
1877 * goes to kernel data structures.
1878 * bios-boot-device and stdout
1879 * goes to hardware property list so it may show up
1880 * in the prtconf -vp output. This is needed by
1881 * Install/Upgrade. Once we fix install upgrade,
1882 * this can be taken out.
1883 */
1884 if (strcmp(name, "si-machine") == 0) {
1885 (void) strncpy(utsname.machine, bop_staging_area,
1886 SYS_NMLN);
1887 utsname.machine[SYS_NMLN - 1] = '\0';
1888 continue;
1889 }
1890 if (strcmp(name, "si-hw-provider") == 0) {
1891 (void) strncpy(hw_provider, bop_staging_area, SYS_NMLN);
1892 hw_provider[SYS_NMLN - 1] = '\0';
1893 continue;
1894 }
1895 if (strcmp(name, "bios-boot-device") == 0) {
1896 copy_boot_str(bop_staging_area, property_val, 50);
1897 (void) ndi_prop_update_string(DDI_DEV_T_NONE, devi,
1898 property_name, property_val);
1899 continue;
1900 }
1901 if (strcmp(name, "stdout") == 0) {
1902 (void) ndi_prop_update_int(DDI_DEV_T_NONE, devi,
1903 property_name, *((int *)bop_staging_area));
1904 continue;
1905 }
1906
1907 /* Boolean property */
1908 if (length == 0) {
1909 (void) e_ddi_prop_create(DDI_DEV_T_NONE, devi,
1910 DDI_PROP_CANSLEEP, property_name, NULL, 0);
1911 continue;
1912 }
1913
1914 /* Now anything else based on type. */
1915 switch (flags) {
1916 case DDI_PROP_TYPE_INT:
1917 if (length == sizeof (int)) {
1918 (void) e_ddi_prop_update_int(DDI_DEV_T_NONE,
1919 devi, property_name,
1920 *((int *)bop_staging_area));
1921 } else {
1922 (void) e_ddi_prop_update_int_array(
1923 DDI_DEV_T_NONE, devi, property_name,
1924 bop_staging_area, length / sizeof (int));
1925 }
1926 break;
1927 case DDI_PROP_TYPE_STRING:
1928 (void) e_ddi_prop_update_string(DDI_DEV_T_NONE, devi,
1929 property_name, bop_staging_area);
1930 break;
1931 case DDI_PROP_TYPE_BYTE:
1932 (void) e_ddi_prop_update_byte_array(DDI_DEV_T_NONE,
1933 devi, property_name, bop_staging_area, length);
1934 break;
1935 case DDI_PROP_TYPE_INT64:
1936 if (length == sizeof (int64_t)) {
1937 (void) e_ddi_prop_update_int64(DDI_DEV_T_NONE,
1938 devi, property_name,
1939 *((int64_t *)bop_staging_area));
1940 } else {
1941 (void) e_ddi_prop_update_int64_array(
1942 DDI_DEV_T_NONE, devi, property_name,
1943 bop_staging_area,
1944 length / sizeof (int64_t));
1945 }
1946 break;
1947 default:
1948 /* Property type unknown, use old prop interface */
1949 (void) e_ddi_prop_create(DDI_DEV_T_NONE, devi,
1950 DDI_PROP_CANSLEEP, property_name, bop_staging_area,
1951 length);
1952 }
1953 }
1954
1955 kmem_free(bop_staging_area, MMU_PAGESIZE);
1956 }
1957
1958 static void
get_vga_properties(void)1959 get_vga_properties(void)
1960 {
1961 dev_info_t *devi;
1962 major_t major;
1963 char *name;
1964 int length;
1965 char property_val[50];
1966 void *bop_staging_area;
1967
1968 /*
1969 * XXXX Hack Allert!
1970 * There really needs to be a better way for identifying various
1971 * console framebuffers and their related issues. Till then,
1972 * check for this one as a replacement to vgatext.
1973 */
1974 major = ddi_name_to_major("ragexl");
1975 if (major == (major_t)-1) {
1976 major = ddi_name_to_major("vgatext");
1977 if (major == (major_t)-1)
1978 return;
1979 }
1980 devi = devnamesp[major].dn_head;
1981 if (devi == NULL)
1982 return;
1983
1984 bop_staging_area = kmem_zalloc(MMU_PAGESIZE, KM_SLEEP);
1985
1986 /*
1987 * Import "vga" properties from the boot.
1988 */
1989 name = "display-edif-block";
1990 length = BOP_GETPROPLEN(bootops, name);
1991 if (length > 0 && length < MMU_PAGESIZE) {
1992 BOP_GETPROP(bootops, name, bop_staging_area);
1993 (void) ndi_prop_update_byte_array(DDI_DEV_T_NONE,
1994 devi, name, bop_staging_area, length);
1995 }
1996
1997 /*
1998 * kdmconfig is also looking for display-type and
1999 * video-adapter-type. We default to color and svga.
2000 *
2001 * Could it be "monochrome", "vga"?
2002 * Nah, you've got to come to the 21st century...
2003 * And you can set monitor type manually in kdmconfig
2004 * if you are really an old junky.
2005 */
2006 (void) ndi_prop_update_string(DDI_DEV_T_NONE,
2007 devi, "display-type", "color");
2008 (void) ndi_prop_update_string(DDI_DEV_T_NONE,
2009 devi, "video-adapter-type", "svga");
2010
2011 name = "display-edif-id";
2012 length = BOP_GETPROPLEN(bootops, name);
2013 if (length > 0 && length < MMU_PAGESIZE) {
2014 BOP_GETPROP(bootops, name, bop_staging_area);
2015 copy_boot_str(bop_staging_area, property_val, length);
2016 (void) ndi_prop_update_string(DDI_DEV_T_NONE,
2017 devi, name, property_val);
2018 }
2019
2020 kmem_free(bop_staging_area, MMU_PAGESIZE);
2021 }
2022
2023 /*
2024 * Copy console font to kernel memory. The temporary font setup
2025 * to use font module was done in early console setup, using low
2026 * memory and data from font module. Now we need to allocate
2027 * kernel memory and copy data over, so the low memory can be freed.
2028 * We can have at most one entry in font list from early boot.
2029 */
2030 static void
get_console_font(void)2031 get_console_font(void)
2032 {
2033 struct fontlist *fp, *fl;
2034 bitmap_data_t *bd;
2035 struct font *fd, *tmp;
2036 int i;
2037
2038 if (STAILQ_EMPTY(&fonts))
2039 return;
2040
2041 fl = STAILQ_FIRST(&fonts);
2042 STAILQ_REMOVE_HEAD(&fonts, font_next);
2043 fp = kmem_zalloc(sizeof (*fp), KM_SLEEP);
2044 bd = kmem_zalloc(sizeof (*bd), KM_SLEEP);
2045 fd = kmem_zalloc(sizeof (*fd), KM_SLEEP);
2046
2047 fp->font_name = NULL;
2048 fp->font_flags = FONT_BOOT;
2049 fp->font_data = bd;
2050
2051 bd->width = fl->font_data->width;
2052 bd->height = fl->font_data->height;
2053 bd->uncompressed_size = fl->font_data->uncompressed_size;
2054 bd->font = fd;
2055
2056 tmp = fl->font_data->font;
2057 fd->vf_width = tmp->vf_width;
2058 fd->vf_height = tmp->vf_height;
2059 for (i = 0; i < VFNT_MAPS; i++) {
2060 if (tmp->vf_map_count[i] == 0)
2061 continue;
2062 fd->vf_map_count[i] = tmp->vf_map_count[i];
2063 fd->vf_map[i] = kmem_alloc(fd->vf_map_count[i] *
2064 sizeof (*fd->vf_map[i]), KM_SLEEP);
2065 bcopy(tmp->vf_map[i], fd->vf_map[i], fd->vf_map_count[i] *
2066 sizeof (*fd->vf_map[i]));
2067 }
2068 fd->vf_bytes = kmem_alloc(bd->uncompressed_size, KM_SLEEP);
2069 bcopy(tmp->vf_bytes, fd->vf_bytes, bd->uncompressed_size);
2070 STAILQ_INSERT_HEAD(&fonts, fp, font_next);
2071 }
2072
2073 /*
2074 * This is temporary, but absolutely necessary. If we are being
2075 * booted with a device tree created by the DevConf project's bootconf
2076 * program, then we have device information nodes that reflect
2077 * reality. At this point in time in the Solaris release schedule, the
2078 * kernel drivers aren't prepared for reality. They still depend on their
2079 * own ad-hoc interpretations of the properties created when their .conf
2080 * files were interpreted. These drivers use an "ignore-hardware-nodes"
2081 * property to prevent them from using the nodes passed up from the bootconf
2082 * device tree.
2083 *
2084 * Trying to assemble root file system drivers as we are booting from
2085 * devconf will fail if the kernel driver is basing its name_addr's on the
2086 * psuedo-node device info while the bootpath passed up from bootconf is using
2087 * reality-based name_addrs. We help the boot along in this case by
2088 * looking at the pre-bootconf bootpath and determining if we would have
2089 * successfully matched if that had been the bootpath we had chosen.
2090 *
2091 * Note that we only even perform this extra check if we've booted
2092 * using bootconf's 1275 compliant bootpath, this is the boot device, and
2093 * we're trying to match the name_addr specified in the 1275 bootpath.
2094 */
2095
2096 #define MAXCOMPONENTLEN 32
2097
2098 int
x86_old_bootpath_name_addr_match(dev_info_t * cdip,char * caddr,char * naddr)2099 x86_old_bootpath_name_addr_match(dev_info_t *cdip, char *caddr, char *naddr)
2100 {
2101 /*
2102 * There are multiple criteria to be met before we can even
2103 * consider allowing a name_addr match here.
2104 *
2105 * 1) We must have been booted such that the bootconf program
2106 * created device tree nodes and properties. This can be
2107 * determined by examining the 'bootpath' property. This
2108 * property will be a non-null string iff bootconf was
2109 * involved in the boot.
2110 *
2111 * 2) The module that we want to match must be the boot device.
2112 *
2113 * 3) The instance of the module we are thinking of letting be
2114 * our match must be ignoring hardware nodes.
2115 *
2116 * 4) The name_addr we want to match must be the name_addr
2117 * specified in the 1275 bootpath.
2118 */
2119 static char bootdev_module[MAXCOMPONENTLEN];
2120 static char bootdev_oldmod[MAXCOMPONENTLEN];
2121 static char bootdev_newaddr[MAXCOMPONENTLEN];
2122 static char bootdev_oldaddr[MAXCOMPONENTLEN];
2123 static int quickexit;
2124
2125 char *daddr;
2126 int dlen;
2127
2128 char *lkupname;
2129 int rv = DDI_FAILURE;
2130
2131 if ((ddi_getlongprop(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS,
2132 "devconf-addr", (caddr_t)&daddr, &dlen) == DDI_PROP_SUCCESS) &&
2133 (ddi_getprop(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS,
2134 "ignore-hardware-nodes", -1) != -1)) {
2135 if (strcmp(daddr, caddr) == 0) {
2136 return (DDI_SUCCESS);
2137 }
2138 }
2139
2140 if (quickexit)
2141 return (rv);
2142
2143 if (bootdev_module[0] == '\0') {
2144 char *addrp, *eoaddrp;
2145 char *busp, *modp, *atp;
2146 char *bp1275, *bp;
2147 int bp1275len, bplen;
2148
2149 bp1275 = bp = addrp = eoaddrp = busp = modp = atp = NULL;
2150
2151 if (ddi_getlongprop(DDI_DEV_T_ANY,
2152 ddi_root_node(), 0, "bootpath",
2153 (caddr_t)&bp1275, &bp1275len) != DDI_PROP_SUCCESS ||
2154 bp1275len <= 1) {
2155 /*
2156 * We didn't boot from bootconf so we never need to
2157 * do any special matches.
2158 */
2159 quickexit = 1;
2160 if (bp1275)
2161 kmem_free(bp1275, bp1275len);
2162 return (rv);
2163 }
2164
2165 if (ddi_getlongprop(DDI_DEV_T_ANY,
2166 ddi_root_node(), 0, "boot-path",
2167 (caddr_t)&bp, &bplen) != DDI_PROP_SUCCESS || bplen <= 1) {
2168 /*
2169 * No fallback position for matching. This is
2170 * certainly unexpected, but we'll handle it
2171 * just in case.
2172 */
2173 quickexit = 1;
2174 kmem_free(bp1275, bp1275len);
2175 if (bp)
2176 kmem_free(bp, bplen);
2177 return (rv);
2178 }
2179
2180 /*
2181 * Determine boot device module and 1275 name_addr
2182 *
2183 * bootpath assumed to be of the form /bus/module@name_addr
2184 */
2185 if ((busp = strchr(bp1275, '/')) != NULL) {
2186 if ((modp = strchr(busp + 1, '/')) != NULL) {
2187 if ((atp = strchr(modp + 1, '@')) != NULL) {
2188 *atp = '\0';
2189 addrp = atp + 1;
2190 if ((eoaddrp = strchr(addrp, '/')) !=
2191 NULL)
2192 *eoaddrp = '\0';
2193 }
2194 }
2195 }
2196
2197 if (modp && addrp) {
2198 (void) strncpy(bootdev_module, modp + 1,
2199 MAXCOMPONENTLEN);
2200 bootdev_module[MAXCOMPONENTLEN - 1] = '\0';
2201
2202 (void) strncpy(bootdev_newaddr, addrp, MAXCOMPONENTLEN);
2203 bootdev_newaddr[MAXCOMPONENTLEN - 1] = '\0';
2204 } else {
2205 quickexit = 1;
2206 kmem_free(bp1275, bp1275len);
2207 kmem_free(bp, bplen);
2208 return (rv);
2209 }
2210
2211 /*
2212 * Determine fallback name_addr
2213 *
2214 * 10/3/96 - Also save fallback module name because it
2215 * might actually be different than the current module
2216 * name. E.G., ISA pnp drivers have new names.
2217 *
2218 * bootpath assumed to be of the form /bus/module@name_addr
2219 */
2220 addrp = NULL;
2221 if ((busp = strchr(bp, '/')) != NULL) {
2222 if ((modp = strchr(busp + 1, '/')) != NULL) {
2223 if ((atp = strchr(modp + 1, '@')) != NULL) {
2224 *atp = '\0';
2225 addrp = atp + 1;
2226 if ((eoaddrp = strchr(addrp, '/')) !=
2227 NULL)
2228 *eoaddrp = '\0';
2229 }
2230 }
2231 }
2232
2233 if (modp && addrp) {
2234 (void) strncpy(bootdev_oldmod, modp + 1,
2235 MAXCOMPONENTLEN);
2236 bootdev_module[MAXCOMPONENTLEN - 1] = '\0';
2237
2238 (void) strncpy(bootdev_oldaddr, addrp, MAXCOMPONENTLEN);
2239 bootdev_oldaddr[MAXCOMPONENTLEN - 1] = '\0';
2240 }
2241
2242 /* Free up the bootpath storage now that we're done with it. */
2243 kmem_free(bp1275, bp1275len);
2244 kmem_free(bp, bplen);
2245
2246 if (bootdev_oldaddr[0] == '\0') {
2247 quickexit = 1;
2248 return (rv);
2249 }
2250 }
2251
2252 if (((lkupname = ddi_get_name(cdip)) != NULL) &&
2253 (strcmp(bootdev_module, lkupname) == 0 ||
2254 strcmp(bootdev_oldmod, lkupname) == 0) &&
2255 ((ddi_getprop(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS,
2256 "ignore-hardware-nodes", -1) != -1) ||
2257 ignore_hardware_nodes) &&
2258 strcmp(bootdev_newaddr, caddr) == 0 &&
2259 strcmp(bootdev_oldaddr, naddr) == 0) {
2260 rv = DDI_SUCCESS;
2261 }
2262
2263 return (rv);
2264 }
2265
2266 /*
2267 * Perform a copy from a memory mapped device (whose devinfo pointer is devi)
2268 * separately mapped at devaddr in the kernel to a kernel buffer at kaddr.
2269 */
2270 /*ARGSUSED*/
2271 int
e_ddi_copyfromdev(dev_info_t * devi,off_t off,const void * devaddr,void * kaddr,size_t len)2272 e_ddi_copyfromdev(dev_info_t *devi,
2273 off_t off, const void *devaddr, void *kaddr, size_t len)
2274 {
2275 bcopy(devaddr, kaddr, len);
2276 return (0);
2277 }
2278
2279 /*
2280 * Perform a copy to a memory mapped device (whose devinfo pointer is devi)
2281 * separately mapped at devaddr in the kernel from a kernel buffer at kaddr.
2282 */
2283 /*ARGSUSED*/
2284 int
e_ddi_copytodev(dev_info_t * devi,off_t off,const void * kaddr,void * devaddr,size_t len)2285 e_ddi_copytodev(dev_info_t *devi,
2286 off_t off, const void *kaddr, void *devaddr, size_t len)
2287 {
2288 bcopy(kaddr, devaddr, len);
2289 return (0);
2290 }
2291
2292
2293 static int
poke_mem(peekpoke_ctlops_t * in_args)2294 poke_mem(peekpoke_ctlops_t *in_args)
2295 {
2296 int err;
2297 on_trap_data_t otd;
2298
2299 /* Set up protected environment. */
2300 if (!on_trap(&otd, OT_DATA_ACCESS)) {
2301 err = DDI_SUCCESS;
2302 switch (in_args->size) {
2303 case sizeof (uint8_t):
2304 *(uint8_t *)(in_args->dev_addr) =
2305 *(uint8_t *)in_args->host_addr;
2306 break;
2307
2308 case sizeof (uint16_t):
2309 *(uint16_t *)(in_args->dev_addr) =
2310 *(uint16_t *)in_args->host_addr;
2311 break;
2312
2313 case sizeof (uint32_t):
2314 *(uint32_t *)(in_args->dev_addr) =
2315 *(uint32_t *)in_args->host_addr;
2316 break;
2317
2318 case sizeof (uint64_t):
2319 *(uint64_t *)(in_args->dev_addr) =
2320 *(uint64_t *)in_args->host_addr;
2321 break;
2322
2323 default:
2324 err = DDI_FAILURE;
2325 break;
2326 }
2327 } else {
2328 err = DDI_FAILURE;
2329 }
2330
2331 /* Take down protected environment. */
2332 no_trap();
2333
2334 return (err);
2335 }
2336
2337
2338 static int
peek_mem(peekpoke_ctlops_t * in_args)2339 peek_mem(peekpoke_ctlops_t *in_args)
2340 {
2341 int err;
2342 on_trap_data_t otd;
2343
2344 if (!on_trap(&otd, OT_DATA_ACCESS)) {
2345 err = DDI_SUCCESS;
2346 switch (in_args->size) {
2347 case sizeof (uint8_t):
2348 *(uint8_t *)in_args->host_addr =
2349 *(uint8_t *)in_args->dev_addr;
2350 break;
2351
2352 case sizeof (uint16_t):
2353 *(uint16_t *)in_args->host_addr =
2354 *(uint16_t *)in_args->dev_addr;
2355 break;
2356
2357 case sizeof (uint32_t):
2358 *(uint32_t *)in_args->host_addr =
2359 *(uint32_t *)in_args->dev_addr;
2360 break;
2361
2362 case sizeof (uint64_t):
2363 *(uint64_t *)in_args->host_addr =
2364 *(uint64_t *)in_args->dev_addr;
2365 break;
2366
2367 default:
2368 err = DDI_FAILURE;
2369 break;
2370 }
2371 } else {
2372 err = DDI_FAILURE;
2373 }
2374
2375 no_trap();
2376 return (err);
2377 }
2378
2379
2380 /*
2381 * This is called only to process peek/poke when the DIP is NULL.
2382 * Assume that this is for memory, as nexi take care of device safe accesses.
2383 */
2384 int
peekpoke_mem(ddi_ctl_enum_t cmd,peekpoke_ctlops_t * in_args)2385 peekpoke_mem(ddi_ctl_enum_t cmd, peekpoke_ctlops_t *in_args)
2386 {
2387 return (cmd == DDI_CTLOPS_PEEK ? peek_mem(in_args) : poke_mem(in_args));
2388 }
2389
2390 /*
2391 * we've just done a cautious put/get. Check if it was successful by
2392 * calling pci_ereport_post() on all puts and for any gets that return -1
2393 */
2394 static int
pci_peekpoke_check_fma(dev_info_t * dip,void * arg,ddi_ctl_enum_t ctlop,void (* scan)(dev_info_t *,ddi_fm_error_t *))2395 pci_peekpoke_check_fma(dev_info_t *dip, void *arg, ddi_ctl_enum_t ctlop,
2396 void (*scan)(dev_info_t *, ddi_fm_error_t *))
2397 {
2398 int rval = DDI_SUCCESS;
2399 peekpoke_ctlops_t *in_args = (peekpoke_ctlops_t *)arg;
2400 ddi_fm_error_t de;
2401 ddi_acc_impl_t *hp = (ddi_acc_impl_t *)in_args->handle;
2402 ddi_acc_hdl_t *hdlp = (ddi_acc_hdl_t *)in_args->handle;
2403 int check_err = 0;
2404 int repcount = in_args->repcount;
2405
2406 if (ctlop == DDI_CTLOPS_POKE &&
2407 hdlp->ah_acc.devacc_attr_access != DDI_CAUTIOUS_ACC)
2408 return (DDI_SUCCESS);
2409
2410 if (ctlop == DDI_CTLOPS_PEEK &&
2411 hdlp->ah_acc.devacc_attr_access != DDI_CAUTIOUS_ACC) {
2412 for (; repcount; repcount--) {
2413 switch (in_args->size) {
2414 case sizeof (uint8_t):
2415 if (*(uint8_t *)in_args->host_addr == 0xff)
2416 check_err = 1;
2417 break;
2418 case sizeof (uint16_t):
2419 if (*(uint16_t *)in_args->host_addr == 0xffff)
2420 check_err = 1;
2421 break;
2422 case sizeof (uint32_t):
2423 if (*(uint32_t *)in_args->host_addr ==
2424 0xffffffff)
2425 check_err = 1;
2426 break;
2427 case sizeof (uint64_t):
2428 if (*(uint64_t *)in_args->host_addr ==
2429 0xffffffffffffffff)
2430 check_err = 1;
2431 break;
2432 }
2433 }
2434 if (check_err == 0)
2435 return (DDI_SUCCESS);
2436 }
2437 /*
2438 * for a cautious put or get or a non-cautious get that returned -1 call
2439 * io framework to see if there really was an error
2440 */
2441 bzero(&de, sizeof (ddi_fm_error_t));
2442 de.fme_version = DDI_FME_VERSION;
2443 de.fme_ena = fm_ena_generate(0, FM_ENA_FMT1);
2444 if (hdlp->ah_acc.devacc_attr_access == DDI_CAUTIOUS_ACC) {
2445 de.fme_flag = DDI_FM_ERR_EXPECTED;
2446 de.fme_acc_handle = in_args->handle;
2447 } else if (hdlp->ah_acc.devacc_attr_access == DDI_DEFAULT_ACC) {
2448 /*
2449 * We only get here with DDI_DEFAULT_ACC for config space gets.
2450 * Non-hardened drivers may be probing the hardware and
2451 * expecting -1 returned. So need to treat errors on
2452 * DDI_DEFAULT_ACC as DDI_FM_ERR_EXPECTED.
2453 */
2454 de.fme_flag = DDI_FM_ERR_EXPECTED;
2455 de.fme_acc_handle = in_args->handle;
2456 } else {
2457 /*
2458 * Hardened driver doing protected accesses shouldn't
2459 * get errors unless there's a hardware problem. Treat
2460 * as nonfatal if there's an error, but set UNEXPECTED
2461 * so we raise ereports on any errors and potentially
2462 * fault the device
2463 */
2464 de.fme_flag = DDI_FM_ERR_UNEXPECTED;
2465 }
2466 (void) scan(dip, &de);
2467 if (hdlp->ah_acc.devacc_attr_access != DDI_DEFAULT_ACC &&
2468 de.fme_status != DDI_FM_OK) {
2469 ndi_err_t *errp = (ndi_err_t *)hp->ahi_err;
2470 rval = DDI_FAILURE;
2471 errp->err_ena = de.fme_ena;
2472 errp->err_expected = de.fme_flag;
2473 errp->err_status = DDI_FM_NONFATAL;
2474 }
2475 return (rval);
2476 }
2477
2478 /*
2479 * pci_peekpoke_check_nofma() is for when an error occurs on a register access
2480 * during pci_ereport_post(). We can't call pci_ereport_post() again or we'd
2481 * recurse, so assume all puts are OK and gets have failed if they return -1
2482 */
2483 static int
pci_peekpoke_check_nofma(void * arg,ddi_ctl_enum_t ctlop)2484 pci_peekpoke_check_nofma(void *arg, ddi_ctl_enum_t ctlop)
2485 {
2486 int rval = DDI_SUCCESS;
2487 peekpoke_ctlops_t *in_args = (peekpoke_ctlops_t *)arg;
2488 ddi_acc_impl_t *hp = (ddi_acc_impl_t *)in_args->handle;
2489 ddi_acc_hdl_t *hdlp = (ddi_acc_hdl_t *)in_args->handle;
2490 int repcount = in_args->repcount;
2491
2492 if (ctlop == DDI_CTLOPS_POKE)
2493 return (rval);
2494
2495 for (; repcount; repcount--) {
2496 switch (in_args->size) {
2497 case sizeof (uint8_t):
2498 if (*(uint8_t *)in_args->host_addr == 0xff)
2499 rval = DDI_FAILURE;
2500 break;
2501 case sizeof (uint16_t):
2502 if (*(uint16_t *)in_args->host_addr == 0xffff)
2503 rval = DDI_FAILURE;
2504 break;
2505 case sizeof (uint32_t):
2506 if (*(uint32_t *)in_args->host_addr == 0xffffffff)
2507 rval = DDI_FAILURE;
2508 break;
2509 case sizeof (uint64_t):
2510 if (*(uint64_t *)in_args->host_addr ==
2511 0xffffffffffffffff)
2512 rval = DDI_FAILURE;
2513 break;
2514 }
2515 }
2516 if (hdlp->ah_acc.devacc_attr_access != DDI_DEFAULT_ACC &&
2517 rval == DDI_FAILURE) {
2518 ndi_err_t *errp = (ndi_err_t *)hp->ahi_err;
2519 errp->err_ena = fm_ena_generate(0, FM_ENA_FMT1);
2520 errp->err_expected = DDI_FM_ERR_UNEXPECTED;
2521 errp->err_status = DDI_FM_NONFATAL;
2522 }
2523 return (rval);
2524 }
2525
2526 int
pci_peekpoke_check(dev_info_t * dip,dev_info_t * rdip,ddi_ctl_enum_t ctlop,void * arg,void * result,int (* handler)(dev_info_t *,dev_info_t *,ddi_ctl_enum_t,void *,void *),kmutex_t * err_mutexp,kmutex_t * peek_poke_mutexp,void (* scan)(dev_info_t *,ddi_fm_error_t *))2527 pci_peekpoke_check(dev_info_t *dip, dev_info_t *rdip,
2528 ddi_ctl_enum_t ctlop, void *arg, void *result,
2529 int (*handler)(dev_info_t *, dev_info_t *, ddi_ctl_enum_t, void *,
2530 void *), kmutex_t *err_mutexp, kmutex_t *peek_poke_mutexp,
2531 void (*scan)(dev_info_t *, ddi_fm_error_t *))
2532 {
2533 int rval;
2534 peekpoke_ctlops_t *in_args = (peekpoke_ctlops_t *)arg;
2535 ddi_acc_impl_t *hp = (ddi_acc_impl_t *)in_args->handle;
2536
2537 /*
2538 * this function only supports cautious accesses, not peeks/pokes
2539 * which don't have a handle
2540 */
2541 if (hp == NULL)
2542 return (DDI_FAILURE);
2543
2544 if (hp->ahi_acc_attr & DDI_ACCATTR_CONFIG_SPACE) {
2545 if (!mutex_tryenter(err_mutexp)) {
2546 /*
2547 * As this may be a recursive call from within
2548 * pci_ereport_post() we can't wait for the mutexes.
2549 * Fortunately we know someone is already calling
2550 * pci_ereport_post() which will handle the error bits
2551 * for us, and as this is a config space access we can
2552 * just do the access and check return value for -1
2553 * using pci_peekpoke_check_nofma().
2554 */
2555 rval = handler(dip, rdip, ctlop, arg, result);
2556 if (rval == DDI_SUCCESS)
2557 rval = pci_peekpoke_check_nofma(arg, ctlop);
2558 return (rval);
2559 }
2560 /*
2561 * This can't be a recursive call. Drop the err_mutex and get
2562 * both mutexes in the right order. If an error hasn't already
2563 * been detected by the ontrap code, use pci_peekpoke_check_fma
2564 * which will call pci_ereport_post() to check error status.
2565 */
2566 mutex_exit(err_mutexp);
2567 }
2568 mutex_enter(peek_poke_mutexp);
2569 rval = handler(dip, rdip, ctlop, arg, result);
2570 if (rval == DDI_SUCCESS) {
2571 mutex_enter(err_mutexp);
2572 rval = pci_peekpoke_check_fma(dip, arg, ctlop, scan);
2573 mutex_exit(err_mutexp);
2574 }
2575 mutex_exit(peek_poke_mutexp);
2576 return (rval);
2577 }
2578
2579 void
impl_setup_ddi(void)2580 impl_setup_ddi(void)
2581 {
2582 #if !defined(__xpv)
2583 extern void startup_bios_disk(void);
2584 extern int post_fastreboot;
2585 #endif
2586 dev_info_t *xdip, *isa_dip;
2587 rd_existing_t rd_mem_prop;
2588 int err;
2589
2590 ndi_devi_alloc_sleep(ddi_root_node(), "ramdisk",
2591 (pnode_t)DEVI_SID_NODEID, &xdip);
2592
2593 (void) BOP_GETPROP(bootops,
2594 "ramdisk_start", (void *)&ramdisk_start);
2595 (void) BOP_GETPROP(bootops,
2596 "ramdisk_end", (void *)&ramdisk_end);
2597
2598 #ifdef __xpv
2599 ramdisk_start -= ONE_GIG;
2600 ramdisk_end -= ONE_GIG;
2601 #endif
2602 rd_mem_prop.phys = ramdisk_start;
2603 rd_mem_prop.size = ramdisk_end - ramdisk_start + 1;
2604
2605 (void) ndi_prop_update_byte_array(DDI_DEV_T_NONE, xdip,
2606 RD_EXISTING_PROP_NAME, (uchar_t *)&rd_mem_prop,
2607 sizeof (rd_mem_prop));
2608 err = ndi_devi_bind_driver(xdip, 0);
2609 ASSERT(err == 0);
2610
2611 /* isa node */
2612 if (pseudo_isa) {
2613 ndi_devi_alloc_sleep(ddi_root_node(), "isa",
2614 (pnode_t)DEVI_SID_NODEID, &isa_dip);
2615 (void) ndi_prop_update_string(DDI_DEV_T_NONE, isa_dip,
2616 "device_type", "isa");
2617 (void) ndi_prop_update_string(DDI_DEV_T_NONE, isa_dip,
2618 "bus-type", "isa");
2619 (void) ndi_devi_bind_driver(isa_dip, 0);
2620 }
2621
2622 /*
2623 * Read in the properties from the boot.
2624 */
2625 get_boot_properties();
2626
2627 /* not framebuffer should be enumerated, if present */
2628 get_vga_properties();
2629
2630 /* Copy console font if provided by boot. */
2631 get_console_font();
2632
2633 /*
2634 * Check for administratively disabled drivers.
2635 */
2636 check_driver_disable();
2637
2638 #if !defined(__xpv)
2639 if (!post_fastreboot && BOP_GETPROPLEN(bootops, "efi-systab") < 0)
2640 startup_bios_disk();
2641 #endif
2642 /* do bus dependent probes. */
2643 impl_bus_initialprobe();
2644 }
2645
2646 dev_t
getrootdev(void)2647 getrootdev(void)
2648 {
2649 /*
2650 * Usually rootfs.bo_name is initialized by the
2651 * the bootpath property from bootenv.rc, but
2652 * defaults to "/ramdisk:a" otherwise.
2653 */
2654 return (ddi_pathname_to_dev_t(rootfs.bo_name));
2655 }
2656
2657 static struct bus_probe {
2658 struct bus_probe *next;
2659 void (*probe)(int);
2660 } *bus_probes;
2661
2662 void
impl_bus_add_probe(void (* func)(int))2663 impl_bus_add_probe(void (*func)(int))
2664 {
2665 struct bus_probe *probe;
2666 struct bus_probe *lastprobe = NULL;
2667
2668 probe = kmem_alloc(sizeof (*probe), KM_SLEEP);
2669 probe->probe = func;
2670 probe->next = NULL;
2671
2672 if (!bus_probes) {
2673 bus_probes = probe;
2674 return;
2675 }
2676
2677 lastprobe = bus_probes;
2678 while (lastprobe->next)
2679 lastprobe = lastprobe->next;
2680 lastprobe->next = probe;
2681 }
2682
2683 /*ARGSUSED*/
2684 void
impl_bus_delete_probe(void (* func)(int))2685 impl_bus_delete_probe(void (*func)(int))
2686 {
2687 struct bus_probe *prev = NULL;
2688 struct bus_probe *probe = bus_probes;
2689
2690 while (probe) {
2691 if (probe->probe == func)
2692 break;
2693 prev = probe;
2694 probe = probe->next;
2695 }
2696
2697 if (probe == NULL)
2698 return;
2699
2700 if (prev)
2701 prev->next = probe->next;
2702 else
2703 bus_probes = probe->next;
2704
2705 kmem_free(probe, sizeof (struct bus_probe));
2706 }
2707
2708 /*
2709 * impl_bus_initialprobe
2710 * Modload the prom simulator, then let it probe to verify existence
2711 * and type of PCI support.
2712 */
2713 static void
impl_bus_initialprobe(void)2714 impl_bus_initialprobe(void)
2715 {
2716 struct bus_probe *probe;
2717
2718 /* load modules to install bus probes */
2719 #if defined(__xpv)
2720 if (DOMAIN_IS_INITDOMAIN(xen_info)) {
2721 if (modload("misc", "pci_autoconfig") < 0) {
2722 panic("failed to load misc/pci_autoconfig");
2723 }
2724
2725 if (modload("drv", "isa") < 0)
2726 panic("failed to load drv/isa");
2727 }
2728
2729 (void) modload("misc", "xpv_autoconfig");
2730 #else
2731 if (modload("misc", "pci_autoconfig") < 0) {
2732 panic("failed to load misc/pci_autoconfig");
2733 }
2734
2735 (void) modload("misc", "acpidev");
2736
2737 if (modload("drv", "isa") < 0)
2738 panic("failed to load drv/isa");
2739 #endif
2740
2741 probe = bus_probes;
2742 while (probe) {
2743 /* run the probe functions */
2744 (*probe->probe)(0);
2745 probe = probe->next;
2746 }
2747 }
2748
2749 /*
2750 * impl_bus_reprobe
2751 * Reprogram devices not set up by firmware.
2752 */
2753 static void
impl_bus_reprobe(void)2754 impl_bus_reprobe(void)
2755 {
2756 struct bus_probe *probe;
2757
2758 probe = bus_probes;
2759 while (probe) {
2760 /* run the probe function */
2761 (*probe->probe)(1);
2762 probe = probe->next;
2763 }
2764 }
2765
2766
2767 /*
2768 * The following functions ready a cautious request to go up to the nexus
2769 * driver. It is up to the nexus driver to decide how to process the request.
2770 * It may choose to call i_ddi_do_caut_get/put in this file, or do it
2771 * differently.
2772 */
2773
2774 static void
i_ddi_caut_getput_ctlops(ddi_acc_impl_t * hp,uint64_t host_addr,uint64_t dev_addr,size_t size,size_t repcount,uint_t flags,ddi_ctl_enum_t cmd)2775 i_ddi_caut_getput_ctlops(ddi_acc_impl_t *hp, uint64_t host_addr,
2776 uint64_t dev_addr, size_t size, size_t repcount, uint_t flags,
2777 ddi_ctl_enum_t cmd)
2778 {
2779 peekpoke_ctlops_t cautacc_ctlops_arg;
2780
2781 cautacc_ctlops_arg.size = size;
2782 cautacc_ctlops_arg.dev_addr = dev_addr;
2783 cautacc_ctlops_arg.host_addr = host_addr;
2784 cautacc_ctlops_arg.handle = (ddi_acc_handle_t)hp;
2785 cautacc_ctlops_arg.repcount = repcount;
2786 cautacc_ctlops_arg.flags = flags;
2787
2788 (void) ddi_ctlops(hp->ahi_common.ah_dip, hp->ahi_common.ah_dip, cmd,
2789 &cautacc_ctlops_arg, NULL);
2790 }
2791
2792 uint8_t
i_ddi_caut_get8(ddi_acc_impl_t * hp,uint8_t * addr)2793 i_ddi_caut_get8(ddi_acc_impl_t *hp, uint8_t *addr)
2794 {
2795 uint8_t value;
2796 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr,
2797 sizeof (uint8_t), 1, 0, DDI_CTLOPS_PEEK);
2798
2799 return (value);
2800 }
2801
2802 uint16_t
i_ddi_caut_get16(ddi_acc_impl_t * hp,uint16_t * addr)2803 i_ddi_caut_get16(ddi_acc_impl_t *hp, uint16_t *addr)
2804 {
2805 uint16_t value;
2806 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr,
2807 sizeof (uint16_t), 1, 0, DDI_CTLOPS_PEEK);
2808
2809 return (value);
2810 }
2811
2812 uint32_t
i_ddi_caut_get32(ddi_acc_impl_t * hp,uint32_t * addr)2813 i_ddi_caut_get32(ddi_acc_impl_t *hp, uint32_t *addr)
2814 {
2815 uint32_t value;
2816 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr,
2817 sizeof (uint32_t), 1, 0, DDI_CTLOPS_PEEK);
2818
2819 return (value);
2820 }
2821
2822 uint64_t
i_ddi_caut_get64(ddi_acc_impl_t * hp,uint64_t * addr)2823 i_ddi_caut_get64(ddi_acc_impl_t *hp, uint64_t *addr)
2824 {
2825 uint64_t value;
2826 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr,
2827 sizeof (uint64_t), 1, 0, DDI_CTLOPS_PEEK);
2828
2829 return (value);
2830 }
2831
2832 void
i_ddi_caut_put8(ddi_acc_impl_t * hp,uint8_t * addr,uint8_t value)2833 i_ddi_caut_put8(ddi_acc_impl_t *hp, uint8_t *addr, uint8_t value)
2834 {
2835 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr,
2836 sizeof (uint8_t), 1, 0, DDI_CTLOPS_POKE);
2837 }
2838
2839 void
i_ddi_caut_put16(ddi_acc_impl_t * hp,uint16_t * addr,uint16_t value)2840 i_ddi_caut_put16(ddi_acc_impl_t *hp, uint16_t *addr, uint16_t value)
2841 {
2842 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr,
2843 sizeof (uint16_t), 1, 0, DDI_CTLOPS_POKE);
2844 }
2845
2846 void
i_ddi_caut_put32(ddi_acc_impl_t * hp,uint32_t * addr,uint32_t value)2847 i_ddi_caut_put32(ddi_acc_impl_t *hp, uint32_t *addr, uint32_t value)
2848 {
2849 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr,
2850 sizeof (uint32_t), 1, 0, DDI_CTLOPS_POKE);
2851 }
2852
2853 void
i_ddi_caut_put64(ddi_acc_impl_t * hp,uint64_t * addr,uint64_t value)2854 i_ddi_caut_put64(ddi_acc_impl_t *hp, uint64_t *addr, uint64_t value)
2855 {
2856 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr,
2857 sizeof (uint64_t), 1, 0, DDI_CTLOPS_POKE);
2858 }
2859
2860 void
i_ddi_caut_rep_get8(ddi_acc_impl_t * hp,uint8_t * host_addr,uint8_t * dev_addr,size_t repcount,uint_t flags)2861 i_ddi_caut_rep_get8(ddi_acc_impl_t *hp, uint8_t *host_addr, uint8_t *dev_addr,
2862 size_t repcount, uint_t flags)
2863 {
2864 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr,
2865 sizeof (uint8_t), repcount, flags, DDI_CTLOPS_PEEK);
2866 }
2867
2868 void
i_ddi_caut_rep_get16(ddi_acc_impl_t * hp,uint16_t * host_addr,uint16_t * dev_addr,size_t repcount,uint_t flags)2869 i_ddi_caut_rep_get16(ddi_acc_impl_t *hp, uint16_t *host_addr,
2870 uint16_t *dev_addr, size_t repcount, uint_t flags)
2871 {
2872 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr,
2873 sizeof (uint16_t), repcount, flags, DDI_CTLOPS_PEEK);
2874 }
2875
2876 void
i_ddi_caut_rep_get32(ddi_acc_impl_t * hp,uint32_t * host_addr,uint32_t * dev_addr,size_t repcount,uint_t flags)2877 i_ddi_caut_rep_get32(ddi_acc_impl_t *hp, uint32_t *host_addr,
2878 uint32_t *dev_addr, size_t repcount, uint_t flags)
2879 {
2880 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr,
2881 sizeof (uint32_t), repcount, flags, DDI_CTLOPS_PEEK);
2882 }
2883
2884 void
i_ddi_caut_rep_get64(ddi_acc_impl_t * hp,uint64_t * host_addr,uint64_t * dev_addr,size_t repcount,uint_t flags)2885 i_ddi_caut_rep_get64(ddi_acc_impl_t *hp, uint64_t *host_addr,
2886 uint64_t *dev_addr, size_t repcount, uint_t flags)
2887 {
2888 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr,
2889 sizeof (uint64_t), repcount, flags, DDI_CTLOPS_PEEK);
2890 }
2891
2892 void
i_ddi_caut_rep_put8(ddi_acc_impl_t * hp,uint8_t * host_addr,uint8_t * dev_addr,size_t repcount,uint_t flags)2893 i_ddi_caut_rep_put8(ddi_acc_impl_t *hp, uint8_t *host_addr, uint8_t *dev_addr,
2894 size_t repcount, uint_t flags)
2895 {
2896 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr,
2897 sizeof (uint8_t), repcount, flags, DDI_CTLOPS_POKE);
2898 }
2899
2900 void
i_ddi_caut_rep_put16(ddi_acc_impl_t * hp,uint16_t * host_addr,uint16_t * dev_addr,size_t repcount,uint_t flags)2901 i_ddi_caut_rep_put16(ddi_acc_impl_t *hp, uint16_t *host_addr,
2902 uint16_t *dev_addr, size_t repcount, uint_t flags)
2903 {
2904 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr,
2905 sizeof (uint16_t), repcount, flags, DDI_CTLOPS_POKE);
2906 }
2907
2908 void
i_ddi_caut_rep_put32(ddi_acc_impl_t * hp,uint32_t * host_addr,uint32_t * dev_addr,size_t repcount,uint_t flags)2909 i_ddi_caut_rep_put32(ddi_acc_impl_t *hp, uint32_t *host_addr,
2910 uint32_t *dev_addr, size_t repcount, uint_t flags)
2911 {
2912 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr,
2913 sizeof (uint32_t), repcount, flags, DDI_CTLOPS_POKE);
2914 }
2915
2916 void
i_ddi_caut_rep_put64(ddi_acc_impl_t * hp,uint64_t * host_addr,uint64_t * dev_addr,size_t repcount,uint_t flags)2917 i_ddi_caut_rep_put64(ddi_acc_impl_t *hp, uint64_t *host_addr,
2918 uint64_t *dev_addr, size_t repcount, uint_t flags)
2919 {
2920 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr,
2921 sizeof (uint64_t), repcount, flags, DDI_CTLOPS_POKE);
2922 }
2923
2924 boolean_t
i_ddi_copybuf_required(ddi_dma_attr_t * attrp)2925 i_ddi_copybuf_required(ddi_dma_attr_t *attrp)
2926 {
2927 uint64_t hi_pa;
2928
2929 hi_pa = ((uint64_t)physmax + 1ull) << PAGESHIFT;
2930 if (attrp->dma_attr_addr_hi < hi_pa) {
2931 return (B_TRUE);
2932 }
2933
2934 return (B_FALSE);
2935 }
2936
2937 size_t
i_ddi_copybuf_size()2938 i_ddi_copybuf_size()
2939 {
2940 return (dma_max_copybuf_size);
2941 }
2942
2943 /*
2944 * i_ddi_dma_max()
2945 * returns the maximum DMA size which can be performed in a single DMA
2946 * window taking into account the devices DMA contraints (attrp), the
2947 * maximum copy buffer size (if applicable), and the worse case buffer
2948 * fragmentation.
2949 */
2950 /*ARGSUSED*/
2951 uint32_t
i_ddi_dma_max(dev_info_t * dip,ddi_dma_attr_t * attrp)2952 i_ddi_dma_max(dev_info_t *dip, ddi_dma_attr_t *attrp)
2953 {
2954 uint64_t maxxfer;
2955
2956
2957 /*
2958 * take the min of maxxfer and the the worse case fragementation
2959 * (e.g. every cookie <= 1 page)
2960 */
2961 maxxfer = MIN(attrp->dma_attr_maxxfer,
2962 ((uint64_t)(attrp->dma_attr_sgllen - 1) << PAGESHIFT));
2963
2964 /*
2965 * If the DMA engine can't reach all off memory, we also need to take
2966 * the max size of the copybuf into consideration.
2967 */
2968 if (i_ddi_copybuf_required(attrp)) {
2969 maxxfer = MIN(i_ddi_copybuf_size(), maxxfer);
2970 }
2971
2972 /*
2973 * we only return a 32-bit value. Make sure it's not -1. Round to a
2974 * page so it won't be mistaken for an error value during debug.
2975 */
2976 if (maxxfer >= 0xFFFFFFFF) {
2977 maxxfer = 0xFFFFF000;
2978 }
2979
2980 /*
2981 * make sure the value we return is a whole multiple of the
2982 * granlarity.
2983 */
2984 if (attrp->dma_attr_granular > 1) {
2985 maxxfer = maxxfer - (maxxfer % attrp->dma_attr_granular);
2986 }
2987
2988 return ((uint32_t)maxxfer);
2989 }
2990
2991 /*ARGSUSED*/
2992 void
translate_devid(dev_info_t * dip)2993 translate_devid(dev_info_t *dip)
2994 {
2995 }
2996
2997 pfn_t
i_ddi_paddr_to_pfn(paddr_t paddr)2998 i_ddi_paddr_to_pfn(paddr_t paddr)
2999 {
3000 pfn_t pfn;
3001
3002 #ifdef __xpv
3003 if (DOMAIN_IS_INITDOMAIN(xen_info)) {
3004 pfn = xen_assign_pfn(mmu_btop(paddr));
3005 } else {
3006 pfn = mmu_btop(paddr);
3007 }
3008 #else
3009 pfn = mmu_btop(paddr);
3010 #endif
3011
3012 return (pfn);
3013 }
3014