1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/types.h> 27 #include <sys/param.h> 28 #include <sys/cmn_err.h> 29 #include <sys/promif.h> 30 #include <sys/acpi/acpi.h> 31 #include <sys/acpica.h> 32 #include <sys/sunddi.h> 33 #include <sys/ddi.h> 34 #include <sys/ddi_impldefs.h> 35 #include <sys/pci.h> 36 #include <sys/debug.h> 37 #include <sys/psm_common.h> 38 #include <sys/sunndi.h> 39 #include <sys/ksynch.h> 40 41 /* Global configurables */ 42 43 char *psm_module_name; /* used to store name of psm module */ 44 45 /* 46 * acpi_irq_check_elcr: when set elcr will also be consulted for building 47 * the reserved irq list. When 0 (false), the existing state of the ELCR 48 * is ignored when selecting a vector during IRQ translation, and the ELCR 49 * is programmed to the proper setting for the type of bus (level-triggered 50 * for PCI, edge-triggered for non-PCI). When non-zero (true), vectors 51 * set to edge-mode will not be used when in PIC-mode. The default value 52 * is 0 (false). Note that ACPI's SCI vector is always set to conform to 53 * ACPI-specification regardless of this. 54 * 55 */ 56 int acpi_irq_check_elcr = 0; 57 58 int psm_verbose = 0; 59 60 #define PSM_VERBOSE_IRQ(fmt) \ 61 if (psm_verbose & PSM_VERBOSE_IRQ_FLAG) \ 62 cmn_err fmt; 63 64 #define PSM_VERBOSE_POWEROFF(fmt) \ 65 if (psm_verbose & PSM_VERBOSE_POWEROFF_FLAG || \ 66 psm_verbose & PSM_VERBOSE_POWEROFF_PAUSE_FLAG) \ 67 prom_printf fmt; 68 69 #define PSM_VERBOSE_POWEROFF_PAUSE(fmt) \ 70 if (psm_verbose & PSM_VERBOSE_POWEROFF_FLAG || \ 71 psm_verbose & PSM_VERBOSE_POWEROFF_PAUSE_FLAG) {\ 72 prom_printf fmt; \ 73 if (psm_verbose & PSM_VERBOSE_POWEROFF_PAUSE_FLAG) \ 74 (void) goany(); \ 75 } 76 77 78 /* Local storage */ 79 static ACPI_HANDLE acpi_sbobj = NULL; 80 static kmutex_t acpi_irq_cache_mutex; 81 82 /* 83 * irq_cache_table is a list that serves a two-key cache. It is used 84 * as a pci busid/devid/ipin <-> irq cache and also as a acpi 85 * interrupt lnk <-> irq cache. 86 */ 87 static irq_cache_t *irq_cache_table; 88 89 #define IRQ_CACHE_INITLEN 20 90 static int irq_cache_len = 0; 91 static int irq_cache_valid = 0; 92 93 static int acpi_get_gsiv(dev_info_t *dip, ACPI_HANDLE pciobj, int devno, 94 int ipin, int *pci_irqp, iflag_t *iflagp, acpi_psm_lnk_t *acpipsmlnkp); 95 96 static int acpi_eval_lnk(dev_info_t *dip, char *lnkname, 97 int *pci_irqp, iflag_t *intr_flagp, acpi_psm_lnk_t *acpipsmlnkp); 98 99 static int acpi_get_irq_lnk_cache_ent(ACPI_HANDLE lnkobj, int *pci_irqp, 100 iflag_t *intr_flagp); 101 102 extern int goany(void); 103 104 105 #define NEXT_PRT_ITEM(p) \ 106 (ACPI_PCI_ROUTING_TABLE *)(((char *)(p)) + (p)->Length) 107 108 static int 109 acpi_get_gsiv(dev_info_t *dip, ACPI_HANDLE pciobj, int devno, int ipin, 110 int *pci_irqp, iflag_t *intr_flagp, acpi_psm_lnk_t *acpipsmlnkp) 111 { 112 ACPI_BUFFER rb; 113 ACPI_PCI_ROUTING_TABLE *prtp; 114 int status; 115 int dev_adr; 116 117 /* 118 * Get the IRQ routing table 119 */ 120 rb.Pointer = NULL; 121 rb.Length = ACPI_ALLOCATE_BUFFER; 122 if (AcpiGetIrqRoutingTable(pciobj, &rb) != AE_OK) { 123 return (ACPI_PSM_FAILURE); 124 } 125 126 status = ACPI_PSM_FAILURE; 127 dev_adr = (devno << 16 | 0xffff); 128 for (prtp = rb.Pointer; prtp->Length != 0; prtp = NEXT_PRT_ITEM(prtp)) { 129 /* look until a matching dev/pin is found */ 130 if (dev_adr != prtp->Address || ipin != prtp->Pin) 131 continue; 132 133 /* NULL Source name means index is GSIV */ 134 if (*prtp->Source == 0) { 135 intr_flagp->intr_el = INTR_EL_LEVEL; 136 intr_flagp->intr_po = INTR_PO_ACTIVE_LOW; 137 ASSERT(pci_irqp != NULL); 138 *pci_irqp = prtp->SourceIndex; 139 status = ACPI_PSM_SUCCESS; 140 } else 141 status = acpi_eval_lnk(dip, prtp->Source, pci_irqp, 142 intr_flagp, acpipsmlnkp); 143 144 break; 145 146 } 147 148 AcpiOsFree(rb.Pointer); 149 return (status); 150 } 151 152 /* 153 * 154 * If the interrupt link device is already configured, 155 * stores polarity and sensitivity in the structure pointed to by 156 * intr_flagp, and irqno in the value pointed to by pci_irqp. 157 * 158 * Returns: 159 * ACPI_PSM_SUCCESS if the interrupt link device is already configured. 160 * ACPI_PSM_PARTIAL if configuration is needed. 161 * ACPI_PSM_FAILURE in case of error. 162 * 163 * When two devices share the same interrupt link device, and the 164 * link device is already configured (i.e. found in the irq cache) 165 * we need to use the already configured irq instead of reconfiguring 166 * the link device. 167 */ 168 static int 169 acpi_eval_lnk(dev_info_t *dip, char *lnkname, int *pci_irqp, 170 iflag_t *intr_flagp, acpi_psm_lnk_t *acpipsmlnkp) 171 { 172 ACPI_HANDLE tmpobj; 173 ACPI_HANDLE lnkobj; 174 int status; 175 176 /* 177 * Convert the passed-in link device name to a handle 178 */ 179 if (AcpiGetHandle(NULL, lnkname, &lnkobj) != AE_OK) { 180 return (ACPI_PSM_FAILURE); 181 } 182 183 /* 184 * Assume that the link device is invalid if no _CRS method 185 * exists, since _CRS method is a required method 186 */ 187 if (AcpiGetHandle(lnkobj, "_CRS", &tmpobj) != AE_OK) { 188 return (ACPI_PSM_FAILURE); 189 } 190 191 ASSERT(acpipsmlnkp != NULL); 192 acpipsmlnkp->lnkobj = lnkobj; 193 if ((acpi_get_irq_lnk_cache_ent(lnkobj, pci_irqp, intr_flagp)) == 194 ACPI_PSM_SUCCESS) { 195 PSM_VERBOSE_IRQ((CE_CONT, "!psm: link object found from cache " 196 " for device %s, instance #%d, irq no %d\n", 197 ddi_get_name(dip), ddi_get_instance(dip), *pci_irqp)); 198 return (ACPI_PSM_SUCCESS); 199 } else { 200 if (acpica_eval_int(lnkobj, "_STA", &status) == AE_OK) { 201 acpipsmlnkp->device_status = (uchar_t)status; 202 } 203 204 return (ACPI_PSM_PARTIAL); 205 } 206 } 207 208 int 209 acpi_psm_init(char *module_name, int verbose_flags) 210 { 211 psm_module_name = module_name; 212 213 psm_verbose = verbose_flags; 214 215 if (AcpiGetHandle(NULL, "\\_SB", &acpi_sbobj) != AE_OK) { 216 cmn_err(CE_WARN, "!psm: get _SB failed"); 217 return (ACPI_PSM_FAILURE); 218 } 219 220 mutex_init(&acpi_irq_cache_mutex, NULL, MUTEX_DEFAULT, NULL); 221 222 return (ACPI_PSM_SUCCESS); 223 224 } 225 226 /* 227 * Return bus/dev/fn for PCI dip (note: not the parent "pci" node). 228 */ 229 230 int 231 get_bdf(dev_info_t *dip, int *bus, int *device, int *func) 232 { 233 pci_regspec_t *pci_rp; 234 int len; 235 236 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS, 237 "reg", (int **)&pci_rp, (uint_t *)&len) != DDI_SUCCESS) 238 return (-1); 239 240 if (len < (sizeof (pci_regspec_t) / sizeof (int))) { 241 ddi_prop_free(pci_rp); 242 return (-1); 243 } 244 if (bus != NULL) 245 *bus = (int)PCI_REG_BUS_G(pci_rp->pci_phys_hi); 246 if (device != NULL) 247 *device = (int)PCI_REG_DEV_G(pci_rp->pci_phys_hi); 248 if (func != NULL) 249 *func = (int)PCI_REG_FUNC_G(pci_rp->pci_phys_hi); 250 ddi_prop_free(pci_rp); 251 return (0); 252 } 253 254 255 /* 256 * Build the reserved ISA irq list, and store it in the table pointed to by 257 * reserved_irqs_table. The caller is responsible for allocating this table 258 * with a minimum of MAX_ISA_IRQ + 1 entries. 259 * 260 * The routine looks in the device tree at the subtree rooted at /isa 261 * for each of the devices under that node, if an interrupts property 262 * is present, its values are used to "reserve" irqs so that later ACPI 263 * configuration won't choose those irqs. 264 * 265 * In addition, if acpi_irq_check_elcr is set, will use ELCR register 266 * to identify reserved IRQs. 267 */ 268 void 269 build_reserved_irqlist(uchar_t *reserved_irqs_table) 270 { 271 dev_info_t *isanode = ddi_find_devinfo("isa", -1, 0); 272 dev_info_t *isa_child = 0; 273 int i; 274 uint_t elcrval; 275 276 /* Initialize the reserved ISA IRQs: */ 277 for (i = 0; i <= MAX_ISA_IRQ; i++) 278 reserved_irqs_table[i] = 0; 279 280 if (acpi_irq_check_elcr) { 281 282 elcrval = (inb(ELCR_PORT2) << 8) | (inb(ELCR_PORT1)); 283 if (ELCR_EDGE(elcrval, 0) && ELCR_EDGE(elcrval, 1) && 284 ELCR_EDGE(elcrval, 2) && ELCR_EDGE(elcrval, 8) && 285 ELCR_EDGE(elcrval, 13)) { 286 /* valid ELCR */ 287 for (i = 0; i <= MAX_ISA_IRQ; i++) 288 if (!ELCR_LEVEL(elcrval, i)) 289 reserved_irqs_table[i] = 1; 290 } 291 } 292 293 /* always check the isa devinfo nodes */ 294 295 if (isanode != 0) { /* Found ISA */ 296 uint_t intcnt; /* Interrupt count */ 297 int *intrs; /* Interrupt values */ 298 299 /* Load first child: */ 300 isa_child = ddi_get_child(isanode); 301 while (isa_child != 0) { /* Iterate over /isa children */ 302 /* if child has any interrupts, save them */ 303 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, isa_child, 304 DDI_PROP_DONTPASS, "interrupts", &intrs, &intcnt) 305 == DDI_PROP_SUCCESS) { 306 /* 307 * iterate over child interrupt list, adding 308 * them to the reserved irq list 309 */ 310 while (intcnt-- > 0) { 311 /* 312 * Each value MUST be <= MAX_ISA_IRQ 313 */ 314 315 if ((intrs[intcnt] > MAX_ISA_IRQ) || 316 (intrs[intcnt] < 0)) 317 continue; 318 319 reserved_irqs_table[intrs[intcnt]] = 1; 320 } 321 ddi_prop_free(intrs); 322 } 323 isa_child = ddi_get_next_sibling(isa_child); 324 } 325 /* The isa node was held by ddi_find_devinfo, so release it */ 326 ndi_rele_devi(isanode); 327 } 328 329 /* 330 * Reserve IRQ14 & IRQ15 for IDE. It shouldn't be hard-coded 331 * here but there's no other way to find the irqs for 332 * legacy-mode ata (since it's hard-coded in pci-ide also). 333 */ 334 reserved_irqs_table[14] = 1; 335 reserved_irqs_table[15] = 1; 336 } 337 338 /* 339 * Examine devinfo node to determine if it is a PCI-PCI bridge 340 * 341 * Returns: 342 * 0 if not a bridge or error 343 * 1 if a bridge 344 */ 345 static int 346 psm_is_pci_bridge(dev_info_t *dip) 347 { 348 ddi_acc_handle_t cfg_handle; 349 int rv = 0; 350 351 if (pci_config_setup(dip, &cfg_handle) == DDI_SUCCESS) { 352 rv = ((pci_config_get8(cfg_handle, PCI_CONF_BASCLASS) == 353 PCI_CLASS_BRIDGE) && (pci_config_get8(cfg_handle, 354 PCI_CONF_SUBCLASS) == PCI_BRIDGE_PCI)); 355 pci_config_teardown(&cfg_handle); 356 } 357 358 return (rv); 359 } 360 361 362 /* 363 * Examines ACPI node for presence of _PRT object 364 * 365 * Returns: 366 * 0 if no _PRT or error 367 * 1 if _PRT is present 368 */ 369 static int 370 psm_node_has_prt(ACPI_HANDLE *ah) 371 { 372 ACPI_HANDLE rh; 373 374 return (AcpiGetHandle(ah, "_PRT", &rh) == AE_OK); 375 } 376 377 378 /* 379 * Look first for an ACPI PCI bus node matching busid, then for a _PRT on the 380 * parent node; then drop into the bridge-chasing code (which will also 381 * look for _PRTs on the way up the tree of bridges) 382 * 383 * Stores polarity and sensitivity in the structure pointed to by 384 * intr_flagp, and irqno in the value pointed to by pci_irqp. * 385 * Returns: 386 * ACPI_PSM_SUCCESS on success. 387 * ACPI_PSM_PARTIAL to indicate need to configure the interrupt 388 * link device. 389 * ACPI_PSM_FAILURE if an error prevented the system from 390 * obtaining irq information for dip. 391 */ 392 int 393 acpi_translate_pci_irq(dev_info_t *dip, int ipin, int *pci_irqp, 394 iflag_t *intr_flagp, acpi_psm_lnk_t *acpipsmlnkp) 395 { 396 ACPI_HANDLE pciobj; 397 int status = AE_ERROR; 398 dev_info_t *curdip, *parentdip; 399 int curpin, curbus, curdev; 400 401 402 curpin = ipin; 403 curdip = dip; 404 while (curdip != ddi_root_node()) { 405 parentdip = ddi_get_parent(curdip); 406 ASSERT(parentdip != NULL); 407 408 if (get_bdf(curdip, &curbus, &curdev, NULL) != 0) 409 break; 410 411 status = acpica_get_handle(parentdip, &pciobj); 412 if ((status == AE_OK) && psm_node_has_prt(pciobj)) { 413 return (acpi_get_gsiv(curdip, pciobj, curdev, curpin, 414 pci_irqp, intr_flagp, acpipsmlnkp)); 415 } 416 417 /* if we got here, we need to traverse a bridge upwards */ 418 if (!psm_is_pci_bridge(parentdip)) 419 break; 420 421 /* 422 * This is the rotating scheme that Compaq is using 423 * and documented in the PCI-PCI spec. Also, if the 424 * PCI-PCI bridge is behind another PCI-PCI bridge, 425 * then it needs to keep ascending until an interrupt 426 * entry is found or the top is reached 427 */ 428 curpin = (curdev + curpin) % PCI_INTD; 429 curdip = parentdip; 430 } 431 432 /* 433 * We should never, ever get here; didn't find a _PRT 434 */ 435 return (ACPI_PSM_FAILURE); 436 } 437 438 /* 439 * Sets the irq resource of the lnk object to the requested irq value. 440 * 441 * Returns ACPI_PSM_SUCCESS on success, ACPI_PSM_FAILURE upon failure. 442 */ 443 int 444 acpi_set_irq_resource(acpi_psm_lnk_t *acpipsmlnkp, int irq) 445 { 446 ACPI_BUFFER rsb; 447 ACPI_RESOURCE *resp; 448 ACPI_RESOURCE *srsp; 449 ACPI_HANDLE lnkobj; 450 int srs_len, status; 451 452 ASSERT(acpipsmlnkp != NULL); 453 454 lnkobj = acpipsmlnkp->lnkobj; 455 456 /* 457 * Fetch the possible resources for the link 458 */ 459 460 rsb.Pointer = NULL; 461 rsb.Length = ACPI_ALLOCATE_BUFFER; 462 status = AcpiGetPossibleResources(lnkobj, &rsb); 463 if (status != AE_OK) { 464 cmn_err(CE_WARN, "!psm: set_irq: _PRS failed"); 465 return (ACPI_PSM_FAILURE); 466 } 467 468 /* 469 * Find an IRQ resource descriptor to use as template 470 */ 471 srsp = NULL; 472 for (resp = rsb.Pointer; resp->Type != ACPI_RESOURCE_TYPE_END_TAG; 473 resp = ACPI_NEXT_RESOURCE(resp)) { 474 if ((resp->Type == ACPI_RESOURCE_TYPE_IRQ) || 475 (resp->Type == ACPI_RESOURCE_TYPE_EXTENDED_IRQ)) { 476 ACPI_RESOURCE *endtag; 477 /* 478 * Allocate enough room for this resource entry 479 * and one end tag following it 480 */ 481 srs_len = resp->Length + sizeof (*endtag); 482 srsp = kmem_zalloc(srs_len, KM_SLEEP); 483 bcopy(resp, srsp, resp->Length); 484 endtag = ACPI_NEXT_RESOURCE(srsp); 485 endtag->Type = ACPI_RESOURCE_TYPE_END_TAG; 486 endtag->Length = 0; 487 break; /* drop out of the loop */ 488 } 489 } 490 491 /* 492 * We're done with the PRS values, toss 'em lest we forget 493 */ 494 AcpiOsFree(rsb.Pointer); 495 496 if (srsp == NULL) 497 return (ACPI_PSM_FAILURE); 498 499 /* 500 * The Interrupts[] array is always at least one entry 501 * long; see the definition of ACPI_RESOURCE. 502 */ 503 switch (srsp->Type) { 504 case ACPI_RESOURCE_TYPE_IRQ: 505 srsp->Data.Irq.InterruptCount = 1; 506 srsp->Data.Irq.Interrupts[0] = irq; 507 break; 508 case ACPI_RESOURCE_TYPE_EXTENDED_IRQ: 509 srsp->Data.ExtendedIrq.InterruptCount = 1; 510 srsp->Data.ExtendedIrq.Interrupts[0] = irq; 511 break; 512 } 513 514 rsb.Pointer = srsp; 515 rsb.Length = srs_len; 516 status = AcpiSetCurrentResources(lnkobj, &rsb); 517 kmem_free(srsp, srs_len); 518 if (status != AE_OK) { 519 cmn_err(CE_WARN, "!psm: set_irq: _SRS failed"); 520 return (ACPI_PSM_FAILURE); 521 } 522 523 if (acpica_eval_int(lnkobj, "_STA", &status) == AE_OK) { 524 acpipsmlnkp->device_status = (uchar_t)status; 525 return (ACPI_PSM_SUCCESS); 526 } else 527 return (ACPI_PSM_FAILURE); 528 } 529 530 531 /* 532 * 533 */ 534 static int 535 psm_acpi_edgelevel(UINT32 el) 536 { 537 switch (el) { 538 case ACPI_EDGE_SENSITIVE: 539 return (INTR_EL_EDGE); 540 case ACPI_LEVEL_SENSITIVE: 541 return (INTR_EL_LEVEL); 542 default: 543 /* el is a single bit; should never reach here */ 544 return (INTR_EL_CONFORM); 545 } 546 } 547 548 549 /* 550 * 551 */ 552 static int 553 psm_acpi_po(UINT32 po) 554 { 555 switch (po) { 556 case ACPI_ACTIVE_HIGH: 557 return (INTR_PO_ACTIVE_HIGH); 558 case ACPI_ACTIVE_LOW: 559 return (INTR_PO_ACTIVE_LOW); 560 default: 561 /* po is a single bit; should never reach here */ 562 return (INTR_PO_CONFORM); 563 } 564 } 565 566 567 /* 568 * Retrieves the current irq setting for the interrrupt link device. 569 * 570 * Stores polarity and sensitivity in the structure pointed to by 571 * intr_flagp, and irqno in the value pointed to by pci_irqp. 572 * 573 * Returns ACPI_PSM_SUCCESS on success, ACPI_PSM_FAILURE upon failure. 574 */ 575 int 576 acpi_get_current_irq_resource(acpi_psm_lnk_t *acpipsmlnkp, int *pci_irqp, 577 iflag_t *intr_flagp) 578 { 579 ACPI_HANDLE lnkobj; 580 ACPI_BUFFER rb; 581 ACPI_RESOURCE *rp; 582 int irq; 583 int status = ACPI_PSM_FAILURE; 584 585 ASSERT(acpipsmlnkp != NULL); 586 lnkobj = acpipsmlnkp->lnkobj; 587 588 if (!(acpipsmlnkp->device_status & STA_PRESENT) || 589 !(acpipsmlnkp->device_status & STA_ENABLE)) { 590 PSM_VERBOSE_IRQ((CE_WARN, "!psm: crs device either not " 591 "present or disabled, status 0x%x", 592 acpipsmlnkp->device_status)); 593 return (ACPI_PSM_FAILURE); 594 } 595 596 rb.Pointer = NULL; 597 rb.Length = ACPI_ALLOCATE_BUFFER; 598 if (AcpiGetCurrentResources(lnkobj, &rb) != AE_OK) { 599 PSM_VERBOSE_IRQ((CE_WARN, "!psm: no crs object found or" 600 " evaluation failed")); 601 return (ACPI_PSM_FAILURE); 602 } 603 604 irq = -1; 605 for (rp = rb.Pointer; rp->Type != ACPI_RESOURCE_TYPE_END_TAG; 606 rp = ACPI_NEXT_RESOURCE(rp)) { 607 if (rp->Type == ACPI_RESOURCE_TYPE_IRQ) { 608 if (irq > 0) { 609 PSM_VERBOSE_IRQ((CE_WARN, "!psm: multiple IRQ" 610 " from _CRS ")); 611 status = ACPI_PSM_FAILURE; 612 break; 613 } 614 615 if (rp->Data.Irq.InterruptCount != 1) { 616 PSM_VERBOSE_IRQ((CE_WARN, "!psm: <>1 interrupt" 617 " from _CRS ")); 618 status = ACPI_PSM_FAILURE; 619 break; 620 } 621 622 intr_flagp->intr_el = psm_acpi_edgelevel( 623 rp->Data.Irq.Triggering); 624 intr_flagp->intr_po = psm_acpi_po( 625 rp->Data.Irq.Polarity); 626 irq = rp->Data.Irq.Interrupts[0]; 627 status = ACPI_PSM_SUCCESS; 628 } else if (rp->Type == ACPI_RESOURCE_TYPE_EXTENDED_IRQ) { 629 if (irq > 0) { 630 PSM_VERBOSE_IRQ((CE_WARN, "!psm: multiple IRQ" 631 " from _CRS ")); 632 status = ACPI_PSM_FAILURE; 633 break; 634 } 635 636 if (rp->Data.ExtendedIrq.InterruptCount != 1) { 637 PSM_VERBOSE_IRQ((CE_WARN, "!psm: <>1 interrupt" 638 " from _CRS ")); 639 status = ACPI_PSM_FAILURE; 640 break; 641 } 642 643 intr_flagp->intr_el = psm_acpi_edgelevel( 644 rp->Data.ExtendedIrq.Triggering); 645 intr_flagp->intr_po = psm_acpi_po( 646 rp->Data.ExtendedIrq.Polarity); 647 irq = rp->Data.ExtendedIrq.Interrupts[0]; 648 status = ACPI_PSM_SUCCESS; 649 } 650 } 651 652 AcpiOsFree(rb.Pointer); 653 if (status == ACPI_PSM_SUCCESS) { 654 *pci_irqp = irq; 655 } 656 657 return (status); 658 } 659 660 /* 661 * Searches for the given IRQ in the irqlist passed in. 662 * 663 * If multiple matches exist, this returns true on the first match. 664 * Returns the interrupt flags, if a match was found, in `intr_flagp' if 665 * it's passed in non-NULL 666 */ 667 int 668 acpi_irqlist_find_irq(acpi_irqlist_t *irqlistp, int irq, iflag_t *intr_flagp) 669 { 670 int found = 0; 671 int i; 672 673 while (irqlistp != NULL && !found) { 674 for (i = 0; i < irqlistp->num_irqs; i++) { 675 if (irqlistp->irqs[i] == irq) { 676 if (intr_flagp) 677 *intr_flagp = irqlistp->intr_flags; 678 found = 1; 679 break; /* out of for() */ 680 } 681 } 682 } 683 684 return (found ? ACPI_PSM_SUCCESS : ACPI_PSM_FAILURE); 685 } 686 687 /* 688 * Frees the irqlist allocated by acpi_get_possible_irq_resource. 689 * It takes a count of number of entries in the list. 690 */ 691 void 692 acpi_free_irqlist(acpi_irqlist_t *irqlistp) 693 { 694 acpi_irqlist_t *freednode; 695 696 while (irqlistp != NULL) { 697 /* Free the irq list */ 698 kmem_free(irqlistp->irqs, irqlistp->num_irqs * 699 sizeof (int32_t)); 700 701 freednode = irqlistp; 702 irqlistp = irqlistp->next; 703 kmem_free(freednode, sizeof (acpi_irqlist_t)); 704 } 705 } 706 707 /* 708 * Creates a new entry in the given irqlist with the information passed in. 709 */ 710 static void 711 acpi_add_irqlist_entry(acpi_irqlist_t **irqlistp, uint32_t *irqlist, 712 int irqlist_len, iflag_t *intr_flagp) 713 { 714 acpi_irqlist_t *newent; 715 716 ASSERT(irqlist != NULL); 717 ASSERT(intr_flagp != NULL); 718 719 newent = kmem_alloc(sizeof (acpi_irqlist_t), KM_SLEEP); 720 newent->intr_flags = *intr_flagp; 721 newent->irqs = irqlist; 722 newent->num_irqs = irqlist_len; 723 newent->next = *irqlistp; 724 725 *irqlistp = newent; 726 } 727 728 729 /* 730 * Retrieves a list of possible interrupt settings for the interrupt link 731 * device. 732 * 733 * Stores polarity and sensitivity in the structure pointed to by intr_flagp. 734 * Updates value pointed to by irqlistp with the address of a table it 735 * allocates. where interrupt numbers are stored. Stores the number of entries 736 * in this table in the value pointed to by num_entriesp; 737 * 738 * Each element in this table is of type int32_t. The table should be later 739 * freed by caller via acpi_free_irq_list(). 740 * 741 * Returns ACPI_PSM_SUCCESS on success and ACPI_PSM_FAILURE upon failure 742 */ 743 int 744 acpi_get_possible_irq_resources(acpi_psm_lnk_t *acpipsmlnkp, 745 acpi_irqlist_t **irqlistp) 746 { 747 ACPI_HANDLE lnkobj; 748 ACPI_BUFFER rsb; 749 ACPI_RESOURCE *resp; 750 int status; 751 752 int i, el, po, irqlist_len; 753 uint32_t *irqlist; 754 void *tmplist; 755 iflag_t intr_flags; 756 757 ASSERT(acpipsmlnkp != NULL); 758 lnkobj = acpipsmlnkp->lnkobj; 759 760 rsb.Pointer = NULL; 761 rsb.Length = ACPI_ALLOCATE_BUFFER; 762 status = AcpiGetPossibleResources(lnkobj, &rsb); 763 if (status != AE_OK) { 764 cmn_err(CE_WARN, "!psm: get_irq: _PRS failed"); 765 return (ACPI_PSM_FAILURE); 766 } 767 768 /* 769 * Scan the resources looking for an interrupt resource 770 */ 771 *irqlistp = 0; 772 for (resp = rsb.Pointer; resp->Type != ACPI_RESOURCE_TYPE_END_TAG; 773 resp = ACPI_NEXT_RESOURCE(resp)) { 774 switch (resp->Type) { 775 case ACPI_RESOURCE_TYPE_IRQ: 776 irqlist_len = resp->Data.Irq.InterruptCount; 777 tmplist = resp->Data.Irq.Interrupts; 778 el = resp->Data.Irq.Triggering; 779 po = resp->Data.Irq.Polarity; 780 break; 781 case ACPI_RESOURCE_TYPE_EXTENDED_IRQ: 782 irqlist_len = resp->Data.ExtendedIrq.InterruptCount; 783 tmplist = resp->Data.ExtendedIrq.Interrupts; 784 el = resp->Data.ExtendedIrq.Triggering; 785 po = resp->Data.ExtendedIrq.Polarity; 786 break; 787 default: 788 continue; 789 } 790 791 if (resp->Type != ACPI_RESOURCE_TYPE_IRQ && 792 resp->Type != ACPI_RESOURCE_TYPE_EXTENDED_IRQ) { 793 cmn_err(CE_WARN, "!psm: get_irq: no IRQ resource"); 794 return (ACPI_PSM_FAILURE); 795 } 796 797 /* NEEDSWORK: move this into add_irqlist_entry someday */ 798 irqlist = kmem_zalloc(irqlist_len * sizeof (*irqlist), 799 KM_SLEEP); 800 for (i = 0; i < irqlist_len; i++) 801 if (resp->Type == ACPI_RESOURCE_TYPE_IRQ) 802 irqlist[i] = ((uint8_t *)tmplist)[i]; 803 else 804 irqlist[i] = ((uint32_t *)tmplist)[i]; 805 intr_flags.intr_el = psm_acpi_edgelevel(el); 806 intr_flags.intr_po = psm_acpi_po(po); 807 acpi_add_irqlist_entry(irqlistp, irqlist, irqlist_len, 808 &intr_flags); 809 } 810 811 AcpiOsFree(rsb.Pointer); 812 return (irqlistp == NULL ? ACPI_PSM_FAILURE : ACPI_PSM_SUCCESS); 813 } 814 815 /* 816 * Adds a new cache entry to the irq cache which maps an irq and 817 * its attributes to PCI bus/dev/ipin and optionally to its associated ACPI 818 * interrupt link device object. 819 */ 820 void 821 acpi_new_irq_cache_ent(int bus, int dev, int ipin, int pci_irq, 822 iflag_t *intr_flagp, acpi_psm_lnk_t *acpipsmlnkp) 823 { 824 int newsize; 825 irq_cache_t *new_arr, *ep; 826 827 mutex_enter(&acpi_irq_cache_mutex); 828 if (irq_cache_valid >= irq_cache_len) { 829 /* initially, or re-, allocate array */ 830 831 newsize = (irq_cache_len ? 832 irq_cache_len * 2 : IRQ_CACHE_INITLEN); 833 new_arr = kmem_zalloc(newsize * sizeof (irq_cache_t), KM_SLEEP); 834 if (irq_cache_len != 0) { 835 /* realloc: copy data, free old */ 836 bcopy(irq_cache_table, new_arr, 837 irq_cache_len * sizeof (irq_cache_t)); 838 kmem_free(irq_cache_table, 839 irq_cache_len * sizeof (irq_cache_t)); 840 } 841 irq_cache_len = newsize; 842 irq_cache_table = new_arr; 843 } 844 ep = &irq_cache_table[irq_cache_valid++]; 845 ep->bus = (uchar_t)bus; 846 ep->dev = (uchar_t)dev; 847 ep->ipin = (uchar_t)ipin; 848 ep->flags = *intr_flagp; 849 ep->irq = pci_irq; 850 ASSERT(acpipsmlnkp != NULL); 851 ep->lnkobj = acpipsmlnkp->lnkobj; 852 mutex_exit(&acpi_irq_cache_mutex); 853 } 854 855 856 /* 857 * Searches the irq caches for the given bus/dev/ipin. 858 * 859 * If info is found, stores polarity and sensitivity in the structure 860 * pointed to by intr_flagp, and irqno in the value pointed to by pci_irqp, 861 * and returns ACPI_PSM_SUCCESS. 862 * Otherwise, ACPI_PSM_FAILURE is returned. 863 */ 864 int 865 acpi_get_irq_cache_ent(uchar_t bus, uchar_t dev, int ipin, 866 int *pci_irqp, iflag_t *intr_flagp) 867 { 868 869 irq_cache_t *irqcachep; 870 int i; 871 int ret = ACPI_PSM_FAILURE; 872 873 mutex_enter(&acpi_irq_cache_mutex); 874 for (irqcachep = irq_cache_table, i = 0; i < irq_cache_valid; 875 irqcachep++, i++) 876 if ((irqcachep->bus == bus) && 877 (irqcachep->dev == dev) && 878 (irqcachep->ipin == ipin)) { 879 ASSERT(pci_irqp != NULL && intr_flagp != NULL); 880 *pci_irqp = irqcachep->irq; 881 *intr_flagp = irqcachep->flags; 882 ret = ACPI_PSM_SUCCESS; 883 break; 884 } 885 886 mutex_exit(&acpi_irq_cache_mutex); 887 return (ret); 888 } 889 890 /* 891 * Searches the irq caches for the given interrupt lnk device object. 892 * 893 * If info is found, stores polarity and sensitivity in the structure 894 * pointed to by intr_flagp, and irqno in the value pointed to by pci_irqp, 895 * and returns ACPI_PSM_SUCCESS. 896 * Otherwise, ACPI_PSM_FAILURE is returned. 897 */ 898 int 899 acpi_get_irq_lnk_cache_ent(ACPI_HANDLE lnkobj, int *pci_irqp, 900 iflag_t *intr_flagp) 901 { 902 903 irq_cache_t *irqcachep; 904 int i; 905 int ret = ACPI_PSM_FAILURE; 906 907 if (lnkobj == NULL) 908 return (ACPI_PSM_FAILURE); 909 910 mutex_enter(&acpi_irq_cache_mutex); 911 for (irqcachep = irq_cache_table, i = 0; i < irq_cache_valid; 912 irqcachep++, i++) 913 if (irqcachep->lnkobj == lnkobj) { 914 ASSERT(pci_irqp != NULL); 915 *pci_irqp = irqcachep->irq; 916 ASSERT(intr_flagp != NULL); 917 *intr_flagp = irqcachep->flags; 918 ret = ACPI_PSM_SUCCESS; 919 break; 920 } 921 mutex_exit(&acpi_irq_cache_mutex); 922 return (ret); 923 } 924 925 /* 926 * Walk the irq_cache_table and re-configure the link device to 927 * the saved state. 928 */ 929 void 930 acpi_restore_link_devices(void) 931 { 932 irq_cache_t *irqcachep; 933 acpi_psm_lnk_t psmlnk; 934 int i, status; 935 936 /* XXX: may not need to hold this mutex */ 937 mutex_enter(&acpi_irq_cache_mutex); 938 for (irqcachep = irq_cache_table, i = 0; i < irq_cache_valid; 939 irqcachep++, i++) { 940 if (irqcachep->lnkobj != NULL) { 941 /* only field used from psmlnk in set_irq is lnkobj */ 942 psmlnk.lnkobj = irqcachep->lnkobj; 943 status = acpi_set_irq_resource(&psmlnk, irqcachep->irq); 944 /* warn if set_irq failed; soldier on */ 945 if (status != ACPI_PSM_SUCCESS) 946 cmn_err(CE_WARN, "Could not restore interrupt " 947 "link device for IRQ 0x%x: Devices using " 948 "this IRQ may no longer function properly." 949 "\n", irqcachep->irq); 950 } 951 } 952 mutex_exit(&acpi_irq_cache_mutex); 953 } 954 955 int 956 acpi_poweroff(void) 957 { 958 extern int acpica_powering_off; 959 ACPI_STATUS status; 960 961 PSM_VERBOSE_POWEROFF(("acpi_poweroff: starting poweroff\n")); 962 963 acpica_powering_off = 1; 964 965 status = AcpiEnterSleepStatePrep(5); 966 if (status != AE_OK) { 967 PSM_VERBOSE_POWEROFF(("acpi_poweroff: failed to prepare for " 968 "poweroff, status=0x%x\n", status)); 969 return (1); 970 } 971 ACPI_DISABLE_IRQS(); 972 status = AcpiEnterSleepState(5); 973 ACPI_ENABLE_IRQS(); 974 975 /* we should be off; if we get here it's an error */ 976 PSM_VERBOSE_POWEROFF(("acpi_poweroff: failed to actually power " 977 "off, status=0x%x\n", status)); 978 return (1); 979 } 980 981 982 /* 983 * psm_set_elcr() sets ELCR bit for specified vector 984 */ 985 void 986 psm_set_elcr(int vecno, int val) 987 { 988 int elcr_port = ELCR_PORT1 + (vecno >> 3); 989 int elcr_bit = 1 << (vecno & 0x07); 990 991 ASSERT((vecno >= 0) && (vecno < 16)); 992 993 if (val) { 994 /* set bit to force level-triggered mode */ 995 outb(elcr_port, inb(elcr_port) | elcr_bit); 996 } else { 997 /* clear bit to force edge-triggered mode */ 998 outb(elcr_port, inb(elcr_port) & ~elcr_bit); 999 } 1000 } 1001 1002 /* 1003 * psm_get_elcr() returns status of ELCR bit for specific vector 1004 */ 1005 int 1006 psm_get_elcr(int vecno) 1007 { 1008 int elcr_port = ELCR_PORT1 + (vecno >> 3); 1009 int elcr_bit = 1 << (vecno & 0x07); 1010 1011 ASSERT((vecno >= 0) && (vecno < 16)); 1012 1013 return ((inb(elcr_port) & elcr_bit) ? 1 : 0); 1014 } 1015