1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* 26 * Copyright (c) 2009, Intel Corporation. 27 * All rights reserved. 28 */ 29 30 #include <sys/cpu_pm.h> 31 #include <sys/x86_archext.h> 32 #include <sys/sdt.h> 33 #include <sys/spl.h> 34 #include <sys/machsystm.h> 35 #include <sys/hpet.h> 36 #include <sys/cpupm.h> 37 #include <sys/cpu_idle.h> 38 #include <sys/cpu_acpi.h> 39 #include <sys/cpupm_throttle.h> 40 #include <sys/dtrace.h> 41 42 /* 43 * This callback is used to build the PPM CPU domains once 44 * all the CPU devices have been started. The callback is 45 * initialized by the PPM driver to point to a routine that 46 * will build the domains. 47 */ 48 void (*cpupm_rebuild_cpu_domains)(void); 49 50 /* 51 * This callback is used to reset the topspeed for all the 52 * CPU devices. The callback is initialized by the PPM driver to 53 * point to a routine that will reinitialize all the CPU devices 54 * once all the CPU devices have been started and the CPU domains 55 * built. 56 */ 57 void (*cpupm_init_topspeed)(void); 58 59 /* 60 * This callback is used to redefine the topspeed for a CPU device. 61 * Since all CPUs in a domain should have identical properties, this 62 * callback is initialized by the PPM driver to point to a routine 63 * that will redefine the topspeed for all devices in a CPU domain. 64 * This callback is exercised whenever an ACPI _PPC change notification 65 * is received by the CPU driver. 66 */ 67 void (*cpupm_redefine_topspeed)(void *); 68 69 /* 70 * This callback is used by the PPM driver to call into the CPU driver 71 * to find a CPU's current topspeed (i.e., it's current ACPI _PPC value). 72 */ 73 void (*cpupm_set_topspeed_callb)(void *, int); 74 75 /* 76 * This callback is used by the PPM driver to call into the CPU driver 77 * to set a new topspeed for a CPU. 78 */ 79 int (*cpupm_get_topspeed_callb)(void *); 80 81 static void cpupm_event_notify_handler(ACPI_HANDLE, UINT32, void *); 82 static void cpupm_free_notify_handlers(cpu_t *); 83 84 /* 85 * Until proven otherwise, all power states are manageable. 86 */ 87 static uint32_t cpupm_enabled = CPUPM_ALL_STATES; 88 89 /* 90 * Until all CPUs have started, we do not allow 91 * power management. 92 */ 93 static boolean_t cpupm_ready = B_FALSE; 94 95 cpupm_state_domains_t *cpupm_pstate_domains = NULL; 96 cpupm_state_domains_t *cpupm_tstate_domains = NULL; 97 cpupm_state_domains_t *cpupm_cstate_domains = NULL; 98 99 /* 100 * c-state tunables 101 * 102 * cpupm_cs_idle_cost_tunable is the ratio of time CPU spends executing + idle 103 * divided by time spent in the idle state transitions. 104 * A value of 10 means the CPU will not spend more than 1/10 of its time 105 * in idle latency. The worst case performance will be 90% of non Deep C-state 106 * kernel. 107 * 108 * cpupm_cs_idle_save_tunable is how long we must stay in a deeper C-state 109 * before it is worth going there. Expressed as a multiple of latency. 110 */ 111 uint32_t cpupm_cs_sample_tunable = 5; /* samples in decision period */ 112 uint32_t cpupm_cs_idle_cost_tunable = 10; /* work time / latency cost */ 113 uint32_t cpupm_cs_idle_save_tunable = 2; /* idle power savings */ 114 uint16_t cpupm_C2_idle_pct_tunable = 70; 115 uint16_t cpupm_C3_idle_pct_tunable = 80; 116 117 #ifndef __xpv 118 extern boolean_t cpupm_intel_init(cpu_t *); 119 extern boolean_t cpupm_amd_init(cpu_t *); 120 121 typedef struct cpupm_vendor { 122 boolean_t (*cpuv_init)(cpu_t *); 123 } cpupm_vendor_t; 124 125 /* 126 * Table of supported vendors. 127 */ 128 static cpupm_vendor_t cpupm_vendors[] = { 129 cpupm_intel_init, 130 cpupm_amd_init, 131 NULL 132 }; 133 #endif 134 135 /* 136 * Initialize the machine. 137 * See if a module exists for managing power for this CPU. 138 */ 139 /*ARGSUSED*/ 140 void 141 cpupm_init(cpu_t *cp) 142 { 143 #ifndef __xpv 144 cpupm_vendor_t *vendors; 145 cpupm_mach_state_t *mach_state; 146 struct machcpu *mcpu = &(cp->cpu_m); 147 int *speeds; 148 uint_t nspeeds; 149 int ret; 150 151 mach_state = cp->cpu_m.mcpu_pm_mach_state = 152 kmem_zalloc(sizeof (cpupm_mach_state_t), KM_SLEEP); 153 mach_state->ms_caps = CPUPM_NO_STATES; 154 mutex_init(&mach_state->ms_lock, NULL, MUTEX_DRIVER, NULL); 155 156 mach_state->ms_acpi_handle = cpu_acpi_init(cp); 157 if (mach_state->ms_acpi_handle == NULL) { 158 cpupm_free(cp); 159 cmn_err(CE_WARN, "!cpupm_init: processor %d: " 160 "unable to get ACPI handle", cp->cpu_id); 161 cmn_err(CE_NOTE, "!CPU power management will not function."); 162 CPUPM_DISABLE(); 163 return; 164 } 165 166 /* 167 * Loop through the CPU management module table and see if 168 * any of the modules implement CPU power management 169 * for this CPU. 170 */ 171 for (vendors = cpupm_vendors; vendors->cpuv_init != NULL; vendors++) { 172 if (vendors->cpuv_init(cp)) 173 break; 174 } 175 176 /* 177 * Nope, we can't power manage this CPU. 178 */ 179 if (vendors == NULL) { 180 cpupm_free(cp); 181 CPUPM_DISABLE(); 182 return; 183 } 184 185 /* 186 * If P-state support exists for this system, then initialize it. 187 */ 188 if (mach_state->ms_pstate.cma_ops != NULL) { 189 ret = mach_state->ms_pstate.cma_ops->cpus_init(cp); 190 if (ret != 0) { 191 mach_state->ms_pstate.cma_ops = NULL; 192 cpupm_disable(CPUPM_P_STATES); 193 } else { 194 nspeeds = cpupm_get_speeds(cp, &speeds); 195 if (nspeeds == 0) { 196 cmn_err(CE_NOTE, "!cpupm_init: processor %d:" 197 " no speeds to manage", cp->cpu_id); 198 } else { 199 cpupm_set_supp_freqs(cp, speeds, nspeeds); 200 cpupm_free_speeds(speeds, nspeeds); 201 mach_state->ms_caps |= CPUPM_P_STATES; 202 } 203 } 204 } 205 206 if (mach_state->ms_tstate.cma_ops != NULL) { 207 ret = mach_state->ms_tstate.cma_ops->cpus_init(cp); 208 if (ret != 0) { 209 mach_state->ms_tstate.cma_ops = NULL; 210 cpupm_disable(CPUPM_T_STATES); 211 } else { 212 mach_state->ms_caps |= CPUPM_T_STATES; 213 } 214 } 215 216 /* 217 * If C-states support exists for this system, then initialize it. 218 */ 219 if (mach_state->ms_cstate.cma_ops != NULL) { 220 ret = mach_state->ms_cstate.cma_ops->cpus_init(cp); 221 if (ret != 0) { 222 mach_state->ms_cstate.cma_ops = NULL; 223 mcpu->max_cstates = CPU_ACPI_C1; 224 cpupm_disable(CPUPM_C_STATES); 225 idle_cpu = non_deep_idle_cpu; 226 disp_enq_thread = non_deep_idle_disp_enq_thread; 227 } else if (cpu_deep_cstates_supported()) { 228 mcpu->max_cstates = cpu_acpi_get_max_cstates( 229 mach_state->ms_acpi_handle); 230 if (mcpu->max_cstates > CPU_ACPI_C1) { 231 (void) cstate_timer_callback( 232 CST_EVENT_MULTIPLE_CSTATES); 233 CPU->cpu_m.mcpu_idle_cpu = cpu_acpi_idle; 234 mcpu->mcpu_idle_type = CPU_ACPI_C1; 235 disp_enq_thread = cstate_wakeup; 236 } else { 237 (void) cstate_timer_callback( 238 CST_EVENT_ONE_CSTATE); 239 } 240 mach_state->ms_caps |= CPUPM_C_STATES; 241 } else { 242 mcpu->max_cstates = CPU_ACPI_C1; 243 idle_cpu = non_deep_idle_cpu; 244 disp_enq_thread = non_deep_idle_disp_enq_thread; 245 } 246 } 247 248 249 if (mach_state->ms_caps == CPUPM_NO_STATES) { 250 cpupm_free(cp); 251 CPUPM_DISABLE(); 252 return; 253 } 254 255 if ((mach_state->ms_caps & CPUPM_T_STATES) || 256 (mach_state->ms_caps & CPUPM_P_STATES) || 257 (mach_state->ms_caps & CPUPM_C_STATES)) 258 cpupm_add_notify_handler(cp, cpupm_event_notify_handler, cp); 259 #endif 260 } 261 262 /* 263 * Free any resources allocated by cpupm_init(). 264 */ 265 /*ARGSUSED*/ 266 void 267 cpupm_free(cpu_t *cp) 268 { 269 #ifndef __xpv 270 cpupm_mach_state_t *mach_state = 271 (cpupm_mach_state_t *)cp->cpu_m.mcpu_pm_mach_state; 272 273 if (mach_state == NULL) 274 return; 275 if (mach_state->ms_pstate.cma_ops != NULL) { 276 mach_state->ms_pstate.cma_ops->cpus_fini(cp); 277 mach_state->ms_pstate.cma_ops = NULL; 278 } 279 280 if (mach_state->ms_tstate.cma_ops != NULL) { 281 mach_state->ms_tstate.cma_ops->cpus_fini(cp); 282 mach_state->ms_tstate.cma_ops = NULL; 283 } 284 285 if (mach_state->ms_cstate.cma_ops != NULL) { 286 mach_state->ms_cstate.cma_ops->cpus_fini(cp); 287 mach_state->ms_cstate.cma_ops = NULL; 288 } 289 290 cpupm_free_notify_handlers(cp); 291 292 if (mach_state->ms_acpi_handle != NULL) { 293 cpu_acpi_fini(mach_state->ms_acpi_handle); 294 mach_state->ms_acpi_handle = NULL; 295 } 296 297 mutex_destroy(&mach_state->ms_lock); 298 kmem_free(mach_state, sizeof (cpupm_mach_state_t)); 299 cp->cpu_m.mcpu_pm_mach_state = NULL; 300 #endif 301 } 302 303 /* 304 * If all CPUs have started and at least one power state is manageable, 305 * then the CPUs are ready for power management. 306 */ 307 boolean_t 308 cpupm_is_ready() 309 { 310 #ifndef __xpv 311 if (cpupm_enabled == CPUPM_NO_STATES) 312 return (B_FALSE); 313 return (cpupm_ready); 314 #else 315 return (B_FALSE); 316 #endif 317 318 } 319 320 boolean_t 321 cpupm_is_enabled(uint32_t state) 322 { 323 return ((cpupm_enabled & state) == state); 324 } 325 326 /* 327 * By default, all states are enabled. 328 */ 329 void 330 cpupm_disable(uint32_t state) 331 { 332 333 if (state & CPUPM_P_STATES) { 334 cpupm_free_domains(&cpupm_pstate_domains); 335 } 336 if (state & CPUPM_T_STATES) { 337 cpupm_free_domains(&cpupm_tstate_domains); 338 } 339 if (state & CPUPM_C_STATES) { 340 cpupm_free_domains(&cpupm_cstate_domains); 341 } 342 cpupm_enabled &= ~state; 343 } 344 345 /* 346 * Once all CPUs have been started, the PPM driver should build CPU 347 * domains and initialize the topspeed for all CPU devices. 348 */ 349 void 350 cpupm_post_startup() 351 { 352 #ifndef __xpv 353 /* 354 * The CPU domain built by the PPM during CPUs attaching 355 * should be rebuilt with the information retrieved from 356 * ACPI. 357 */ 358 if (cpupm_rebuild_cpu_domains != NULL) 359 (*cpupm_rebuild_cpu_domains)(); 360 361 /* 362 * Only initialize the topspeed if P-states are enabled. 363 */ 364 if (cpupm_enabled & CPUPM_P_STATES && cpupm_init_topspeed != NULL) 365 (*cpupm_init_topspeed)(); 366 #endif 367 cpupm_ready = B_TRUE; 368 } 369 370 /* 371 * Allocate power domains for C,P and T States 372 */ 373 void 374 cpupm_alloc_domains(cpu_t *cp, int state) 375 { 376 cpupm_mach_state_t *mach_state = 377 (cpupm_mach_state_t *)(cp->cpu_m.mcpu_pm_mach_state); 378 cpu_acpi_handle_t handle = mach_state->ms_acpi_handle; 379 cpupm_state_domains_t **dom_ptr; 380 cpupm_state_domains_t *dptr; 381 cpupm_state_domains_t **mach_dom_state_ptr; 382 uint32_t domain; 383 uint32_t type; 384 385 switch (state) { 386 case CPUPM_P_STATES: 387 if (CPU_ACPI_IS_OBJ_CACHED(handle, CPU_ACPI_PSD_CACHED)) { 388 domain = CPU_ACPI_PSD(handle).sd_domain; 389 type = CPU_ACPI_PSD(handle).sd_type; 390 } else { 391 mutex_enter(&cpu_lock); 392 domain = cpuid_get_chipid(cp); 393 mutex_exit(&cpu_lock); 394 type = CPU_ACPI_HW_ALL; 395 } 396 dom_ptr = &cpupm_pstate_domains; 397 mach_dom_state_ptr = &mach_state->ms_pstate.cma_domain; 398 break; 399 case CPUPM_T_STATES: 400 if (CPU_ACPI_IS_OBJ_CACHED(handle, CPU_ACPI_TSD_CACHED)) { 401 domain = CPU_ACPI_TSD(handle).sd_domain; 402 type = CPU_ACPI_TSD(handle).sd_type; 403 } else { 404 mutex_enter(&cpu_lock); 405 domain = cpuid_get_chipid(cp); 406 mutex_exit(&cpu_lock); 407 type = CPU_ACPI_HW_ALL; 408 } 409 dom_ptr = &cpupm_tstate_domains; 410 mach_dom_state_ptr = &mach_state->ms_tstate.cma_domain; 411 break; 412 case CPUPM_C_STATES: 413 if (CPU_ACPI_IS_OBJ_CACHED(handle, CPU_ACPI_CSD_CACHED)) { 414 domain = CPU_ACPI_CSD(handle).sd_domain; 415 type = CPU_ACPI_CSD(handle).sd_type; 416 } else { 417 mutex_enter(&cpu_lock); 418 domain = cpuid_get_coreid(cp); 419 mutex_exit(&cpu_lock); 420 type = CPU_ACPI_HW_ALL; 421 } 422 dom_ptr = &cpupm_cstate_domains; 423 mach_dom_state_ptr = &mach_state->ms_cstate.cma_domain; 424 break; 425 default: 426 return; 427 } 428 429 for (dptr = *dom_ptr; dptr != NULL; dptr = dptr->pm_next) { 430 if (dptr->pm_domain == domain) 431 break; 432 } 433 434 /* new domain is created and linked at the head */ 435 if (dptr == NULL) { 436 dptr = kmem_zalloc(sizeof (cpupm_state_domains_t), KM_SLEEP); 437 dptr->pm_domain = domain; 438 dptr->pm_type = type; 439 dptr->pm_next = *dom_ptr; 440 mutex_init(&dptr->pm_lock, NULL, MUTEX_SPIN, 441 (void *)ipltospl(DISP_LEVEL)); 442 CPUSET_ZERO(dptr->pm_cpus); 443 *dom_ptr = dptr; 444 } 445 CPUSET_ADD(dptr->pm_cpus, cp->cpu_id); 446 *mach_dom_state_ptr = dptr; 447 } 448 449 /* 450 * Free C, P or T state power domains 451 */ 452 void 453 cpupm_free_domains(cpupm_state_domains_t **dom_ptr) 454 { 455 cpupm_state_domains_t *this_domain, *next_domain; 456 457 this_domain = *dom_ptr; 458 while (this_domain != NULL) { 459 next_domain = this_domain->pm_next; 460 mutex_destroy(&this_domain->pm_lock); 461 kmem_free((void *)this_domain, 462 sizeof (cpupm_state_domains_t)); 463 this_domain = next_domain; 464 } 465 *dom_ptr = NULL; 466 } 467 468 void 469 cpupm_alloc_ms_cstate(cpu_t *cp) 470 { 471 cpupm_mach_state_t *mach_state; 472 cpupm_mach_acpi_state_t *ms_cstate; 473 474 mach_state = (cpupm_mach_state_t *)(cp->cpu_m.mcpu_pm_mach_state); 475 ms_cstate = &mach_state->ms_cstate; 476 ASSERT(ms_cstate->cma_state.cstate == NULL); 477 ms_cstate->cma_state.cstate = kmem_zalloc(sizeof (cma_c_state_t), 478 KM_SLEEP); 479 ms_cstate->cma_state.cstate->cs_next_cstate = CPU_ACPI_C1; 480 } 481 482 void 483 cpupm_free_ms_cstate(cpu_t *cp) 484 { 485 cpupm_mach_state_t *mach_state = 486 (cpupm_mach_state_t *)(cp->cpu_m.mcpu_pm_mach_state); 487 cpupm_mach_acpi_state_t *ms_cstate = &mach_state->ms_cstate; 488 489 if (ms_cstate->cma_state.cstate != NULL) { 490 kmem_free(ms_cstate->cma_state.cstate, sizeof (cma_c_state_t)); 491 ms_cstate->cma_state.cstate = NULL; 492 } 493 } 494 495 void 496 cpupm_state_change(cpu_t *cp, int level, int state) 497 { 498 cpupm_mach_state_t *mach_state = 499 (cpupm_mach_state_t *)(cp->cpu_m.mcpu_pm_mach_state); 500 cpupm_state_ops_t *state_ops; 501 cpupm_state_domains_t *state_domain; 502 cpuset_t set; 503 504 DTRACE_PROBE2(cpupm__state__change, cpu_t *, cp, int, level); 505 506 if (mach_state == NULL) { 507 return; 508 } 509 510 switch (state) { 511 case CPUPM_P_STATES: 512 state_ops = mach_state->ms_pstate.cma_ops; 513 state_domain = mach_state->ms_pstate.cma_domain; 514 break; 515 case CPUPM_T_STATES: 516 state_ops = mach_state->ms_tstate.cma_ops; 517 state_domain = mach_state->ms_tstate.cma_domain; 518 break; 519 default: 520 break; 521 } 522 523 switch (state_domain->pm_type) { 524 case CPU_ACPI_SW_ANY: 525 /* 526 * A request on any CPU in the domain transitions the domain 527 */ 528 CPUSET_ONLY(set, cp->cpu_id); 529 state_ops->cpus_change(set, level); 530 break; 531 case CPU_ACPI_SW_ALL: 532 /* 533 * All CPUs in the domain must request the transition 534 */ 535 case CPU_ACPI_HW_ALL: 536 /* 537 * P/T-state transitions are coordinated by the hardware 538 * For now, request the transition on all CPUs in the domain, 539 * but looking ahead we can probably be smarter about this. 540 */ 541 mutex_enter(&state_domain->pm_lock); 542 state_ops->cpus_change(state_domain->pm_cpus, level); 543 mutex_exit(&state_domain->pm_lock); 544 break; 545 default: 546 cmn_err(CE_NOTE, "Unknown domain coordination type: %d", 547 state_domain->pm_type); 548 } 549 } 550 551 /* 552 * CPU PM interfaces exposed to the CPU power manager 553 */ 554 /*ARGSUSED*/ 555 id_t 556 cpupm_plat_domain_id(cpu_t *cp, cpupm_dtype_t type) 557 { 558 cpupm_mach_state_t *mach_state = 559 (cpupm_mach_state_t *)(cp->cpu_m.mcpu_pm_mach_state); 560 561 if ((mach_state == NULL) || (!cpupm_is_enabled(CPUPM_P_STATES) && 562 !cpupm_is_enabled(CPUPM_C_STATES))) { 563 return (CPUPM_NO_DOMAIN); 564 } 565 if (type == CPUPM_DTYPE_ACTIVE) { 566 /* 567 * Return P-State domain for the specified CPU 568 */ 569 if (mach_state->ms_pstate.cma_domain) { 570 return (mach_state->ms_pstate.cma_domain->pm_domain); 571 } 572 } else if (type == CPUPM_DTYPE_IDLE) { 573 /* 574 * Return C-State domain for the specified CPU 575 */ 576 if (mach_state->ms_cstate.cma_domain) { 577 return (mach_state->ms_cstate.cma_domain->pm_domain); 578 } 579 } 580 return (CPUPM_NO_DOMAIN); 581 } 582 583 /*ARGSUSED*/ 584 uint_t 585 cpupm_plat_state_enumerate(cpu_t *cp, cpupm_dtype_t type, 586 cpupm_state_t *states) 587 { 588 int *speeds; 589 uint_t nspeeds, i; 590 591 /* 592 * Idle domain support unimplemented 593 */ 594 if (type != CPUPM_DTYPE_ACTIVE) { 595 return (0); 596 } 597 nspeeds = cpupm_get_speeds(cp, &speeds); 598 599 /* 600 * If the caller passes NULL for states, just return the 601 * number of states. 602 */ 603 if (states != NULL) { 604 for (i = 0; i < nspeeds; i++) { 605 states[i].cps_speed = speeds[i]; 606 states[i].cps_handle = (cpupm_handle_t)i; 607 } 608 } 609 cpupm_free_speeds(speeds, nspeeds); 610 return (nspeeds); 611 } 612 613 /*ARGSUSED*/ 614 int 615 cpupm_plat_change_state(cpu_t *cp, cpupm_state_t *state) 616 { 617 if (!cpupm_is_ready()) 618 return (-1); 619 620 cpupm_state_change(cp, (int)state->cps_handle, CPUPM_P_STATES); 621 622 return (0); 623 } 624 625 /*ARGSUSED*/ 626 /* 627 * Note: It is the responsibility of the users of 628 * cpupm_get_speeds() to free the memory allocated 629 * for speeds using cpupm_free_speeds() 630 */ 631 uint_t 632 cpupm_get_speeds(cpu_t *cp, int **speeds) 633 { 634 #ifndef __xpv 635 cpupm_mach_state_t *mach_state = 636 (cpupm_mach_state_t *)cp->cpu_m.mcpu_pm_mach_state; 637 return (cpu_acpi_get_speeds(mach_state->ms_acpi_handle, speeds)); 638 #else 639 return (0); 640 #endif 641 } 642 643 /*ARGSUSED*/ 644 void 645 cpupm_free_speeds(int *speeds, uint_t nspeeds) 646 { 647 #ifndef __xpv 648 cpu_acpi_free_speeds(speeds, nspeeds); 649 #endif 650 } 651 652 /* 653 * All CPU instances have been initialized successfully. 654 */ 655 boolean_t 656 cpupm_power_ready(void) 657 { 658 return (cpupm_is_enabled(CPUPM_P_STATES) && cpupm_is_ready()); 659 } 660 661 /* 662 * All CPU instances have been initialized successfully. 663 */ 664 boolean_t 665 cpupm_throttle_ready(void) 666 { 667 return (cpupm_is_enabled(CPUPM_T_STATES) && cpupm_is_ready()); 668 } 669 670 /* 671 * All CPU instances have been initialized successfully. 672 */ 673 boolean_t 674 cpupm_cstate_ready(void) 675 { 676 return (cpupm_is_enabled(CPUPM_C_STATES) && cpupm_is_ready()); 677 } 678 679 void 680 cpupm_notify_handler(ACPI_HANDLE obj, UINT32 val, void *ctx) 681 { 682 cpu_t *cp = ctx; 683 cpupm_mach_state_t *mach_state = 684 (cpupm_mach_state_t *)(cp->cpu_m.mcpu_pm_mach_state); 685 cpupm_notification_t *entry; 686 687 mutex_enter(&mach_state->ms_lock); 688 for (entry = mach_state->ms_handlers; entry != NULL; 689 entry = entry->nq_next) { 690 entry->nq_handler(obj, val, entry->nq_ctx); 691 } 692 mutex_exit(&mach_state->ms_lock); 693 } 694 695 /*ARGSUSED*/ 696 void 697 cpupm_add_notify_handler(cpu_t *cp, CPUPM_NOTIFY_HANDLER handler, void *ctx) 698 { 699 #ifndef __xpv 700 cpupm_mach_state_t *mach_state = 701 (cpupm_mach_state_t *)cp->cpu_m.mcpu_pm_mach_state; 702 cpupm_notification_t *entry; 703 704 entry = kmem_zalloc(sizeof (cpupm_notification_t), KM_SLEEP); 705 entry->nq_handler = handler; 706 entry->nq_ctx = ctx; 707 mutex_enter(&mach_state->ms_lock); 708 if (mach_state->ms_handlers == NULL) { 709 entry->nq_next = NULL; 710 mach_state->ms_handlers = entry; 711 cpu_acpi_install_notify_handler(mach_state->ms_acpi_handle, 712 cpupm_notify_handler, cp); 713 714 } else { 715 entry->nq_next = mach_state->ms_handlers; 716 mach_state->ms_handlers = entry; 717 } 718 mutex_exit(&mach_state->ms_lock); 719 #endif 720 } 721 722 /*ARGSUSED*/ 723 static void 724 cpupm_free_notify_handlers(cpu_t *cp) 725 { 726 #ifndef __xpv 727 cpupm_mach_state_t *mach_state = 728 (cpupm_mach_state_t *)cp->cpu_m.mcpu_pm_mach_state; 729 cpupm_notification_t *entry; 730 cpupm_notification_t *next; 731 732 mutex_enter(&mach_state->ms_lock); 733 if (mach_state->ms_handlers == NULL) { 734 mutex_exit(&mach_state->ms_lock); 735 return; 736 } 737 if (mach_state->ms_acpi_handle != NULL) { 738 cpu_acpi_remove_notify_handler(mach_state->ms_acpi_handle, 739 cpupm_notify_handler); 740 } 741 entry = mach_state->ms_handlers; 742 while (entry != NULL) { 743 next = entry->nq_next; 744 kmem_free(entry, sizeof (cpupm_notification_t)); 745 entry = next; 746 } 747 mach_state->ms_handlers = NULL; 748 mutex_exit(&mach_state->ms_lock); 749 #endif 750 } 751 752 /* 753 * Get the current max speed from the ACPI _PPC object 754 */ 755 /*ARGSUSED*/ 756 int 757 cpupm_get_top_speed(cpu_t *cp) 758 { 759 #ifndef __xpv 760 cpupm_mach_state_t *mach_state; 761 cpu_acpi_handle_t handle; 762 int plat_level; 763 uint_t nspeeds; 764 int max_level; 765 766 mach_state = 767 (cpupm_mach_state_t *)cp->cpu_m.mcpu_pm_mach_state; 768 handle = mach_state->ms_acpi_handle; 769 770 cpu_acpi_cache_ppc(handle); 771 plat_level = CPU_ACPI_PPC(handle); 772 773 nspeeds = CPU_ACPI_PSTATES_COUNT(handle); 774 775 max_level = nspeeds - 1; 776 if ((plat_level < 0) || (plat_level > max_level)) { 777 cmn_err(CE_NOTE, "!cpupm_get_top_speed: CPU %d: " 778 "_PPC out of range %d", cp->cpu_id, plat_level); 779 plat_level = 0; 780 } 781 782 return (plat_level); 783 #else 784 return (0); 785 #endif 786 } 787 788 /* 789 * This notification handler is called whenever the ACPI _PPC 790 * object changes. The _PPC is a sort of governor on power levels. 791 * It sets an upper threshold on which, _PSS defined, power levels 792 * are usuable. The _PPC value is dynamic and may change as properties 793 * (i.e., thermal or AC source) of the system change. 794 */ 795 796 static void 797 cpupm_power_manage_notifications(void *ctx) 798 { 799 cpu_t *cp = ctx; 800 int top_speed; 801 802 top_speed = cpupm_get_top_speed(cp); 803 cpupm_redefine_max_activepwr_state(cp, top_speed); 804 } 805 806 /* ARGSUSED */ 807 static void 808 cpupm_event_notify_handler(ACPI_HANDLE obj, UINT32 val, void *ctx) 809 { 810 #ifndef __xpv 811 812 cpu_t *cp = ctx; 813 cpupm_mach_state_t *mach_state = 814 (cpupm_mach_state_t *)(cp->cpu_m.mcpu_pm_mach_state); 815 816 if (mach_state == NULL) 817 return; 818 819 /* 820 * Currently, we handle _TPC,_CST and _PPC change notifications. 821 */ 822 if (val == CPUPM_TPC_CHANGE_NOTIFICATION && 823 mach_state->ms_caps & CPUPM_T_STATES) { 824 cpupm_throttle_manage_notification(ctx); 825 } else if (val == CPUPM_CST_CHANGE_NOTIFICATION && 826 mach_state->ms_caps & CPUPM_C_STATES) { 827 cpuidle_manage_cstates(ctx); 828 } else if (val == CPUPM_PPC_CHANGE_NOTIFICATION && 829 mach_state->ms_caps & CPUPM_P_STATES) { 830 cpupm_power_manage_notifications(ctx); 831 } 832 #endif 833 } 834 835 /* 836 * Update cpupm cstate data each time CPU exits idle. 837 */ 838 void 839 cpupm_wakeup_cstate_data(cma_c_state_t *cs_data, hrtime_t end) 840 { 841 cs_data->cs_idle_exit = end; 842 } 843 844 /* 845 * Determine next cstate based on cpupm data. 846 * Update cpupm cstate data each time CPU goes idle. 847 * Do as much as possible in the idle state bookkeeping function because the 848 * performance impact while idle is minimal compared to in the wakeup function 849 * when there is real work to do. 850 */ 851 uint32_t 852 cpupm_next_cstate(cma_c_state_t *cs_data, cpu_acpi_cstate_t *cstates, 853 uint32_t cs_count, hrtime_t start) 854 { 855 hrtime_t duration; 856 hrtime_t ave_interval; 857 hrtime_t ave_idle_time; 858 uint32_t i; 859 860 duration = cs_data->cs_idle_exit - cs_data->cs_idle_enter; 861 scalehrtime(&duration); 862 cs_data->cs_idle += duration; 863 cs_data->cs_idle_enter = start; 864 865 ++cs_data->cs_cnt; 866 if (cs_data->cs_cnt > cpupm_cs_sample_tunable) { 867 cs_data->cs_smpl_len = start - cs_data->cs_smpl_start; 868 scalehrtime(&cs_data->cs_smpl_len); 869 cs_data->cs_smpl_len |= 1; /* protect from DIV 0 */ 870 cs_data->cs_smpl_idle = cs_data->cs_idle; 871 cs_data->cs_idle = 0; 872 cs_data->cs_smpl_idle_pct = ((100 * cs_data->cs_smpl_idle) / 873 cs_data->cs_smpl_len); 874 875 cs_data->cs_smpl_start = start; 876 cs_data->cs_cnt = 0; 877 878 /* 879 * Strand level C-state policy 880 * The cpu_acpi_cstate_t *cstates array is not required to 881 * have an entry for both CPU_ACPI_C2 and CPU_ACPI_C3. 882 * There are cs_count entries in the cstates array. 883 * cs_data->cs_next_cstate contains the index of the next 884 * C-state this CPU should enter. 885 */ 886 ASSERT(cstates[0].cs_type == CPU_ACPI_C1); 887 888 /* 889 * Will CPU be idle long enough to save power? 890 */ 891 ave_idle_time = (cs_data->cs_smpl_idle / 892 cpupm_cs_sample_tunable) / 1000; 893 for (i = 1; i < cs_count; ++i) { 894 if (ave_idle_time < (cstates[i].cs_latency * 895 cpupm_cs_idle_save_tunable)) { 896 cs_count = i; 897 DTRACE_PROBE2(cpupm__next__cstate, cpu_t *, 898 CPU, int, i); 899 } 900 } 901 902 /* 903 * Wakeup often (even when non-idle time is very short)? 904 * Some producer/consumer type loads fall into this category. 905 */ 906 ave_interval = (cs_data->cs_smpl_len / cpupm_cs_sample_tunable) 907 / 1000; 908 for (i = 1; i < cs_count; ++i) { 909 if (ave_interval <= (cstates[i].cs_latency * 910 cpupm_cs_idle_cost_tunable)) { 911 cs_count = i; 912 DTRACE_PROBE2(cpupm__next__cstate, cpu_t *, 913 CPU, int, (CPU_MAX_CSTATES + i)); 914 } 915 } 916 917 /* 918 * Idle percent 919 */ 920 for (i = 1; i < cs_count; ++i) { 921 switch (cstates[i].cs_type) { 922 case CPU_ACPI_C2: 923 if (cs_data->cs_smpl_idle_pct < 924 cpupm_C2_idle_pct_tunable) { 925 cs_count = i; 926 DTRACE_PROBE2(cpupm__next__cstate, 927 cpu_t *, CPU, int, 928 ((2 * CPU_MAX_CSTATES) + i)); 929 } 930 break; 931 932 case CPU_ACPI_C3: 933 if (cs_data->cs_smpl_idle_pct < 934 cpupm_C3_idle_pct_tunable) { 935 cs_count = i; 936 DTRACE_PROBE2(cpupm__next__cstate, 937 cpu_t *, CPU, int, 938 ((2 * CPU_MAX_CSTATES) + i)); 939 } 940 break; 941 } 942 } 943 944 cs_data->cs_next_cstate = cs_count - 1; 945 } 946 947 return (cs_data->cs_next_cstate); 948 } 949