xref: /illumos-gate/usr/src/uts/i86pc/os/cpr_impl.c (revision 5a45682c3e7b01faa1761ab8d86f0bed4cc1d363)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 
25 /*
26  * Platform specific implementation code
27  * Currently only suspend to RAM is supported (ACPI S3)
28  */
29 
30 #define	SUNDDI_IMPL
31 
32 #include <sys/types.h>
33 #include <sys/promif.h>
34 #include <sys/prom_isa.h>
35 #include <sys/prom_plat.h>
36 #include <sys/cpuvar.h>
37 #include <sys/pte.h>
38 #include <vm/hat.h>
39 #include <vm/page.h>
40 #include <vm/as.h>
41 #include <sys/cpr.h>
42 #include <sys/kmem.h>
43 #include <sys/clock.h>
44 #include <sys/kmem.h>
45 #include <sys/panic.h>
46 #include <vm/seg_kmem.h>
47 #include <sys/cpu_module.h>
48 #include <sys/callb.h>
49 #include <sys/machsystm.h>
50 #include <sys/vmsystm.h>
51 #include <sys/systm.h>
52 #include <sys/archsystm.h>
53 #include <sys/stack.h>
54 #include <sys/fs/ufs_fs.h>
55 #include <sys/memlist.h>
56 #include <sys/bootconf.h>
57 #include <sys/thread.h>
58 #include <sys/x_call.h>
59 #include <sys/smp_impldefs.h>
60 #include <vm/vm_dep.h>
61 #include <sys/psm.h>
62 #include <sys/epm.h>
63 #include <sys/cpr_wakecode.h>
64 #include <sys/x86_archext.h>
65 #include <sys/reboot.h>
66 #include <sys/acpi/acpi.h>
67 #include <sys/acpica.h>
68 #include <sys/fp.h>
69 
70 #define	AFMT	"%lx"
71 
72 extern int	flushes_require_xcalls;
73 extern cpuset_t	cpu_ready_set;
74 
75 #if defined(__amd64)
76 extern void	*wc_long_mode_64(void);
77 #endif	/* __amd64 */
78 extern int	tsc_gethrtime_enable;
79 extern	void	i_cpr_start_cpu(void);
80 
81 ushort_t	cpr_mach_type = CPR_MACHTYPE_X86;
82 void		(*cpr_start_cpu_func)(void) = i_cpr_start_cpu;
83 
84 static wc_cpu_t	*wc_other_cpus = NULL;
85 static cpuset_t procset;
86 
87 static void
88 init_real_mode_platter(int cpun, uint32_t offset, uint_t cr4, wc_desctbr_t gdt);
89 
90 static int i_cpr_platform_alloc(psm_state_request_t *req);
91 static void i_cpr_platform_free(psm_state_request_t *req);
92 static int i_cpr_save_apic(psm_state_request_t *req);
93 static int i_cpr_restore_apic(psm_state_request_t *req);
94 static int wait_for_set(cpuset_t *set, int who);
95 
96 static	void i_cpr_save_stack(kthread_t *t, wc_cpu_t *wc_cpu);
97 void i_cpr_restore_stack(kthread_t *t, greg_t *save_stack);
98 
99 #ifdef STACK_GROWTH_DOWN
100 #define	CPR_GET_STACK_START(t) ((t)->t_stkbase)
101 #define	CPR_GET_STACK_END(t) ((t)->t_stk)
102 #else
103 #define	CPR_GET_STACK_START(t) ((t)->t_stk)
104 #define	CPR_GET_STACK_END(t) ((t)->t_stkbase)
105 #endif	/* STACK_GROWTH_DOWN */
106 
107 /*
108  * restart paused slave cpus
109  */
110 void
111 i_cpr_machdep_setup(void)
112 {
113 	if (ncpus > 1) {
114 		CPR_DEBUG(CPR_DEBUG1, ("MP restarted...\n"));
115 		mutex_enter(&cpu_lock);
116 		start_cpus();
117 		mutex_exit(&cpu_lock);
118 	}
119 }
120 
121 
122 /*
123  * Stop all interrupt activities in the system
124  */
125 void
126 i_cpr_stop_intr(void)
127 {
128 	(void) spl7();
129 }
130 
131 /*
132  * Set machine up to take interrupts
133  */
134 void
135 i_cpr_enable_intr(void)
136 {
137 	(void) spl0();
138 }
139 
140 /*
141  * Save miscellaneous information which needs to be written to the
142  * state file.  This information is required to re-initialize
143  * kernel/prom handshaking.
144  */
145 void
146 i_cpr_save_machdep_info(void)
147 {
148 	int notcalled = 0;
149 	ASSERT(notcalled);
150 }
151 
152 
153 void
154 i_cpr_set_tbr(void)
155 {
156 }
157 
158 
159 processorid_t
160 i_cpr_bootcpuid(void)
161 {
162 	return (0);
163 }
164 
165 /*
166  * cpu0 should contain bootcpu info
167  */
168 cpu_t *
169 i_cpr_bootcpu(void)
170 {
171 	ASSERT(MUTEX_HELD(&cpu_lock));
172 
173 	return (cpu_get(i_cpr_bootcpuid()));
174 }
175 
176 /*
177  *	Save context for the specified CPU
178  */
179 void *
180 i_cpr_save_context(void *arg)
181 {
182 	long	index = (long)arg;
183 	psm_state_request_t *papic_state;
184 	int resuming;
185 	int	ret;
186 	wc_cpu_t	*wc_cpu = wc_other_cpus + index;
187 
188 	PMD(PMD_SX, ("i_cpr_save_context() index = %ld\n", index))
189 
190 	ASSERT(index < NCPU);
191 
192 	papic_state = &(wc_cpu)->wc_apic_state;
193 
194 	ret = i_cpr_platform_alloc(papic_state);
195 	ASSERT(ret == 0);
196 
197 	ret = i_cpr_save_apic(papic_state);
198 	ASSERT(ret == 0);
199 
200 	i_cpr_save_stack(curthread, wc_cpu);
201 
202 	/*
203 	 * wc_save_context returns twice, once when susending and
204 	 * once when resuming,  wc_save_context() returns 0 when
205 	 * suspending and non-zero upon resume
206 	 */
207 	resuming = (wc_save_context(wc_cpu) == 0);
208 
209 	/*
210 	 * do NOT call any functions after this point, because doing so
211 	 * will modify the stack that we are running on
212 	 */
213 
214 	if (resuming) {
215 
216 		ret = i_cpr_restore_apic(papic_state);
217 		ASSERT(ret == 0);
218 
219 		i_cpr_platform_free(papic_state);
220 
221 		/*
222 		 * Enable interrupts on this cpu.
223 		 * Do not bind interrupts to this CPU's local APIC until
224 		 * the CPU is ready to receive interrupts.
225 		 */
226 		ASSERT(CPU->cpu_id != i_cpr_bootcpuid());
227 		mutex_enter(&cpu_lock);
228 		cpu_enable_intr(CPU);
229 		mutex_exit(&cpu_lock);
230 
231 		/*
232 		 * Setting the bit in cpu_ready_set must be the last operation
233 		 * in processor initialization; the boot CPU will continue to
234 		 * boot once it sees this bit set for all active CPUs.
235 		 */
236 		CPUSET_ATOMIC_ADD(cpu_ready_set, CPU->cpu_id);
237 
238 		PMD(PMD_SX,
239 		    ("i_cpr_save_context() resuming cpu %d in cpu_ready_set\n",
240 		    CPU->cpu_id))
241 	} else {
242 		/*
243 		 * Disable interrupts on this CPU so that PSM knows not to bind
244 		 * interrupts here on resume until the CPU has executed
245 		 * cpu_enable_intr() (above) in the resume path.
246 		 * We explicitly do not grab cpu_lock here because at this point
247 		 * in the suspend process, the boot cpu owns cpu_lock and all
248 		 * other cpus are also executing in the pause thread (only
249 		 * modifying their respective CPU structure).
250 		 */
251 		(void) cpu_disable_intr(CPU);
252 	}
253 
254 	PMD(PMD_SX, ("i_cpr_save_context: wc_save_context returns %d\n",
255 	    resuming))
256 
257 	return (NULL);
258 }
259 
260 static ushort_t *warm_reset_vector = NULL;
261 
262 static ushort_t *
263 map_warm_reset_vector()
264 {
265 	/*LINTED*/
266 	if (!(warm_reset_vector = (ushort_t *)psm_map_phys(WARM_RESET_VECTOR,
267 	    sizeof (ushort_t *), PROT_READ|PROT_WRITE)))
268 		return (NULL);
269 
270 	/*
271 	 * setup secondary cpu bios boot up vector
272 	 */
273 	*warm_reset_vector = (ushort_t)((caddr_t)
274 	    /*LINTED*/
275 	    ((struct rm_platter *)rm_platter_va)->rm_code - rm_platter_va
276 	    + ((ulong_t)rm_platter_va & 0xf));
277 	warm_reset_vector++;
278 	*warm_reset_vector = (ushort_t)(rm_platter_pa >> 4);
279 
280 	--warm_reset_vector;
281 	return (warm_reset_vector);
282 }
283 
284 void
285 i_cpr_pre_resume_cpus()
286 {
287 	/*
288 	 * this is a cut down version of start_other_cpus()
289 	 * just do the initialization to wake the other cpus
290 	 */
291 	unsigned who;
292 	int boot_cpuid = i_cpr_bootcpuid();
293 	uint32_t		code_length = 0;
294 	caddr_t			wakevirt = rm_platter_va;
295 	/*LINTED*/
296 	wakecode_t		*wp = (wakecode_t *)wakevirt;
297 	char *str = "i_cpr_pre_resume_cpus";
298 	extern int get_tsc_ready();
299 	int err;
300 
301 	/*LINTED*/
302 	rm_platter_t *real_mode_platter = (rm_platter_t *)rm_platter_va;
303 
304 	/*
305 	 * If startup wasn't able to find a page under 1M, we cannot
306 	 * proceed.
307 	 */
308 	if (rm_platter_va == 0) {
309 		cmn_err(CE_WARN, "Cannot suspend the system because no "
310 		    "memory below 1M could be found for processor startup");
311 		return;
312 	}
313 
314 	/*
315 	 * Copy the real mode code at "real_mode_start" to the
316 	 * page at rm_platter_va.
317 	 */
318 	warm_reset_vector = map_warm_reset_vector();
319 	if (warm_reset_vector == NULL) {
320 		PMD(PMD_SX, ("i_cpr_pre_resume_cpus() returning #2\n"))
321 		return;
322 	}
323 
324 	flushes_require_xcalls = 1;
325 
326 	/*
327 	 * We lock our affinity to the master CPU to ensure that all slave CPUs
328 	 * do their TSC syncs with the same CPU.
329 	 */
330 
331 	affinity_set(CPU_CURRENT);
332 
333 	/*
334 	 * Mark the boot cpu as being ready and in the procset, since we are
335 	 * running on that cpu.
336 	 */
337 	CPUSET_ONLY(cpu_ready_set, boot_cpuid);
338 	CPUSET_ONLY(procset, boot_cpuid);
339 
340 	for (who = 0; who < max_ncpus; who++) {
341 
342 		wc_cpu_t	*cpup = wc_other_cpus + who;
343 		wc_desctbr_t	gdt;
344 
345 		if (who == boot_cpuid)
346 			continue;
347 
348 		if (!CPU_IN_SET(mp_cpus, who))
349 			continue;
350 
351 		PMD(PMD_SX, ("%s() waking up %d cpu\n", str, who))
352 
353 		bcopy(cpup, &(wp->wc_cpu), sizeof (wc_cpu_t));
354 
355 		gdt.base = cpup->wc_gdt_base;
356 		gdt.limit = cpup->wc_gdt_limit;
357 
358 #if defined(__amd64)
359 		code_length = (uint32_t)wc_long_mode_64 - (uint32_t)wc_rm_start;
360 #else
361 		code_length = 0;
362 #endif
363 
364 		init_real_mode_platter(who, code_length, cpup->wc_cr4, gdt);
365 
366 		mutex_enter(&cpu_lock);
367 		err = mach_cpuid_start(who, rm_platter_va);
368 		mutex_exit(&cpu_lock);
369 		if (err != 0) {
370 			cmn_err(CE_WARN, "cpu%d: failed to start during "
371 			    "suspend/resume error %d", who, err);
372 			continue;
373 		}
374 
375 		PMD(PMD_SX, ("%s() #1 waiting for %d in procset\n", str, who))
376 
377 		if (!wait_for_set(&procset, who))
378 			continue;
379 
380 		PMD(PMD_SX, ("%s() %d cpu started\n", str, who))
381 
382 		PMD(PMD_SX, ("%s() tsc_ready = %d\n", str, get_tsc_ready()))
383 
384 		if (tsc_gethrtime_enable) {
385 			PMD(PMD_SX, ("%s() calling tsc_sync_master\n", str))
386 			tsc_sync_master(who);
387 		}
388 
389 		PMD(PMD_SX, ("%s() waiting for %d in cpu_ready_set\n", str,
390 		    who))
391 		/*
392 		 * Wait for cpu to declare that it is ready, we want the
393 		 * cpus to start serially instead of in parallel, so that
394 		 * they do not contend with each other in wc_rm_start()
395 		 */
396 		if (!wait_for_set(&cpu_ready_set, who))
397 			continue;
398 
399 		/*
400 		 * do not need to re-initialize dtrace using dtrace_cpu_init
401 		 * function
402 		 */
403 		PMD(PMD_SX, ("%s() cpu %d now ready\n", str, who))
404 	}
405 
406 	affinity_clear();
407 
408 	PMD(PMD_SX, ("%s() all cpus now ready\n", str))
409 
410 }
411 
412 static void
413 unmap_warm_reset_vector(ushort_t *warm_reset_vector)
414 {
415 	psm_unmap_phys((caddr_t)warm_reset_vector, sizeof (ushort_t *));
416 }
417 
418 /*
419  * We need to setup a 1:1 (virtual to physical) mapping for the
420  * page containing the wakeup code.
421  */
422 static struct as *save_as;	/* when switching to kas */
423 
424 static void
425 unmap_wakeaddr_1to1(uint64_t wakephys)
426 {
427 	uintptr_t	wp = (uintptr_t)wakephys;
428 	hat_setup(save_as->a_hat, 0);	/* switch back from kernel hat */
429 	hat_unload(kas.a_hat, (caddr_t)wp, PAGESIZE, HAT_UNLOAD);
430 }
431 
432 void
433 i_cpr_post_resume_cpus()
434 {
435 	uint64_t	wakephys = rm_platter_pa;
436 
437 	if (warm_reset_vector != NULL)
438 		unmap_warm_reset_vector(warm_reset_vector);
439 
440 	hat_unload(kas.a_hat, (caddr_t)(uintptr_t)rm_platter_pa, MMU_PAGESIZE,
441 	    HAT_UNLOAD);
442 
443 	/*
444 	 * cmi_post_mpstartup() is only required upon boot not upon
445 	 * resume from RAM
446 	 */
447 
448 	PT(PT_UNDO1to1);
449 	/* Tear down 1:1 mapping for wakeup code */
450 	unmap_wakeaddr_1to1(wakephys);
451 }
452 
453 /* ARGSUSED */
454 void
455 i_cpr_handle_xc(int flag)
456 {
457 }
458 
459 int
460 i_cpr_reusable_supported(void)
461 {
462 	return (0);
463 }
464 static void
465 map_wakeaddr_1to1(uint64_t wakephys)
466 {
467 	uintptr_t	wp = (uintptr_t)wakephys;
468 	hat_devload(kas.a_hat, (caddr_t)wp, PAGESIZE, btop(wakephys),
469 	    (PROT_READ|PROT_WRITE|PROT_EXEC|HAT_STORECACHING_OK|HAT_NOSYNC),
470 	    HAT_LOAD);
471 	save_as = curthread->t_procp->p_as;
472 	hat_setup(kas.a_hat, 0);	/* switch to kernel-only hat */
473 }
474 
475 
476 void
477 prt_other_cpus()
478 {
479 	int	who;
480 
481 	if (ncpus == 1) {
482 		PMD(PMD_SX, ("prt_other_cpus() other cpu table empty for "
483 		    "uniprocessor machine\n"))
484 		return;
485 	}
486 
487 	for (who = 0; who < max_ncpus; who++) {
488 
489 		wc_cpu_t	*cpup = wc_other_cpus + who;
490 
491 		if (!CPU_IN_SET(mp_cpus, who))
492 			continue;
493 
494 		PMD(PMD_SX, ("prt_other_cpus() who = %d, gdt=%p:%x, "
495 		    "idt=%p:%x, ldt=%lx, tr=%lx, kgsbase="
496 		    AFMT ", sp=%lx\n", who,
497 		    (void *)cpup->wc_gdt_base, cpup->wc_gdt_limit,
498 		    (void *)cpup->wc_idt_base, cpup->wc_idt_limit,
499 		    (long)cpup->wc_ldt, (long)cpup->wc_tr,
500 		    (long)cpup->wc_kgsbase, (long)cpup->wc_rsp))
501 	}
502 }
503 
504 /*
505  * Power down the system.
506  */
507 int
508 i_cpr_power_down(int sleeptype)
509 {
510 	caddr_t		wakevirt = rm_platter_va;
511 	uint64_t	wakephys = rm_platter_pa;
512 	ulong_t		saved_intr;
513 	uint32_t	code_length = 0;
514 	wc_desctbr_t	gdt;
515 	/*LINTED*/
516 	wakecode_t	*wp = (wakecode_t *)wakevirt;
517 	/*LINTED*/
518 	rm_platter_t	*wcpp = (rm_platter_t *)wakevirt;
519 	wc_cpu_t	*cpup = &(wp->wc_cpu);
520 	dev_info_t	*ppm;
521 	int		ret = 0;
522 	power_req_t	power_req;
523 	char *str =	"i_cpr_power_down";
524 #if defined(__amd64)
525 	/*LINTED*/
526 	rm_platter_t *real_mode_platter = (rm_platter_t *)rm_platter_va;
527 #endif
528 	extern int	cpr_suspend_succeeded;
529 	extern void	kernel_wc_code();
530 
531 	ASSERT(sleeptype == CPR_TORAM);
532 	ASSERT(CPU->cpu_id == 0);
533 
534 	if ((ppm = PPM(ddi_root_node())) == NULL) {
535 		PMD(PMD_SX, ("%s: root node not claimed\n", str))
536 		return (ENOTTY);
537 	}
538 
539 	PMD(PMD_SX, ("Entering %s()\n", str))
540 
541 	PT(PT_IC);
542 	saved_intr = intr_clear();
543 
544 	PT(PT_1to1);
545 	/* Setup 1:1 mapping for wakeup code */
546 	map_wakeaddr_1to1(wakephys);
547 
548 	PMD(PMD_SX, ("ncpus=%d\n", ncpus))
549 
550 	PMD(PMD_SX, ("wc_rm_end - wc_rm_start=%lx WC_CODESIZE=%x\n",
551 	    ((size_t)((uint_t)wc_rm_end - (uint_t)wc_rm_start)), WC_CODESIZE))
552 
553 	PMD(PMD_SX, ("wakevirt=%p, wakephys=%x\n",
554 	    (void *)wakevirt, (uint_t)wakephys))
555 
556 	ASSERT(((size_t)((uint_t)wc_rm_end - (uint_t)wc_rm_start)) <
557 	    WC_CODESIZE);
558 
559 	bzero(wakevirt, PAGESIZE);
560 
561 	/* Copy code to rm_platter */
562 	bcopy((caddr_t)wc_rm_start, wakevirt,
563 	    (size_t)((uint_t)wc_rm_end - (uint_t)wc_rm_start));
564 
565 	prt_other_cpus();
566 
567 #if defined(__amd64)
568 
569 	PMD(PMD_SX, ("real_mode_platter->rm_cr4=%lx, getcr4()=%lx\n",
570 	    (ulong_t)real_mode_platter->rm_cr4, (ulong_t)getcr4()))
571 	PMD(PMD_SX, ("real_mode_platter->rm_pdbr=%lx, getcr3()=%lx\n",
572 	    (ulong_t)real_mode_platter->rm_pdbr, getcr3()))
573 
574 	real_mode_platter->rm_cr4 = getcr4();
575 	real_mode_platter->rm_pdbr = getcr3();
576 
577 	rmp_gdt_init(real_mode_platter);
578 
579 	/*
580 	 * Since the CPU needs to jump to protected mode using an identity
581 	 * mapped address, we need to calculate it here.
582 	 */
583 	real_mode_platter->rm_longmode64_addr = rm_platter_pa +
584 	    ((uint32_t)wc_long_mode_64 - (uint32_t)wc_rm_start);
585 
586 	PMD(PMD_SX, ("real_mode_platter->rm_cr4=%lx, getcr4()=%lx\n",
587 	    (ulong_t)real_mode_platter->rm_cr4, getcr4()))
588 
589 	PMD(PMD_SX, ("real_mode_platter->rm_pdbr=%lx, getcr3()=%lx\n",
590 	    (ulong_t)real_mode_platter->rm_pdbr, getcr3()))
591 
592 	PMD(PMD_SX, ("real_mode_platter->rm_longmode64_addr=%lx\n",
593 	    (ulong_t)real_mode_platter->rm_longmode64_addr))
594 
595 #endif
596 
597 	PT(PT_SC);
598 	if (wc_save_context(cpup)) {
599 
600 		ret = i_cpr_platform_alloc(&(wc_other_cpus->wc_apic_state));
601 		if (ret != 0)
602 			return (ret);
603 
604 		ret = i_cpr_save_apic(&(wc_other_cpus->wc_apic_state));
605 		PMD(PMD_SX, ("%s: i_cpr_save_apic() returned %d\n", str, ret))
606 		if (ret != 0)
607 			return (ret);
608 
609 		PMD(PMD_SX, ("wakephys=%x, kernel_wc_code=%p\n",
610 		    (uint_t)wakephys, (void *)&kernel_wc_code))
611 		PMD(PMD_SX, ("virtaddr=%lx, retaddr=%lx\n",
612 		    (long)cpup->wc_virtaddr, (long)cpup->wc_retaddr))
613 		PMD(PMD_SX, ("ebx=%x, edi=%x, esi=%x, ebp=%x, esp=%x\n",
614 		    cpup->wc_ebx, cpup->wc_edi, cpup->wc_esi, cpup->wc_ebp,
615 		    cpup->wc_esp))
616 		PMD(PMD_SX, ("cr0=%lx, cr3=%lx, cr4=%lx\n",
617 		    (long)cpup->wc_cr0, (long)cpup->wc_cr3,
618 		    (long)cpup->wc_cr4))
619 		PMD(PMD_SX, ("cs=%x, ds=%x, es=%x, ss=%x, fs=%lx, gs=%lx, "
620 		    "flgs=%lx\n", cpup->wc_cs, cpup->wc_ds, cpup->wc_es,
621 		    cpup->wc_ss, (long)cpup->wc_fs, (long)cpup->wc_gs,
622 		    (long)cpup->wc_eflags))
623 
624 		PMD(PMD_SX, ("gdt=%p:%x, idt=%p:%x, ldt=%lx, tr=%lx, "
625 		    "kgbase=%lx\n", (void *)cpup->wc_gdt_base,
626 		    cpup->wc_gdt_limit, (void *)cpup->wc_idt_base,
627 		    cpup->wc_idt_limit, (long)cpup->wc_ldt,
628 		    (long)cpup->wc_tr, (long)cpup->wc_kgsbase))
629 
630 		gdt.base = cpup->wc_gdt_base;
631 		gdt.limit = cpup->wc_gdt_limit;
632 
633 #if defined(__amd64)
634 		code_length = (uint32_t)wc_long_mode_64 -
635 		    (uint32_t)wc_rm_start;
636 #else
637 		code_length = 0;
638 #endif
639 
640 		init_real_mode_platter(0, code_length, cpup->wc_cr4, gdt);
641 
642 #if defined(__amd64)
643 		PMD(PMD_SX, ("real_mode_platter->rm_cr4=%lx, getcr4()=%lx\n",
644 		    (ulong_t)wcpp->rm_cr4, getcr4()))
645 
646 		PMD(PMD_SX, ("real_mode_platter->rm_pdbr=%lx, getcr3()=%lx\n",
647 		    (ulong_t)wcpp->rm_pdbr, getcr3()))
648 
649 		PMD(PMD_SX, ("real_mode_platter->rm_longmode64_addr=%lx\n",
650 		    (ulong_t)wcpp->rm_longmode64_addr))
651 
652 		PMD(PMD_SX,
653 		    ("real_mode_platter->rm_temp_gdt[TEMPGDT_KCODE64]=%lx\n",
654 		    (ulong_t)wcpp->rm_temp_gdt[TEMPGDT_KCODE64]))
655 #endif
656 
657 		PMD(PMD_SX, ("gdt=%p:%x, idt=%p:%x, ldt=%lx, tr=%lx, "
658 		    "kgsbase=%lx\n", (void *)wcpp->rm_gdt_base,
659 		    wcpp->rm_gdt_lim, (void *)wcpp->rm_idt_base,
660 		    wcpp->rm_idt_lim, (long)cpup->wc_ldt, (long)cpup->wc_tr,
661 		    (long)cpup->wc_kgsbase))
662 
663 		power_req.request_type = PMR_PPM_ENTER_SX;
664 		power_req.req.ppm_power_enter_sx_req.sx_state = S3;
665 		power_req.req.ppm_power_enter_sx_req.test_point =
666 		    cpr_test_point;
667 		power_req.req.ppm_power_enter_sx_req.wakephys = wakephys;
668 
669 		PMD(PMD_SX, ("%s: pm_ctlops PMR_PPM_ENTER_SX\n", str))
670 		PT(PT_PPMCTLOP);
671 		(void) pm_ctlops(ppm, ddi_root_node(), DDI_CTLOPS_POWER,
672 		    &power_req, &ret);
673 		PMD(PMD_SX, ("%s: returns %d\n", str, ret))
674 
675 		/*
676 		 * If it works, we get control back to the else branch below
677 		 * If we get control back here, it didn't work.
678 		 * XXX return EINVAL here?
679 		 */
680 
681 		unmap_wakeaddr_1to1(wakephys);
682 		intr_restore(saved_intr);
683 
684 		return (ret);
685 	} else {
686 		cpr_suspend_succeeded = 1;
687 
688 		power_req.request_type = PMR_PPM_EXIT_SX;
689 		power_req.req.ppm_power_enter_sx_req.sx_state = S3;
690 
691 		PMD(PMD_SX, ("%s: pm_ctlops PMR_PPM_EXIT_SX\n", str))
692 		PT(PT_PPMCTLOP);
693 		(void) pm_ctlops(ppm, ddi_root_node(), DDI_CTLOPS_POWER,
694 		    &power_req, &ret);
695 		PMD(PMD_SX, ("%s: returns %d\n", str, ret))
696 
697 		ret = i_cpr_restore_apic(&(wc_other_cpus->wc_apic_state));
698 		/*
699 		 * the restore should never fail, if the saved suceeded
700 		 */
701 		ASSERT(ret == 0);
702 
703 		i_cpr_platform_free(&(wc_other_cpus->wc_apic_state));
704 
705 		/*
706 		 * Enable interrupts on boot cpu.
707 		 */
708 		ASSERT(CPU->cpu_id == i_cpr_bootcpuid());
709 		mutex_enter(&cpu_lock);
710 		cpu_enable_intr(CPU);
711 		mutex_exit(&cpu_lock);
712 
713 		PT(PT_INTRRESTORE);
714 		intr_restore(saved_intr);
715 		PT(PT_CPU);
716 
717 		return (ret);
718 	}
719 }
720 
721 /*
722  * Stop all other cpu's before halting or rebooting. We pause the cpu's
723  * instead of sending a cross call.
724  * Stolen from sun4/os/mp_states.c
725  */
726 
727 static int cpu_are_paused;	/* sic */
728 
729 void
730 i_cpr_stop_other_cpus(void)
731 {
732 	mutex_enter(&cpu_lock);
733 	if (cpu_are_paused) {
734 		mutex_exit(&cpu_lock);
735 		return;
736 	}
737 	pause_cpus(NULL);
738 	cpu_are_paused = 1;
739 
740 	mutex_exit(&cpu_lock);
741 }
742 
743 int
744 i_cpr_is_supported(int sleeptype)
745 {
746 	extern int cpr_supported_override;
747 	extern int cpr_platform_enable;
748 	extern int pm_S3_enabled;
749 
750 	if (sleeptype != CPR_TORAM)
751 		return (0);
752 
753 	/*
754 	 * The next statement tests if a specific platform has turned off
755 	 * cpr support.
756 	 */
757 	if (cpr_supported_override)
758 		return (0);
759 
760 	/*
761 	 * If a platform has specifically turned on cpr support ...
762 	 */
763 	if (cpr_platform_enable)
764 		return (1);
765 
766 	return (pm_S3_enabled);
767 }
768 
769 void
770 i_cpr_bitmap_cleanup(void)
771 {
772 }
773 
774 void
775 i_cpr_free_memory_resources(void)
776 {
777 }
778 
779 /*
780  * Needed only for S3 so far
781  */
782 static int
783 i_cpr_platform_alloc(psm_state_request_t *req)
784 {
785 #ifdef DEBUG
786 	char	*str = "i_cpr_platform_alloc";
787 #endif
788 
789 	PMD(PMD_SX, ("cpu = %d, %s(%p) \n", CPU->cpu_id, str, (void *)req))
790 
791 	if (psm_state == NULL) {
792 		PMD(PMD_SX, ("%s() : psm_state == NULL\n", str))
793 		return (0);
794 	}
795 
796 	req->psr_cmd = PSM_STATE_ALLOC;
797 	return ((*psm_state)(req));
798 }
799 
800 /*
801  * Needed only for S3 so far
802  */
803 static void
804 i_cpr_platform_free(psm_state_request_t *req)
805 {
806 #ifdef DEBUG
807 	char	*str = "i_cpr_platform_free";
808 #endif
809 
810 	PMD(PMD_SX, ("cpu = %d, %s(%p) \n", CPU->cpu_id, str, (void *)req))
811 
812 	if (psm_state == NULL) {
813 		PMD(PMD_SX, ("%s() : psm_state == NULL\n", str))
814 		return;
815 	}
816 
817 	req->psr_cmd = PSM_STATE_FREE;
818 	(void) (*psm_state)(req);
819 }
820 
821 static int
822 i_cpr_save_apic(psm_state_request_t *req)
823 {
824 #ifdef DEBUG
825 	char	*str = "i_cpr_save_apic";
826 #endif
827 
828 	if (psm_state == NULL) {
829 		PMD(PMD_SX, ("%s() : psm_state == NULL\n", str))
830 		return (0);
831 	}
832 
833 	req->psr_cmd = PSM_STATE_SAVE;
834 	return ((*psm_state)(req));
835 }
836 
837 static int
838 i_cpr_restore_apic(psm_state_request_t *req)
839 {
840 #ifdef DEBUG
841 	char	*str = "i_cpr_restore_apic";
842 #endif
843 
844 	if (psm_state == NULL) {
845 		PMD(PMD_SX, ("%s() : psm_state == NULL\n", str))
846 		return (0);
847 	}
848 
849 	req->psr_cmd = PSM_STATE_RESTORE;
850 	return ((*psm_state)(req));
851 }
852 
853 
854 /* stop lint complaining about offset not being used in 32bit mode */
855 #if !defined(__amd64)
856 /*ARGSUSED*/
857 #endif
858 static void
859 init_real_mode_platter(int cpun, uint32_t offset, uint_t cr4, wc_desctbr_t gdt)
860 {
861 	/*LINTED*/
862 	rm_platter_t *real_mode_platter = (rm_platter_t *)rm_platter_va;
863 
864 	/*
865 	 * Fill up the real mode platter to make it easy for real mode code to
866 	 * kick it off. This area should really be one passed by boot to kernel
867 	 * and guaranteed to be below 1MB and aligned to 16 bytes. Should also
868 	 * have identical physical and virtual address in paged mode.
869 	 */
870 
871 	real_mode_platter->rm_pdbr = getcr3();
872 	real_mode_platter->rm_cpu = cpun;
873 	real_mode_platter->rm_cr4 = cr4;
874 
875 	real_mode_platter->rm_gdt_base = gdt.base;
876 	real_mode_platter->rm_gdt_lim = gdt.limit;
877 
878 #if defined(__amd64)
879 	if (getcr3() > 0xffffffffUL)
880 		panic("Cannot initialize CPUs; kernel's 64-bit page tables\n"
881 		    "located above 4G in physical memory (@ 0x%llx).",
882 		    (unsigned long long)getcr3());
883 
884 	/*
885 	 * Setup pseudo-descriptors for temporary GDT and IDT for use ONLY
886 	 * by code in real_mode_start():
887 	 *
888 	 * GDT[0]:  NULL selector
889 	 * GDT[1]:  64-bit CS: Long = 1, Present = 1, bits 12, 11 = 1
890 	 *
891 	 * Clear the IDT as interrupts will be off and a limit of 0 will cause
892 	 * the CPU to triple fault and reset on an NMI, seemingly as reasonable
893 	 * a course of action as any other, though it may cause the entire
894 	 * platform to reset in some cases...
895 	 */
896 	real_mode_platter->rm_temp_gdt[0] = 0ULL;
897 	real_mode_platter->rm_temp_gdt[TEMPGDT_KCODE64] = 0x20980000000000ULL;
898 
899 	real_mode_platter->rm_temp_gdt_lim = (ushort_t)
900 	    (sizeof (real_mode_platter->rm_temp_gdt) - 1);
901 	real_mode_platter->rm_temp_gdt_base = rm_platter_pa +
902 	    (uint32_t)(&((rm_platter_t *)0)->rm_temp_gdt);
903 
904 	real_mode_platter->rm_temp_idt_lim = 0;
905 	real_mode_platter->rm_temp_idt_base = 0;
906 
907 	/*
908 	 * Since the CPU needs to jump to protected mode using an identity
909 	 * mapped address, we need to calculate it here.
910 	 */
911 	real_mode_platter->rm_longmode64_addr = rm_platter_pa + offset;
912 #endif	/* __amd64 */
913 
914 	/* return; */
915 }
916 
917 void
918 i_cpr_start_cpu(void)
919 {
920 
921 	struct cpu *cp = CPU;
922 
923 	char *str = "i_cpr_start_cpu";
924 	extern void init_cpu_syscall(struct cpu *cp);
925 
926 	PMD(PMD_SX, ("%s() called\n", str))
927 
928 	PMD(PMD_SX, ("%s() #0 cp->cpu_base_spl %d\n", str,
929 	    cp->cpu_base_spl))
930 
931 	mutex_enter(&cpu_lock);
932 	if (cp == i_cpr_bootcpu()) {
933 		mutex_exit(&cpu_lock);
934 		PMD(PMD_SX,
935 		    ("%s() called on bootcpu nothing to do!\n", str))
936 		return;
937 	}
938 	mutex_exit(&cpu_lock);
939 
940 	/*
941 	 * We need to Sync PAT with cpu0's PAT. We have to do
942 	 * this with interrupts disabled.
943 	 */
944 	if (is_x86_feature(x86_featureset, X86FSET_PAT))
945 		pat_sync();
946 
947 	/*
948 	 * If we use XSAVE, we need to restore XFEATURE_ENABLE_MASK register.
949 	 */
950 	if (fp_save_mech == FP_XSAVE) {
951 		setup_xfem();
952 	}
953 
954 	/*
955 	 * Initialize this CPU's syscall handlers
956 	 */
957 	init_cpu_syscall(cp);
958 
959 	PMD(PMD_SX, ("%s() #1 cp->cpu_base_spl %d\n", str, cp->cpu_base_spl))
960 
961 	/*
962 	 * Do not need to call cpuid_pass2(), cpuid_pass3(), cpuid_pass4() or
963 	 * init_cpu_info(), since the work that they do is only needed to
964 	 * be done once at boot time
965 	 */
966 
967 
968 	mutex_enter(&cpu_lock);
969 	CPUSET_ADD(procset, cp->cpu_id);
970 	mutex_exit(&cpu_lock);
971 
972 	PMD(PMD_SX, ("%s() #2 cp->cpu_base_spl %d\n", str,
973 	    cp->cpu_base_spl))
974 
975 	if (tsc_gethrtime_enable) {
976 		PMD(PMD_SX, ("%s() calling tsc_sync_slave\n", str))
977 		tsc_sync_slave();
978 	}
979 
980 	PMD(PMD_SX, ("%s() cp->cpu_id %d, cp->cpu_intr_actv %d\n", str,
981 	    cp->cpu_id, cp->cpu_intr_actv))
982 	PMD(PMD_SX, ("%s() #3 cp->cpu_base_spl %d\n", str,
983 	    cp->cpu_base_spl))
984 
985 	(void) spl0();		/* enable interrupts */
986 
987 	PMD(PMD_SX, ("%s() #4 cp->cpu_base_spl %d\n", str,
988 	    cp->cpu_base_spl))
989 
990 	/*
991 	 * Set up the CPU module for this CPU.  This can't be done before
992 	 * this CPU is made CPU_READY, because we may (in heterogeneous systems)
993 	 * need to go load another CPU module.  The act of attempting to load
994 	 * a module may trigger a cross-call, which will ASSERT unless this
995 	 * cpu is CPU_READY.
996 	 */
997 
998 	/*
999 	 * cmi already been init'd (during boot), so do not need to do it again
1000 	 */
1001 #ifdef PM_REINITMCAONRESUME
1002 	if (is_x86_feature(x86_featureset, X86FSET_MCA))
1003 		cmi_mca_init();
1004 #endif
1005 
1006 	PMD(PMD_SX, ("%s() returning\n", str))
1007 
1008 	/* return; */
1009 }
1010 
1011 void
1012 i_cpr_alloc_cpus(void)
1013 {
1014 	char *str = "i_cpr_alloc_cpus";
1015 
1016 	PMD(PMD_SX, ("%s() CPU->cpu_id %d\n", str, CPU->cpu_id))
1017 	/*
1018 	 * we allocate this only when we actually need it to save on
1019 	 * kernel memory
1020 	 */
1021 
1022 	if (wc_other_cpus == NULL) {
1023 		wc_other_cpus = kmem_zalloc(max_ncpus * sizeof (wc_cpu_t),
1024 		    KM_SLEEP);
1025 	}
1026 
1027 }
1028 
1029 void
1030 i_cpr_free_cpus(void)
1031 {
1032 	int index;
1033 	wc_cpu_t *wc_cpu;
1034 
1035 	if (wc_other_cpus != NULL) {
1036 		for (index = 0; index < max_ncpus; index++) {
1037 			wc_cpu = wc_other_cpus + index;
1038 			if (wc_cpu->wc_saved_stack != NULL) {
1039 				kmem_free(wc_cpu->wc_saved_stack,
1040 				    wc_cpu->wc_saved_stack_size);
1041 			}
1042 		}
1043 
1044 		kmem_free((void *) wc_other_cpus,
1045 		    max_ncpus * sizeof (wc_cpu_t));
1046 		wc_other_cpus = NULL;
1047 	}
1048 }
1049 
1050 /*
1051  * wrapper for acpica_ddi_save_resources()
1052  */
1053 void
1054 i_cpr_save_configuration(dev_info_t *dip)
1055 {
1056 	acpica_ddi_save_resources(dip);
1057 }
1058 
1059 /*
1060  * wrapper for acpica_ddi_restore_resources()
1061  */
1062 void
1063 i_cpr_restore_configuration(dev_info_t *dip)
1064 {
1065 	acpica_ddi_restore_resources(dip);
1066 }
1067 
1068 static int
1069 wait_for_set(cpuset_t *set, int who)
1070 {
1071 	int delays;
1072 	char *str = "wait_for_set";
1073 
1074 	for (delays = 0; !CPU_IN_SET(*set, who); delays++) {
1075 		if (delays == 500) {
1076 			/*
1077 			 * After five seconds, things are probably
1078 			 * looking a bit bleak - explain the hang.
1079 			 */
1080 			cmn_err(CE_NOTE, "cpu%d: started, "
1081 			    "but not running in the kernel yet", who);
1082 			PMD(PMD_SX, ("%s() %d cpu started "
1083 			    "but not running in the kernel yet\n",
1084 			    str, who))
1085 		} else if (delays > 2000) {
1086 			/*
1087 			 * We waited at least 20 seconds, bail ..
1088 			 */
1089 			cmn_err(CE_WARN, "cpu%d: timed out", who);
1090 			PMD(PMD_SX, ("%s() %d cpu timed out\n",
1091 			    str, who))
1092 			return (0);
1093 		}
1094 
1095 		/*
1096 		 * wait at least 10ms, then check again..
1097 		 */
1098 		drv_usecwait(10000);
1099 	}
1100 
1101 	return (1);
1102 }
1103 
1104 static	void
1105 i_cpr_save_stack(kthread_t *t, wc_cpu_t *wc_cpu)
1106 {
1107 	size_t	stack_size;	/* size of stack */
1108 	caddr_t	start = CPR_GET_STACK_START(t);	/* stack start */
1109 	caddr_t	end = CPR_GET_STACK_END(t);	/* stack end  */
1110 
1111 	stack_size = (size_t)end - (size_t)start;
1112 
1113 	if (wc_cpu->wc_saved_stack_size < stack_size) {
1114 		if (wc_cpu->wc_saved_stack != NULL) {
1115 			kmem_free(wc_cpu->wc_saved_stack,
1116 			    wc_cpu->wc_saved_stack_size);
1117 		}
1118 		wc_cpu->wc_saved_stack = kmem_zalloc(stack_size, KM_SLEEP);
1119 		wc_cpu->wc_saved_stack_size = stack_size;
1120 	}
1121 
1122 	bcopy(start, wc_cpu->wc_saved_stack, stack_size);
1123 }
1124 
1125 void
1126 i_cpr_restore_stack(kthread_t *t, greg_t *save_stack)
1127 {
1128 	size_t	stack_size;	/* size of stack */
1129 	caddr_t	start = CPR_GET_STACK_START(t);	/* stack start */
1130 	caddr_t	end = CPR_GET_STACK_END(t);	/* stack end  */
1131 
1132 	stack_size = (size_t)end - (size_t)start;
1133 
1134 	bcopy(save_stack, start, stack_size);
1135 }
1136