1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2012 Garrett D'Amore <garrett@damore.org> 25 * Copyright 2014 Pluribus Networks, Inc. 26 * Copyright 2016 Nexenta Systems, Inc. 27 * Copyright 2018 Joyent, Inc. 28 */ 29 30 /* 31 * PC specific DDI implementation 32 */ 33 #include <sys/types.h> 34 #include <sys/autoconf.h> 35 #include <sys/avintr.h> 36 #include <sys/bootconf.h> 37 #include <sys/conf.h> 38 #include <sys/cpuvar.h> 39 #include <sys/ddi_impldefs.h> 40 #include <sys/ddi_subrdefs.h> 41 #include <sys/ethernet.h> 42 #include <sys/fp.h> 43 #include <sys/instance.h> 44 #include <sys/kmem.h> 45 #include <sys/machsystm.h> 46 #include <sys/modctl.h> 47 #include <sys/promif.h> 48 #include <sys/prom_plat.h> 49 #include <sys/sunndi.h> 50 #include <sys/ndi_impldefs.h> 51 #include <sys/ddi_impldefs.h> 52 #include <sys/sysmacros.h> 53 #include <sys/systeminfo.h> 54 #include <sys/utsname.h> 55 #include <sys/atomic.h> 56 #include <sys/spl.h> 57 #include <sys/archsystm.h> 58 #include <vm/seg_kmem.h> 59 #include <sys/ontrap.h> 60 #include <sys/fm/protocol.h> 61 #include <sys/ramdisk.h> 62 #include <sys/sunndi.h> 63 #include <sys/vmem.h> 64 #include <sys/pci_impl.h> 65 #if defined(__xpv) 66 #include <sys/hypervisor.h> 67 #endif 68 #include <sys/mach_intr.h> 69 #include <vm/hat_i86.h> 70 #include <sys/x86_archext.h> 71 #include <sys/avl.h> 72 #include <sys/font.h> 73 74 /* 75 * DDI Boot Configuration 76 */ 77 78 /* 79 * Platform drivers on this platform 80 */ 81 char *platform_module_list[] = { 82 "acpippm", 83 "ppm", 84 (char *)0 85 }; 86 87 /* pci bus resource maps */ 88 struct pci_bus_resource *pci_bus_res; 89 90 size_t dma_max_copybuf_size = 0x101000; /* 1M + 4K */ 91 92 uint64_t ramdisk_start, ramdisk_end; 93 94 int pseudo_isa = 0; 95 96 /* 97 * Forward declarations 98 */ 99 static int getlongprop_buf(); 100 static void get_boot_properties(void); 101 static void impl_bus_initialprobe(void); 102 static void impl_bus_reprobe(void); 103 104 static int poke_mem(peekpoke_ctlops_t *in_args); 105 static int peek_mem(peekpoke_ctlops_t *in_args); 106 107 static int kmem_override_cache_attrs(caddr_t, size_t, uint_t); 108 109 #if !defined(__xpv) 110 extern void immu_init(void); 111 #endif 112 113 /* 114 * We use an AVL tree to store contiguous address allocations made with the 115 * kalloca() routine, so that we can return the size to free with kfreea(). 116 * Note that in the future it would be vastly faster if we could eliminate 117 * this lookup by insisting that all callers keep track of their own sizes, 118 * just as for kmem_alloc(). 119 */ 120 struct ctgas { 121 avl_node_t ctg_link; 122 void *ctg_addr; 123 size_t ctg_size; 124 }; 125 126 static avl_tree_t ctgtree; 127 128 static kmutex_t ctgmutex; 129 #define CTGLOCK() mutex_enter(&ctgmutex) 130 #define CTGUNLOCK() mutex_exit(&ctgmutex) 131 132 /* 133 * Minimum pfn value of page_t's put on the free list. This is to simplify 134 * support of ddi dma memory requests which specify small, non-zero addr_lo 135 * values. 136 * 137 * The default value of 2, which corresponds to the only known non-zero addr_lo 138 * value used, means a single page will be sacrificed (pfn typically starts 139 * at 1). ddiphysmin can be set to 0 to disable. It cannot be set above 0x100 140 * otherwise mp startup panics. 141 */ 142 pfn_t ddiphysmin = 2; 143 144 static void 145 check_driver_disable(void) 146 { 147 int proplen = 128; 148 char *prop_name; 149 char *drv_name, *propval; 150 major_t major; 151 152 prop_name = kmem_alloc(proplen, KM_SLEEP); 153 for (major = 0; major < devcnt; major++) { 154 drv_name = ddi_major_to_name(major); 155 if (drv_name == NULL) 156 continue; 157 (void) snprintf(prop_name, proplen, "disable-%s", drv_name); 158 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 159 DDI_PROP_DONTPASS, prop_name, &propval) == DDI_SUCCESS) { 160 if (strcmp(propval, "true") == 0) { 161 devnamesp[major].dn_flags |= DN_DRIVER_REMOVED; 162 cmn_err(CE_NOTE, "driver %s disabled", 163 drv_name); 164 } 165 ddi_prop_free(propval); 166 } 167 } 168 kmem_free(prop_name, proplen); 169 } 170 171 172 /* 173 * Configure the hardware on the system. 174 * Called before the rootfs is mounted 175 */ 176 void 177 configure(void) 178 { 179 extern void i_ddi_init_root(); 180 181 extern int fpu_ignored; 182 183 /* 184 * Determine if an FPU is attached 185 */ 186 187 fpu_probe(); 188 189 190 if (fpu_ignored) { 191 printf("FP hardware will not be used\n"); 192 } else if (!fpu_exists) { 193 printf("No FPU in configuration\n"); 194 } 195 196 /* 197 * Initialize devices on the machine. 198 * Uses configuration tree built by the PROMs to determine what 199 * is present, and builds a tree of prototype dev_info nodes 200 * corresponding to the hardware which identified itself. 201 */ 202 203 /* 204 * Initialize root node. 205 */ 206 i_ddi_init_root(); 207 208 /* reprogram devices not set up by firmware (BIOS) */ 209 impl_bus_reprobe(); 210 211 #if !defined(__xpv) 212 /* 213 * Setup but don't startup the IOMMU 214 * Startup happens later via a direct call 215 * to IOMMU code by boot code. 216 * At this point, all PCI bus renumbering 217 * is done, so safe to init the IMMU 218 * AKA Intel IOMMU. 219 */ 220 immu_init(); 221 #endif 222 223 /* 224 * attach the isa nexus to get ACPI resource usage 225 * isa is "kind of" a pseudo node 226 */ 227 #if defined(__xpv) 228 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 229 if (pseudo_isa) 230 (void) i_ddi_attach_pseudo_node("isa"); 231 else 232 (void) i_ddi_attach_hw_nodes("isa"); 233 } 234 #else 235 if (pseudo_isa) 236 (void) i_ddi_attach_pseudo_node("isa"); 237 else 238 (void) i_ddi_attach_hw_nodes("isa"); 239 #endif 240 } 241 242 /* 243 * The "status" property indicates the operational status of a device. 244 * If this property is present, the value is a string indicating the 245 * status of the device as follows: 246 * 247 * "okay" operational. 248 * "disabled" not operational, but might become operational. 249 * "fail" not operational because a fault has been detected, 250 * and it is unlikely that the device will become 251 * operational without repair. no additional details 252 * are available. 253 * "fail-xxx" not operational because a fault has been detected, 254 * and it is unlikely that the device will become 255 * operational without repair. "xxx" is additional 256 * human-readable information about the particular 257 * fault condition that was detected. 258 * 259 * The absence of this property means that the operational status is 260 * unknown or okay. 261 * 262 * This routine checks the status property of the specified device node 263 * and returns 0 if the operational status indicates failure, and 1 otherwise. 264 * 265 * The property may exist on plug-in cards the existed before IEEE 1275-1994. 266 * And, in that case, the property may not even be a string. So we carefully 267 * check for the value "fail", in the beginning of the string, noting 268 * the property length. 269 */ 270 int 271 status_okay(int id, char *buf, int buflen) 272 { 273 char status_buf[OBP_MAXPROPNAME]; 274 char *bufp = buf; 275 int len = buflen; 276 int proplen; 277 static const char *status = "status"; 278 static const char *fail = "fail"; 279 int fail_len = (int)strlen(fail); 280 281 /* 282 * Get the proplen ... if it's smaller than "fail", 283 * or doesn't exist ... then we don't care, since 284 * the value can't begin with the char string "fail". 285 * 286 * NB: proplen, if it's a string, includes the NULL in the 287 * the size of the property, and fail_len does not. 288 */ 289 proplen = prom_getproplen((pnode_t)id, (caddr_t)status); 290 if (proplen <= fail_len) /* nonexistant or uninteresting len */ 291 return (1); 292 293 /* 294 * if a buffer was provided, use it 295 */ 296 if ((buf == (char *)NULL) || (buflen <= 0)) { 297 bufp = status_buf; 298 len = sizeof (status_buf); 299 } 300 *bufp = (char)0; 301 302 /* 303 * Get the property into the buffer, to the extent of the buffer, 304 * and in case the buffer is smaller than the property size, 305 * NULL terminate the buffer. (This handles the case where 306 * a buffer was passed in and the caller wants to print the 307 * value, but the buffer was too small). 308 */ 309 (void) prom_bounded_getprop((pnode_t)id, (caddr_t)status, 310 (caddr_t)bufp, len); 311 *(bufp + len - 1) = (char)0; 312 313 /* 314 * If the value begins with the char string "fail", 315 * then it means the node is failed. We don't care 316 * about any other values. We assume the node is ok 317 * although it might be 'disabled'. 318 */ 319 if (strncmp(bufp, fail, fail_len) == 0) 320 return (0); 321 322 return (1); 323 } 324 325 /* 326 * Check the status of the device node passed as an argument. 327 * 328 * if ((status is OKAY) || (status is DISABLED)) 329 * return DDI_SUCCESS 330 * else 331 * print a warning and return DDI_FAILURE 332 */ 333 /*ARGSUSED1*/ 334 int 335 check_status(int id, char *name, dev_info_t *parent) 336 { 337 char status_buf[64]; 338 char devtype_buf[OBP_MAXPROPNAME]; 339 int retval = DDI_FAILURE; 340 341 /* 342 * is the status okay? 343 */ 344 if (status_okay(id, status_buf, sizeof (status_buf))) 345 return (DDI_SUCCESS); 346 347 /* 348 * a status property indicating bad memory will be associated 349 * with a node which has a "device_type" property with a value of 350 * "memory-controller". in this situation, return DDI_SUCCESS 351 */ 352 if (getlongprop_buf(id, OBP_DEVICETYPE, devtype_buf, 353 sizeof (devtype_buf)) > 0) { 354 if (strcmp(devtype_buf, "memory-controller") == 0) 355 retval = DDI_SUCCESS; 356 } 357 358 /* 359 * print the status property information 360 */ 361 cmn_err(CE_WARN, "status '%s' for '%s'", status_buf, name); 362 return (retval); 363 } 364 365 /*ARGSUSED*/ 366 uint_t 367 softlevel1(caddr_t arg1, caddr_t arg2) 368 { 369 softint(); 370 return (1); 371 } 372 373 /* 374 * Allow for implementation specific correction of PROM property values. 375 */ 376 377 /*ARGSUSED*/ 378 void 379 impl_fix_props(dev_info_t *dip, dev_info_t *ch_dip, char *name, int len, 380 caddr_t buffer) 381 { 382 /* 383 * There are no adjustments needed in this implementation. 384 */ 385 } 386 387 static int 388 getlongprop_buf(int id, char *name, char *buf, int maxlen) 389 { 390 int size; 391 392 size = prom_getproplen((pnode_t)id, name); 393 if (size <= 0 || (size > maxlen - 1)) 394 return (-1); 395 396 if (-1 == prom_getprop((pnode_t)id, name, buf)) 397 return (-1); 398 399 if (strcmp("name", name) == 0) { 400 if (buf[size - 1] != '\0') { 401 buf[size] = '\0'; 402 size += 1; 403 } 404 } 405 406 return (size); 407 } 408 409 static int 410 get_prop_int_array(dev_info_t *di, char *pname, int **pval, uint_t *plen) 411 { 412 int ret; 413 414 if ((ret = ddi_prop_lookup_int_array(DDI_DEV_T_ANY, di, 415 DDI_PROP_DONTPASS, pname, pval, plen)) 416 == DDI_PROP_SUCCESS) { 417 *plen = (*plen) * (sizeof (int)); 418 } 419 return (ret); 420 } 421 422 423 /* 424 * Node Configuration 425 */ 426 427 struct prop_ispec { 428 uint_t pri, vec; 429 }; 430 431 /* 432 * For the x86, we're prepared to claim that the interrupt string 433 * is in the form of a list of <ipl,vec> specifications. 434 */ 435 436 #define VEC_MIN 1 437 #define VEC_MAX 255 438 439 static int 440 impl_xlate_intrs(dev_info_t *child, int *in, 441 struct ddi_parent_private_data *pdptr) 442 { 443 size_t size; 444 int n; 445 struct intrspec *new; 446 caddr_t got_prop; 447 int *inpri; 448 int got_len; 449 extern int ignore_hardware_nodes; /* force flag from ddi_impl.c */ 450 451 static char bad_intr_fmt[] = 452 "bad interrupt spec from %s%d - ipl %d, irq %d\n"; 453 454 /* 455 * determine if the driver is expecting the new style "interrupts" 456 * property which just contains the IRQ, or the old style which 457 * contains pairs of <IPL,IRQ>. if it is the new style, we always 458 * assign IPL 5 unless an "interrupt-priorities" property exists. 459 * in that case, the "interrupt-priorities" property contains the 460 * IPL values that match, one for one, the IRQ values in the 461 * "interrupts" property. 462 */ 463 inpri = NULL; 464 if ((ddi_getprop(DDI_DEV_T_ANY, child, DDI_PROP_DONTPASS, 465 "ignore-hardware-nodes", -1) != -1) || ignore_hardware_nodes) { 466 /* the old style "interrupts" property... */ 467 468 /* 469 * The list consists of <ipl,vec> elements 470 */ 471 if ((n = (*in++ >> 1)) < 1) 472 return (DDI_FAILURE); 473 474 pdptr->par_nintr = n; 475 size = n * sizeof (struct intrspec); 476 new = pdptr->par_intr = kmem_zalloc(size, KM_SLEEP); 477 478 while (n--) { 479 int level = *in++; 480 int vec = *in++; 481 482 if (level < 1 || level > MAXIPL || 483 vec < VEC_MIN || vec > VEC_MAX) { 484 cmn_err(CE_CONT, bad_intr_fmt, 485 DEVI(child)->devi_name, 486 DEVI(child)->devi_instance, level, vec); 487 goto broken; 488 } 489 new->intrspec_pri = level; 490 if (vec != 2) 491 new->intrspec_vec = vec; 492 else 493 /* 494 * irq 2 on the PC bus is tied to irq 9 495 * on ISA, EISA and MicroChannel 496 */ 497 new->intrspec_vec = 9; 498 new++; 499 } 500 501 return (DDI_SUCCESS); 502 } else { 503 /* the new style "interrupts" property... */ 504 505 /* 506 * The list consists of <vec> elements 507 */ 508 if ((n = (*in++)) < 1) 509 return (DDI_FAILURE); 510 511 pdptr->par_nintr = n; 512 size = n * sizeof (struct intrspec); 513 new = pdptr->par_intr = kmem_zalloc(size, KM_SLEEP); 514 515 /* XXX check for "interrupt-priorities" property... */ 516 if (ddi_getlongprop(DDI_DEV_T_ANY, child, DDI_PROP_DONTPASS, 517 "interrupt-priorities", (caddr_t)&got_prop, &got_len) 518 == DDI_PROP_SUCCESS) { 519 if (n != (got_len / sizeof (int))) { 520 cmn_err(CE_CONT, 521 "bad interrupt-priorities length" 522 " from %s%d: expected %d, got %d\n", 523 DEVI(child)->devi_name, 524 DEVI(child)->devi_instance, n, 525 (int)(got_len / sizeof (int))); 526 goto broken; 527 } 528 inpri = (int *)got_prop; 529 } 530 531 while (n--) { 532 int level; 533 int vec = *in++; 534 535 if (inpri == NULL) 536 level = 5; 537 else 538 level = *inpri++; 539 540 if (level < 1 || level > MAXIPL || 541 vec < VEC_MIN || vec > VEC_MAX) { 542 cmn_err(CE_CONT, bad_intr_fmt, 543 DEVI(child)->devi_name, 544 DEVI(child)->devi_instance, level, vec); 545 goto broken; 546 } 547 new->intrspec_pri = level; 548 if (vec != 2) 549 new->intrspec_vec = vec; 550 else 551 /* 552 * irq 2 on the PC bus is tied to irq 9 553 * on ISA, EISA and MicroChannel 554 */ 555 new->intrspec_vec = 9; 556 new++; 557 } 558 559 if (inpri != NULL) 560 kmem_free(got_prop, got_len); 561 return (DDI_SUCCESS); 562 } 563 564 broken: 565 kmem_free(pdptr->par_intr, size); 566 pdptr->par_intr = NULL; 567 pdptr->par_nintr = 0; 568 if (inpri != NULL) 569 kmem_free(got_prop, got_len); 570 571 return (DDI_FAILURE); 572 } 573 574 /* 575 * Create a ddi_parent_private_data structure from the ddi properties of 576 * the dev_info node. 577 * 578 * The "reg" and either an "intr" or "interrupts" properties are required 579 * if the driver wishes to create mappings or field interrupts on behalf 580 * of the device. 581 * 582 * The "reg" property is assumed to be a list of at least one triple 583 * 584 * <bustype, address, size>*1 585 * 586 * The "intr" property is assumed to be a list of at least one duple 587 * 588 * <SPARC ipl, vector#>*1 589 * 590 * The "interrupts" property is assumed to be a list of at least one 591 * n-tuples that describes the interrupt capabilities of the bus the device 592 * is connected to. For SBus, this looks like 593 * 594 * <SBus-level>*1 595 * 596 * (This property obsoletes the 'intr' property). 597 * 598 * The "ranges" property is optional. 599 */ 600 void 601 make_ddi_ppd(dev_info_t *child, struct ddi_parent_private_data **ppd) 602 { 603 struct ddi_parent_private_data *pdptr; 604 int n; 605 int *reg_prop, *rng_prop, *intr_prop, *irupts_prop; 606 uint_t reg_len, rng_len, intr_len, irupts_len; 607 608 *ppd = pdptr = kmem_zalloc(sizeof (*pdptr), KM_SLEEP); 609 610 /* 611 * Handle the 'reg' property. 612 */ 613 if ((get_prop_int_array(child, "reg", ®_prop, ®_len) == 614 DDI_PROP_SUCCESS) && (reg_len != 0)) { 615 pdptr->par_nreg = reg_len / (int)sizeof (struct regspec); 616 pdptr->par_reg = (struct regspec *)reg_prop; 617 } 618 619 /* 620 * See if I have a range (adding one where needed - this 621 * means to add one for sbus node in sun4c, when romvec > 0, 622 * if no range is already defined in the PROM node. 623 * (Currently no sun4c PROMS define range properties, 624 * but they should and may in the future.) For the SBus 625 * node, the range is defined by the SBus reg property. 626 */ 627 if (get_prop_int_array(child, "ranges", &rng_prop, &rng_len) 628 == DDI_PROP_SUCCESS) { 629 pdptr->par_nrng = rng_len / (int)(sizeof (struct rangespec)); 630 pdptr->par_rng = (struct rangespec *)rng_prop; 631 } 632 633 /* 634 * Handle the 'intr' and 'interrupts' properties 635 */ 636 637 /* 638 * For backwards compatibility 639 * we first look for the 'intr' property for the device. 640 */ 641 if (get_prop_int_array(child, "intr", &intr_prop, &intr_len) 642 != DDI_PROP_SUCCESS) { 643 intr_len = 0; 644 } 645 646 /* 647 * If we're to support bus adapters and future platforms cleanly, 648 * we need to support the generalized 'interrupts' property. 649 */ 650 if (get_prop_int_array(child, "interrupts", &irupts_prop, 651 &irupts_len) != DDI_PROP_SUCCESS) { 652 irupts_len = 0; 653 } else if (intr_len != 0) { 654 /* 655 * If both 'intr' and 'interrupts' are defined, 656 * then 'interrupts' wins and we toss the 'intr' away. 657 */ 658 ddi_prop_free((void *)intr_prop); 659 intr_len = 0; 660 } 661 662 if (intr_len != 0) { 663 664 /* 665 * Translate the 'intr' property into an array 666 * an array of struct intrspec's. There's not really 667 * very much to do here except copy what's out there. 668 */ 669 670 struct intrspec *new; 671 struct prop_ispec *l; 672 673 n = pdptr->par_nintr = intr_len / sizeof (struct prop_ispec); 674 l = (struct prop_ispec *)intr_prop; 675 pdptr->par_intr = 676 new = kmem_zalloc(n * sizeof (struct intrspec), KM_SLEEP); 677 while (n--) { 678 new->intrspec_pri = l->pri; 679 new->intrspec_vec = l->vec; 680 new++; 681 l++; 682 } 683 ddi_prop_free((void *)intr_prop); 684 685 } else if ((n = irupts_len) != 0) { 686 size_t size; 687 int *out; 688 689 /* 690 * Translate the 'interrupts' property into an array 691 * of intrspecs for the rest of the DDI framework to 692 * toy with. Only our ancestors really know how to 693 * do this, so ask 'em. We massage the 'interrupts' 694 * property so that it is pre-pended by a count of 695 * the number of integers in the argument. 696 */ 697 size = sizeof (int) + n; 698 out = kmem_alloc(size, KM_SLEEP); 699 *out = n / sizeof (int); 700 bcopy(irupts_prop, out + 1, (size_t)n); 701 ddi_prop_free((void *)irupts_prop); 702 if (impl_xlate_intrs(child, out, pdptr) != DDI_SUCCESS) { 703 cmn_err(CE_CONT, 704 "Unable to translate 'interrupts' for %s%d\n", 705 DEVI(child)->devi_binding_name, 706 DEVI(child)->devi_instance); 707 } 708 kmem_free(out, size); 709 } 710 } 711 712 /* 713 * Name a child 714 */ 715 static int 716 impl_sunbus_name_child(dev_info_t *child, char *name, int namelen) 717 { 718 /* 719 * Fill in parent-private data and this function returns to us 720 * an indication if it used "registers" to fill in the data. 721 */ 722 if (ddi_get_parent_data(child) == NULL) { 723 struct ddi_parent_private_data *pdptr; 724 make_ddi_ppd(child, &pdptr); 725 ddi_set_parent_data(child, pdptr); 726 } 727 728 name[0] = '\0'; 729 if (sparc_pd_getnreg(child) > 0) { 730 (void) snprintf(name, namelen, "%x,%x", 731 (uint_t)sparc_pd_getreg(child, 0)->regspec_bustype, 732 (uint_t)sparc_pd_getreg(child, 0)->regspec_addr); 733 } 734 735 return (DDI_SUCCESS); 736 } 737 738 /* 739 * Called from the bus_ctl op of sunbus (sbus, obio, etc) nexus drivers 740 * to implement the DDI_CTLOPS_INITCHILD operation. That is, it names 741 * the children of sun busses based on the reg spec. 742 * 743 * Handles the following properties (in make_ddi_ppd): 744 * Property value 745 * Name type 746 * reg register spec 747 * intr old-form interrupt spec 748 * interrupts new (bus-oriented) interrupt spec 749 * ranges range spec 750 */ 751 int 752 impl_ddi_sunbus_initchild(dev_info_t *child) 753 { 754 char name[MAXNAMELEN]; 755 void impl_ddi_sunbus_removechild(dev_info_t *); 756 757 /* 758 * Name the child, also makes parent private data 759 */ 760 (void) impl_sunbus_name_child(child, name, MAXNAMELEN); 761 ddi_set_name_addr(child, name); 762 763 /* 764 * Attempt to merge a .conf node; if successful, remove the 765 * .conf node. 766 */ 767 if ((ndi_dev_is_persistent_node(child) == 0) && 768 (ndi_merge_node(child, impl_sunbus_name_child) == DDI_SUCCESS)) { 769 /* 770 * Return failure to remove node 771 */ 772 impl_ddi_sunbus_removechild(child); 773 return (DDI_FAILURE); 774 } 775 return (DDI_SUCCESS); 776 } 777 778 void 779 impl_free_ddi_ppd(dev_info_t *dip) 780 { 781 struct ddi_parent_private_data *pdptr; 782 size_t n; 783 784 if ((pdptr = ddi_get_parent_data(dip)) == NULL) 785 return; 786 787 if ((n = (size_t)pdptr->par_nintr) != 0) 788 /* 789 * Note that kmem_free is used here (instead of 790 * ddi_prop_free) because the contents of the 791 * property were placed into a separate buffer and 792 * mucked with a bit before being stored in par_intr. 793 * The actual return value from the prop lookup 794 * was freed with ddi_prop_free previously. 795 */ 796 kmem_free(pdptr->par_intr, n * sizeof (struct intrspec)); 797 798 if ((n = (size_t)pdptr->par_nrng) != 0) 799 ddi_prop_free((void *)pdptr->par_rng); 800 801 if ((n = pdptr->par_nreg) != 0) 802 ddi_prop_free((void *)pdptr->par_reg); 803 804 kmem_free(pdptr, sizeof (*pdptr)); 805 ddi_set_parent_data(dip, NULL); 806 } 807 808 void 809 impl_ddi_sunbus_removechild(dev_info_t *dip) 810 { 811 impl_free_ddi_ppd(dip); 812 ddi_set_name_addr(dip, NULL); 813 /* 814 * Strip the node to properly convert it back to prototype form 815 */ 816 impl_rem_dev_props(dip); 817 } 818 819 /* 820 * DDI Interrupt 821 */ 822 823 /* 824 * turn this on to force isa, eisa, and mca device to ignore the new 825 * hardware nodes in the device tree (normally turned on only for 826 * drivers that need it by setting the property "ignore-hardware-nodes" 827 * in their driver.conf file). 828 * 829 * 7/31/96 -- Turned off globally. Leaving variable in for the moment 830 * as safety valve. 831 */ 832 int ignore_hardware_nodes = 0; 833 834 /* 835 * Local data 836 */ 837 static struct impl_bus_promops *impl_busp; 838 839 840 /* 841 * New DDI interrupt framework 842 */ 843 844 /* 845 * i_ddi_intr_ops: 846 * 847 * This is the interrupt operator function wrapper for the bus function 848 * bus_intr_op. 849 */ 850 int 851 i_ddi_intr_ops(dev_info_t *dip, dev_info_t *rdip, ddi_intr_op_t op, 852 ddi_intr_handle_impl_t *hdlp, void * result) 853 { 854 dev_info_t *pdip = (dev_info_t *)DEVI(dip)->devi_parent; 855 int ret = DDI_FAILURE; 856 857 /* request parent to process this interrupt op */ 858 if (NEXUS_HAS_INTR_OP(pdip)) 859 ret = (*(DEVI(pdip)->devi_ops->devo_bus_ops->bus_intr_op))( 860 pdip, rdip, op, hdlp, result); 861 else 862 cmn_err(CE_WARN, "Failed to process interrupt " 863 "for %s%d due to down-rev nexus driver %s%d", 864 ddi_get_name(rdip), ddi_get_instance(rdip), 865 ddi_get_name(pdip), ddi_get_instance(pdip)); 866 return (ret); 867 } 868 869 /* 870 * i_ddi_add_softint - allocate and add a soft interrupt to the system 871 */ 872 int 873 i_ddi_add_softint(ddi_softint_hdl_impl_t *hdlp) 874 { 875 int ret; 876 877 /* add soft interrupt handler */ 878 ret = add_avsoftintr((void *)hdlp, hdlp->ih_pri, hdlp->ih_cb_func, 879 DEVI(hdlp->ih_dip)->devi_name, hdlp->ih_cb_arg1, hdlp->ih_cb_arg2); 880 return (ret ? DDI_SUCCESS : DDI_FAILURE); 881 } 882 883 884 void 885 i_ddi_remove_softint(ddi_softint_hdl_impl_t *hdlp) 886 { 887 (void) rem_avsoftintr((void *)hdlp, hdlp->ih_pri, hdlp->ih_cb_func); 888 } 889 890 891 extern void (*setsoftint)(int, struct av_softinfo *); 892 extern boolean_t av_check_softint_pending(struct av_softinfo *, boolean_t); 893 894 int 895 i_ddi_trigger_softint(ddi_softint_hdl_impl_t *hdlp, void *arg2) 896 { 897 if (av_check_softint_pending(hdlp->ih_pending, B_FALSE)) 898 return (DDI_EPENDING); 899 900 update_avsoftintr_args((void *)hdlp, hdlp->ih_pri, arg2); 901 902 (*setsoftint)(hdlp->ih_pri, hdlp->ih_pending); 903 return (DDI_SUCCESS); 904 } 905 906 /* 907 * i_ddi_set_softint_pri: 908 * 909 * The way this works is that it first tries to add a softint vector 910 * at the new priority in hdlp. If that succeeds; then it removes the 911 * existing softint vector at the old priority. 912 */ 913 int 914 i_ddi_set_softint_pri(ddi_softint_hdl_impl_t *hdlp, uint_t old_pri) 915 { 916 int ret; 917 918 /* 919 * If a softint is pending at the old priority then fail the request. 920 */ 921 if (av_check_softint_pending(hdlp->ih_pending, B_TRUE)) 922 return (DDI_FAILURE); 923 924 ret = av_softint_movepri((void *)hdlp, old_pri); 925 return (ret ? DDI_SUCCESS : DDI_FAILURE); 926 } 927 928 void 929 i_ddi_alloc_intr_phdl(ddi_intr_handle_impl_t *hdlp) 930 { 931 hdlp->ih_private = (void *)kmem_zalloc(sizeof (ihdl_plat_t), KM_SLEEP); 932 } 933 934 void 935 i_ddi_free_intr_phdl(ddi_intr_handle_impl_t *hdlp) 936 { 937 kmem_free(hdlp->ih_private, sizeof (ihdl_plat_t)); 938 hdlp->ih_private = NULL; 939 } 940 941 int 942 i_ddi_get_intx_nintrs(dev_info_t *dip) 943 { 944 struct ddi_parent_private_data *pdp; 945 946 if ((pdp = ddi_get_parent_data(dip)) == NULL) 947 return (0); 948 949 return (pdp->par_nintr); 950 } 951 952 /* 953 * DDI Memory/DMA 954 */ 955 956 /* 957 * Support for allocating DMAable memory to implement 958 * ddi_dma_mem_alloc(9F) interface. 959 */ 960 961 #define KA_ALIGN_SHIFT 7 962 #define KA_ALIGN (1 << KA_ALIGN_SHIFT) 963 #define KA_NCACHE (PAGESHIFT + 1 - KA_ALIGN_SHIFT) 964 965 /* 966 * Dummy DMA attribute template for kmem_io[].kmem_io_attr. We only 967 * care about addr_lo, addr_hi, and align. addr_hi will be dynamically set. 968 */ 969 970 static ddi_dma_attr_t kmem_io_attr = { 971 DMA_ATTR_V0, 972 0x0000000000000000ULL, /* dma_attr_addr_lo */ 973 0x0000000000000000ULL, /* dma_attr_addr_hi */ 974 0x00ffffff, 975 0x1000, /* dma_attr_align */ 976 1, 1, 0xffffffffULL, 0xffffffffULL, 0x1, 1, 0 977 }; 978 979 /* kmem io memory ranges and indices */ 980 enum { 981 IO_4P, IO_64G, IO_4G, IO_2G, IO_1G, IO_512M, 982 IO_256M, IO_128M, IO_64M, IO_32M, IO_16M, MAX_MEM_RANGES 983 }; 984 985 static struct { 986 vmem_t *kmem_io_arena; 987 kmem_cache_t *kmem_io_cache[KA_NCACHE]; 988 ddi_dma_attr_t kmem_io_attr; 989 } kmem_io[MAX_MEM_RANGES]; 990 991 static int kmem_io_idx; /* index of first populated kmem_io[] */ 992 993 static page_t * 994 page_create_io_wrapper(void *addr, size_t len, int vmflag, void *arg) 995 { 996 extern page_t *page_create_io(vnode_t *, u_offset_t, uint_t, 997 uint_t, struct as *, caddr_t, ddi_dma_attr_t *); 998 999 return (page_create_io(&kvp, (u_offset_t)(uintptr_t)addr, len, 1000 PG_EXCL | ((vmflag & VM_NOSLEEP) ? 0 : PG_WAIT), &kas, addr, arg)); 1001 } 1002 1003 #ifdef __xpv 1004 static void 1005 segkmem_free_io(vmem_t *vmp, void *ptr, size_t size) 1006 { 1007 extern void page_destroy_io(page_t *); 1008 segkmem_xfree(vmp, ptr, size, &kvp, page_destroy_io); 1009 } 1010 #endif 1011 1012 static void * 1013 segkmem_alloc_io_4P(vmem_t *vmp, size_t size, int vmflag) 1014 { 1015 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1016 page_create_io_wrapper, &kmem_io[IO_4P].kmem_io_attr)); 1017 } 1018 1019 static void * 1020 segkmem_alloc_io_64G(vmem_t *vmp, size_t size, int vmflag) 1021 { 1022 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1023 page_create_io_wrapper, &kmem_io[IO_64G].kmem_io_attr)); 1024 } 1025 1026 static void * 1027 segkmem_alloc_io_4G(vmem_t *vmp, size_t size, int vmflag) 1028 { 1029 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1030 page_create_io_wrapper, &kmem_io[IO_4G].kmem_io_attr)); 1031 } 1032 1033 static void * 1034 segkmem_alloc_io_2G(vmem_t *vmp, size_t size, int vmflag) 1035 { 1036 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1037 page_create_io_wrapper, &kmem_io[IO_2G].kmem_io_attr)); 1038 } 1039 1040 static void * 1041 segkmem_alloc_io_1G(vmem_t *vmp, size_t size, int vmflag) 1042 { 1043 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1044 page_create_io_wrapper, &kmem_io[IO_1G].kmem_io_attr)); 1045 } 1046 1047 static void * 1048 segkmem_alloc_io_512M(vmem_t *vmp, size_t size, int vmflag) 1049 { 1050 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1051 page_create_io_wrapper, &kmem_io[IO_512M].kmem_io_attr)); 1052 } 1053 1054 static void * 1055 segkmem_alloc_io_256M(vmem_t *vmp, size_t size, int vmflag) 1056 { 1057 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1058 page_create_io_wrapper, &kmem_io[IO_256M].kmem_io_attr)); 1059 } 1060 1061 static void * 1062 segkmem_alloc_io_128M(vmem_t *vmp, size_t size, int vmflag) 1063 { 1064 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1065 page_create_io_wrapper, &kmem_io[IO_128M].kmem_io_attr)); 1066 } 1067 1068 static void * 1069 segkmem_alloc_io_64M(vmem_t *vmp, size_t size, int vmflag) 1070 { 1071 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1072 page_create_io_wrapper, &kmem_io[IO_64M].kmem_io_attr)); 1073 } 1074 1075 static void * 1076 segkmem_alloc_io_32M(vmem_t *vmp, size_t size, int vmflag) 1077 { 1078 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1079 page_create_io_wrapper, &kmem_io[IO_32M].kmem_io_attr)); 1080 } 1081 1082 static void * 1083 segkmem_alloc_io_16M(vmem_t *vmp, size_t size, int vmflag) 1084 { 1085 return (segkmem_xalloc(vmp, NULL, size, vmflag, 0, 1086 page_create_io_wrapper, &kmem_io[IO_16M].kmem_io_attr)); 1087 } 1088 1089 struct { 1090 uint64_t io_limit; 1091 char *io_name; 1092 void *(*io_alloc)(vmem_t *, size_t, int); 1093 int io_initial; /* kmem_io_init during startup */ 1094 } io_arena_params[MAX_MEM_RANGES] = { 1095 {0x000fffffffffffffULL, "kmem_io_4P", segkmem_alloc_io_4P, 1}, 1096 {0x0000000fffffffffULL, "kmem_io_64G", segkmem_alloc_io_64G, 0}, 1097 {0x00000000ffffffffULL, "kmem_io_4G", segkmem_alloc_io_4G, 1}, 1098 {0x000000007fffffffULL, "kmem_io_2G", segkmem_alloc_io_2G, 1}, 1099 {0x000000003fffffffULL, "kmem_io_1G", segkmem_alloc_io_1G, 0}, 1100 {0x000000001fffffffULL, "kmem_io_512M", segkmem_alloc_io_512M, 0}, 1101 {0x000000000fffffffULL, "kmem_io_256M", segkmem_alloc_io_256M, 0}, 1102 {0x0000000007ffffffULL, "kmem_io_128M", segkmem_alloc_io_128M, 0}, 1103 {0x0000000003ffffffULL, "kmem_io_64M", segkmem_alloc_io_64M, 0}, 1104 {0x0000000001ffffffULL, "kmem_io_32M", segkmem_alloc_io_32M, 0}, 1105 {0x0000000000ffffffULL, "kmem_io_16M", segkmem_alloc_io_16M, 1} 1106 }; 1107 1108 void 1109 kmem_io_init(int a) 1110 { 1111 int c; 1112 char name[40]; 1113 1114 kmem_io[a].kmem_io_arena = vmem_create(io_arena_params[a].io_name, 1115 NULL, 0, PAGESIZE, io_arena_params[a].io_alloc, 1116 #ifdef __xpv 1117 segkmem_free_io, 1118 #else 1119 segkmem_free, 1120 #endif 1121 heap_arena, 0, VM_SLEEP); 1122 1123 for (c = 0; c < KA_NCACHE; c++) { 1124 size_t size = KA_ALIGN << c; 1125 (void) sprintf(name, "%s_%lu", 1126 io_arena_params[a].io_name, size); 1127 kmem_io[a].kmem_io_cache[c] = kmem_cache_create(name, 1128 size, size, NULL, NULL, NULL, NULL, 1129 kmem_io[a].kmem_io_arena, 0); 1130 } 1131 } 1132 1133 /* 1134 * Return the index of the highest memory range for addr. 1135 */ 1136 static int 1137 kmem_io_index(uint64_t addr) 1138 { 1139 int n; 1140 1141 for (n = kmem_io_idx; n < MAX_MEM_RANGES; n++) { 1142 if (kmem_io[n].kmem_io_attr.dma_attr_addr_hi <= addr) { 1143 if (kmem_io[n].kmem_io_arena == NULL) 1144 kmem_io_init(n); 1145 return (n); 1146 } 1147 } 1148 panic("kmem_io_index: invalid addr - must be at least 16m"); 1149 1150 /*NOTREACHED*/ 1151 } 1152 1153 /* 1154 * Return the index of the next kmem_io populated memory range 1155 * after curindex. 1156 */ 1157 static int 1158 kmem_io_index_next(int curindex) 1159 { 1160 int n; 1161 1162 for (n = curindex + 1; n < MAX_MEM_RANGES; n++) { 1163 if (kmem_io[n].kmem_io_arena) 1164 return (n); 1165 } 1166 return (-1); 1167 } 1168 1169 /* 1170 * allow kmem to be mapped in with different PTE cache attribute settings. 1171 * Used by i_ddi_mem_alloc() 1172 */ 1173 int 1174 kmem_override_cache_attrs(caddr_t kva, size_t size, uint_t order) 1175 { 1176 uint_t hat_flags; 1177 caddr_t kva_end; 1178 uint_t hat_attr; 1179 pfn_t pfn; 1180 1181 if (hat_getattr(kas.a_hat, kva, &hat_attr) == -1) { 1182 return (-1); 1183 } 1184 1185 hat_attr &= ~HAT_ORDER_MASK; 1186 hat_attr |= order | HAT_NOSYNC; 1187 hat_flags = HAT_LOAD_LOCK; 1188 1189 kva_end = (caddr_t)(((uintptr_t)kva + size + PAGEOFFSET) & 1190 (uintptr_t)PAGEMASK); 1191 kva = (caddr_t)((uintptr_t)kva & (uintptr_t)PAGEMASK); 1192 1193 while (kva < kva_end) { 1194 pfn = hat_getpfnum(kas.a_hat, kva); 1195 hat_unload(kas.a_hat, kva, PAGESIZE, HAT_UNLOAD_UNLOCK); 1196 hat_devload(kas.a_hat, kva, PAGESIZE, pfn, hat_attr, hat_flags); 1197 kva += MMU_PAGESIZE; 1198 } 1199 1200 return (0); 1201 } 1202 1203 static int 1204 ctgcompare(const void *a1, const void *a2) 1205 { 1206 /* we just want to compare virtual addresses */ 1207 a1 = ((struct ctgas *)a1)->ctg_addr; 1208 a2 = ((struct ctgas *)a2)->ctg_addr; 1209 return (a1 == a2 ? 0 : (a1 < a2 ? -1 : 1)); 1210 } 1211 1212 void 1213 ka_init(void) 1214 { 1215 int a; 1216 paddr_t maxphysaddr; 1217 #if !defined(__xpv) 1218 extern pfn_t physmax; 1219 1220 maxphysaddr = mmu_ptob((paddr_t)physmax) + MMU_PAGEOFFSET; 1221 #else 1222 maxphysaddr = mmu_ptob((paddr_t)HYPERVISOR_memory_op( 1223 XENMEM_maximum_ram_page, NULL)) + MMU_PAGEOFFSET; 1224 #endif 1225 1226 ASSERT(maxphysaddr <= io_arena_params[0].io_limit); 1227 1228 for (a = 0; a < MAX_MEM_RANGES; a++) { 1229 if (maxphysaddr >= io_arena_params[a + 1].io_limit) { 1230 if (maxphysaddr > io_arena_params[a + 1].io_limit) 1231 io_arena_params[a].io_limit = maxphysaddr; 1232 else 1233 a++; 1234 break; 1235 } 1236 } 1237 kmem_io_idx = a; 1238 1239 for (; a < MAX_MEM_RANGES; a++) { 1240 kmem_io[a].kmem_io_attr = kmem_io_attr; 1241 kmem_io[a].kmem_io_attr.dma_attr_addr_hi = 1242 io_arena_params[a].io_limit; 1243 /* 1244 * initialize kmem_io[] arena/cache corresponding to 1245 * maxphysaddr and to the "common" io memory ranges that 1246 * have io_initial set to a non-zero value. 1247 */ 1248 if (io_arena_params[a].io_initial || a == kmem_io_idx) 1249 kmem_io_init(a); 1250 } 1251 1252 /* initialize ctgtree */ 1253 avl_create(&ctgtree, ctgcompare, sizeof (struct ctgas), 1254 offsetof(struct ctgas, ctg_link)); 1255 } 1256 1257 /* 1258 * put contig address/size 1259 */ 1260 static void * 1261 putctgas(void *addr, size_t size) 1262 { 1263 struct ctgas *ctgp; 1264 if ((ctgp = kmem_zalloc(sizeof (*ctgp), KM_NOSLEEP)) != NULL) { 1265 ctgp->ctg_addr = addr; 1266 ctgp->ctg_size = size; 1267 CTGLOCK(); 1268 avl_add(&ctgtree, ctgp); 1269 CTGUNLOCK(); 1270 } 1271 return (ctgp); 1272 } 1273 1274 /* 1275 * get contig size by addr 1276 */ 1277 static size_t 1278 getctgsz(void *addr) 1279 { 1280 struct ctgas *ctgp; 1281 struct ctgas find; 1282 size_t sz = 0; 1283 1284 find.ctg_addr = addr; 1285 CTGLOCK(); 1286 if ((ctgp = avl_find(&ctgtree, &find, NULL)) != NULL) { 1287 avl_remove(&ctgtree, ctgp); 1288 } 1289 CTGUNLOCK(); 1290 1291 if (ctgp != NULL) { 1292 sz = ctgp->ctg_size; 1293 kmem_free(ctgp, sizeof (*ctgp)); 1294 } 1295 1296 return (sz); 1297 } 1298 1299 /* 1300 * contig_alloc: 1301 * 1302 * allocates contiguous memory to satisfy the 'size' and dma attributes 1303 * specified in 'attr'. 1304 * 1305 * Not all of memory need to be physically contiguous if the 1306 * scatter-gather list length is greater than 1. 1307 */ 1308 1309 /*ARGSUSED*/ 1310 void * 1311 contig_alloc(size_t size, ddi_dma_attr_t *attr, uintptr_t align, int cansleep) 1312 { 1313 pgcnt_t pgcnt = btopr(size); 1314 size_t asize = pgcnt * PAGESIZE; 1315 page_t *ppl; 1316 int pflag; 1317 void *addr; 1318 1319 extern page_t *page_create_io(vnode_t *, u_offset_t, uint_t, 1320 uint_t, struct as *, caddr_t, ddi_dma_attr_t *); 1321 1322 /* segkmem_xalloc */ 1323 1324 if (align <= PAGESIZE) 1325 addr = vmem_alloc(heap_arena, asize, 1326 (cansleep) ? VM_SLEEP : VM_NOSLEEP); 1327 else 1328 addr = vmem_xalloc(heap_arena, asize, align, 0, 0, NULL, NULL, 1329 (cansleep) ? VM_SLEEP : VM_NOSLEEP); 1330 if (addr) { 1331 ASSERT(!((uintptr_t)addr & (align - 1))); 1332 1333 if (page_resv(pgcnt, (cansleep) ? KM_SLEEP : KM_NOSLEEP) == 0) { 1334 vmem_free(heap_arena, addr, asize); 1335 return (NULL); 1336 } 1337 pflag = PG_EXCL; 1338 1339 if (cansleep) 1340 pflag |= PG_WAIT; 1341 1342 /* 4k req gets from freelists rather than pfn search */ 1343 if (pgcnt > 1 || align > PAGESIZE) 1344 pflag |= PG_PHYSCONTIG; 1345 1346 ppl = page_create_io(&kvp, (u_offset_t)(uintptr_t)addr, 1347 asize, pflag, &kas, (caddr_t)addr, attr); 1348 1349 if (!ppl) { 1350 vmem_free(heap_arena, addr, asize); 1351 page_unresv(pgcnt); 1352 return (NULL); 1353 } 1354 1355 while (ppl != NULL) { 1356 page_t *pp = ppl; 1357 page_sub(&ppl, pp); 1358 ASSERT(page_iolock_assert(pp)); 1359 page_io_unlock(pp); 1360 page_downgrade(pp); 1361 hat_memload(kas.a_hat, (caddr_t)(uintptr_t)pp->p_offset, 1362 pp, (PROT_ALL & ~PROT_USER) | 1363 HAT_NOSYNC, HAT_LOAD_LOCK); 1364 } 1365 } 1366 return (addr); 1367 } 1368 1369 void 1370 contig_free(void *addr, size_t size) 1371 { 1372 pgcnt_t pgcnt = btopr(size); 1373 size_t asize = pgcnt * PAGESIZE; 1374 caddr_t a, ea; 1375 page_t *pp; 1376 1377 hat_unload(kas.a_hat, addr, asize, HAT_UNLOAD_UNLOCK); 1378 1379 for (a = addr, ea = a + asize; a < ea; a += PAGESIZE) { 1380 pp = page_find(&kvp, (u_offset_t)(uintptr_t)a); 1381 if (!pp) 1382 panic("contig_free: contig pp not found"); 1383 1384 if (!page_tryupgrade(pp)) { 1385 page_unlock(pp); 1386 pp = page_lookup(&kvp, 1387 (u_offset_t)(uintptr_t)a, SE_EXCL); 1388 if (pp == NULL) 1389 panic("contig_free: page freed"); 1390 } 1391 page_destroy(pp, 0); 1392 } 1393 1394 page_unresv(pgcnt); 1395 vmem_free(heap_arena, addr, asize); 1396 } 1397 1398 /* 1399 * Allocate from the system, aligned on a specific boundary. 1400 * The alignment, if non-zero, must be a power of 2. 1401 */ 1402 static void * 1403 kalloca(size_t size, size_t align, int cansleep, int physcontig, 1404 ddi_dma_attr_t *attr) 1405 { 1406 size_t *addr, *raddr, rsize; 1407 size_t hdrsize = 4 * sizeof (size_t); /* must be power of 2 */ 1408 int a, i, c; 1409 vmem_t *vmp = NULL; 1410 kmem_cache_t *cp = NULL; 1411 1412 if (attr->dma_attr_addr_lo > mmu_ptob((uint64_t)ddiphysmin)) 1413 return (NULL); 1414 1415 align = MAX(align, hdrsize); 1416 ASSERT((align & (align - 1)) == 0); 1417 1418 /* 1419 * All of our allocators guarantee 16-byte alignment, so we don't 1420 * need to reserve additional space for the header. 1421 * To simplify picking the correct kmem_io_cache, we round up to 1422 * a multiple of KA_ALIGN. 1423 */ 1424 rsize = P2ROUNDUP_TYPED(size + align, KA_ALIGN, size_t); 1425 1426 if (physcontig && rsize > PAGESIZE) { 1427 if (addr = contig_alloc(size, attr, align, cansleep)) { 1428 if (!putctgas(addr, size)) 1429 contig_free(addr, size); 1430 else 1431 return (addr); 1432 } 1433 return (NULL); 1434 } 1435 1436 a = kmem_io_index(attr->dma_attr_addr_hi); 1437 1438 if (rsize > PAGESIZE) { 1439 vmp = kmem_io[a].kmem_io_arena; 1440 raddr = vmem_alloc(vmp, rsize, 1441 (cansleep) ? VM_SLEEP : VM_NOSLEEP); 1442 } else { 1443 c = highbit((rsize >> KA_ALIGN_SHIFT) - 1); 1444 cp = kmem_io[a].kmem_io_cache[c]; 1445 raddr = kmem_cache_alloc(cp, (cansleep) ? KM_SLEEP : 1446 KM_NOSLEEP); 1447 } 1448 1449 if (raddr == NULL) { 1450 int na; 1451 1452 ASSERT(cansleep == 0); 1453 if (rsize > PAGESIZE) 1454 return (NULL); 1455 /* 1456 * System does not have memory in the requested range. 1457 * Try smaller kmem io ranges and larger cache sizes 1458 * to see if there might be memory available in 1459 * these other caches. 1460 */ 1461 1462 for (na = kmem_io_index_next(a); na >= 0; 1463 na = kmem_io_index_next(na)) { 1464 ASSERT(kmem_io[na].kmem_io_arena); 1465 cp = kmem_io[na].kmem_io_cache[c]; 1466 raddr = kmem_cache_alloc(cp, KM_NOSLEEP); 1467 if (raddr) 1468 goto kallocdone; 1469 } 1470 /* now try the larger kmem io cache sizes */ 1471 for (na = a; na >= 0; na = kmem_io_index_next(na)) { 1472 for (i = c + 1; i < KA_NCACHE; i++) { 1473 cp = kmem_io[na].kmem_io_cache[i]; 1474 raddr = kmem_cache_alloc(cp, KM_NOSLEEP); 1475 if (raddr) 1476 goto kallocdone; 1477 } 1478 } 1479 return (NULL); 1480 } 1481 1482 kallocdone: 1483 ASSERT(!P2BOUNDARY((uintptr_t)raddr, rsize, PAGESIZE) || 1484 rsize > PAGESIZE); 1485 1486 addr = (size_t *)P2ROUNDUP((uintptr_t)raddr + hdrsize, align); 1487 ASSERT((uintptr_t)addr + size - (uintptr_t)raddr <= rsize); 1488 1489 addr[-4] = (size_t)cp; 1490 addr[-3] = (size_t)vmp; 1491 addr[-2] = (size_t)raddr; 1492 addr[-1] = rsize; 1493 1494 return (addr); 1495 } 1496 1497 static void 1498 kfreea(void *addr) 1499 { 1500 size_t size; 1501 1502 if (!((uintptr_t)addr & PAGEOFFSET) && (size = getctgsz(addr))) { 1503 contig_free(addr, size); 1504 } else { 1505 size_t *saddr = addr; 1506 if (saddr[-4] == 0) 1507 vmem_free((vmem_t *)saddr[-3], (void *)saddr[-2], 1508 saddr[-1]); 1509 else 1510 kmem_cache_free((kmem_cache_t *)saddr[-4], 1511 (void *)saddr[-2]); 1512 } 1513 } 1514 1515 /*ARGSUSED*/ 1516 void 1517 i_ddi_devacc_to_hatacc(ddi_device_acc_attr_t *devaccp, uint_t *hataccp) 1518 { 1519 } 1520 1521 /* 1522 * Check if the specified cache attribute is supported on the platform. 1523 * This function must be called before i_ddi_cacheattr_to_hatacc(). 1524 */ 1525 boolean_t 1526 i_ddi_check_cache_attr(uint_t flags) 1527 { 1528 /* 1529 * The cache attributes are mutually exclusive. Any combination of 1530 * the attributes leads to a failure. 1531 */ 1532 uint_t cache_attr = IOMEM_CACHE_ATTR(flags); 1533 if ((cache_attr != 0) && !ISP2(cache_attr)) 1534 return (B_FALSE); 1535 1536 /* All cache attributes are supported on X86/X64 */ 1537 if (cache_attr & (IOMEM_DATA_UNCACHED | IOMEM_DATA_CACHED | 1538 IOMEM_DATA_UC_WR_COMBINE)) 1539 return (B_TRUE); 1540 1541 /* undefined attributes */ 1542 return (B_FALSE); 1543 } 1544 1545 /* set HAT cache attributes from the cache attributes */ 1546 void 1547 i_ddi_cacheattr_to_hatacc(uint_t flags, uint_t *hataccp) 1548 { 1549 uint_t cache_attr = IOMEM_CACHE_ATTR(flags); 1550 static char *fname = "i_ddi_cacheattr_to_hatacc"; 1551 1552 /* 1553 * If write-combining is not supported, then it falls back 1554 * to uncacheable. 1555 */ 1556 if (cache_attr == IOMEM_DATA_UC_WR_COMBINE && 1557 !is_x86_feature(x86_featureset, X86FSET_PAT)) 1558 cache_attr = IOMEM_DATA_UNCACHED; 1559 1560 /* 1561 * set HAT attrs according to the cache attrs. 1562 */ 1563 switch (cache_attr) { 1564 case IOMEM_DATA_UNCACHED: 1565 *hataccp &= ~HAT_ORDER_MASK; 1566 *hataccp |= (HAT_STRICTORDER | HAT_PLAT_NOCACHE); 1567 break; 1568 case IOMEM_DATA_UC_WR_COMBINE: 1569 *hataccp &= ~HAT_ORDER_MASK; 1570 *hataccp |= (HAT_MERGING_OK | HAT_PLAT_NOCACHE); 1571 break; 1572 case IOMEM_DATA_CACHED: 1573 *hataccp &= ~HAT_ORDER_MASK; 1574 *hataccp |= HAT_UNORDERED_OK; 1575 break; 1576 /* 1577 * This case must not occur because the cache attribute is scrutinized 1578 * before this function is called. 1579 */ 1580 default: 1581 /* 1582 * set cacheable to hat attrs. 1583 */ 1584 *hataccp &= ~HAT_ORDER_MASK; 1585 *hataccp |= HAT_UNORDERED_OK; 1586 cmn_err(CE_WARN, "%s: cache_attr=0x%x is ignored.", 1587 fname, cache_attr); 1588 } 1589 } 1590 1591 /* 1592 * This should actually be called i_ddi_dma_mem_alloc. There should 1593 * also be an i_ddi_pio_mem_alloc. i_ddi_dma_mem_alloc should call 1594 * through the device tree with the DDI_CTLOPS_DMA_ALIGN ctl ops to 1595 * get alignment requirements for DMA memory. i_ddi_pio_mem_alloc 1596 * should use DDI_CTLOPS_PIO_ALIGN. Since we only have i_ddi_mem_alloc 1597 * so far which is used for both, DMA and PIO, we have to use the DMA 1598 * ctl ops to make everybody happy. 1599 */ 1600 /*ARGSUSED*/ 1601 int 1602 i_ddi_mem_alloc(dev_info_t *dip, ddi_dma_attr_t *attr, 1603 size_t length, int cansleep, int flags, 1604 ddi_device_acc_attr_t *accattrp, caddr_t *kaddrp, 1605 size_t *real_length, ddi_acc_hdl_t *ap) 1606 { 1607 caddr_t a; 1608 int iomin; 1609 ddi_acc_impl_t *iap; 1610 int physcontig = 0; 1611 pgcnt_t npages; 1612 pgcnt_t minctg; 1613 uint_t order; 1614 int e; 1615 1616 /* 1617 * Check legality of arguments 1618 */ 1619 if (length == 0 || kaddrp == NULL || attr == NULL) { 1620 return (DDI_FAILURE); 1621 } 1622 1623 if (attr->dma_attr_minxfer == 0 || attr->dma_attr_align == 0 || 1624 !ISP2(attr->dma_attr_align) || !ISP2(attr->dma_attr_minxfer)) { 1625 return (DDI_FAILURE); 1626 } 1627 1628 /* 1629 * figure out most restrictive alignment requirement 1630 */ 1631 iomin = attr->dma_attr_minxfer; 1632 iomin = maxbit(iomin, attr->dma_attr_align); 1633 if (iomin == 0) 1634 return (DDI_FAILURE); 1635 1636 ASSERT((iomin & (iomin - 1)) == 0); 1637 1638 /* 1639 * if we allocate memory with IOMEM_DATA_UNCACHED or 1640 * IOMEM_DATA_UC_WR_COMBINE, make sure we allocate a page aligned 1641 * memory that ends on a page boundry. 1642 * Don't want to have to different cache mappings to the same 1643 * physical page. 1644 */ 1645 if (OVERRIDE_CACHE_ATTR(flags)) { 1646 iomin = (iomin + MMU_PAGEOFFSET) & MMU_PAGEMASK; 1647 length = (length + MMU_PAGEOFFSET) & (size_t)MMU_PAGEMASK; 1648 } 1649 1650 /* 1651 * Determine if we need to satisfy the request for physically 1652 * contiguous memory or alignments larger than pagesize. 1653 */ 1654 npages = btopr(length + attr->dma_attr_align); 1655 minctg = howmany(npages, attr->dma_attr_sgllen); 1656 1657 if (minctg > 1) { 1658 uint64_t pfnseg = attr->dma_attr_seg >> PAGESHIFT; 1659 /* 1660 * verify that the minimum contig requirement for the 1661 * actual length does not cross segment boundary. 1662 */ 1663 length = P2ROUNDUP_TYPED(length, attr->dma_attr_minxfer, 1664 size_t); 1665 npages = btopr(length); 1666 minctg = howmany(npages, attr->dma_attr_sgllen); 1667 if (minctg > pfnseg + 1) 1668 return (DDI_FAILURE); 1669 physcontig = 1; 1670 } else { 1671 length = P2ROUNDUP_TYPED(length, iomin, size_t); 1672 } 1673 1674 /* 1675 * Allocate the requested amount from the system. 1676 */ 1677 a = kalloca(length, iomin, cansleep, physcontig, attr); 1678 1679 if ((*kaddrp = a) == NULL) 1680 return (DDI_FAILURE); 1681 1682 /* 1683 * if we to modify the cache attributes, go back and muck with the 1684 * mappings. 1685 */ 1686 if (OVERRIDE_CACHE_ATTR(flags)) { 1687 order = 0; 1688 i_ddi_cacheattr_to_hatacc(flags, &order); 1689 e = kmem_override_cache_attrs(a, length, order); 1690 if (e != 0) { 1691 kfreea(a); 1692 return (DDI_FAILURE); 1693 } 1694 } 1695 1696 if (real_length) { 1697 *real_length = length; 1698 } 1699 if (ap) { 1700 /* 1701 * initialize access handle 1702 */ 1703 iap = (ddi_acc_impl_t *)ap->ah_platform_private; 1704 iap->ahi_acc_attr |= DDI_ACCATTR_CPU_VADDR; 1705 impl_acc_hdl_init(ap); 1706 } 1707 1708 return (DDI_SUCCESS); 1709 } 1710 1711 /* ARGSUSED */ 1712 void 1713 i_ddi_mem_free(caddr_t kaddr, ddi_acc_hdl_t *ap) 1714 { 1715 if (ap != NULL) { 1716 /* 1717 * if we modified the cache attributes on alloc, go back and 1718 * fix them since this memory could be returned to the 1719 * general pool. 1720 */ 1721 if (OVERRIDE_CACHE_ATTR(ap->ah_xfermodes)) { 1722 uint_t order = 0; 1723 int e; 1724 i_ddi_cacheattr_to_hatacc(IOMEM_DATA_CACHED, &order); 1725 e = kmem_override_cache_attrs(kaddr, ap->ah_len, order); 1726 if (e != 0) { 1727 cmn_err(CE_WARN, "i_ddi_mem_free() failed to " 1728 "override cache attrs, memory leaked\n"); 1729 return; 1730 } 1731 } 1732 } 1733 kfreea(kaddr); 1734 } 1735 1736 /* 1737 * Access Barriers 1738 * 1739 */ 1740 /*ARGSUSED*/ 1741 int 1742 i_ddi_ontrap(ddi_acc_handle_t hp) 1743 { 1744 return (DDI_FAILURE); 1745 } 1746 1747 /*ARGSUSED*/ 1748 void 1749 i_ddi_notrap(ddi_acc_handle_t hp) 1750 { 1751 } 1752 1753 1754 /* 1755 * Misc Functions 1756 */ 1757 1758 /* 1759 * Implementation instance override functions 1760 * 1761 * No override on i86pc 1762 */ 1763 /*ARGSUSED*/ 1764 uint_t 1765 impl_assign_instance(dev_info_t *dip) 1766 { 1767 return ((uint_t)-1); 1768 } 1769 1770 /*ARGSUSED*/ 1771 int 1772 impl_keep_instance(dev_info_t *dip) 1773 { 1774 1775 #if defined(__xpv) 1776 /* 1777 * Do not persist instance numbers assigned to devices in dom0 1778 */ 1779 dev_info_t *pdip; 1780 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 1781 if (((pdip = ddi_get_parent(dip)) != NULL) && 1782 (strcmp(ddi_get_name(pdip), "xpvd") == 0)) 1783 return (DDI_SUCCESS); 1784 } 1785 #endif 1786 return (DDI_FAILURE); 1787 } 1788 1789 /*ARGSUSED*/ 1790 int 1791 impl_free_instance(dev_info_t *dip) 1792 { 1793 return (DDI_FAILURE); 1794 } 1795 1796 /*ARGSUSED*/ 1797 int 1798 impl_check_cpu(dev_info_t *devi) 1799 { 1800 return (DDI_SUCCESS); 1801 } 1802 1803 /* 1804 * Referenced in common/cpr_driver.c: Power off machine. 1805 * Don't know how to power off i86pc. 1806 */ 1807 void 1808 arch_power_down() 1809 {} 1810 1811 /* 1812 * Copy name to property_name, since name 1813 * is in the low address range below kernelbase. 1814 */ 1815 static void 1816 copy_boot_str(const char *boot_str, char *kern_str, int len) 1817 { 1818 int i = 0; 1819 1820 while (i < len - 1 && boot_str[i] != '\0') { 1821 kern_str[i] = boot_str[i]; 1822 i++; 1823 } 1824 1825 kern_str[i] = 0; /* null terminate */ 1826 if (boot_str[i] != '\0') 1827 cmn_err(CE_WARN, 1828 "boot property string is truncated to %s", kern_str); 1829 } 1830 1831 static void 1832 get_boot_properties(void) 1833 { 1834 extern char hw_provider[]; 1835 dev_info_t *devi; 1836 char *name; 1837 int length, flags; 1838 char property_name[50], property_val[50]; 1839 void *bop_staging_area; 1840 1841 bop_staging_area = kmem_zalloc(MMU_PAGESIZE, KM_NOSLEEP); 1842 1843 /* 1844 * Import "root" properties from the boot. 1845 * 1846 * We do this by invoking BOP_NEXTPROP until the list 1847 * is completely copied in. 1848 */ 1849 1850 devi = ddi_root_node(); 1851 for (name = BOP_NEXTPROP(bootops, ""); /* get first */ 1852 name; /* NULL => DONE */ 1853 name = BOP_NEXTPROP(bootops, name)) { /* get next */ 1854 1855 /* copy string to memory above kernelbase */ 1856 copy_boot_str(name, property_name, 50); 1857 1858 /* 1859 * Skip vga properties. They will be picked up later 1860 * by get_vga_properties. 1861 */ 1862 if (strcmp(property_name, "display-edif-block") == 0 || 1863 strcmp(property_name, "display-edif-id") == 0) { 1864 continue; 1865 } 1866 1867 length = BOP_GETPROPLEN(bootops, property_name); 1868 if (length < 0) 1869 continue; 1870 if (length > MMU_PAGESIZE) { 1871 cmn_err(CE_NOTE, 1872 "boot property %s longer than 0x%x, ignored\n", 1873 property_name, MMU_PAGESIZE); 1874 continue; 1875 } 1876 BOP_GETPROP(bootops, property_name, bop_staging_area); 1877 flags = do_bsys_getproptype(bootops, property_name); 1878 1879 /* 1880 * special properties: 1881 * si-machine, si-hw-provider 1882 * goes to kernel data structures. 1883 * bios-boot-device and stdout 1884 * goes to hardware property list so it may show up 1885 * in the prtconf -vp output. This is needed by 1886 * Install/Upgrade. Once we fix install upgrade, 1887 * this can be taken out. 1888 */ 1889 if (strcmp(name, "si-machine") == 0) { 1890 (void) strncpy(utsname.machine, bop_staging_area, 1891 SYS_NMLN); 1892 utsname.machine[SYS_NMLN - 1] = '\0'; 1893 continue; 1894 } 1895 if (strcmp(name, "si-hw-provider") == 0) { 1896 (void) strncpy(hw_provider, bop_staging_area, SYS_NMLN); 1897 hw_provider[SYS_NMLN - 1] = '\0'; 1898 continue; 1899 } 1900 if (strcmp(name, "bios-boot-device") == 0) { 1901 copy_boot_str(bop_staging_area, property_val, 50); 1902 (void) ndi_prop_update_string(DDI_DEV_T_NONE, devi, 1903 property_name, property_val); 1904 continue; 1905 } 1906 if (strcmp(name, "stdout") == 0) { 1907 (void) ndi_prop_update_int(DDI_DEV_T_NONE, devi, 1908 property_name, *((int *)bop_staging_area)); 1909 continue; 1910 } 1911 1912 /* Boolean property */ 1913 if (length == 0) { 1914 (void) e_ddi_prop_create(DDI_DEV_T_NONE, devi, 1915 DDI_PROP_CANSLEEP, property_name, NULL, 0); 1916 continue; 1917 } 1918 1919 /* Now anything else based on type. */ 1920 switch (flags) { 1921 case DDI_PROP_TYPE_INT: 1922 if (length == sizeof (int)) { 1923 (void) e_ddi_prop_update_int(DDI_DEV_T_NONE, 1924 devi, property_name, 1925 *((int *)bop_staging_area)); 1926 } else { 1927 (void) e_ddi_prop_update_int_array( 1928 DDI_DEV_T_NONE, devi, property_name, 1929 bop_staging_area, length / sizeof (int)); 1930 } 1931 break; 1932 case DDI_PROP_TYPE_STRING: 1933 (void) e_ddi_prop_update_string(DDI_DEV_T_NONE, devi, 1934 property_name, bop_staging_area); 1935 break; 1936 case DDI_PROP_TYPE_BYTE: 1937 (void) e_ddi_prop_update_byte_array(DDI_DEV_T_NONE, 1938 devi, property_name, bop_staging_area, length); 1939 break; 1940 case DDI_PROP_TYPE_INT64: 1941 if (length == sizeof (int64_t)) { 1942 (void) e_ddi_prop_update_int64(DDI_DEV_T_NONE, 1943 devi, property_name, 1944 *((int64_t *)bop_staging_area)); 1945 } else { 1946 (void) e_ddi_prop_update_int64_array( 1947 DDI_DEV_T_NONE, devi, property_name, 1948 bop_staging_area, 1949 length / sizeof (int64_t)); 1950 } 1951 break; 1952 default: 1953 /* Property type unknown, use old prop interface */ 1954 (void) e_ddi_prop_create(DDI_DEV_T_NONE, devi, 1955 DDI_PROP_CANSLEEP, property_name, bop_staging_area, 1956 length); 1957 } 1958 } 1959 1960 kmem_free(bop_staging_area, MMU_PAGESIZE); 1961 } 1962 1963 static void 1964 get_vga_properties(void) 1965 { 1966 dev_info_t *devi; 1967 major_t major; 1968 char *name; 1969 int length; 1970 char property_val[50]; 1971 void *bop_staging_area; 1972 1973 /* 1974 * XXXX Hack Allert! 1975 * There really needs to be a better way for identifying various 1976 * console framebuffers and their related issues. Till then, 1977 * check for this one as a replacement to vgatext. 1978 */ 1979 major = ddi_name_to_major("ragexl"); 1980 if (major == (major_t)-1) { 1981 major = ddi_name_to_major("vgatext"); 1982 if (major == (major_t)-1) 1983 return; 1984 } 1985 devi = devnamesp[major].dn_head; 1986 if (devi == NULL) 1987 return; 1988 1989 bop_staging_area = kmem_zalloc(MMU_PAGESIZE, KM_SLEEP); 1990 1991 /* 1992 * Import "vga" properties from the boot. 1993 */ 1994 name = "display-edif-block"; 1995 length = BOP_GETPROPLEN(bootops, name); 1996 if (length > 0 && length < MMU_PAGESIZE) { 1997 BOP_GETPROP(bootops, name, bop_staging_area); 1998 (void) ndi_prop_update_byte_array(DDI_DEV_T_NONE, 1999 devi, name, bop_staging_area, length); 2000 } 2001 2002 /* 2003 * kdmconfig is also looking for display-type and 2004 * video-adapter-type. We default to color and svga. 2005 * 2006 * Could it be "monochrome", "vga"? 2007 * Nah, you've got to come to the 21st century... 2008 * And you can set monitor type manually in kdmconfig 2009 * if you are really an old junky. 2010 */ 2011 (void) ndi_prop_update_string(DDI_DEV_T_NONE, 2012 devi, "display-type", "color"); 2013 (void) ndi_prop_update_string(DDI_DEV_T_NONE, 2014 devi, "video-adapter-type", "svga"); 2015 2016 name = "display-edif-id"; 2017 length = BOP_GETPROPLEN(bootops, name); 2018 if (length > 0 && length < MMU_PAGESIZE) { 2019 BOP_GETPROP(bootops, name, bop_staging_area); 2020 copy_boot_str(bop_staging_area, property_val, length); 2021 (void) ndi_prop_update_string(DDI_DEV_T_NONE, 2022 devi, name, property_val); 2023 } 2024 2025 kmem_free(bop_staging_area, MMU_PAGESIZE); 2026 } 2027 2028 /* 2029 * Copy console font to kernel memory. The temporary font setup 2030 * to use font module was done in early console setup, using low 2031 * memory and data from font module. Now we need to allocate 2032 * kernel memory and copy data over, so the low memory can be freed. 2033 * We can have at most one entry in font list from early boot. 2034 */ 2035 static void 2036 get_console_font(void) 2037 { 2038 struct fontlist *fp, *fl; 2039 bitmap_data_t *bd; 2040 struct font *fd, *tmp; 2041 int i; 2042 2043 if (STAILQ_EMPTY(&fonts)) 2044 return; 2045 2046 fl = STAILQ_FIRST(&fonts); 2047 STAILQ_REMOVE_HEAD(&fonts, font_next); 2048 fp = kmem_zalloc(sizeof (*fp), KM_SLEEP); 2049 bd = kmem_zalloc(sizeof (*bd), KM_SLEEP); 2050 fd = kmem_zalloc(sizeof (*fd), KM_SLEEP); 2051 2052 fp->font_name = NULL; 2053 fp->font_flags = FONT_BOOT; 2054 fp->font_data = bd; 2055 2056 bd->width = fl->font_data->width; 2057 bd->height = fl->font_data->height; 2058 bd->uncompressed_size = fl->font_data->uncompressed_size; 2059 bd->font = fd; 2060 2061 tmp = fl->font_data->font; 2062 fd->vf_width = tmp->vf_width; 2063 fd->vf_height = tmp->vf_height; 2064 for (i = 0; i < VFNT_MAPS; i++) { 2065 if (tmp->vf_map_count[i] == 0) 2066 continue; 2067 fd->vf_map_count[i] = tmp->vf_map_count[i]; 2068 fd->vf_map[i] = kmem_alloc(fd->vf_map_count[i] * 2069 sizeof (*fd->vf_map[i]), KM_SLEEP); 2070 bcopy(tmp->vf_map[i], fd->vf_map[i], fd->vf_map_count[i] * 2071 sizeof (*fd->vf_map[i])); 2072 } 2073 fd->vf_bytes = kmem_alloc(bd->uncompressed_size, KM_SLEEP); 2074 bcopy(tmp->vf_bytes, fd->vf_bytes, bd->uncompressed_size); 2075 STAILQ_INSERT_HEAD(&fonts, fp, font_next); 2076 } 2077 2078 /* 2079 * This is temporary, but absolutely necessary. If we are being 2080 * booted with a device tree created by the DevConf project's bootconf 2081 * program, then we have device information nodes that reflect 2082 * reality. At this point in time in the Solaris release schedule, the 2083 * kernel drivers aren't prepared for reality. They still depend on their 2084 * own ad-hoc interpretations of the properties created when their .conf 2085 * files were interpreted. These drivers use an "ignore-hardware-nodes" 2086 * property to prevent them from using the nodes passed up from the bootconf 2087 * device tree. 2088 * 2089 * Trying to assemble root file system drivers as we are booting from 2090 * devconf will fail if the kernel driver is basing its name_addr's on the 2091 * psuedo-node device info while the bootpath passed up from bootconf is using 2092 * reality-based name_addrs. We help the boot along in this case by 2093 * looking at the pre-bootconf bootpath and determining if we would have 2094 * successfully matched if that had been the bootpath we had chosen. 2095 * 2096 * Note that we only even perform this extra check if we've booted 2097 * using bootconf's 1275 compliant bootpath, this is the boot device, and 2098 * we're trying to match the name_addr specified in the 1275 bootpath. 2099 */ 2100 2101 #define MAXCOMPONENTLEN 32 2102 2103 int 2104 x86_old_bootpath_name_addr_match(dev_info_t *cdip, char *caddr, char *naddr) 2105 { 2106 /* 2107 * There are multiple criteria to be met before we can even 2108 * consider allowing a name_addr match here. 2109 * 2110 * 1) We must have been booted such that the bootconf program 2111 * created device tree nodes and properties. This can be 2112 * determined by examining the 'bootpath' property. This 2113 * property will be a non-null string iff bootconf was 2114 * involved in the boot. 2115 * 2116 * 2) The module that we want to match must be the boot device. 2117 * 2118 * 3) The instance of the module we are thinking of letting be 2119 * our match must be ignoring hardware nodes. 2120 * 2121 * 4) The name_addr we want to match must be the name_addr 2122 * specified in the 1275 bootpath. 2123 */ 2124 static char bootdev_module[MAXCOMPONENTLEN]; 2125 static char bootdev_oldmod[MAXCOMPONENTLEN]; 2126 static char bootdev_newaddr[MAXCOMPONENTLEN]; 2127 static char bootdev_oldaddr[MAXCOMPONENTLEN]; 2128 static int quickexit; 2129 2130 char *daddr; 2131 int dlen; 2132 2133 char *lkupname; 2134 int rv = DDI_FAILURE; 2135 2136 if ((ddi_getlongprop(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS, 2137 "devconf-addr", (caddr_t)&daddr, &dlen) == DDI_PROP_SUCCESS) && 2138 (ddi_getprop(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS, 2139 "ignore-hardware-nodes", -1) != -1)) { 2140 if (strcmp(daddr, caddr) == 0) { 2141 return (DDI_SUCCESS); 2142 } 2143 } 2144 2145 if (quickexit) 2146 return (rv); 2147 2148 if (bootdev_module[0] == '\0') { 2149 char *addrp, *eoaddrp; 2150 char *busp, *modp, *atp; 2151 char *bp1275, *bp; 2152 int bp1275len, bplen; 2153 2154 bp1275 = bp = addrp = eoaddrp = busp = modp = atp = NULL; 2155 2156 if (ddi_getlongprop(DDI_DEV_T_ANY, 2157 ddi_root_node(), 0, "bootpath", 2158 (caddr_t)&bp1275, &bp1275len) != DDI_PROP_SUCCESS || 2159 bp1275len <= 1) { 2160 /* 2161 * We didn't boot from bootconf so we never need to 2162 * do any special matches. 2163 */ 2164 quickexit = 1; 2165 if (bp1275) 2166 kmem_free(bp1275, bp1275len); 2167 return (rv); 2168 } 2169 2170 if (ddi_getlongprop(DDI_DEV_T_ANY, 2171 ddi_root_node(), 0, "boot-path", 2172 (caddr_t)&bp, &bplen) != DDI_PROP_SUCCESS || bplen <= 1) { 2173 /* 2174 * No fallback position for matching. This is 2175 * certainly unexpected, but we'll handle it 2176 * just in case. 2177 */ 2178 quickexit = 1; 2179 kmem_free(bp1275, bp1275len); 2180 if (bp) 2181 kmem_free(bp, bplen); 2182 return (rv); 2183 } 2184 2185 /* 2186 * Determine boot device module and 1275 name_addr 2187 * 2188 * bootpath assumed to be of the form /bus/module@name_addr 2189 */ 2190 if (busp = strchr(bp1275, '/')) { 2191 if (modp = strchr(busp + 1, '/')) { 2192 if (atp = strchr(modp + 1, '@')) { 2193 *atp = '\0'; 2194 addrp = atp + 1; 2195 if (eoaddrp = strchr(addrp, '/')) 2196 *eoaddrp = '\0'; 2197 } 2198 } 2199 } 2200 2201 if (modp && addrp) { 2202 (void) strncpy(bootdev_module, modp + 1, 2203 MAXCOMPONENTLEN); 2204 bootdev_module[MAXCOMPONENTLEN - 1] = '\0'; 2205 2206 (void) strncpy(bootdev_newaddr, addrp, MAXCOMPONENTLEN); 2207 bootdev_newaddr[MAXCOMPONENTLEN - 1] = '\0'; 2208 } else { 2209 quickexit = 1; 2210 kmem_free(bp1275, bp1275len); 2211 kmem_free(bp, bplen); 2212 return (rv); 2213 } 2214 2215 /* 2216 * Determine fallback name_addr 2217 * 2218 * 10/3/96 - Also save fallback module name because it 2219 * might actually be different than the current module 2220 * name. E.G., ISA pnp drivers have new names. 2221 * 2222 * bootpath assumed to be of the form /bus/module@name_addr 2223 */ 2224 addrp = NULL; 2225 if (busp = strchr(bp, '/')) { 2226 if (modp = strchr(busp + 1, '/')) { 2227 if (atp = strchr(modp + 1, '@')) { 2228 *atp = '\0'; 2229 addrp = atp + 1; 2230 if (eoaddrp = strchr(addrp, '/')) 2231 *eoaddrp = '\0'; 2232 } 2233 } 2234 } 2235 2236 if (modp && addrp) { 2237 (void) strncpy(bootdev_oldmod, modp + 1, 2238 MAXCOMPONENTLEN); 2239 bootdev_module[MAXCOMPONENTLEN - 1] = '\0'; 2240 2241 (void) strncpy(bootdev_oldaddr, addrp, MAXCOMPONENTLEN); 2242 bootdev_oldaddr[MAXCOMPONENTLEN - 1] = '\0'; 2243 } 2244 2245 /* Free up the bootpath storage now that we're done with it. */ 2246 kmem_free(bp1275, bp1275len); 2247 kmem_free(bp, bplen); 2248 2249 if (bootdev_oldaddr[0] == '\0') { 2250 quickexit = 1; 2251 return (rv); 2252 } 2253 } 2254 2255 if (((lkupname = ddi_get_name(cdip)) != NULL) && 2256 (strcmp(bootdev_module, lkupname) == 0 || 2257 strcmp(bootdev_oldmod, lkupname) == 0) && 2258 ((ddi_getprop(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS, 2259 "ignore-hardware-nodes", -1) != -1) || 2260 ignore_hardware_nodes) && 2261 strcmp(bootdev_newaddr, caddr) == 0 && 2262 strcmp(bootdev_oldaddr, naddr) == 0) { 2263 rv = DDI_SUCCESS; 2264 } 2265 2266 return (rv); 2267 } 2268 2269 /* 2270 * Perform a copy from a memory mapped device (whose devinfo pointer is devi) 2271 * separately mapped at devaddr in the kernel to a kernel buffer at kaddr. 2272 */ 2273 /*ARGSUSED*/ 2274 int 2275 e_ddi_copyfromdev(dev_info_t *devi, 2276 off_t off, const void *devaddr, void *kaddr, size_t len) 2277 { 2278 bcopy(devaddr, kaddr, len); 2279 return (0); 2280 } 2281 2282 /* 2283 * Perform a copy to a memory mapped device (whose devinfo pointer is devi) 2284 * separately mapped at devaddr in the kernel from a kernel buffer at kaddr. 2285 */ 2286 /*ARGSUSED*/ 2287 int 2288 e_ddi_copytodev(dev_info_t *devi, 2289 off_t off, const void *kaddr, void *devaddr, size_t len) 2290 { 2291 bcopy(kaddr, devaddr, len); 2292 return (0); 2293 } 2294 2295 2296 static int 2297 poke_mem(peekpoke_ctlops_t *in_args) 2298 { 2299 int err = DDI_SUCCESS; 2300 on_trap_data_t otd; 2301 2302 /* Set up protected environment. */ 2303 if (!on_trap(&otd, OT_DATA_ACCESS)) { 2304 switch (in_args->size) { 2305 case sizeof (uint8_t): 2306 *(uint8_t *)(in_args->dev_addr) = 2307 *(uint8_t *)in_args->host_addr; 2308 break; 2309 2310 case sizeof (uint16_t): 2311 *(uint16_t *)(in_args->dev_addr) = 2312 *(uint16_t *)in_args->host_addr; 2313 break; 2314 2315 case sizeof (uint32_t): 2316 *(uint32_t *)(in_args->dev_addr) = 2317 *(uint32_t *)in_args->host_addr; 2318 break; 2319 2320 case sizeof (uint64_t): 2321 *(uint64_t *)(in_args->dev_addr) = 2322 *(uint64_t *)in_args->host_addr; 2323 break; 2324 2325 default: 2326 err = DDI_FAILURE; 2327 break; 2328 } 2329 } else 2330 err = DDI_FAILURE; 2331 2332 /* Take down protected environment. */ 2333 no_trap(); 2334 2335 return (err); 2336 } 2337 2338 2339 static int 2340 peek_mem(peekpoke_ctlops_t *in_args) 2341 { 2342 int err = DDI_SUCCESS; 2343 on_trap_data_t otd; 2344 2345 if (!on_trap(&otd, OT_DATA_ACCESS)) { 2346 switch (in_args->size) { 2347 case sizeof (uint8_t): 2348 *(uint8_t *)in_args->host_addr = 2349 *(uint8_t *)in_args->dev_addr; 2350 break; 2351 2352 case sizeof (uint16_t): 2353 *(uint16_t *)in_args->host_addr = 2354 *(uint16_t *)in_args->dev_addr; 2355 break; 2356 2357 case sizeof (uint32_t): 2358 *(uint32_t *)in_args->host_addr = 2359 *(uint32_t *)in_args->dev_addr; 2360 break; 2361 2362 case sizeof (uint64_t): 2363 *(uint64_t *)in_args->host_addr = 2364 *(uint64_t *)in_args->dev_addr; 2365 break; 2366 2367 default: 2368 err = DDI_FAILURE; 2369 break; 2370 } 2371 } else 2372 err = DDI_FAILURE; 2373 2374 no_trap(); 2375 return (err); 2376 } 2377 2378 2379 /* 2380 * This is called only to process peek/poke when the DIP is NULL. 2381 * Assume that this is for memory, as nexi take care of device safe accesses. 2382 */ 2383 int 2384 peekpoke_mem(ddi_ctl_enum_t cmd, peekpoke_ctlops_t *in_args) 2385 { 2386 return (cmd == DDI_CTLOPS_PEEK ? peek_mem(in_args) : poke_mem(in_args)); 2387 } 2388 2389 /* 2390 * we've just done a cautious put/get. Check if it was successful by 2391 * calling pci_ereport_post() on all puts and for any gets that return -1 2392 */ 2393 static int 2394 pci_peekpoke_check_fma(dev_info_t *dip, void *arg, ddi_ctl_enum_t ctlop, 2395 void (*scan)(dev_info_t *, ddi_fm_error_t *)) 2396 { 2397 int rval = DDI_SUCCESS; 2398 peekpoke_ctlops_t *in_args = (peekpoke_ctlops_t *)arg; 2399 ddi_fm_error_t de; 2400 ddi_acc_impl_t *hp = (ddi_acc_impl_t *)in_args->handle; 2401 ddi_acc_hdl_t *hdlp = (ddi_acc_hdl_t *)in_args->handle; 2402 int check_err = 0; 2403 int repcount = in_args->repcount; 2404 2405 if (ctlop == DDI_CTLOPS_POKE && 2406 hdlp->ah_acc.devacc_attr_access != DDI_CAUTIOUS_ACC) 2407 return (DDI_SUCCESS); 2408 2409 if (ctlop == DDI_CTLOPS_PEEK && 2410 hdlp->ah_acc.devacc_attr_access != DDI_CAUTIOUS_ACC) { 2411 for (; repcount; repcount--) { 2412 switch (in_args->size) { 2413 case sizeof (uint8_t): 2414 if (*(uint8_t *)in_args->host_addr == 0xff) 2415 check_err = 1; 2416 break; 2417 case sizeof (uint16_t): 2418 if (*(uint16_t *)in_args->host_addr == 0xffff) 2419 check_err = 1; 2420 break; 2421 case sizeof (uint32_t): 2422 if (*(uint32_t *)in_args->host_addr == 2423 0xffffffff) 2424 check_err = 1; 2425 break; 2426 case sizeof (uint64_t): 2427 if (*(uint64_t *)in_args->host_addr == 2428 0xffffffffffffffff) 2429 check_err = 1; 2430 break; 2431 } 2432 } 2433 if (check_err == 0) 2434 return (DDI_SUCCESS); 2435 } 2436 /* 2437 * for a cautious put or get or a non-cautious get that returned -1 call 2438 * io framework to see if there really was an error 2439 */ 2440 bzero(&de, sizeof (ddi_fm_error_t)); 2441 de.fme_version = DDI_FME_VERSION; 2442 de.fme_ena = fm_ena_generate(0, FM_ENA_FMT1); 2443 if (hdlp->ah_acc.devacc_attr_access == DDI_CAUTIOUS_ACC) { 2444 de.fme_flag = DDI_FM_ERR_EXPECTED; 2445 de.fme_acc_handle = in_args->handle; 2446 } else if (hdlp->ah_acc.devacc_attr_access == DDI_DEFAULT_ACC) { 2447 /* 2448 * We only get here with DDI_DEFAULT_ACC for config space gets. 2449 * Non-hardened drivers may be probing the hardware and 2450 * expecting -1 returned. So need to treat errors on 2451 * DDI_DEFAULT_ACC as DDI_FM_ERR_EXPECTED. 2452 */ 2453 de.fme_flag = DDI_FM_ERR_EXPECTED; 2454 de.fme_acc_handle = in_args->handle; 2455 } else { 2456 /* 2457 * Hardened driver doing protected accesses shouldn't 2458 * get errors unless there's a hardware problem. Treat 2459 * as nonfatal if there's an error, but set UNEXPECTED 2460 * so we raise ereports on any errors and potentially 2461 * fault the device 2462 */ 2463 de.fme_flag = DDI_FM_ERR_UNEXPECTED; 2464 } 2465 (void) scan(dip, &de); 2466 if (hdlp->ah_acc.devacc_attr_access != DDI_DEFAULT_ACC && 2467 de.fme_status != DDI_FM_OK) { 2468 ndi_err_t *errp = (ndi_err_t *)hp->ahi_err; 2469 rval = DDI_FAILURE; 2470 errp->err_ena = de.fme_ena; 2471 errp->err_expected = de.fme_flag; 2472 errp->err_status = DDI_FM_NONFATAL; 2473 } 2474 return (rval); 2475 } 2476 2477 /* 2478 * pci_peekpoke_check_nofma() is for when an error occurs on a register access 2479 * during pci_ereport_post(). We can't call pci_ereport_post() again or we'd 2480 * recurse, so assume all puts are OK and gets have failed if they return -1 2481 */ 2482 static int 2483 pci_peekpoke_check_nofma(void *arg, ddi_ctl_enum_t ctlop) 2484 { 2485 int rval = DDI_SUCCESS; 2486 peekpoke_ctlops_t *in_args = (peekpoke_ctlops_t *)arg; 2487 ddi_acc_impl_t *hp = (ddi_acc_impl_t *)in_args->handle; 2488 ddi_acc_hdl_t *hdlp = (ddi_acc_hdl_t *)in_args->handle; 2489 int repcount = in_args->repcount; 2490 2491 if (ctlop == DDI_CTLOPS_POKE) 2492 return (rval); 2493 2494 for (; repcount; repcount--) { 2495 switch (in_args->size) { 2496 case sizeof (uint8_t): 2497 if (*(uint8_t *)in_args->host_addr == 0xff) 2498 rval = DDI_FAILURE; 2499 break; 2500 case sizeof (uint16_t): 2501 if (*(uint16_t *)in_args->host_addr == 0xffff) 2502 rval = DDI_FAILURE; 2503 break; 2504 case sizeof (uint32_t): 2505 if (*(uint32_t *)in_args->host_addr == 0xffffffff) 2506 rval = DDI_FAILURE; 2507 break; 2508 case sizeof (uint64_t): 2509 if (*(uint64_t *)in_args->host_addr == 2510 0xffffffffffffffff) 2511 rval = DDI_FAILURE; 2512 break; 2513 } 2514 } 2515 if (hdlp->ah_acc.devacc_attr_access != DDI_DEFAULT_ACC && 2516 rval == DDI_FAILURE) { 2517 ndi_err_t *errp = (ndi_err_t *)hp->ahi_err; 2518 errp->err_ena = fm_ena_generate(0, FM_ENA_FMT1); 2519 errp->err_expected = DDI_FM_ERR_UNEXPECTED; 2520 errp->err_status = DDI_FM_NONFATAL; 2521 } 2522 return (rval); 2523 } 2524 2525 int 2526 pci_peekpoke_check(dev_info_t *dip, dev_info_t *rdip, 2527 ddi_ctl_enum_t ctlop, void *arg, void *result, 2528 int (*handler)(dev_info_t *, dev_info_t *, ddi_ctl_enum_t, void *, 2529 void *), kmutex_t *err_mutexp, kmutex_t *peek_poke_mutexp, 2530 void (*scan)(dev_info_t *, ddi_fm_error_t *)) 2531 { 2532 int rval; 2533 peekpoke_ctlops_t *in_args = (peekpoke_ctlops_t *)arg; 2534 ddi_acc_impl_t *hp = (ddi_acc_impl_t *)in_args->handle; 2535 2536 /* 2537 * this function only supports cautious accesses, not peeks/pokes 2538 * which don't have a handle 2539 */ 2540 if (hp == NULL) 2541 return (DDI_FAILURE); 2542 2543 if (hp->ahi_acc_attr & DDI_ACCATTR_CONFIG_SPACE) { 2544 if (!mutex_tryenter(err_mutexp)) { 2545 /* 2546 * As this may be a recursive call from within 2547 * pci_ereport_post() we can't wait for the mutexes. 2548 * Fortunately we know someone is already calling 2549 * pci_ereport_post() which will handle the error bits 2550 * for us, and as this is a config space access we can 2551 * just do the access and check return value for -1 2552 * using pci_peekpoke_check_nofma(). 2553 */ 2554 rval = handler(dip, rdip, ctlop, arg, result); 2555 if (rval == DDI_SUCCESS) 2556 rval = pci_peekpoke_check_nofma(arg, ctlop); 2557 return (rval); 2558 } 2559 /* 2560 * This can't be a recursive call. Drop the err_mutex and get 2561 * both mutexes in the right order. If an error hasn't already 2562 * been detected by the ontrap code, use pci_peekpoke_check_fma 2563 * which will call pci_ereport_post() to check error status. 2564 */ 2565 mutex_exit(err_mutexp); 2566 } 2567 mutex_enter(peek_poke_mutexp); 2568 rval = handler(dip, rdip, ctlop, arg, result); 2569 if (rval == DDI_SUCCESS) { 2570 mutex_enter(err_mutexp); 2571 rval = pci_peekpoke_check_fma(dip, arg, ctlop, scan); 2572 mutex_exit(err_mutexp); 2573 } 2574 mutex_exit(peek_poke_mutexp); 2575 return (rval); 2576 } 2577 2578 void 2579 impl_setup_ddi(void) 2580 { 2581 #if !defined(__xpv) 2582 extern void startup_bios_disk(void); 2583 extern int post_fastreboot; 2584 #endif 2585 dev_info_t *xdip, *isa_dip; 2586 rd_existing_t rd_mem_prop; 2587 int err; 2588 2589 ndi_devi_alloc_sleep(ddi_root_node(), "ramdisk", 2590 (pnode_t)DEVI_SID_NODEID, &xdip); 2591 2592 (void) BOP_GETPROP(bootops, 2593 "ramdisk_start", (void *)&ramdisk_start); 2594 (void) BOP_GETPROP(bootops, 2595 "ramdisk_end", (void *)&ramdisk_end); 2596 2597 #ifdef __xpv 2598 ramdisk_start -= ONE_GIG; 2599 ramdisk_end -= ONE_GIG; 2600 #endif 2601 rd_mem_prop.phys = ramdisk_start; 2602 rd_mem_prop.size = ramdisk_end - ramdisk_start + 1; 2603 2604 (void) ndi_prop_update_byte_array(DDI_DEV_T_NONE, xdip, 2605 RD_EXISTING_PROP_NAME, (uchar_t *)&rd_mem_prop, 2606 sizeof (rd_mem_prop)); 2607 err = ndi_devi_bind_driver(xdip, 0); 2608 ASSERT(err == 0); 2609 2610 /* isa node */ 2611 if (pseudo_isa) { 2612 ndi_devi_alloc_sleep(ddi_root_node(), "isa", 2613 (pnode_t)DEVI_SID_NODEID, &isa_dip); 2614 (void) ndi_prop_update_string(DDI_DEV_T_NONE, isa_dip, 2615 "device_type", "isa"); 2616 (void) ndi_prop_update_string(DDI_DEV_T_NONE, isa_dip, 2617 "bus-type", "isa"); 2618 (void) ndi_devi_bind_driver(isa_dip, 0); 2619 } 2620 2621 /* 2622 * Read in the properties from the boot. 2623 */ 2624 get_boot_properties(); 2625 2626 /* not framebuffer should be enumerated, if present */ 2627 get_vga_properties(); 2628 2629 /* Copy console font if provided by boot. */ 2630 get_console_font(); 2631 2632 /* 2633 * Check for administratively disabled drivers. 2634 */ 2635 check_driver_disable(); 2636 2637 #if !defined(__xpv) 2638 if (!post_fastreboot && BOP_GETPROPLEN(bootops, "efi-systab") < 0) 2639 startup_bios_disk(); 2640 #endif 2641 /* do bus dependent probes. */ 2642 impl_bus_initialprobe(); 2643 } 2644 2645 dev_t 2646 getrootdev(void) 2647 { 2648 /* 2649 * Usually rootfs.bo_name is initialized by the 2650 * the bootpath property from bootenv.rc, but 2651 * defaults to "/ramdisk:a" otherwise. 2652 */ 2653 return (ddi_pathname_to_dev_t(rootfs.bo_name)); 2654 } 2655 2656 static struct bus_probe { 2657 struct bus_probe *next; 2658 void (*probe)(int); 2659 } *bus_probes; 2660 2661 void 2662 impl_bus_add_probe(void (*func)(int)) 2663 { 2664 struct bus_probe *probe; 2665 struct bus_probe *lastprobe = NULL; 2666 2667 probe = kmem_alloc(sizeof (*probe), KM_SLEEP); 2668 probe->probe = func; 2669 probe->next = NULL; 2670 2671 if (!bus_probes) { 2672 bus_probes = probe; 2673 return; 2674 } 2675 2676 lastprobe = bus_probes; 2677 while (lastprobe->next) 2678 lastprobe = lastprobe->next; 2679 lastprobe->next = probe; 2680 } 2681 2682 /*ARGSUSED*/ 2683 void 2684 impl_bus_delete_probe(void (*func)(int)) 2685 { 2686 struct bus_probe *prev = NULL; 2687 struct bus_probe *probe = bus_probes; 2688 2689 while (probe) { 2690 if (probe->probe == func) 2691 break; 2692 prev = probe; 2693 probe = probe->next; 2694 } 2695 2696 if (probe == NULL) 2697 return; 2698 2699 if (prev) 2700 prev->next = probe->next; 2701 else 2702 bus_probes = probe->next; 2703 2704 kmem_free(probe, sizeof (struct bus_probe)); 2705 } 2706 2707 /* 2708 * impl_bus_initialprobe 2709 * Modload the prom simulator, then let it probe to verify existence 2710 * and type of PCI support. 2711 */ 2712 static void 2713 impl_bus_initialprobe(void) 2714 { 2715 struct bus_probe *probe; 2716 2717 /* load modules to install bus probes */ 2718 #if defined(__xpv) 2719 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 2720 if (modload("misc", "pci_autoconfig") < 0) { 2721 panic("failed to load misc/pci_autoconfig"); 2722 } 2723 2724 if (modload("drv", "isa") < 0) 2725 panic("failed to load drv/isa"); 2726 } 2727 2728 (void) modload("misc", "xpv_autoconfig"); 2729 #else 2730 if (modload("misc", "pci_autoconfig") < 0) { 2731 panic("failed to load misc/pci_autoconfig"); 2732 } 2733 2734 (void) modload("misc", "acpidev"); 2735 2736 if (modload("drv", "isa") < 0) 2737 panic("failed to load drv/isa"); 2738 #endif 2739 2740 probe = bus_probes; 2741 while (probe) { 2742 /* run the probe functions */ 2743 (*probe->probe)(0); 2744 probe = probe->next; 2745 } 2746 } 2747 2748 /* 2749 * impl_bus_reprobe 2750 * Reprogram devices not set up by firmware. 2751 */ 2752 static void 2753 impl_bus_reprobe(void) 2754 { 2755 struct bus_probe *probe; 2756 2757 probe = bus_probes; 2758 while (probe) { 2759 /* run the probe function */ 2760 (*probe->probe)(1); 2761 probe = probe->next; 2762 } 2763 } 2764 2765 2766 /* 2767 * The following functions ready a cautious request to go up to the nexus 2768 * driver. It is up to the nexus driver to decide how to process the request. 2769 * It may choose to call i_ddi_do_caut_get/put in this file, or do it 2770 * differently. 2771 */ 2772 2773 static void 2774 i_ddi_caut_getput_ctlops(ddi_acc_impl_t *hp, uint64_t host_addr, 2775 uint64_t dev_addr, size_t size, size_t repcount, uint_t flags, 2776 ddi_ctl_enum_t cmd) 2777 { 2778 peekpoke_ctlops_t cautacc_ctlops_arg; 2779 2780 cautacc_ctlops_arg.size = size; 2781 cautacc_ctlops_arg.dev_addr = dev_addr; 2782 cautacc_ctlops_arg.host_addr = host_addr; 2783 cautacc_ctlops_arg.handle = (ddi_acc_handle_t)hp; 2784 cautacc_ctlops_arg.repcount = repcount; 2785 cautacc_ctlops_arg.flags = flags; 2786 2787 (void) ddi_ctlops(hp->ahi_common.ah_dip, hp->ahi_common.ah_dip, cmd, 2788 &cautacc_ctlops_arg, NULL); 2789 } 2790 2791 uint8_t 2792 i_ddi_caut_get8(ddi_acc_impl_t *hp, uint8_t *addr) 2793 { 2794 uint8_t value; 2795 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr, 2796 sizeof (uint8_t), 1, 0, DDI_CTLOPS_PEEK); 2797 2798 return (value); 2799 } 2800 2801 uint16_t 2802 i_ddi_caut_get16(ddi_acc_impl_t *hp, uint16_t *addr) 2803 { 2804 uint16_t value; 2805 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr, 2806 sizeof (uint16_t), 1, 0, DDI_CTLOPS_PEEK); 2807 2808 return (value); 2809 } 2810 2811 uint32_t 2812 i_ddi_caut_get32(ddi_acc_impl_t *hp, uint32_t *addr) 2813 { 2814 uint32_t value; 2815 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr, 2816 sizeof (uint32_t), 1, 0, DDI_CTLOPS_PEEK); 2817 2818 return (value); 2819 } 2820 2821 uint64_t 2822 i_ddi_caut_get64(ddi_acc_impl_t *hp, uint64_t *addr) 2823 { 2824 uint64_t value; 2825 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr, 2826 sizeof (uint64_t), 1, 0, DDI_CTLOPS_PEEK); 2827 2828 return (value); 2829 } 2830 2831 void 2832 i_ddi_caut_put8(ddi_acc_impl_t *hp, uint8_t *addr, uint8_t value) 2833 { 2834 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr, 2835 sizeof (uint8_t), 1, 0, DDI_CTLOPS_POKE); 2836 } 2837 2838 void 2839 i_ddi_caut_put16(ddi_acc_impl_t *hp, uint16_t *addr, uint16_t value) 2840 { 2841 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr, 2842 sizeof (uint16_t), 1, 0, DDI_CTLOPS_POKE); 2843 } 2844 2845 void 2846 i_ddi_caut_put32(ddi_acc_impl_t *hp, uint32_t *addr, uint32_t value) 2847 { 2848 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr, 2849 sizeof (uint32_t), 1, 0, DDI_CTLOPS_POKE); 2850 } 2851 2852 void 2853 i_ddi_caut_put64(ddi_acc_impl_t *hp, uint64_t *addr, uint64_t value) 2854 { 2855 i_ddi_caut_getput_ctlops(hp, (uintptr_t)&value, (uintptr_t)addr, 2856 sizeof (uint64_t), 1, 0, DDI_CTLOPS_POKE); 2857 } 2858 2859 void 2860 i_ddi_caut_rep_get8(ddi_acc_impl_t *hp, uint8_t *host_addr, uint8_t *dev_addr, 2861 size_t repcount, uint_t flags) 2862 { 2863 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr, 2864 sizeof (uint8_t), repcount, flags, DDI_CTLOPS_PEEK); 2865 } 2866 2867 void 2868 i_ddi_caut_rep_get16(ddi_acc_impl_t *hp, uint16_t *host_addr, 2869 uint16_t *dev_addr, size_t repcount, uint_t flags) 2870 { 2871 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr, 2872 sizeof (uint16_t), repcount, flags, DDI_CTLOPS_PEEK); 2873 } 2874 2875 void 2876 i_ddi_caut_rep_get32(ddi_acc_impl_t *hp, uint32_t *host_addr, 2877 uint32_t *dev_addr, size_t repcount, uint_t flags) 2878 { 2879 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr, 2880 sizeof (uint32_t), repcount, flags, DDI_CTLOPS_PEEK); 2881 } 2882 2883 void 2884 i_ddi_caut_rep_get64(ddi_acc_impl_t *hp, uint64_t *host_addr, 2885 uint64_t *dev_addr, size_t repcount, uint_t flags) 2886 { 2887 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr, 2888 sizeof (uint64_t), repcount, flags, DDI_CTLOPS_PEEK); 2889 } 2890 2891 void 2892 i_ddi_caut_rep_put8(ddi_acc_impl_t *hp, uint8_t *host_addr, uint8_t *dev_addr, 2893 size_t repcount, uint_t flags) 2894 { 2895 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr, 2896 sizeof (uint8_t), repcount, flags, DDI_CTLOPS_POKE); 2897 } 2898 2899 void 2900 i_ddi_caut_rep_put16(ddi_acc_impl_t *hp, uint16_t *host_addr, 2901 uint16_t *dev_addr, size_t repcount, uint_t flags) 2902 { 2903 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr, 2904 sizeof (uint16_t), repcount, flags, DDI_CTLOPS_POKE); 2905 } 2906 2907 void 2908 i_ddi_caut_rep_put32(ddi_acc_impl_t *hp, uint32_t *host_addr, 2909 uint32_t *dev_addr, size_t repcount, uint_t flags) 2910 { 2911 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr, 2912 sizeof (uint32_t), repcount, flags, DDI_CTLOPS_POKE); 2913 } 2914 2915 void 2916 i_ddi_caut_rep_put64(ddi_acc_impl_t *hp, uint64_t *host_addr, 2917 uint64_t *dev_addr, size_t repcount, uint_t flags) 2918 { 2919 i_ddi_caut_getput_ctlops(hp, (uintptr_t)host_addr, (uintptr_t)dev_addr, 2920 sizeof (uint64_t), repcount, flags, DDI_CTLOPS_POKE); 2921 } 2922 2923 boolean_t 2924 i_ddi_copybuf_required(ddi_dma_attr_t *attrp) 2925 { 2926 uint64_t hi_pa; 2927 2928 hi_pa = ((uint64_t)physmax + 1ull) << PAGESHIFT; 2929 if (attrp->dma_attr_addr_hi < hi_pa) { 2930 return (B_TRUE); 2931 } 2932 2933 return (B_FALSE); 2934 } 2935 2936 size_t 2937 i_ddi_copybuf_size() 2938 { 2939 return (dma_max_copybuf_size); 2940 } 2941 2942 /* 2943 * i_ddi_dma_max() 2944 * returns the maximum DMA size which can be performed in a single DMA 2945 * window taking into account the devices DMA contraints (attrp), the 2946 * maximum copy buffer size (if applicable), and the worse case buffer 2947 * fragmentation. 2948 */ 2949 /*ARGSUSED*/ 2950 uint32_t 2951 i_ddi_dma_max(dev_info_t *dip, ddi_dma_attr_t *attrp) 2952 { 2953 uint64_t maxxfer; 2954 2955 2956 /* 2957 * take the min of maxxfer and the the worse case fragementation 2958 * (e.g. every cookie <= 1 page) 2959 */ 2960 maxxfer = MIN(attrp->dma_attr_maxxfer, 2961 ((uint64_t)(attrp->dma_attr_sgllen - 1) << PAGESHIFT)); 2962 2963 /* 2964 * If the DMA engine can't reach all off memory, we also need to take 2965 * the max size of the copybuf into consideration. 2966 */ 2967 if (i_ddi_copybuf_required(attrp)) { 2968 maxxfer = MIN(i_ddi_copybuf_size(), maxxfer); 2969 } 2970 2971 /* 2972 * we only return a 32-bit value. Make sure it's not -1. Round to a 2973 * page so it won't be mistaken for an error value during debug. 2974 */ 2975 if (maxxfer >= 0xFFFFFFFF) { 2976 maxxfer = 0xFFFFF000; 2977 } 2978 2979 /* 2980 * make sure the value we return is a whole multiple of the 2981 * granlarity. 2982 */ 2983 if (attrp->dma_attr_granular > 1) { 2984 maxxfer = maxxfer - (maxxfer % attrp->dma_attr_granular); 2985 } 2986 2987 return ((uint32_t)maxxfer); 2988 } 2989 2990 /*ARGSUSED*/ 2991 void 2992 translate_devid(dev_info_t *dip) 2993 { 2994 } 2995 2996 pfn_t 2997 i_ddi_paddr_to_pfn(paddr_t paddr) 2998 { 2999 pfn_t pfn; 3000 3001 #ifdef __xpv 3002 if (DOMAIN_IS_INITDOMAIN(xen_info)) { 3003 pfn = xen_assign_pfn(mmu_btop(paddr)); 3004 } else { 3005 pfn = mmu_btop(paddr); 3006 } 3007 #else 3008 pfn = mmu_btop(paddr); 3009 #endif 3010 3011 return (pfn); 3012 } 3013