1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * PC specific DDI implementation 29 */ 30 #include <sys/types.h> 31 #include <sys/autoconf.h> 32 #include <sys/avintr.h> 33 #include <sys/bootconf.h> 34 #include <sys/conf.h> 35 #include <sys/cpuvar.h> 36 #include <sys/ddi_impldefs.h> 37 #include <sys/ddi_subrdefs.h> 38 #include <sys/ethernet.h> 39 #include <sys/fp.h> 40 #include <sys/instance.h> 41 #include <sys/kmem.h> 42 #include <sys/machsystm.h> 43 #include <sys/modctl.h> 44 #include <sys/promif.h> 45 #include <sys/prom_plat.h> 46 #include <sys/sunndi.h> 47 #include <sys/ndi_impldefs.h> 48 #include <sys/ddi_impldefs.h> 49 #include <sys/sysmacros.h> 50 #include <sys/systeminfo.h> 51 #include <sys/utsname.h> 52 #include <sys/atomic.h> 53 #include <sys/spl.h> 54 #include <sys/archsystm.h> 55 #include <vm/seg_kmem.h> 56 #include <sys/ontrap.h> 57 #include <sys/fm/protocol.h> 58 #include <sys/ramdisk.h> 59 #include <sys/sunndi.h> 60 #include <sys/vmem.h> 61 #include <sys/pci_impl.h> 62 #if defined(__xpv) 63 #include <sys/hypervisor.h> 64 #endif 65 #include <sys/mach_intr.h> 66 #include <vm/hat_i86.h> 67 #include <sys/x86_archext.h> 68 69 /* 70 * DDI Boot Configuration 71 */ 72 73 /* 74 * Platform drivers on this platform 75 */ 76 char *platform_module_list[] = { 77 "acpippm", 78 "ppm", 79 (char *)0 80 }; 81 82 /* pci bus resource maps */ 83 struct pci_bus_resource *pci_bus_res; 84 85 size_t dma_max_copybuf_size = 0x101000; /* 1M + 4K */ 86 87 uint64_t ramdisk_start, ramdisk_end; 88 89 int pseudo_isa = 0; 90 91 /* 92 * Forward declarations 93 */ 94 static int getlongprop_buf(); 95 static void get_boot_properties(void); 96 static void impl_bus_initialprobe(void); 97 static void impl_bus_reprobe(void); 98 99 static int poke_mem(peekpoke_ctlops_t *in_args); 100 static int peek_mem(peekpoke_ctlops_t *in_args); 101 102 static int kmem_override_cache_attrs(caddr_t, size_t, uint_t); 103 104 #define CTGENTRIES 15 105 106 static struct ctgas { 107 struct ctgas *ctg_next; 108 int ctg_index; 109 void *ctg_addr[CTGENTRIES]; 110 size_t ctg_size[CTGENTRIES]; 111 } ctglist; 112 113 static kmutex_t ctgmutex; 114 #define CTGLOCK() mutex_enter(&ctgmutex) 115 #define CTGUNLOCK() mutex_exit(&ctgmutex) 116 117 /* 118 * Minimum pfn value of page_t's put on the free list. This is to simplify 119 * support of ddi dma memory requests which specify small, non-zero addr_lo 120 * values. 121 * 122 * The default value of 2, which corresponds to the only known non-zero addr_lo 123 * value used, means a single page will be sacrificed (pfn typically starts 124 * at 1). ddiphysmin can be set to 0 to disable. It cannot be set above 0x100 125 * otherwise mp startup panics. 126 */ 127 pfn_t ddiphysmin = 2; 128 129 static void 130 check_driver_disable(void) 131 { 132 int proplen = 128; 133 char *prop_name; 134 char *drv_name, *propval; 135 major_t major; 136 137 prop_name = kmem_alloc(proplen, KM_SLEEP); 138 for (major = 0; major < devcnt; major++) { 139 drv_name = ddi_major_to_name(major); 140 if (drv_name == NULL) 141 continue; 142 (void) snprintf(prop_name, proplen, "disable-%s", drv_name); 143 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 144 DDI_PROP_DONTPASS, prop_name, &propval) == DDI_SUCCESS) { 145 if (strcmp(propval, "true") == 0) { 146 devnamesp[major].dn_flags |= DN_DRIVER_REMOVED; 147 cmn_err(CE_NOTE, "driver %s disabled", 148 drv_name); 149 } 150 ddi_prop_free(propval); 151 } 152 } 153 kmem_free(prop_name, proplen); 154 } 155 156 157 /* 158 * Configure the hardware on the system. 159 * Called before the rootfs is mounted 160 */ 161 void 162 configure(void) 163 { 164 extern void i_ddi_init_root(); 165 166 #if defined(__i386) 167 extern int fpu_pentium_fdivbug; 168 #endif /* __i386 */ 169 extern int fpu_ignored; 170 171 /* 172 * Determine if an FPU is attached 173 */ 174 175 fpu_probe(); 176 177 #if defined(__i386) 178 if (fpu_pentium_fdivbug) { 179 printf("\ 180 FP hardware exhibits Pentium floating point divide problem\n"); 181 } 182 #endif /* __i386 */ 183 184 if (fpu_ignored) { 185 printf("FP hardware will not be used\n"); 186 } else if (!fpu_exists) { 187 printf("No FPU in configuration\n"); 188 } 189 190 /* 191 * Initialize devices on the machine. 192 * Uses configuration tree built by the PROMs to determine what 193 * is present, and builds a tree of prototype dev_info nodes 194 * corresponding to the hardware which identified itself. 195 */ 196 #if !defined(SAS) && !defined(MPSAS) 197 /* 198 * Check for disabled drivers and initialize root node. 199 */ 200 check_driver_disable(); 201 i_ddi_init_root(); 202 203 /* reprogram devices not set up by firmware (BIOS) */ 204 impl_bus_reprobe(); 205 206 /* 207 * attach the isa nexus to get ACPI resource usage 208 * isa is "kind of" a pseudo node 209 */ 210 #if defined(__xpv) 211 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 212 if (pseudo_isa) 213 (void) i_ddi_attach_pseudo_node("isa"); 214 else 215 (void) i_ddi_attach_hw_nodes("isa"); 216 } 217 #else 218 if (pseudo_isa) 219 (void) i_ddi_attach_pseudo_node("isa"); 220 else 221 (void) i_ddi_attach_hw_nodes("isa"); 222 #endif 223 224 #endif /* !SAS && !MPSAS */ 225 } 226 227 /* 228 * The "status" property indicates the operational status of a device. 229 * If this property is present, the value is a string indicating the 230 * status of the device as follows: 231 * 232 * "okay" operational. 233 * "disabled" not operational, but might become operational. 234 * "fail" not operational because a fault has been detected, 235 * and it is unlikely that the device will become 236 * operational without repair. no additional details 237 * are available. 238 * "fail-xxx" not operational because a fault has been detected, 239 * and it is unlikely that the device will become 240 * operational without repair. "xxx" is additional 241 * human-readable information about the particular 242 * fault condition that was detected. 243 * 244 * The absence of this property means that the operational status is 245 * unknown or okay. 246 * 247 * This routine checks the status property of the specified device node 248 * and returns 0 if the operational status indicates failure, and 1 otherwise. 249 * 250 * The property may exist on plug-in cards the existed before IEEE 1275-1994. 251 * And, in that case, the property may not even be a string. So we carefully 252 * check for the value "fail", in the beginning of the string, noting 253 * the property length. 254 */ 255 int 256 status_okay(int id, char *buf, int buflen) 257 { 258 char status_buf[OBP_MAXPROPNAME]; 259 char *bufp = buf; 260 int len = buflen; 261 int proplen; 262 static const char *status = "status"; 263 static const char *fail = "fail"; 264 int fail_len = (int)strlen(fail); 265 266 /* 267 * Get the proplen ... if it's smaller than "fail", 268 * or doesn't exist ... then we don't care, since 269 * the value can't begin with the char string "fail". 270 * 271 * NB: proplen, if it's a string, includes the NULL in the 272 * the size of the property, and fail_len does not. 273 */ 274 proplen = prom_getproplen((pnode_t)id, (caddr_t)status); 275 if (proplen <= fail_len) /* nonexistant or uninteresting len */ 276 return (1); 277 278 /* 279 * if a buffer was provided, use it 280 */ 281 if ((buf == (char *)NULL) || (buflen <= 0)) { 282 bufp = status_buf; 283 len = sizeof (status_buf); 284 } 285 *bufp = (char)0; 286 287 /* 288 * Get the property into the buffer, to the extent of the buffer, 289 * and in case the buffer is smaller than the property size, 290 * NULL terminate the buffer. (This handles the case where 291 * a buffer was passed in and the caller wants to print the 292 * value, but the buffer was too small). 293 */ 294 (void) prom_bounded_getprop((pnode_t)id, (caddr_t)status, 295 (caddr_t)bufp, len); 296 *(bufp + len - 1) = (char)0; 297 298 /* 299 * If the value begins with the char string "fail", 300 * then it means the node is failed. We don't care 301 * about any other values. We assume the node is ok 302 * although it might be 'disabled'. 303 */ 304 if (strncmp(bufp, fail, fail_len) == 0) 305 return (0); 306 307 return (1); 308 } 309 310 /* 311 * Check the status of the device node passed as an argument. 312 * 313 * if ((status is OKAY) || (status is DISABLED)) 314 * return DDI_SUCCESS 315 * else 316 * print a warning and return DDI_FAILURE 317 */ 318 /*ARGSUSED1*/ 319 int 320 check_status(int id, char *name, dev_info_t *parent) 321 { 322 char status_buf[64]; 323 char devtype_buf[OBP_MAXPROPNAME]; 324 int retval = DDI_FAILURE; 325 326 /* 327 * is the status okay? 328 */ 329 if (status_okay(id, status_buf, sizeof (status_buf))) 330 return (DDI_SUCCESS); 331 332 /* 333 * a status property indicating bad memory will be associated 334 * with a node which has a "device_type" property with a value of 335 * "memory-controller". in this situation, return DDI_SUCCESS 336 */ 337 if (getlongprop_buf(id, OBP_DEVICETYPE, devtype_buf, 338 sizeof (devtype_buf)) > 0) { 339 if (strcmp(devtype_buf, "memory-controller") == 0) 340 retval = DDI_SUCCESS; 341 } 342 343 /* 344 * print the status property information 345 */ 346 cmn_err(CE_WARN, "status '%s' for '%s'", status_buf, name); 347 return (retval); 348 } 349 350 /*ARGSUSED*/ 351 uint_t 352 softlevel1(caddr_t arg1, caddr_t arg2) 353 { 354 softint(); 355 return (1); 356 } 357 358 /* 359 * Allow for implementation specific correction of PROM property values. 360 */ 361 362 /*ARGSUSED*/ 363 void 364 impl_fix_props(dev_info_t *dip, dev_info_t *ch_dip, char *name, int len, 365 caddr_t buffer) 366 { 367 /* 368 * There are no adjustments needed in this implementation. 369 */ 370 } 371 372 static int 373 getlongprop_buf(int id, char *name, char *buf, int maxlen) 374 { 375 int size; 376 377 size = prom_getproplen((pnode_t)id, name); 378 if (size <= 0 || (size > maxlen - 1)) 379 return (-1); 380 381 if (-1 == prom_getprop((pnode_t)id, name, buf)) 382 return (-1); 383 384 if (strcmp("name", name) == 0) { 385 if (buf[size - 1] != '\0') { 386 buf[size] = '\0'; 387 size += 1; 388 } 389 } 390 391 return (size); 392 } 393 394 static int 395 get_prop_int_array(dev_info_t *di, char *pname, int **pval, uint_t *plen) 396 { 397 int ret; 398 399 if ((ret = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, di, 400 DDI_PROP_DONTPASS, pname, pval, plen)) 401 == DDI_PROP_SUCCESS) { 402 *plen = (*plen) * (sizeof (int)); 403 } 404 return (ret); 405 } 406 407 408 /* 409 * Node Configuration 410 */ 411 412 struct prop_ispec { 413 uint_t pri, vec; 414 }; 415 416 /* 417 * For the x86, we're prepared to claim that the interrupt string 418 * is in the form of a list of <ipl,vec> specifications. 419 */ 420 421 #define VEC_MIN 1 422 #define VEC_MAX 255 423 424 static int 425 impl_xlate_intrs(dev_info_t *child, int *in, 426 struct ddi_parent_private_data *pdptr) 427 { 428 size_t size; 429 int n; 430 struct intrspec *new; 431 caddr_t got_prop; 432 int *inpri; 433 int got_len; 434 extern int ignore_hardware_nodes; /* force flag from ddi_impl.c */ 435 436 static char bad_intr_fmt[] = 437 "bad interrupt spec from %s%d - ipl %d, irq %d\n"; 438 439 /* 440 * determine if the driver is expecting the new style "interrupts" 441 * property which just contains the IRQ, or the old style which 442 * contains pairs of <IPL,IRQ>. if it is the new style, we always 443 * assign IPL 5 unless an "interrupt-priorities" property exists. 444 * in that case, the "interrupt-priorities" property contains the 445 * IPL values that match, one for one, the IRQ values in the 446 * "interrupts" property. 447 */ 448 inpri = NULL; 449 if ((ddi_getprop(DDI_DEV_T_ANY, child, DDI_PROP_DONTPASS, 450 "ignore-hardware-nodes", -1) != -1) || ignore_hardware_nodes) { 451 /* the old style "interrupts" property... */ 452 453 /* 454 * The list consists of <ipl,vec> elements 455 */ 456 if ((n = (*in++ >> 1)) < 1) 457 return (DDI_FAILURE); 458 459 pdptr->par_nintr = n; 460 size = n * sizeof (struct intrspec); 461 new = pdptr->par_intr = kmem_zalloc(size, KM_SLEEP); 462 463 while (n--) { 464 int level = *in++; 465 int vec = *in++; 466 467 if (level < 1 || level > MAXIPL || 468 vec < VEC_MIN || vec > VEC_MAX) { 469 cmn_err(CE_CONT, bad_intr_fmt, 470 DEVI(child)->devi_name, 471 DEVI(child)->devi_instance, level, vec); 472 goto broken; 473 } 474 new->intrspec_pri = level; 475 if (vec != 2) 476 new->intrspec_vec = vec; 477 else 478 /* 479 * irq 2 on the PC bus is tied to irq 9 480 * on ISA, EISA and MicroChannel 481 */ 482 new->intrspec_vec = 9; 483 new++; 484 } 485 486 return (DDI_SUCCESS); 487 } else { 488 /* the new style "interrupts" property... */ 489 490 /* 491 * The list consists of <vec> elements 492 */ 493 if ((n = (*in++)) < 1) 494 return (DDI_FAILURE); 495 496 pdptr->par_nintr = n; 497 size = n * sizeof (struct intrspec); 498 new = pdptr->par_intr = kmem_zalloc(size, KM_SLEEP); 499 500 /* XXX check for "interrupt-priorities" property... */ 501 if (ddi_getlongprop(DDI_DEV_T_ANY, child, DDI_PROP_DONTPASS, 502 "interrupt-priorities", (caddr_t)&got_prop, &got_len) 503 == DDI_PROP_SUCCESS) { 504 if (n != (got_len / sizeof (int))) { 505 cmn_err(CE_CONT, 506 "bad interrupt-priorities length" 507 " from %s%d: expected %d, got %d\n", 508 DEVI(child)->devi_name, 509 DEVI(child)->devi_instance, n, 510 (int)(got_len / sizeof (int))); 511 goto broken; 512 } 513 inpri = (int *)got_prop; 514 } 515 516 while (n--) { 517 int level; 518 int vec = *in++; 519 520 if (inpri == NULL) 521 level = 5; 522 else 523 level = *inpri++; 524 525 if (level < 1 || level > MAXIPL || 526 vec < VEC_MIN || vec > VEC_MAX) { 527 cmn_err(CE_CONT, bad_intr_fmt, 528 DEVI(child)->devi_name, 529 DEVI(child)->devi_instance, level, vec); 530 goto broken; 531 } 532 new->intrspec_pri = level; 533 if (vec != 2) 534 new->intrspec_vec = vec; 535 else 536 /* 537 * irq 2 on the PC bus is tied to irq 9 538 * on ISA, EISA and MicroChannel 539 */ 540 new->intrspec_vec = 9; 541 new++; 542 } 543 544 if (inpri != NULL) 545 kmem_free(got_prop, got_len); 546 return (DDI_SUCCESS); 547 } 548 549 broken: 550 kmem_free(pdptr->par_intr, size); 551 pdptr->par_intr = NULL; 552 pdptr->par_nintr = 0; 553 if (inpri != NULL) 554 kmem_free(got_prop, got_len); 555 556 return (DDI_FAILURE); 557 } 558 559 /* 560 * Create a ddi_parent_private_data structure from the ddi properties of 561 * the dev_info node. 562 * 563 * The "reg" and either an "intr" or "interrupts" properties are required 564 * if the driver wishes to create mappings or field interrupts on behalf 565 * of the device. 566 * 567 * The "reg" property is assumed to be a list of at least one triple 568 * 569 * <bustype, address, size>*1 570 * 571 * The "intr" property is assumed to be a list of at least one duple 572 * 573 * <SPARC ipl, vector#>*1 574 * 575 * The "interrupts" property is assumed to be a list of at least one 576 * n-tuples that describes the interrupt capabilities of the bus the device 577 * is connected to. For SBus, this looks like 578 * 579 * <SBus-level>*1 580 * 581 * (This property obsoletes the 'intr' property). 582 * 583 * The "ranges" property is optional. 584 */ 585 void 586 make_ddi_ppd(dev_info_t *child, struct ddi_parent_private_data **ppd) 587 { 588 struct ddi_parent_private_data *pdptr; 589 int n; 590 int *reg_prop, *rng_prop, *intr_prop, *irupts_prop; 591 uint_t reg_len, rng_len, intr_len, irupts_len; 592 593 *ppd = pdptr = kmem_zalloc(sizeof (*pdptr), KM_SLEEP); 594 595 /* 596 * Handle the 'reg' property. 597 */ 598 if ((get_prop_int_array(child, "reg", ®_prop, ®_len) == 599 DDI_PROP_SUCCESS) && (reg_len != 0)) { 600 pdptr->par_nreg = reg_len / (int)sizeof (struct regspec); 601 pdptr->par_reg = (struct regspec *)reg_prop; 602 } 603 604 /* 605 * See if I have a range (adding one where needed - this 606 * means to add one for sbus node in sun4c, when romvec > 0, 607 * if no range is already defined in the PROM node. 608 * (Currently no sun4c PROMS define range properties, 609 * but they should and may in the future.) For the SBus 610 * node, the range is defined by the SBus reg property. 611 */ 612 if (get_prop_int_array(child, "ranges", &rng_prop, &rng_len) 613 == DDI_PROP_SUCCESS) { 614 pdptr->par_nrng = rng_len / (int)(sizeof (struct rangespec)); 615 pdptr->par_rng = (struct rangespec *)rng_prop; 616 } 617 618 /* 619 * Handle the 'intr' and 'interrupts' properties 620 */ 621 622 /* 623 * For backwards compatibility 624 * we first look for the 'intr' property for the device. 625 */ 626 if (get_prop_int_array(child, "intr", &intr_prop, &intr_len) 627 != DDI_PROP_SUCCESS) { 628 intr_len = 0; 629 } 630 631 /* 632 * If we're to support bus adapters and future platforms cleanly, 633 * we need to support the generalized 'interrupts' property. 634 */ 635 if (get_prop_int_array(child, "interrupts", &irupts_prop, 636 &irupts_len) != DDI_PROP_SUCCESS) { 637 irupts_len = 0; 638 } else if (intr_len != 0) { 639 /* 640 * If both 'intr' and 'interrupts' are defined, 641 * then 'interrupts' wins and we toss the 'intr' away. 642 */ 643 ddi_prop_free((void *)intr_prop); 644 intr_len = 0; 645 } 646 647 if (intr_len != 0) { 648 649 /* 650 * Translate the 'intr' property into an array 651 * an array of struct intrspec's. There's not really 652 * very much to do here except copy what's out there. 653 */ 654 655 struct intrspec *new; 656 struct prop_ispec *l; 657 658 n = pdptr->par_nintr = intr_len / sizeof (struct prop_ispec); 659 l = (struct prop_ispec *)intr_prop; 660 pdptr->par_intr = 661 new = kmem_zalloc(n * sizeof (struct intrspec), KM_SLEEP); 662 while (n--) { 663 new->intrspec_pri = l->pri; 664 new->intrspec_vec = l->vec; 665 new++; 666 l++; 667 } 668 ddi_prop_free((void *)intr_prop); 669 670 } else if ((n = irupts_len) != 0) { 671 size_t size; 672 int *out; 673 674 /* 675 * Translate the 'interrupts' property into an array 676 * of intrspecs for the rest of the DDI framework to 677 * toy with. Only our ancestors really know how to 678 * do this, so ask 'em. We massage the 'interrupts' 679 * property so that it is pre-pended by a count of 680 * the number of integers in the argument. 681 */ 682 size = sizeof (int) + n; 683 out = kmem_alloc(size, KM_SLEEP); 684 *out = n / sizeof (int); 685 bcopy(irupts_prop, out + 1, (size_t)n); 686 ddi_prop_free((void *)irupts_prop); 687 if (impl_xlate_intrs(child, out, pdptr) != DDI_SUCCESS) { 688 cmn_err(CE_CONT, 689 "Unable to translate 'interrupts' for %s%d\n", 690 DEVI(child)->devi_binding_name, 691 DEVI(child)->devi_instance); 692 } 693 kmem_free(out, size); 694 } 695 } 696 697 /* 698 * Name a child 699 */ 700 static int 701 impl_sunbus_name_child(dev_info_t *child, char *name, int namelen) 702 { 703 /* 704 * Fill in parent-private data and this function returns to us 705 * an indication if it used "registers" to fill in the data. 706 */ 707 if (ddi_get_parent_data(child) == NULL) { 708 struct ddi_parent_private_data *pdptr; 709 make_ddi_ppd(child, &pdptr); 710 ddi_set_parent_data(child, pdptr); 711 } 712 713 name[0] = '\0'; 714 if (sparc_pd_getnreg(child) > 0) { 715 (void) snprintf(name, namelen, "%x,%x", 716 (uint_t)sparc_pd_getreg(child, 0)->regspec_bustype, 717 (uint_t)sparc_pd_getreg(child, 0)->regspec_addr); 718 } 719 720 return (DDI_SUCCESS); 721 } 722 723 /* 724 * Called from the bus_ctl op of sunbus (sbus, obio, etc) nexus drivers 725 * to implement the DDI_CTLOPS_INITCHILD operation. That is, it names 726 * the children of sun busses based on the reg spec. 727 * 728 * Handles the following properties (in make_ddi_ppd): 729 * Property value 730 * Name type 731 * reg register spec 732 * intr old-form interrupt spec 733 * interrupts new (bus-oriented) interrupt spec 734 * ranges range spec 735 */ 736 int 737 impl_ddi_sunbus_initchild(dev_info_t *child) 738 { 739 char name[MAXNAMELEN]; 740 void impl_ddi_sunbus_removechild(dev_info_t *); 741 742 /* 743 * Name the child, also makes parent private data 744 */ 745 (void) impl_sunbus_name_child(child, name, MAXNAMELEN); 746 ddi_set_name_addr(child, name); 747 748 /* 749 * Attempt to merge a .conf node; if successful, remove the 750 * .conf node. 751 */ 752 if ((ndi_dev_is_persistent_node(child) == 0) && 753 (ndi_merge_node(child, impl_sunbus_name_child) == DDI_SUCCESS)) { 754 /* 755 * Return failure to remove node 756 */ 757 impl_ddi_sunbus_removechild(child); 758 return (DDI_FAILURE); 759 } 760 return (DDI_SUCCESS); 761 } 762 763 void 764 impl_free_ddi_ppd(dev_info_t *dip) 765 { 766 struct ddi_parent_private_data *pdptr; 767 size_t n; 768 769 if ((pdptr = ddi_get_parent_data(dip)) == NULL) 770 return; 771 772 if ((n = (size_t)pdptr->par_nintr) != 0) 773 /* 774 * Note that kmem_free is used here (instead of 775 * ddi_prop_free) because the contents of the 776 * property were placed into a separate buffer and 777 * mucked with a bit before being stored in par_intr. 778 * The actual return value from the prop lookup 779 * was freed with ddi_prop_free previously. 780 */ 781 kmem_free(pdptr->par_intr, n * sizeof (struct intrspec)); 782 783 if ((n = (size_t)pdptr->par_nrng) != 0) 784 ddi_prop_free((void *)pdptr->par_rng); 785 786 if ((n = pdptr->par_nreg) != 0) 787 ddi_prop_free((void *)pdptr->par_reg); 788 789 kmem_free(pdptr, sizeof (*pdptr)); 790 ddi_set_parent_data(dip, NULL); 791 } 792 793 void 794 impl_ddi_sunbus_removechild(dev_info_t *dip) 795 { 796 impl_free_ddi_ppd(dip); 797 ddi_set_name_addr(dip, NULL); 798 /* 799 * Strip the node to properly convert it back to prototype form 800 */ 801 impl_rem_dev_props(dip); 802 } 803 804 /* 805 * DDI Interrupt 806 */ 807 808 /* 809 * turn this on to force isa, eisa, and mca device to ignore the new 810 * hardware nodes in the device tree (normally turned on only for 811 * drivers that need it by setting the property "ignore-hardware-nodes" 812 * in their driver.conf file). 813 * 814 * 7/31/96 -- Turned off globally. Leaving variable in for the moment 815 * as safety valve. 816 */ 817 int ignore_hardware_nodes = 0; 818 819 /* 820 * Local data 821 */ 822 static struct impl_bus_promops *impl_busp; 823 824 825 /* 826 * New DDI interrupt framework 827 */ 828 829 /* 830 * i_ddi_intr_ops: 831 * 832 * This is the interrupt operator function wrapper for the bus function 833 * bus_intr_op. 834 */ 835 int 836 i_ddi_intr_ops(dev_info_t *dip, dev_info_t *rdip, ddi_intr_op_t op, 837 ddi_intr_handle_impl_t *hdlp, void * result) 838 { 839 dev_info_t *pdip = (dev_info_t *)DEVI(dip)->devi_parent; 840 int ret = DDI_FAILURE; 841 842 /* request parent to process this interrupt op */ 843 if (NEXUS_HAS_INTR_OP(pdip)) 844 ret = (*(DEVI(pdip)->devi_ops->devo_bus_ops->bus_intr_op))( 845 pdip, rdip, op, hdlp, result); 846 else 847 cmn_err(CE_WARN, "Failed to process interrupt " 848 "for %s%d due to down-rev nexus driver %s%d", 849 ddi_get_name(rdip), ddi_get_instance(rdip), 850 ddi_get_name(pdip), ddi_get_instance(pdip)); 851 return (ret); 852 } 853 854 /* 855 * i_ddi_add_softint - allocate and add a soft interrupt to the system 856 */ 857 int 858 i_ddi_add_softint(ddi_softint_hdl_impl_t *hdlp) 859 { 860 int ret; 861 862 /* add soft interrupt handler */ 863 ret = add_avsoftintr((void *)hdlp, hdlp->ih_pri, hdlp->ih_cb_func, 864 DEVI(hdlp->ih_dip)->devi_name, hdlp->ih_cb_arg1, hdlp->ih_cb_arg2); 865 return (ret ? DDI_SUCCESS : DDI_FAILURE); 866 } 867 868 869 void 870 i_ddi_remove_softint(ddi_softint_hdl_impl_t *hdlp) 871 { 872 (void) rem_avsoftintr((void *)hdlp, hdlp->ih_pri, hdlp->ih_cb_func); 873 } 874 875 876 extern void (*setsoftint)(int, struct av_softinfo *); 877 extern boolean_t av_check_softint_pending(struct av_softinfo *, boolean_t); 878 879 int 880 i_ddi_trigger_softint(ddi_softint_hdl_impl_t *hdlp, void *arg2) 881 { 882 if (av_check_softint_pending(hdlp->ih_pending, B_FALSE)) 883 return (DDI_EPENDING); 884 885 update_avsoftintr_args((void *)hdlp, hdlp->ih_pri, arg2); 886 887 (*setsoftint)(hdlp->ih_pri, hdlp->ih_pending); 888 return (DDI_SUCCESS); 889 } 890 891 /* 892 * i_ddi_set_softint_pri: 893 * 894 * The way this works is that it first tries to add a softint vector 895 * at the new priority in hdlp. If that succeeds; then it removes the 896 * existing softint vector at the old priority. 897 */ 898 int 899 i_ddi_set_softint_pri(ddi_softint_hdl_impl_t *hdlp, uint_t old_pri) 900 { 901 int ret; 902 903 /* 904 * If a softint is pending at the old priority then fail the request. 905 */ 906 if (av_check_softint_pending(hdlp->ih_pending, B_TRUE)) 907 return (DDI_FAILURE); 908 909 ret = av_softint_movepri((void *)hdlp, old_pri); 910 return (ret ? DDI_SUCCESS : DDI_FAILURE); 911 } 912 913 void 914 i_ddi_alloc_intr_phdl(ddi_intr_handle_impl_t *hdlp) 915 { 916 hdlp->ih_private = (void *)kmem_zalloc(sizeof (ihdl_plat_t), KM_SLEEP); 917 } 918 919 void 920 i_ddi_free_intr_phdl(ddi_intr_handle_impl_t *hdlp) 921 { 922 kmem_free(hdlp->ih_private, sizeof (ihdl_plat_t)); 923 hdlp->ih_private = NULL; 924 } 925 926 int 927 i_ddi_get_intx_nintrs(dev_info_t *dip) 928 { 929 struct ddi_parent_private_data *pdp; 930 931 if ((pdp = ddi_get_parent_data(dip)) == NULL) 932 return (0); 933 934 return (pdp->par_nintr); 935 } 936 937 /* 938 * DDI Memory/DMA 939 */ 940 941 /* 942 * Support for allocating DMAable memory to implement 943 * ddi_dma_mem_alloc(9F) interface. 944 */ 945 946 #define KA_ALIGN_SHIFT 7 947 #define KA_ALIGN (1 << KA_ALIGN_SHIFT) 948 #define KA_NCACHE (PAGESHIFT + 1 - KA_ALIGN_SHIFT) 949 950 /* 951 * Dummy DMA attribute template for kmem_io[].kmem_io_attr. We only 952 * care about addr_lo, addr_hi, and align. addr_hi will be dynamically set. 953 */ 954 955 static ddi_dma_attr_t kmem_io_attr = { 956 DMA_ATTR_V0, 957 0x0000000000000000ULL, /* dma_attr_addr_lo */ 958 0x0000000000000000ULL, /* dma_attr_addr_hi */ 959 0x00ffffff, 960 0x1000, /* dma_attr_align */ 961 1, 1, 0xffffffffULL, 0xffffffffULL, 0x1, 1, 0 962 }; 963 964 /* kmem io memory ranges and indices */ 965 enum { 966 IO_4P, IO_64G, IO_4G, IO_2G, IO_1G, IO_512M, 967 IO_256M, IO_128M, IO_64M, IO_32M, IO_16M, MAX_MEM_RANGES 968 }; 969 970 static struct { 971 vmem_t *kmem_io_arena; 972 kmem_cache_t *kmem_io_cache[KA_NCACHE]; 973 ddi_dma_attr_t kmem_io_attr; 974 } kmem_io[MAX_MEM_RANGES]; 975 976 static int kmem_io_idx; /* index of first populated kmem_io[] */ 977 978 static page_t * 979 page_create_io_wrapper(void *addr, size_t len, int vmflag, void *arg) 980 { 981 extern page_t *page_create_io(vnode_t *, u_offset_t, uint_t, 982 uint_t, struct as *, caddr_t, ddi_dma_attr_t *); 983 984 return (page_create_io(&kvp, (u_offset_t)(uintptr_t)addr, len, 985 PG_EXCL | ((vmflag & VM_NOSLEEP) ? 0 : PG_WAIT), &kas, addr, arg)); 986 } 987 988 #ifdef __xpv 989 static void 990 segkmem_free_io(vmem_t *vmp, void * ptr, size_t size) 991 { 992 extern void page_destroy_io(page_t *); 993 segkmem_xfree(vmp, ptr, size, page_destroy_io); 994 } 995 #endif 996 997 static void * 998 segkmem_alloc_io_4P(vmem_t *vmp, size_t size, int vmflag) 999 { 1000 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1001 page_create_io_wrapper, &kmem_io[IO_4P].kmem_io_attr)); 1002 } 1003 1004 static void * 1005 segkmem_alloc_io_64G(vmem_t *vmp, size_t size, int vmflag) 1006 { 1007 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1008 page_create_io_wrapper, &kmem_io[IO_64G].kmem_io_attr)); 1009 } 1010 1011 static void * 1012 segkmem_alloc_io_4G(vmem_t *vmp, size_t size, int vmflag) 1013 { 1014 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1015 page_create_io_wrapper, &kmem_io[IO_4G].kmem_io_attr)); 1016 } 1017 1018 static void * 1019 segkmem_alloc_io_2G(vmem_t *vmp, size_t size, int vmflag) 1020 { 1021 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1022 page_create_io_wrapper, &kmem_io[IO_2G].kmem_io_attr)); 1023 } 1024 1025 static void * 1026 segkmem_alloc_io_1G(vmem_t *vmp, size_t size, int vmflag) 1027 { 1028 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1029 page_create_io_wrapper, &kmem_io[IO_1G].kmem_io_attr)); 1030 } 1031 1032 static void * 1033 segkmem_alloc_io_512M(vmem_t *vmp, size_t size, int vmflag) 1034 { 1035 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1036 page_create_io_wrapper, &kmem_io[IO_512M].kmem_io_attr)); 1037 } 1038 1039 static void * 1040 segkmem_alloc_io_256M(vmem_t *vmp, size_t size, int vmflag) 1041 { 1042 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1043 page_create_io_wrapper, &kmem_io[IO_256M].kmem_io_attr)); 1044 } 1045 1046 static void * 1047 segkmem_alloc_io_128M(vmem_t *vmp, size_t size, int vmflag) 1048 { 1049 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1050 page_create_io_wrapper, &kmem_io[IO_128M].kmem_io_attr)); 1051 } 1052 1053 static void * 1054 segkmem_alloc_io_64M(vmem_t *vmp, size_t size, int vmflag) 1055 { 1056 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1057 page_create_io_wrapper, &kmem_io[IO_64M].kmem_io_attr)); 1058 } 1059 1060 static void * 1061 segkmem_alloc_io_32M(vmem_t *vmp, size_t size, int vmflag) 1062 { 1063 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1064 page_create_io_wrapper, &kmem_io[IO_32M].kmem_io_attr)); 1065 } 1066 1067 static void * 1068 segkmem_alloc_io_16M(vmem_t *vmp, size_t size, int vmflag) 1069 { 1070 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1071 page_create_io_wrapper, &kmem_io[IO_16M].kmem_io_attr)); 1072 } 1073 1074 struct { 1075 uint64_t io_limit; 1076 char *io_name; 1077 void *(*io_alloc)(vmem_t *, size_t, int); 1078 int io_initial; /* kmem_io_init during startup */ 1079 } io_arena_params[MAX_MEM_RANGES] = { 1080 {0x000fffffffffffffULL, "kmem_io_4P", segkmem_alloc_io_4P, 1}, 1081 {0x0000000fffffffffULL, "kmem_io_64G", segkmem_alloc_io_64G, 0}, 1082 {0x00000000ffffffffULL, "kmem_io_4G", segkmem_alloc_io_4G, 1}, 1083 {0x000000007fffffffULL, "kmem_io_2G", segkmem_alloc_io_2G, 1}, 1084 {0x000000003fffffffULL, "kmem_io_1G", segkmem_alloc_io_1G, 0}, 1085 {0x000000001fffffffULL, "kmem_io_512M", segkmem_alloc_io_512M, 0}, 1086 {0x000000000fffffffULL, "kmem_io_256M", segkmem_alloc_io_256M, 0}, 1087 {0x0000000007ffffffULL, "kmem_io_128M", segkmem_alloc_io_128M, 0}, 1088 {0x0000000003ffffffULL, "kmem_io_64M", segkmem_alloc_io_64M, 0}, 1089 {0x0000000001ffffffULL, "kmem_io_32M", segkmem_alloc_io_32M, 0}, 1090 {0x0000000000ffffffULL, "kmem_io_16M", segkmem_alloc_io_16M, 1} 1091 }; 1092 1093 void 1094 kmem_io_init(int a) 1095 { 1096 int c; 1097 char name[40]; 1098 1099 kmem_io[a].kmem_io_arena = vmem_create(io_arena_params[a].io_name, 1100 NULL, 0, PAGESIZE, io_arena_params[a].io_alloc, 1101 #ifdef __xpv 1102 segkmem_free_io, 1103 #else 1104 segkmem_free, 1105 #endif 1106 heap_arena, 0, VM_SLEEP); 1107 1108 for (c = 0; c < KA_NCACHE; c++) { 1109 size_t size = KA_ALIGN << c; 1110 (void) sprintf(name, "%s_%lu", 1111 io_arena_params[a].io_name, size); 1112 kmem_io[a].kmem_io_cache[c] = kmem_cache_create(name, 1113 size, size, NULL, NULL, NULL, NULL, 1114 kmem_io[a].kmem_io_arena, 0); 1115 } 1116 } 1117 1118 /* 1119 * Return the index of the highest memory range for addr. 1120 */ 1121 static int 1122 kmem_io_index(uint64_t addr) 1123 { 1124 int n; 1125 1126 for (n = kmem_io_idx; n < MAX_MEM_RANGES; n++) { 1127 if (kmem_io[n].kmem_io_attr.dma_attr_addr_hi <= addr) { 1128 if (kmem_io[n].kmem_io_arena == NULL) 1129 kmem_io_init(n); 1130 return (n); 1131 } 1132 } 1133 panic("kmem_io_index: invalid addr - must be at least 16m"); 1134 1135 /*NOTREACHED*/ 1136 } 1137 1138 /* 1139 * Return the index of the next kmem_io populated memory range 1140 * after curindex. 1141 */ 1142 static int 1143 kmem_io_index_next(int curindex) 1144 { 1145 int n; 1146 1147 for (n = curindex + 1; n < MAX_MEM_RANGES; n++) { 1148 if (kmem_io[n].kmem_io_arena) 1149 return (n); 1150 } 1151 return (-1); 1152 } 1153 1154 /* 1155 * allow kmem to be mapped in with different PTE cache attribute settings. 1156 * Used by i_ddi_mem_alloc() 1157 */ 1158 int 1159 kmem_override_cache_attrs(caddr_t kva, size_t size, uint_t order) 1160 { 1161 uint_t hat_flags; 1162 caddr_t kva_end; 1163 uint_t hat_attr; 1164 pfn_t pfn; 1165 1166 if (hat_getattr(kas.a_hat, kva, &hat_attr) == -1) { 1167 return (-1); 1168 } 1169 1170 hat_attr &= ~HAT_ORDER_MASK; 1171 hat_attr |= order | HAT_NOSYNC; 1172 hat_flags = HAT_LOAD_LOCK; 1173 1174 kva_end = (caddr_t)(((uintptr_t)kva + size + PAGEOFFSET) & 1175 (uintptr_t)PAGEMASK); 1176 kva = (caddr_t)((uintptr_t)kva & (uintptr_t)PAGEMASK); 1177 1178 while (kva < kva_end) { 1179 pfn = hat_getpfnum(kas.a_hat, kva); 1180 hat_unload(kas.a_hat, kva, PAGESIZE, HAT_UNLOAD_UNLOCK); 1181 hat_devload(kas.a_hat, kva, PAGESIZE, pfn, hat_attr, hat_flags); 1182 kva += MMU_PAGESIZE; 1183 } 1184 1185 return (0); 1186 } 1187 1188 void 1189 ka_init(void) 1190 { 1191 int a; 1192 paddr_t maxphysaddr; 1193 #if !defined(__xpv) 1194 extern pfn_t physmax; 1195 1196 maxphysaddr = mmu_ptob((paddr_t)physmax) + MMU_PAGEOFFSET; 1197 #else 1198 maxphysaddr = mmu_ptob((paddr_t)HYPERVISOR_memory_op( 1199 XENMEM_maximum_ram_page, NULL)) + MMU_PAGEOFFSET; 1200 #endif 1201 1202 ASSERT(maxphysaddr <= io_arena_params[0].io_limit); 1203 1204 for (a = 0; a < MAX_MEM_RANGES; a++) { 1205 if (maxphysaddr >= io_arena_params[a + 1].io_limit) { 1206 if (maxphysaddr > io_arena_params[a + 1].io_limit) 1207 io_arena_params[a].io_limit = maxphysaddr; 1208 else 1209 a++; 1210 break; 1211 } 1212 } 1213 kmem_io_idx = a; 1214 1215 for (; a < MAX_MEM_RANGES; a++) { 1216 kmem_io[a].kmem_io_attr = kmem_io_attr; 1217 kmem_io[a].kmem_io_attr.dma_attr_addr_hi = 1218 io_arena_params[a].io_limit; 1219 /* 1220 * initialize kmem_io[] arena/cache corresponding to 1221 * maxphysaddr and to the "common" io memory ranges that 1222 * have io_initial set to a non-zero value. 1223 */ 1224 if (io_arena_params[a].io_initial || a == kmem_io_idx) 1225 kmem_io_init(a); 1226 } 1227 } 1228 1229 /* 1230 * put contig address/size 1231 */ 1232 static void * 1233 putctgas(void *addr, size_t size) 1234 { 1235 struct ctgas *ctgp = &ctglist; 1236 int i; 1237 1238 CTGLOCK(); 1239 do { 1240 if ((i = ctgp->ctg_index) < CTGENTRIES) { 1241 ctgp->ctg_addr[i] = addr; 1242 ctgp->ctg_size[i] = size; 1243 ctgp->ctg_index++; 1244 break; 1245 } 1246 if (!ctgp->ctg_next) 1247 ctgp->ctg_next = kmem_zalloc(sizeof (struct ctgas), 1248 KM_NOSLEEP); 1249 ctgp = ctgp->ctg_next; 1250 } while (ctgp); 1251 1252 CTGUNLOCK(); 1253 return (ctgp); 1254 } 1255 1256 /* 1257 * get contig size by addr 1258 */ 1259 static size_t 1260 getctgsz(void *addr) 1261 { 1262 struct ctgas *ctgp = &ctglist; 1263 int i, j; 1264 size_t sz; 1265 1266 ASSERT(addr); 1267 CTGLOCK(); 1268 1269 while (ctgp) { 1270 for (i = 0; i < ctgp->ctg_index; i++) { 1271 if (addr != ctgp->ctg_addr[i]) 1272 continue; 1273 1274 sz = ctgp->ctg_size[i]; 1275 j = --ctgp->ctg_index; 1276 if (i != j) { 1277 ctgp->ctg_size[i] = ctgp->ctg_size[j]; 1278 ctgp->ctg_addr[i] = ctgp->ctg_addr[j]; 1279 } 1280 CTGUNLOCK(); 1281 return (sz); 1282 } 1283 ctgp = ctgp->ctg_next; 1284 } 1285 1286 CTGUNLOCK(); 1287 return (0); 1288 } 1289 1290 /* 1291 * contig_alloc: 1292 * 1293 * allocates contiguous memory to satisfy the 'size' and dma attributes 1294 * specified in 'attr'. 1295 * 1296 * Not all of memory need to be physically contiguous if the 1297 * scatter-gather list length is greater than 1. 1298 */ 1299 1300 /*ARGSUSED*/ 1301 void * 1302 contig_alloc(size_t size, ddi_dma_attr_t *attr, uintptr_t align, int cansleep) 1303 { 1304 pgcnt_t pgcnt = btopr(size); 1305 size_t asize = pgcnt * PAGESIZE; 1306 page_t *ppl; 1307 int pflag; 1308 void *addr; 1309 1310 extern page_t *page_create_io(vnode_t *, u_offset_t, uint_t, 1311 uint_t, struct as *, caddr_t, ddi_dma_attr_t *); 1312 1313 /* segkmem_xalloc */ 1314 1315 if (align <= PAGESIZE) 1316 addr = vmem_alloc(heap_arena, asize, 1317 (cansleep) ? VM_SLEEP : VM_NOSLEEP); 1318 else 1319 addr = vmem_xalloc(heap_arena, asize, align, 0, 0, NULL, NULL, 1320 (cansleep) ? VM_SLEEP : VM_NOSLEEP); 1321 if (addr) { 1322 ASSERT(!((uintptr_t)addr & (align - 1))); 1323 1324 if (page_resv(pgcnt, (cansleep) ? KM_SLEEP : KM_NOSLEEP) == 0) { 1325 vmem_free(heap_arena, addr, asize); 1326 return (NULL); 1327 } 1328 pflag = PG_EXCL; 1329 1330 if (cansleep) 1331 pflag |= PG_WAIT; 1332 1333 /* 4k req gets from freelists rather than pfn search */ 1334 if (pgcnt > 1 || align > PAGESIZE) 1335 pflag |= PG_PHYSCONTIG; 1336 1337 ppl = page_create_io(&kvp, (u_offset_t)(uintptr_t)addr, 1338 asize, pflag, &kas, (caddr_t)addr, attr); 1339 1340 if (!ppl) { 1341 vmem_free(heap_arena, addr, asize); 1342 page_unresv(pgcnt); 1343 return (NULL); 1344 } 1345 1346 while (ppl != NULL) { 1347 page_t *pp = ppl; 1348 page_sub(&ppl, pp); 1349 ASSERT(page_iolock_assert(pp)); 1350 page_io_unlock(pp); 1351 page_downgrade(pp); 1352 hat_memload(kas.a_hat, (caddr_t)(uintptr_t)pp->p_offset, 1353 pp, (PROT_ALL & ~PROT_USER) | 1354 HAT_NOSYNC, HAT_LOAD_LOCK); 1355 } 1356 } 1357 return (addr); 1358 } 1359 1360 void 1361 contig_free(void *addr, size_t size) 1362 { 1363 pgcnt_t pgcnt = btopr(size); 1364 size_t asize = pgcnt * PAGESIZE; 1365 caddr_t a, ea; 1366 page_t *pp; 1367 1368 hat_unload(kas.a_hat, addr, asize, HAT_UNLOAD_UNLOCK); 1369 1370 for (a = addr, ea = a + asize; a < ea; a += PAGESIZE) { 1371 pp = page_find(&kvp, (u_offset_t)(uintptr_t)a); 1372 if (!pp) 1373 panic("contig_free: contig pp not found"); 1374 1375 if (!page_tryupgrade(pp)) { 1376 page_unlock(pp); 1377 pp = page_lookup(&kvp, 1378 (u_offset_t)(uintptr_t)a, SE_EXCL); 1379 if (pp == NULL) 1380 panic("contig_free: page freed"); 1381 } 1382 page_destroy(pp, 0); 1383 } 1384 1385 page_unresv(pgcnt); 1386 vmem_free(heap_arena, addr, asize); 1387 } 1388 1389 /* 1390 * Allocate from the system, aligned on a specific boundary. 1391 * The alignment, if non-zero, must be a power of 2. 1392 */ 1393 static void * 1394 kalloca(size_t size, size_t align, int cansleep, int physcontig, 1395 ddi_dma_attr_t *attr) 1396 { 1397 size_t *addr, *raddr, rsize; 1398 size_t hdrsize = 4 * sizeof (size_t); /* must be power of 2 */ 1399 int a, i, c; 1400 vmem_t *vmp; 1401 kmem_cache_t *cp = NULL; 1402 1403 if (attr->dma_attr_addr_lo > mmu_ptob((uint64_t)ddiphysmin)) 1404 return (NULL); 1405 1406 align = MAX(align, hdrsize); 1407 ASSERT((align & (align - 1)) == 0); 1408 1409 /* 1410 * All of our allocators guarantee 16-byte alignment, so we don't 1411 * need to reserve additional space for the header. 1412 * To simplify picking the correct kmem_io_cache, we round up to 1413 * a multiple of KA_ALIGN. 1414 */ 1415 rsize = P2ROUNDUP_TYPED(size + align, KA_ALIGN, size_t); 1416 1417 if (physcontig && rsize > PAGESIZE) { 1418 if (addr = contig_alloc(size, attr, align, cansleep)) { 1419 if (!putctgas(addr, size)) 1420 contig_free(addr, size); 1421 else 1422 return (addr); 1423 } 1424 return (NULL); 1425 } 1426 1427 a = kmem_io_index(attr->dma_attr_addr_hi); 1428 1429 if (rsize > PAGESIZE) { 1430 vmp = kmem_io[a].kmem_io_arena; 1431 raddr = vmem_alloc(vmp, rsize, 1432 (cansleep) ? VM_SLEEP : VM_NOSLEEP); 1433 } else { 1434 c = highbit((rsize >> KA_ALIGN_SHIFT) - 1); 1435 cp = kmem_io[a].kmem_io_cache[c]; 1436 raddr = kmem_cache_alloc(cp, (cansleep) ? KM_SLEEP : 1437 KM_NOSLEEP); 1438 } 1439 1440 if (raddr == NULL) { 1441 int na; 1442 1443 ASSERT(cansleep == 0); 1444 if (rsize > PAGESIZE) 1445 return (NULL); 1446 /* 1447 * System does not have memory in the requested range. 1448 * Try smaller kmem io ranges and larger cache sizes 1449 * to see if there might be memory available in 1450 * these other caches. 1451 */ 1452 1453 for (na = kmem_io_index_next(a); na >= 0; 1454 na = kmem_io_index_next(na)) { 1455 ASSERT(kmem_io[na].kmem_io_arena); 1456 cp = kmem_io[na].kmem_io_cache[c]; 1457 raddr = kmem_cache_alloc(cp, KM_NOSLEEP); 1458 if (raddr) 1459 goto kallocdone; 1460 } 1461 /* now try the larger kmem io cache sizes */ 1462 for (na = a; na >= 0; na = kmem_io_index_next(na)) { 1463 for (i = c + 1; i < KA_NCACHE; i++) { 1464 cp = kmem_io[na].kmem_io_cache[i]; 1465 raddr = kmem_cache_alloc(cp, KM_NOSLEEP); 1466 if (raddr) 1467 goto kallocdone; 1468 } 1469 } 1470 return (NULL); 1471 } 1472 1473 kallocdone: 1474 ASSERT(!P2BOUNDARY((uintptr_t)raddr, rsize, PAGESIZE) || 1475 rsize > PAGESIZE); 1476 1477 addr = (size_t *)P2ROUNDUP((uintptr_t)raddr + hdrsize, align); 1478 ASSERT((uintptr_t)addr + size - (uintptr_t)raddr <= rsize); 1479 1480 addr[-4] = (size_t)cp; 1481 addr[-3] = (size_t)vmp; 1482 addr[-2] = (size_t)raddr; 1483 addr[-1] = rsize; 1484 1485 return (addr); 1486 } 1487 1488 static void 1489 kfreea(void *addr) 1490 { 1491 size_t size; 1492 1493 if (!((uintptr_t)addr & PAGEOFFSET) && (size = getctgsz(addr))) { 1494 contig_free(addr, size); 1495 } else { 1496 size_t *saddr = addr; 1497 if (saddr[-4] == 0) 1498 vmem_free((vmem_t *)saddr[-3], (void *)saddr[-2], 1499 saddr[-1]); 1500 else 1501 kmem_cache_free((kmem_cache_t *)saddr[-4], 1502 (void *)saddr[-2]); 1503 } 1504 } 1505 1506 /*ARGSUSED*/ 1507 void 1508 i_ddi_devacc_to_hatacc(ddi_device_acc_attr_t *devaccp, uint_t *hataccp) 1509 { 1510 } 1511 1512 /* 1513 * Check if the specified cache attribute is supported on the platform. 1514 * This function must be called before i_ddi_cacheattr_to_hatacc(). 1515 */ 1516 boolean_t 1517 i_ddi_check_cache_attr(uint_t flags) 1518 { 1519 /* 1520 * The cache attributes are mutually exclusive. Any combination of 1521 * the attributes leads to a failure. 1522 */ 1523 uint_t cache_attr = IOMEM_CACHE_ATTR(flags); 1524 if ((cache_attr != 0) && ((cache_attr & (cache_attr - 1)) != 0)) 1525 return (B_FALSE); 1526 1527 /* All cache attributes are supported on X86/X64 */ 1528 if (cache_attr & (IOMEM_DATA_UNCACHED | IOMEM_DATA_CACHED | 1529 IOMEM_DATA_UC_WR_COMBINE)) 1530 return (B_TRUE); 1531 1532 /* undefined attributes */ 1533 return (B_FALSE); 1534 } 1535 1536 /* set HAT cache attributes from the cache attributes */ 1537 void 1538 i_ddi_cacheattr_to_hatacc(uint_t flags, uint_t *hataccp) 1539 { 1540 uint_t cache_attr = IOMEM_CACHE_ATTR(flags); 1541 static char *fname = "i_ddi_cacheattr_to_hatacc"; 1542 1543 /* 1544 * If write-combining is not supported, then it falls back 1545 * to uncacheable. 1546 */ 1547 if (cache_attr == IOMEM_DATA_UC_WR_COMBINE && !(x86_feature & X86_PAT)) 1548 cache_attr = IOMEM_DATA_UNCACHED; 1549 1550 /* 1551 * set HAT attrs according to the cache attrs. 1552 */ 1553 switch (cache_attr) { 1554 case IOMEM_DATA_UNCACHED: 1555 *hataccp &= ~HAT_ORDER_MASK; 1556 *hataccp |= (HAT_STRICTORDER | HAT_PLAT_NOCACHE); 1557 break; 1558 case IOMEM_DATA_UC_WR_COMBINE: 1559 *hataccp &= ~HAT_ORDER_MASK; 1560 *hataccp |= (HAT_MERGING_OK | HAT_PLAT_NOCACHE); 1561 break; 1562 case IOMEM_DATA_CACHED: 1563 *hataccp &= ~HAT_ORDER_MASK; 1564 *hataccp |= HAT_UNORDERED_OK; 1565 break; 1566 /* 1567 * This case must not occur because the cache attribute is scrutinized 1568 * before this function is called. 1569 */ 1570 default: 1571 /* 1572 * set cacheable to hat attrs. 1573 */ 1574 *hataccp &= ~HAT_ORDER_MASK; 1575 *hataccp |= HAT_UNORDERED_OK; 1576 cmn_err(CE_WARN, "%s: cache_attr=0x%x is ignored.", 1577 fname, cache_attr); 1578 } 1579 } 1580 1581 /* 1582 * This should actually be called i_ddi_dma_mem_alloc. There should 1583 * also be an i_ddi_pio_mem_alloc. i_ddi_dma_mem_alloc should call 1584 * through the device tree with the DDI_CTLOPS_DMA_ALIGN ctl ops to 1585 * get alignment requirements for DMA memory. i_ddi_pio_mem_alloc 1586 * should use DDI_CTLOPS_PIO_ALIGN. Since we only have i_ddi_mem_alloc 1587 * so far which is used for both, DMA and PIO, we have to use the DMA 1588 * ctl ops to make everybody happy. 1589 */ 1590 /*ARGSUSED*/ 1591 int 1592 i_ddi_mem_alloc(dev_info_t *dip, ddi_dma_attr_t *attr, 1593 size_t length, int cansleep, int flags, 1594 ddi_device_acc_attr_t *accattrp, caddr_t *kaddrp, 1595 size_t *real_length, ddi_acc_hdl_t *ap) 1596 { 1597 caddr_t a; 1598 int iomin; 1599 ddi_acc_impl_t *iap; 1600 int physcontig = 0; 1601 pgcnt_t npages; 1602 pgcnt_t minctg; 1603 uint_t order; 1604 int e; 1605 1606 /* 1607 * Check legality of arguments 1608 */ 1609 if (length == 0 || kaddrp == NULL || attr == NULL) { 1610 return (DDI_FAILURE); 1611 } 1612 1613 if (attr->dma_attr_minxfer == 0 || attr->dma_attr_align == 0 || 1614 (attr->dma_attr_align & (attr->dma_attr_align - 1)) || 1615 (attr->dma_attr_minxfer & (attr->dma_attr_minxfer - 1))) { 1616 return (DDI_FAILURE); 1617 } 1618 1619 /* 1620 * figure out most restrictive alignment requirement 1621 */ 1622 iomin = attr->dma_attr_minxfer; 1623 iomin = maxbit(iomin, attr->dma_attr_align); 1624 if (iomin == 0) 1625 return (DDI_FAILURE); 1626 1627 ASSERT((iomin & (iomin - 1)) == 0); 1628 1629 /* 1630 * if we allocate memory with IOMEM_DATA_UNCACHED or 1631 * IOMEM_DATA_UC_WR_COMBINE, make sure we allocate a page aligned 1632 * memory that ends on a page boundry. 1633 * Don't want to have to different cache mappings to the same 1634 * physical page. 1635 */ 1636 if (OVERRIDE_CACHE_ATTR(flags)) { 1637 iomin = (iomin + MMU_PAGEOFFSET) & MMU_PAGEMASK; 1638 length = (length + MMU_PAGEOFFSET) & (size_t)MMU_PAGEMASK; 1639 } 1640 1641 /* 1642 * Determine if we need to satisfy the request for physically 1643 * contiguous memory or alignments larger than pagesize. 1644 */ 1645 npages = btopr(length + attr->dma_attr_align); 1646 minctg = howmany(npages, attr->dma_attr_sgllen); 1647 1648 if (minctg > 1) { 1649 uint64_t pfnseg = attr->dma_attr_seg >> PAGESHIFT; 1650 /* 1651 * verify that the minimum contig requirement for the 1652 * actual length does not cross segment boundary. 1653 */ 1654 length = P2ROUNDUP_TYPED(length, attr->dma_attr_minxfer, 1655 size_t); 1656 npages = btopr(length); 1657 minctg = howmany(npages, attr->dma_attr_sgllen); 1658 if (minctg > pfnseg + 1) 1659 return (DDI_FAILURE); 1660 physcontig = 1; 1661 } else { 1662 length = P2ROUNDUP_TYPED(length, iomin, size_t); 1663 } 1664 1665 /* 1666 * Allocate the requested amount from the system. 1667 */ 1668 a = kalloca(length, iomin, cansleep, physcontig, attr); 1669 1670 if ((*kaddrp = a) == NULL) 1671 return (DDI_FAILURE); 1672 1673 /* 1674 * if we to modify the cache attributes, go back and muck with the 1675 * mappings. 1676 */ 1677 if (OVERRIDE_CACHE_ATTR(flags)) { 1678 order = 0; 1679 i_ddi_cacheattr_to_hatacc(flags, &order); 1680 e = kmem_override_cache_attrs(a, length, order); 1681 if (e != 0) { 1682 kfreea(a); 1683 return (DDI_FAILURE); 1684 } 1685 } 1686 1687 if (real_length) { 1688 *real_length = length; 1689 } 1690 if (ap) { 1691 /* 1692 * initialize access handle 1693 */ 1694 iap = (ddi_acc_impl_t *)ap->ah_platform_private; 1695 iap->ahi_acc_attr |= DDI_ACCATTR_CPU_VADDR; 1696 impl_acc_hdl_init(ap); 1697 } 1698 1699 return (DDI_SUCCESS); 1700 } 1701 1702 /* 1703 * covert old DMA limits structure to DMA attribute structure 1704 * and continue 1705 */ 1706 int 1707 i_ddi_mem_alloc_lim(dev_info_t *dip, ddi_dma_lim_t *limits, 1708 size_t length, int cansleep, int streaming, 1709 ddi_device_acc_attr_t *accattrp, caddr_t *kaddrp, 1710 uint_t *real_length, ddi_acc_hdl_t *ap) 1711 { 1712 ddi_dma_attr_t dma_attr, *attrp; 1713 size_t rlen; 1714 int ret; 1715 1716 if (limits == NULL) { 1717 return (DDI_FAILURE); 1718 } 1719 1720 /* 1721 * set up DMA attribute structure to pass to i_ddi_mem_alloc() 1722 */ 1723 attrp = &dma_attr; 1724 attrp->dma_attr_version = DMA_ATTR_V0; 1725 attrp->dma_attr_addr_lo = (uint64_t)limits->dlim_addr_lo; 1726 attrp->dma_attr_addr_hi = (uint64_t)limits->dlim_addr_hi; 1727 attrp->dma_attr_count_max = (uint64_t)limits->dlim_ctreg_max; 1728 attrp->dma_attr_align = 1; 1729 attrp->dma_attr_burstsizes = (uint_t)limits->dlim_burstsizes; 1730 attrp->dma_attr_minxfer = (uint32_t)limits->dlim_minxfer; 1731 attrp->dma_attr_maxxfer = (uint64_t)limits->dlim_reqsize; 1732 attrp->dma_attr_seg = (uint64_t)limits->dlim_adreg_max; 1733 attrp->dma_attr_sgllen = limits->dlim_sgllen; 1734 attrp->dma_attr_granular = (uint32_t)limits->dlim_granular; 1735 attrp->dma_attr_flags = 0; 1736 1737 ret = i_ddi_mem_alloc(dip, attrp, length, cansleep, streaming, 1738 accattrp, kaddrp, &rlen, ap); 1739 if (ret == DDI_SUCCESS) { 1740 if (real_length) 1741 *real_length = (uint_t)rlen; 1742 } 1743 return (ret); 1744 } 1745 1746 /* ARGSUSED */ 1747 void 1748 i_ddi_mem_free(caddr_t kaddr, ddi_acc_hdl_t *ap) 1749 { 1750 if (ap != NULL) { 1751 /* 1752 * if we modified the cache attributes on alloc, go back and 1753 * fix them since this memory could be returned to the 1754 * general pool. 1755 */ 1756 if (OVERRIDE_CACHE_ATTR(ap->ah_xfermodes)) { 1757 uint_t order = 0; 1758 int e; 1759 i_ddi_cacheattr_to_hatacc(IOMEM_DATA_CACHED, &order); 1760 e = kmem_override_cache_attrs(kaddr, ap->ah_len, order); 1761 if (e != 0) { 1762 cmn_err(CE_WARN, "i_ddi_mem_free() failed to " 1763 "override cache attrs, memory leaked\n"); 1764 return; 1765 } 1766 } 1767 } 1768 kfreea(kaddr); 1769 } 1770 1771 /* 1772 * Access Barriers 1773 * 1774 */ 1775 /*ARGSUSED*/ 1776 int 1777 i_ddi_ontrap(ddi_acc_handle_t hp) 1778 { 1779 return (DDI_FAILURE); 1780 } 1781 1782 /*ARGSUSED*/ 1783 void 1784 i_ddi_notrap(ddi_acc_handle_t hp) 1785 { 1786 } 1787 1788 1789 /* 1790 * Misc Functions 1791 */ 1792 1793 /* 1794 * Implementation instance override functions 1795 * 1796 * No override on i86pc 1797 */ 1798 /*ARGSUSED*/ 1799 uint_t 1800 impl_assign_instance(dev_info_t *dip) 1801 { 1802 return ((uint_t)-1); 1803 } 1804 1805 /*ARGSUSED*/ 1806 int 1807 impl_keep_instance(dev_info_t *dip) 1808 { 1809 1810 #if defined(__xpv) 1811 /* 1812 * Do not persist instance numbers assigned to devices in dom0 1813 */ 1814 dev_info_t *pdip; 1815 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 1816 if (((pdip = ddi_get_parent(dip)) != NULL) && 1817 (strcmp(ddi_get_name(pdip), "xpvd") == 0)) 1818 return (DDI_SUCCESS); 1819 } 1820 #endif 1821 return (DDI_FAILURE); 1822 } 1823 1824 /*ARGSUSED*/ 1825 int 1826 impl_free_instance(dev_info_t *dip) 1827 { 1828 return (DDI_FAILURE); 1829 } 1830 1831 /*ARGSUSED*/ 1832 int 1833 impl_check_cpu(dev_info_t *devi) 1834 { 1835 return (DDI_SUCCESS); 1836 } 1837 1838 /* 1839 * Referenced in common/cpr_driver.c: Power off machine. 1840 * Don't know how to power off i86pc. 1841 */ 1842 void 1843 arch_power_down() 1844 {} 1845 1846 /* 1847 * Copy name to property_name, since name 1848 * is in the low address range below kernelbase. 1849 */ 1850 static void 1851 copy_boot_str(const char *boot_str, char *kern_str, int len) 1852 { 1853 int i = 0; 1854 1855 while (i < len - 1 && boot_str[i] != '\0') { 1856 kern_str[i] = boot_str[i]; 1857 i++; 1858 } 1859 1860 kern_str[i] = 0; /* null terminate */ 1861 if (boot_str[i] != '\0') 1862 cmn_err(CE_WARN, 1863 "boot property string is truncated to %s", kern_str); 1864 } 1865 1866 static void 1867 get_boot_properties(void) 1868 { 1869 extern char hw_provider[]; 1870 dev_info_t *devi; 1871 char *name; 1872 int length; 1873 char property_name[50], property_val[50]; 1874 void *bop_staging_area; 1875 1876 bop_staging_area = kmem_zalloc(MMU_PAGESIZE, KM_NOSLEEP); 1877 1878 /* 1879 * Import "root" properties from the boot. 1880 * 1881 * We do this by invoking BOP_NEXTPROP until the list 1882 * is completely copied in. 1883 */ 1884 1885 devi = ddi_root_node(); 1886 for (name = BOP_NEXTPROP(bootops, ""); /* get first */ 1887 name; /* NULL => DONE */ 1888 name = BOP_NEXTPROP(bootops, name)) { /* get next */ 1889 1890 /* copy string to memory above kernelbase */ 1891 copy_boot_str(name, property_name, 50); 1892 1893 /* 1894 * Skip vga properties. They will be picked up later 1895 * by get_vga_properties. 1896 */ 1897 if (strcmp(property_name, "display-edif-block") == 0 || 1898 strcmp(property_name, "display-edif-id") == 0) { 1899 continue; 1900 } 1901 1902 length = BOP_GETPROPLEN(bootops, property_name); 1903 if (length == 0) 1904 continue; 1905 if (length > MMU_PAGESIZE) { 1906 cmn_err(CE_NOTE, 1907 "boot property %s longer than 0x%x, ignored\n", 1908 property_name, MMU_PAGESIZE); 1909 continue; 1910 } 1911 BOP_GETPROP(bootops, property_name, bop_staging_area); 1912 1913 /* 1914 * special properties: 1915 * si-machine, si-hw-provider 1916 * goes to kernel data structures. 1917 * bios-boot-device and stdout 1918 * goes to hardware property list so it may show up 1919 * in the prtconf -vp output. This is needed by 1920 * Install/Upgrade. Once we fix install upgrade, 1921 * this can be taken out. 1922 */ 1923 if (strcmp(name, "si-machine") == 0) { 1924 (void) strncpy(utsname.machine, bop_staging_area, 1925 SYS_NMLN); 1926 utsname.machine[SYS_NMLN - 1] = (char)NULL; 1927 } else if (strcmp(name, "si-hw-provider") == 0) { 1928 (void) strncpy(hw_provider, bop_staging_area, SYS_NMLN); 1929 hw_provider[SYS_NMLN - 1] = (char)NULL; 1930 } else if (strcmp(name, "bios-boot-device") == 0) { 1931 copy_boot_str(bop_staging_area, property_val, 50); 1932 (void) ndi_prop_update_string(DDI_DEV_T_NONE, devi, 1933 property_name, property_val); 1934 } else if (strcmp(name, "stdout") == 0) { 1935 (void) ndi_prop_update_int(DDI_DEV_T_NONE, devi, 1936 property_name, *((int *)bop_staging_area)); 1937 } else { 1938 /* Property type unknown, use old prop interface */ 1939 (void) e_ddi_prop_create(DDI_DEV_T_NONE, devi, 1940 DDI_PROP_CANSLEEP, property_name, bop_staging_area, 1941 length); 1942 } 1943 } 1944 1945 kmem_free(bop_staging_area, MMU_PAGESIZE); 1946 } 1947 1948 static void 1949 get_vga_properties(void) 1950 { 1951 dev_info_t *devi; 1952 major_t major; 1953 char *name; 1954 int length; 1955 char property_val[50]; 1956 void *bop_staging_area; 1957 1958 /* 1959 * XXXX Hack Allert! 1960 * There really needs to be a better way for identifying various 1961 * console framebuffers and their related issues. Till then, 1962 * check for this one as a replacement to vgatext. 1963 */ 1964 major = ddi_name_to_major("ragexl"); 1965 if (major == (major_t)-1) { 1966 major = ddi_name_to_major("vgatext"); 1967 if (major == (major_t)-1) 1968 return; 1969 } 1970 devi = devnamesp[major].dn_head; 1971 if (devi == NULL) 1972 return; 1973 1974 bop_staging_area = kmem_zalloc(MMU_PAGESIZE, KM_SLEEP); 1975 1976 /* 1977 * Import "vga" properties from the boot. 1978 */ 1979 name = "display-edif-block"; 1980 length = BOP_GETPROPLEN(bootops, name); 1981 if (length > 0 && length < MMU_PAGESIZE) { 1982 BOP_GETPROP(bootops, name, bop_staging_area); 1983 (void) ndi_prop_update_byte_array(DDI_DEV_T_NONE, 1984 devi, name, bop_staging_area, length); 1985 } 1986 1987 /* 1988 * kdmconfig is also looking for display-type and 1989 * video-adapter-type. We default to color and svga. 1990 * 1991 * Could it be "monochrome", "vga"? 1992 * Nah, you've got to come to the 21st century... 1993 * And you can set monitor type manually in kdmconfig 1994 * if you are really an old junky. 1995 */ 1996 (void) ndi_prop_update_string(DDI_DEV_T_NONE, 1997 devi, "display-type", "color"); 1998 (void) ndi_prop_update_string(DDI_DEV_T_NONE, 1999 devi, "video-adapter-type", "svga"); 2000 2001 name = "display-edif-id"; 2002 length = BOP_GETPROPLEN(bootops, name); 2003 if (length > 0 && length < MMU_PAGESIZE) { 2004 BOP_GETPROP(bootops, name, bop_staging_area); 2005 copy_boot_str(bop_staging_area, property_val, length); 2006 (void) ndi_prop_update_string(DDI_DEV_T_NONE, 2007 devi, name, property_val); 2008 } 2009 2010 kmem_free(bop_staging_area, MMU_PAGESIZE); 2011 } 2012 2013 2014 /* 2015 * This is temporary, but absolutely necessary. If we are being 2016 * booted with a device tree created by the DevConf project's bootconf 2017 * program, then we have device information nodes that reflect 2018 * reality. At this point in time in the Solaris release schedule, the 2019 * kernel drivers aren't prepared for reality. They still depend on their 2020 * own ad-hoc interpretations of the properties created when their .conf 2021 * files were interpreted. These drivers use an "ignore-hardware-nodes" 2022 * property to prevent them from using the nodes passed up from the bootconf 2023 * device tree. 2024 * 2025 * Trying to assemble root file system drivers as we are booting from 2026 * devconf will fail if the kernel driver is basing its name_addr's on the 2027 * psuedo-node device info while the bootpath passed up from bootconf is using 2028 * reality-based name_addrs. We help the boot along in this case by 2029 * looking at the pre-bootconf bootpath and determining if we would have 2030 * successfully matched if that had been the bootpath we had chosen. 2031 * 2032 * Note that we only even perform this extra check if we've booted 2033 * using bootconf's 1275 compliant bootpath, this is the boot device, and 2034 * we're trying to match the name_addr specified in the 1275 bootpath. 2035 */ 2036 2037 #define MAXCOMPONENTLEN 32 2038 2039 int 2040 x86_old_bootpath_name_addr_match(dev_info_t *cdip, char *caddr, char *naddr) 2041 { 2042 /* 2043 * There are multiple criteria to be met before we can even 2044 * consider allowing a name_addr match here. 2045 * 2046 * 1) We must have been booted such that the bootconf program 2047 * created device tree nodes and properties. This can be 2048 * determined by examining the 'bootpath' property. This 2049 * property will be a non-null string iff bootconf was 2050 * involved in the boot. 2051 * 2052 * 2) The module that we want to match must be the boot device. 2053 * 2054 * 3) The instance of the module we are thinking of letting be 2055 * our match must be ignoring hardware nodes. 2056 * 2057 * 4) The name_addr we want to match must be the name_addr 2058 * specified in the 1275 bootpath. 2059 */ 2060 static char bootdev_module[MAXCOMPONENTLEN]; 2061 static char bootdev_oldmod[MAXCOMPONENTLEN]; 2062 static char bootdev_newaddr[MAXCOMPONENTLEN]; 2063 static char bootdev_oldaddr[MAXCOMPONENTLEN]; 2064 static int quickexit; 2065 2066 char *daddr; 2067 int dlen; 2068 2069 char *lkupname; 2070 int rv = DDI_FAILURE; 2071 2072 if ((ddi_getlongprop(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS, 2073 "devconf-addr", (caddr_t)&daddr, &dlen) == DDI_PROP_SUCCESS) && 2074 (ddi_getprop(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS, 2075 "ignore-hardware-nodes", -1) != -1)) { 2076 if (strcmp(daddr, caddr) == 0) { 2077 return (DDI_SUCCESS); 2078 } 2079 } 2080 2081 if (quickexit) 2082 return (rv); 2083 2084 if (bootdev_module[0] == '\0') { 2085 char *addrp, *eoaddrp; 2086 char *busp, *modp, *atp; 2087 char *bp1275, *bp; 2088 int bp1275len, bplen; 2089 2090 bp1275 = bp = addrp = eoaddrp = busp = modp = atp = NULL; 2091 2092 if (ddi_getlongprop(DDI_DEV_T_ANY, 2093 ddi_root_node(), 0, "bootpath", 2094 (caddr_t)&bp1275, &bp1275len) != DDI_PROP_SUCCESS || 2095 bp1275len <= 1) { 2096 /* 2097 * We didn't boot from bootconf so we never need to 2098 * do any special matches. 2099 */ 2100 quickexit = 1; 2101 if (bp1275) 2102 kmem_free(bp1275, bp1275len); 2103 return (rv); 2104 } 2105 2106 if (ddi_getlongprop(DDI_DEV_T_ANY, 2107 ddi_root_node(), 0, "boot-path", 2108 (caddr_t)&bp, &bplen) != DDI_PROP_SUCCESS || bplen <= 1) { 2109 /* 2110 * No fallback position for matching. This is 2111 * certainly unexpected, but we'll handle it 2112 * just in case. 2113 */ 2114 quickexit = 1; 2115 kmem_free(bp1275, bp1275len); 2116 if (bp) 2117 kmem_free(bp, bplen); 2118 return (rv); 2119 } 2120 2121 /* 2122 * Determine boot device module and 1275 name_addr 2123 * 2124 * bootpath assumed to be of the form /bus/module@name_addr 2125 */ 2126 if (busp = strchr(bp1275, '/')) { 2127 if (modp = strchr(busp + 1, '/')) { 2128 if (atp = strchr(modp + 1, '@')) { 2129 *atp = '\0'; 2130 addrp = atp + 1; 2131 if (eoaddrp = strchr(addrp, '/')) 2132 *eoaddrp = '\0'; 2133 } 2134 } 2135 } 2136 2137 if (modp && addrp) { 2138 (void) strncpy(bootdev_module, modp + 1, 2139 MAXCOMPONENTLEN); 2140 bootdev_module[MAXCOMPONENTLEN - 1] = '\0'; 2141 2142 (void) strncpy(bootdev_newaddr, addrp, MAXCOMPONENTLEN); 2143 bootdev_newaddr[MAXCOMPONENTLEN - 1] = '\0'; 2144 } else { 2145 quickexit = 1; 2146 kmem_free(bp1275, bp1275len); 2147 kmem_free(bp, bplen); 2148 return (rv); 2149 } 2150 2151 /* 2152 * Determine fallback name_addr 2153 * 2154 * 10/3/96 - Also save fallback module name because it 2155 * might actually be different than the current module 2156 * name. E.G., ISA pnp drivers have new names. 2157 * 2158 * bootpath assumed to be of the form /bus/module@name_addr 2159 */ 2160 addrp = NULL; 2161 if (busp = strchr(bp, '/')) { 2162 if (modp = strchr(busp + 1, '/')) { 2163 if (atp = strchr(modp + 1, '@')) { 2164 *atp = '\0'; 2165 addrp = atp + 1; 2166 if (eoaddrp = strchr(addrp, '/')) 2167 *eoaddrp = '\0'; 2168 } 2169 } 2170 } 2171 2172 if (modp && addrp) { 2173 (void) strncpy(bootdev_oldmod, modp + 1, 2174 MAXCOMPONENTLEN); 2175 bootdev_module[MAXCOMPONENTLEN - 1] = '\0'; 2176 2177 (void) strncpy(bootdev_oldaddr, addrp, MAXCOMPONENTLEN); 2178 bootdev_oldaddr[MAXCOMPONENTLEN - 1] = '\0'; 2179 } 2180 2181 /* Free up the bootpath storage now that we're done with it. */ 2182 kmem_free(bp1275, bp1275len); 2183 kmem_free(bp, bplen); 2184 2185 if (bootdev_oldaddr[0] == '\0') { 2186 quickexit = 1; 2187 return (rv); 2188 } 2189 } 2190 2191 if (((lkupname = ddi_get_name(cdip)) != NULL) && 2192 (strcmp(bootdev_module, lkupname) == 0 || 2193 strcmp(bootdev_oldmod, lkupname) == 0) && 2194 ((ddi_getprop(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS, 2195 "ignore-hardware-nodes", -1) != -1) || 2196 ignore_hardware_nodes) && 2197 strcmp(bootdev_newaddr, caddr) == 0 && 2198 strcmp(bootdev_oldaddr, naddr) == 0) { 2199 rv = DDI_SUCCESS; 2200 } 2201 2202 return (rv); 2203 } 2204 2205 /* 2206 * Perform a copy from a memory mapped device (whose devinfo pointer is devi) 2207 * separately mapped at devaddr in the kernel to a kernel buffer at kaddr. 2208 */ 2209 /*ARGSUSED*/ 2210 int 2211 e_ddi_copyfromdev(dev_info_t *devi, 2212 off_t off, const void *devaddr, void *kaddr, size_t len) 2213 { 2214 bcopy(devaddr, kaddr, len); 2215 return (0); 2216 } 2217 2218 /* 2219 * Perform a copy to a memory mapped device (whose devinfo pointer is devi) 2220 * separately mapped at devaddr in the kernel from a kernel buffer at kaddr. 2221 */ 2222 /*ARGSUSED*/ 2223 int 2224 e_ddi_copytodev(dev_info_t *devi, 2225 off_t off, const void *kaddr, void *devaddr, size_t len) 2226 { 2227 bcopy(kaddr, devaddr, len); 2228 return (0); 2229 } 2230 2231 2232 static int 2233 poke_mem(peekpoke_ctlops_t *in_args) 2234 { 2235 int err = DDI_SUCCESS; 2236 on_trap_data_t otd; 2237 2238 /* Set up protected environment. */ 2239 if (!on_trap(&otd, OT_DATA_ACCESS)) { 2240 switch (in_args->size) { 2241 case sizeof (uint8_t): 2242 *(uint8_t *)(in_args->dev_addr) = 2243 *(uint8_t *)in_args->host_addr; 2244 break; 2245 2246 case sizeof (uint16_t): 2247 *(uint16_t *)(in_args->dev_addr) = 2248 *(uint16_t *)in_args->host_addr; 2249 break; 2250 2251 case sizeof (uint32_t): 2252 *(uint32_t *)(in_args->dev_addr) = 2253 *(uint32_t *)in_args->host_addr; 2254 break; 2255 2256 case sizeof (uint64_t): 2257 *(uint64_t *)(in_args->dev_addr) = 2258 *(uint64_t *)in_args->host_addr; 2259 break; 2260 2261 default: 2262 err = DDI_FAILURE; 2263 break; 2264 } 2265 } else 2266 err = DDI_FAILURE; 2267 2268 /* Take down protected environment. */ 2269 no_trap(); 2270 2271 return (err); 2272 } 2273 2274 2275 static int 2276 peek_mem(peekpoke_ctlops_t *in_args) 2277 { 2278 int err = DDI_SUCCESS; 2279 on_trap_data_t otd; 2280 2281 if (!on_trap(&otd, OT_DATA_ACCESS)) { 2282 switch (in_args->size) { 2283 case sizeof (uint8_t): 2284 *(uint8_t *)in_args->host_addr = 2285 *(uint8_t *)in_args->dev_addr; 2286 break; 2287 2288 case sizeof (uint16_t): 2289 *(uint16_t *)in_args->host_addr = 2290 *(uint16_t *)in_args->dev_addr; 2291 break; 2292 2293 case sizeof (uint32_t): 2294 *(uint32_t *)in_args->host_addr = 2295 *(uint32_t *)in_args->dev_addr; 2296 break; 2297 2298 case sizeof (uint64_t): 2299 *(uint64_t *)in_args->host_addr = 2300 *(uint64_t *)in_args->dev_addr; 2301 break; 2302 2303 default: 2304 err = DDI_FAILURE; 2305 break; 2306 } 2307 } else 2308 err = DDI_FAILURE; 2309 2310 no_trap(); 2311 return (err); 2312 } 2313 2314 2315 /* 2316 * This is called only to process peek/poke when the DIP is NULL. 2317 * Assume that this is for memory, as nexi take care of device safe accesses. 2318 */ 2319 int 2320 peekpoke_mem(ddi_ctl_enum_t cmd, peekpoke_ctlops_t *in_args) 2321 { 2322 return (cmd == DDI_CTLOPS_PEEK ? peek_mem(in_args) : poke_mem(in_args)); 2323 } 2324 2325 /* 2326 * we've just done a cautious put/get. Check if it was successful by 2327 * calling pci_ereport_post() on all puts and for any gets that return -1 2328 */ 2329 static int 2330 pci_peekpoke_check_fma(dev_info_t *dip, void *arg, ddi_ctl_enum_t ctlop, 2331 void (*scan)(dev_info_t *, ddi_fm_error_t *)) 2332 { 2333 int rval = DDI_SUCCESS; 2334 peekpoke_ctlops_t *in_args = (peekpoke_ctlops_t *)arg; 2335 ddi_fm_error_t de; 2336 ddi_acc_impl_t *hp = (ddi_acc_impl_t *)in_args->handle; 2337 ddi_acc_hdl_t *hdlp = (ddi_acc_hdl_t *)in_args->handle; 2338 int check_err = 0; 2339 int repcount = in_args->repcount; 2340 2341 if (ctlop == DDI_CTLOPS_POKE && 2342 hdlp->ah_acc.devacc_attr_access != DDI_CAUTIOUS_ACC) 2343 return (DDI_SUCCESS); 2344 2345 if (ctlop == DDI_CTLOPS_PEEK && 2346 hdlp->ah_acc.devacc_attr_access != DDI_CAUTIOUS_ACC) { 2347 for (; repcount; repcount--) { 2348 switch (in_args->size) { 2349 case sizeof (uint8_t): 2350 if (*(uint8_t *)in_args->host_addr == 0xff) 2351 check_err = 1; 2352 break; 2353 case sizeof (uint16_t): 2354 if (*(uint16_t *)in_args->host_addr == 0xffff) 2355 check_err = 1; 2356 break; 2357 case sizeof (uint32_t): 2358 if (*(uint32_t *)in_args->host_addr == 2359 0xffffffff) 2360 check_err = 1; 2361 break; 2362 case sizeof (uint64_t): 2363 if (*(uint64_t *)in_args->host_addr == 2364 0xffffffffffffffff) 2365 check_err = 1; 2366 break; 2367 } 2368 } 2369 if (check_err == 0) 2370 return (DDI_SUCCESS); 2371 } 2372 /* 2373 * for a cautious put or get or a non-cautious get that returned -1 call 2374 * io framework to see if there really was an error 2375 */ 2376 bzero(&de, sizeof (ddi_fm_error_t)); 2377 de.fme_version = DDI_FME_VERSION; 2378 de.fme_ena = fm_ena_generate(0, FM_ENA_FMT1); 2379 if (hdlp->ah_acc.devacc_attr_access == DDI_CAUTIOUS_ACC) { 2380 de.fme_flag = DDI_FM_ERR_EXPECTED; 2381 de.fme_acc_handle = in_args->handle; 2382 } else if (hdlp->ah_acc.devacc_attr_access == DDI_DEFAULT_ACC) { 2383 /* 2384 * We only get here with DDI_DEFAULT_ACC for config space gets. 2385 * Non-hardened drivers may be probing the hardware and 2386 * expecting -1 returned. So need to treat errors on 2387 * DDI_DEFAULT_ACC as DDI_FM_ERR_EXPECTED. 2388 */ 2389 de.fme_flag = DDI_FM_ERR_EXPECTED; 2390 de.fme_acc_handle = in_args->handle; 2391 } else { 2392 /* 2393 * Hardened driver doing protected accesses shouldn't 2394 * get errors unless there's a hardware problem. Treat 2395 * as nonfatal if there's an error, but set UNEXPECTED 2396 * so we raise ereports on any errors and potentially 2397 * fault the device 2398 */ 2399 de.fme_flag = DDI_FM_ERR_UNEXPECTED; 2400 } 2401 (void) scan(dip, &de); 2402 if (hdlp->ah_acc.devacc_attr_access != DDI_DEFAULT_ACC && 2403 de.fme_status != DDI_FM_OK) { 2404 ndi_err_t *errp = (ndi_err_t *)hp->ahi_err; 2405 rval = DDI_FAILURE; 2406 errp->err_ena = de.fme_ena; 2407 errp->err_expected = de.fme_flag; 2408 errp->err_status = DDI_FM_NONFATAL; 2409 } 2410 return (rval); 2411 } 2412 2413 /* 2414 * pci_peekpoke_check_nofma() is for when an error occurs on a register access 2415 * during pci_ereport_post(). We can't call pci_ereport_post() again or we'd 2416 * recurse, so assume all puts are OK and gets have failed if they return -1 2417 */ 2418 static int 2419 pci_peekpoke_check_nofma(void *arg, ddi_ctl_enum_t ctlop) 2420 { 2421 int rval = DDI_SUCCESS; 2422 peekpoke_ctlops_t *in_args = (peekpoke_ctlops_t *)arg; 2423 ddi_acc_impl_t *hp = (ddi_acc_impl_t *)in_args->handle; 2424 ddi_acc_hdl_t *hdlp = (ddi_acc_hdl_t *)in_args->handle; 2425 int repcount = in_args->repcount; 2426 2427 if (ctlop == DDI_CTLOPS_POKE) 2428 return (rval); 2429 2430 for (; repcount; repcount--) { 2431 switch (in_args->size) { 2432 case sizeof (uint8_t): 2433 if (*(uint8_t *)in_args->host_addr == 0xff) 2434 rval = DDI_FAILURE; 2435 break; 2436 case sizeof (uint16_t): 2437 if (*(uint16_t *)in_args->host_addr == 0xffff) 2438 rval = DDI_FAILURE; 2439 break; 2440 case sizeof (uint32_t): 2441 if (*(uint32_t *)in_args->host_addr == 0xffffffff) 2442 rval = DDI_FAILURE; 2443 break; 2444 case sizeof (uint64_t): 2445 if (*(uint64_t *)in_args->host_addr == 2446 0xffffffffffffffff) 2447 rval = DDI_FAILURE; 2448 break; 2449 } 2450 } 2451 if (hdlp->ah_acc.devacc_attr_access != DDI_DEFAULT_ACC && 2452 rval == DDI_FAILURE) { 2453 ndi_err_t *errp = (ndi_err_t *)hp->ahi_err; 2454 errp->err_ena = fm_ena_generate(0, FM_ENA_FMT1); 2455 errp->err_expected = DDI_FM_ERR_UNEXPECTED; 2456 errp->err_status = DDI_FM_NONFATAL; 2457 } 2458 return (rval); 2459 } 2460 2461 int 2462 pci_peekpoke_check(dev_info_t *dip, dev_info_t *rdip, 2463 ddi_ctl_enum_t ctlop, void *arg, void *result, 2464 int (*handler)(dev_info_t *, dev_info_t *, ddi_ctl_enum_t, void *, 2465 void *), kmutex_t *err_mutexp, kmutex_t *peek_poke_mutexp, 2466 void (*scan)(dev_info_t *, ddi_fm_error_t *)) 2467 { 2468 int rval; 2469 peekpoke_ctlops_t *in_args = (peekpoke_ctlops_t *)arg; 2470 ddi_acc_impl_t *hp = (ddi_acc_impl_t *)in_args->handle; 2471 2472 /* 2473 * this function only supports cautious accesses, not peeks/pokes 2474 * which don't have a handle 2475 */ 2476 if (hp == NULL) 2477 return (DDI_FAILURE); 2478 2479 if (hp->ahi_acc_attr & DDI_ACCATTR_CONFIG_SPACE) { 2480 if (!mutex_tryenter(err_mutexp)) { 2481 /* 2482 * As this may be a recursive call from within 2483 * pci_ereport_post() we can't wait for the mutexes. 2484 * Fortunately we know someone is already calling 2485 * pci_ereport_post() which will handle the error bits 2486 * for us, and as this is a config space access we can 2487 * just do the access and check return value for -1 2488 * using pci_peekpoke_check_nofma(). 2489 */ 2490 rval = handler(dip, rdip, ctlop, arg, result); 2491 if (rval == DDI_SUCCESS) 2492 rval = pci_peekpoke_check_nofma(arg, ctlop); 2493 return (rval); 2494 } 2495 /* 2496 * This can't be a recursive call. Drop the err_mutex and get 2497 * both mutexes in the right order. If an error hasn't already 2498 * been detected by the ontrap code, use pci_peekpoke_check_fma 2499 * which will call pci_ereport_post() to check error status. 2500 */ 2501 mutex_exit(err_mutexp); 2502 } 2503 mutex_enter(peek_poke_mutexp); 2504 rval = handler(dip, rdip, ctlop, arg, result); 2505 if (rval == DDI_SUCCESS) { 2506 mutex_enter(err_mutexp); 2507 rval = pci_peekpoke_check_fma(dip, arg, ctlop, scan); 2508 mutex_exit(err_mutexp); 2509 } 2510 mutex_exit(peek_poke_mutexp); 2511 return (rval); 2512 } 2513 2514 void 2515 impl_setup_ddi(void) 2516 { 2517 dev_info_t *xdip, *isa_dip; 2518 rd_existing_t rd_mem_prop; 2519 int err; 2520 2521 ndi_devi_alloc_sleep(ddi_root_node(), "ramdisk", 2522 (pnode_t)DEVI_SID_NODEID, &xdip); 2523 2524 (void) BOP_GETPROP(bootops, 2525 "ramdisk_start", (void *)&ramdisk_start); 2526 (void) BOP_GETPROP(bootops, 2527 "ramdisk_end", (void *)&ramdisk_end); 2528 2529 #ifdef __xpv 2530 ramdisk_start -= ONE_GIG; 2531 ramdisk_end -= ONE_GIG; 2532 #endif 2533 rd_mem_prop.phys = ramdisk_start; 2534 rd_mem_prop.size = ramdisk_end - ramdisk_start + 1; 2535 2536 (void) ndi_prop_update_byte_array(DDI_DEV_T_NONE, xdip, 2537 RD_EXISTING_PROP_NAME, (uchar_t *)&rd_mem_prop, 2538 sizeof (rd_mem_prop)); 2539 err = ndi_devi_bind_driver(xdip, 0); 2540 ASSERT(err == 0); 2541 2542 /* isa node */ 2543 if (pseudo_isa) { 2544 ndi_devi_alloc_sleep(ddi_root_node(), "isa", 2545 (pnode_t)DEVI_SID_NODEID, &isa_dip); 2546 (void) ndi_prop_update_string(DDI_DEV_T_NONE, isa_dip, 2547 "device_type", "isa"); 2548 (void) ndi_prop_update_string(DDI_DEV_T_NONE, isa_dip, 2549 "bus-type", "isa"); 2550 (void) ndi_devi_bind_driver(isa_dip, 0); 2551 } 2552 2553 /* 2554 * Read in the properties from the boot. 2555 */ 2556 get_boot_properties(); 2557 2558 /* do bus dependent probes. */ 2559 impl_bus_initialprobe(); 2560 2561 /* not framebuffer should be enumerated, if present */ 2562 get_vga_properties(); 2563 } 2564 2565 dev_t 2566 getrootdev(void) 2567 { 2568 /* 2569 * Precedence given to rootdev if set in /etc/system 2570 */ 2571 if (root_is_svm == B_TRUE) { 2572 return (ddi_pathname_to_dev_t(svm_bootpath)); 2573 } 2574 2575 /* 2576 * Usually rootfs.bo_name is initialized by the 2577 * the bootpath property from bootenv.rc, but 2578 * defaults to "/ramdisk:a" otherwise. 2579 */ 2580 return (ddi_pathname_to_dev_t(rootfs.bo_name)); 2581 } 2582 2583 static struct bus_probe { 2584 struct bus_probe *next; 2585 void (*probe)(int); 2586 } *bus_probes; 2587 2588 void 2589 impl_bus_add_probe(void (*func)(int)) 2590 { 2591 struct bus_probe *probe; 2592 struct bus_probe *lastprobe = NULL; 2593 2594 probe = kmem_alloc(sizeof (*probe), KM_SLEEP); 2595 probe->probe = func; 2596 probe->next = NULL; 2597 2598 if (!bus_probes) { 2599 bus_probes = probe; 2600 return; 2601 } 2602 2603 lastprobe = bus_probes; 2604 while (lastprobe->next) 2605 lastprobe = lastprobe->next; 2606 lastprobe->next = probe; 2607 } 2608 2609 /*ARGSUSED*/ 2610 void 2611 impl_bus_delete_probe(void (*func)(int)) 2612 { 2613 struct bus_probe *prev = NULL; 2614 struct bus_probe *probe = bus_probes; 2615 2616 while (probe) { 2617 if (probe->probe == func) 2618 break; 2619 prev = probe; 2620 probe = probe->next; 2621 } 2622 2623 if (probe == NULL) 2624 return; 2625 2626 if (prev) 2627 prev->next = probe->next; 2628 else 2629 bus_probes = probe->next; 2630 2631 kmem_free(probe, sizeof (struct bus_probe)); 2632 } 2633 2634 /* 2635 * impl_bus_initialprobe 2636 * Modload the prom simulator, then let it probe to verify existence 2637 * and type of PCI support. 2638 */ 2639 static void 2640 impl_bus_initialprobe(void) 2641 { 2642 struct bus_probe *probe; 2643 2644 /* load modules to install bus probes */ 2645 #if defined(__xpv) 2646 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 2647 if (modload("misc", "pci_autoconfig") < 0) { 2648 panic("failed to load misc/pci_autoconfig"); 2649 } 2650 2651 if (modload("drv", "isa") < 0) 2652 panic("failed to load drv/isa"); 2653 } 2654 2655 (void) modload("misc", "xpv_autoconfig"); 2656 #else 2657 if (modload("misc", "pci_autoconfig") < 0) { 2658 panic("failed to load misc/pci_autoconfig"); 2659 } 2660 2661 if (modload("drv", "isa") < 0) 2662 panic("failed to load drv/isa"); 2663 #endif 2664 2665 probe = bus_probes; 2666 while (probe) { 2667 /* run the probe functions */ 2668 (*probe->probe)(0); 2669 probe = probe->next; 2670 } 2671 } 2672 2673 /* 2674 * impl_bus_reprobe 2675 * Reprogram devices not set up by firmware. 2676 */ 2677 static void 2678 impl_bus_reprobe(void) 2679 { 2680 struct bus_probe *probe; 2681 2682 probe = bus_probes; 2683 while (probe) { 2684 /* run the probe function */ 2685 (*probe->probe)(1); 2686 probe = probe->next; 2687 } 2688 } 2689 2690 2691 /* 2692 * The following functions ready a cautious request to go up to the nexus 2693 * driver. It is up to the nexus driver to decide how to process the request. 2694 * It may choose to call i_ddi_do_caut_get/put in this file, or do it 2695 * differently. 2696 */ 2697 2698 static void 2699 i_ddi_caut_getput_ctlops(ddi_acc_impl_t *hp, uint64_t host_addr, 2700 uint64_t dev_addr, size_t size, size_t repcount, uint_t flags, 2701 ddi_ctl_enum_t cmd) 2702 { 2703 peekpoke_ctlops_t cautacc_ctlops_arg; 2704 2705 cautacc_ctlops_arg.size = size; 2706 cautacc_ctlops_arg.dev_addr = dev_addr; 2707 cautacc_ctlops_arg.host_addr = host_addr; 2708 cautacc_ctlops_arg.handle = (ddi_acc_handle_t)hp; 2709 cautacc_ctlops_arg.repcount = repcount; 2710 cautacc_ctlops_arg.flags = flags; 2711 2712 (void) ddi_ctlops(hp->ahi_common.ah_dip, hp->ahi_common.ah_dip, cmd, 2713 &cautacc_ctlops_arg, NULL); 2714 } 2715 2716 uint8_t 2717 i_ddi_caut_get8(ddi_acc_impl_t *hp, uint8_t *addr) 2718 { 2719 uint8_t value; 2720 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr, 2721 sizeof (uint8_t), 1, 0, DDI_CTLOPS_PEEK); 2722 2723 return (value); 2724 } 2725 2726 uint16_t 2727 i_ddi_caut_get16(ddi_acc_impl_t *hp, uint16_t *addr) 2728 { 2729 uint16_t value; 2730 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr, 2731 sizeof (uint16_t), 1, 0, DDI_CTLOPS_PEEK); 2732 2733 return (value); 2734 } 2735 2736 uint32_t 2737 i_ddi_caut_get32(ddi_acc_impl_t *hp, uint32_t *addr) 2738 { 2739 uint32_t value; 2740 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr, 2741 sizeof (uint32_t), 1, 0, DDI_CTLOPS_PEEK); 2742 2743 return (value); 2744 } 2745 2746 uint64_t 2747 i_ddi_caut_get64(ddi_acc_impl_t *hp, uint64_t *addr) 2748 { 2749 uint64_t value; 2750 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr, 2751 sizeof (uint64_t), 1, 0, DDI_CTLOPS_PEEK); 2752 2753 return (value); 2754 } 2755 2756 void 2757 i_ddi_caut_put8(ddi_acc_impl_t *hp, uint8_t *addr, uint8_t value) 2758 { 2759 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr, 2760 sizeof (uint8_t), 1, 0, DDI_CTLOPS_POKE); 2761 } 2762 2763 void 2764 i_ddi_caut_put16(ddi_acc_impl_t *hp, uint16_t *addr, uint16_t value) 2765 { 2766 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr, 2767 sizeof (uint16_t), 1, 0, DDI_CTLOPS_POKE); 2768 } 2769 2770 void 2771 i_ddi_caut_put32(ddi_acc_impl_t *hp, uint32_t *addr, uint32_t value) 2772 { 2773 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr, 2774 sizeof (uint32_t), 1, 0, DDI_CTLOPS_POKE); 2775 } 2776 2777 void 2778 i_ddi_caut_put64(ddi_acc_impl_t *hp, uint64_t *addr, uint64_t value) 2779 { 2780 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr, 2781 sizeof (uint64_t), 1, 0, DDI_CTLOPS_POKE); 2782 } 2783 2784 void 2785 i_ddi_caut_rep_get8(ddi_acc_impl_t *hp, uint8_t *host_addr, uint8_t *dev_addr, 2786 size_t repcount, uint_t flags) 2787 { 2788 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr, 2789 sizeof (uint8_t), repcount, flags, DDI_CTLOPS_PEEK); 2790 } 2791 2792 void 2793 i_ddi_caut_rep_get16(ddi_acc_impl_t *hp, uint16_t *host_addr, 2794 uint16_t *dev_addr, size_t repcount, uint_t flags) 2795 { 2796 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr, 2797 sizeof (uint16_t), repcount, flags, DDI_CTLOPS_PEEK); 2798 } 2799 2800 void 2801 i_ddi_caut_rep_get32(ddi_acc_impl_t *hp, uint32_t *host_addr, 2802 uint32_t *dev_addr, size_t repcount, uint_t flags) 2803 { 2804 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr, 2805 sizeof (uint32_t), repcount, flags, DDI_CTLOPS_PEEK); 2806 } 2807 2808 void 2809 i_ddi_caut_rep_get64(ddi_acc_impl_t *hp, uint64_t *host_addr, 2810 uint64_t *dev_addr, size_t repcount, uint_t flags) 2811 { 2812 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr, 2813 sizeof (uint64_t), repcount, flags, DDI_CTLOPS_PEEK); 2814 } 2815 2816 void 2817 i_ddi_caut_rep_put8(ddi_acc_impl_t *hp, uint8_t *host_addr, uint8_t *dev_addr, 2818 size_t repcount, uint_t flags) 2819 { 2820 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr, 2821 sizeof (uint8_t), repcount, flags, DDI_CTLOPS_POKE); 2822 } 2823 2824 void 2825 i_ddi_caut_rep_put16(ddi_acc_impl_t *hp, uint16_t *host_addr, 2826 uint16_t *dev_addr, size_t repcount, uint_t flags) 2827 { 2828 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr, 2829 sizeof (uint16_t), repcount, flags, DDI_CTLOPS_POKE); 2830 } 2831 2832 void 2833 i_ddi_caut_rep_put32(ddi_acc_impl_t *hp, uint32_t *host_addr, 2834 uint32_t *dev_addr, size_t repcount, uint_t flags) 2835 { 2836 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr, 2837 sizeof (uint32_t), repcount, flags, DDI_CTLOPS_POKE); 2838 } 2839 2840 void 2841 i_ddi_caut_rep_put64(ddi_acc_impl_t *hp, uint64_t *host_addr, 2842 uint64_t *dev_addr, size_t repcount, uint_t flags) 2843 { 2844 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr, 2845 sizeof (uint64_t), repcount, flags, DDI_CTLOPS_POKE); 2846 } 2847 2848 boolean_t 2849 i_ddi_copybuf_required(ddi_dma_attr_t *attrp) 2850 { 2851 uint64_t hi_pa; 2852 2853 hi_pa = ((uint64_t)physmax + 1ull) << PAGESHIFT; 2854 if (attrp->dma_attr_addr_hi < hi_pa) { 2855 return (B_TRUE); 2856 } 2857 2858 return (B_FALSE); 2859 } 2860 2861 size_t 2862 i_ddi_copybuf_size() 2863 { 2864 return (dma_max_copybuf_size); 2865 } 2866 2867 /* 2868 * i_ddi_dma_max() 2869 * returns the maximum DMA size which can be performed in a single DMA 2870 * window taking into account the devices DMA contraints (attrp), the 2871 * maximum copy buffer size (if applicable), and the worse case buffer 2872 * fragmentation. 2873 */ 2874 /*ARGSUSED*/ 2875 uint32_t 2876 i_ddi_dma_max(dev_info_t *dip, ddi_dma_attr_t *attrp) 2877 { 2878 uint64_t maxxfer; 2879 2880 2881 /* 2882 * take the min of maxxfer and the the worse case fragementation 2883 * (e.g. every cookie <= 1 page) 2884 */ 2885 maxxfer = MIN(attrp->dma_attr_maxxfer, 2886 ((uint64_t)(attrp->dma_attr_sgllen - 1) << PAGESHIFT)); 2887 2888 /* 2889 * If the DMA engine can't reach all off memory, we also need to take 2890 * the max size of the copybuf into consideration. 2891 */ 2892 if (i_ddi_copybuf_required(attrp)) { 2893 maxxfer = MIN(i_ddi_copybuf_size(), maxxfer); 2894 } 2895 2896 /* 2897 * we only return a 32-bit value. Make sure it's not -1. Round to a 2898 * page so it won't be mistaken for an error value during debug. 2899 */ 2900 if (maxxfer >= 0xFFFFFFFF) { 2901 maxxfer = 0xFFFFF000; 2902 } 2903 2904 /* 2905 * make sure the value we return is a whole multiple of the 2906 * granlarity. 2907 */ 2908 if (attrp->dma_attr_granular > 1) { 2909 maxxfer = maxxfer - (maxxfer % attrp->dma_attr_granular); 2910 } 2911 2912 return ((uint32_t)maxxfer); 2913 } 2914