xref: /illumos-gate/usr/src/uts/i86pc/io/pcplusmp/apic_introp.c (revision e2738c5e21a9e5d9a6525e48af4738deda3df455)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * apic_introp.c:
30  *	Has code for Advanced DDI interrupt framework support.
31  */
32 
33 #include <sys/cpuvar.h>
34 #include <sys/psm.h>
35 #include "apic.h"
36 #include <sys/sunddi.h>
37 #include <sys/ddi_impldefs.h>
38 #include <sys/mach_intr.h>
39 #include <sys/sysmacros.h>
40 #include <sys/trap.h>
41 #include <sys/pci.h>
42 #include <sys/pci_intr_lib.h>
43 
44 extern struct av_head autovect[];
45 
46 /*
47  *	Local Function Prototypes
48  */
49 int		apic_pci_msi_enable_vector(dev_info_t *, int, int,
50 		    int, int, int);
51 apic_irq_t	*apic_find_irq(dev_info_t *, struct intrspec *, int);
52 static int	apic_get_pending(apic_irq_t *, int);
53 static void	apic_clear_mask(apic_irq_t *);
54 static void	apic_set_mask(apic_irq_t *);
55 static uchar_t	apic_find_multi_vectors(int, int);
56 int		apic_navail_vector(dev_info_t *, int);
57 int		apic_alloc_vectors(dev_info_t *, int, int, int, int, int);
58 void		apic_free_vectors(dev_info_t *, int, int, int, int);
59 int		apic_intr_ops(dev_info_t *, ddi_intr_handle_impl_t *,
60 		    psm_intr_op_t, int *);
61 
62 extern int	intr_clear(void);
63 extern void	intr_restore(uint_t);
64 extern uchar_t	apic_bind_intr(dev_info_t *, int, uchar_t, uchar_t);
65 extern int	apic_allocate_irq(int);
66 extern int	apic_introp_xlate(dev_info_t *, struct intrspec *, int);
67 extern int	apic_rebind_all(apic_irq_t *irq_ptr, int bind_cpu, int safe);
68 extern boolean_t apic_cpu_in_range(int cpu);
69 
70 /*
71  * MSI support flag:
72  * reflects whether MSI is supported at APIC level
73  * it can also be patched through /etc/system
74  *
75  *  0 = default value - don't know and need to call apic_check_msi_support()
76  *      to find out then set it accordingly
77  *  1 = supported
78  * -1 = not supported
79  */
80 int	apic_support_msi = 0;
81 
82 /* Multiple vector support for MSI */
83 int	apic_multi_msi_enable = 1;
84 int	apic_multi_msi_max = 2;
85 
86 extern uchar_t		apic_ipltopri[MAXIPL+1];
87 extern uchar_t		apic_vector_to_irq[APIC_MAX_VECTOR+1];
88 extern int		apic_max_device_irq;
89 extern int		apic_min_device_irq;
90 extern apic_irq_t	*apic_irq_table[APIC_MAX_VECTOR+1];
91 extern volatile uint32_t *apicadr; /* virtual addr of local APIC */
92 extern volatile int32_t	*apicioadr[MAX_IO_APIC];
93 extern lock_t		apic_ioapic_lock;
94 extern kmutex_t		airq_mutex;
95 extern apic_cpus_info_t	*apic_cpus;
96 extern int apic_first_avail_irq;
97 
98 
99 /*
100  * apic_pci_msi_enable_vector:
101  *	Set the address/data fields in the MSI/X capability structure
102  *	XXX: MSI-X support
103  */
104 /* ARGSUSED */
105 int
106 apic_pci_msi_enable_vector(dev_info_t *dip, int type, int inum, int vector,
107     int count, int target_apic_id)
108 {
109 	uint64_t		msi_addr, msi_data;
110 	ushort_t		msi_ctrl;
111 	int			cap_ptr = i_ddi_get_msi_msix_cap_ptr(dip);
112 	ddi_acc_handle_t	handle = i_ddi_get_pci_config_handle(dip);
113 
114 	DDI_INTR_IMPLDBG((CE_CONT, "apic_pci_msi_enable_vector: dip=0x%p\n"
115 	    "\tdriver = %s, inum=0x%x vector=0x%x apicid=0x%x\n", (void *)dip,
116 	    ddi_driver_name(dip), inum, vector, target_apic_id));
117 
118 	if (handle == NULL)
119 		return (PSM_FAILURE);
120 
121 	/* MSI Address */
122 	msi_addr = (MSI_ADDR_HDR | (target_apic_id << MSI_ADDR_DEST_SHIFT));
123 	msi_addr |= ((MSI_ADDR_RH_FIXED << MSI_ADDR_RH_SHIFT) |
124 		    (MSI_ADDR_DM_PHYSICAL << MSI_ADDR_DM_SHIFT));
125 
126 	/* MSI Data: MSI is edge triggered according to spec */
127 	msi_data = ((MSI_DATA_TM_EDGE << MSI_DATA_TM_SHIFT) | vector);
128 
129 	DDI_INTR_IMPLDBG((CE_CONT, "apic_pci_msi_enable_vector: addr=0x%lx "
130 	    "data=0x%lx\n", (long)msi_addr, (long)msi_data));
131 
132 	if (type == DDI_INTR_TYPE_MSI) {
133 		msi_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSI_CTRL);
134 
135 		/* Set the bits to inform how many MSIs are enabled */
136 		msi_ctrl |= ((highbit(count) -1) << PCI_MSI_MME_SHIFT);
137 		pci_config_put16(handle, cap_ptr + PCI_MSI_CTRL, msi_ctrl);
138 
139 		pci_config_put32(handle,
140 		    cap_ptr + PCI_MSI_ADDR_OFFSET, msi_addr);
141 
142 		if (msi_ctrl &  PCI_MSI_64BIT_MASK) {
143 			pci_config_put32(handle,
144 			    cap_ptr + PCI_MSI_ADDR_OFFSET + 4, msi_addr >> 32);
145 			pci_config_put16(handle,
146 			    cap_ptr + PCI_MSI_64BIT_DATA, msi_data);
147 		} else {
148 			pci_config_put16(handle,
149 			    cap_ptr + PCI_MSI_32BIT_DATA, msi_data);
150 		}
151 
152 	} else if (type == DDI_INTR_TYPE_MSIX) {
153 		uintptr_t	off;
154 		ddi_intr_msix_t	*msix_p = i_ddi_get_msix(dip);
155 
156 		/* Offset into the "inum"th entry in the MSI-X table */
157 		off = (uintptr_t)msix_p->msix_tbl_addr +
158 		    (inum  * PCI_MSIX_VECTOR_SIZE);
159 
160 		ddi_put32(msix_p->msix_tbl_hdl,
161 		    (uint32_t *)(off + PCI_MSIX_DATA_OFFSET), msi_data);
162 		ddi_put64(msix_p->msix_tbl_hdl,
163 		    (uint64_t *)(off + PCI_MSIX_LOWER_ADDR_OFFSET), msi_addr);
164 	}
165 
166 	return (PSM_SUCCESS);
167 }
168 
169 
170 /*
171  * This function returns the no. of vectors available for the pri.
172  * dip is not used at this moment.  If we really don't need that,
173  * it will be removed.
174  */
175 /*ARGSUSED*/
176 int
177 apic_navail_vector(dev_info_t *dip, int pri)
178 {
179 	int	lowest, highest, i, navail, count;
180 
181 	DDI_INTR_IMPLDBG((CE_CONT, "apic_navail_vector: dip: %p, pri: %x\n",
182 	    (void *)dip, pri));
183 
184 	highest = apic_ipltopri[pri] + APIC_VECTOR_MASK;
185 	lowest = apic_ipltopri[pri - 1] + APIC_VECTOR_PER_IPL;
186 	navail = count = 0;
187 
188 	/* It has to be contiguous */
189 	for (i = lowest; i < highest; i++) {
190 		count = 0;
191 		while ((apic_vector_to_irq[i] == APIC_RESV_IRQ) &&
192 			(i < highest)) {
193 			if (APIC_CHECK_RESERVE_VECTORS(i))
194 				break;
195 			count++;
196 			i++;
197 		}
198 		if (count > navail)
199 			navail = count;
200 	}
201 	return (navail);
202 }
203 
204 /*
205  * Finds "count" contiguous MSI vectors starting at the proper alignment
206  * at "pri".
207  * Caller needs to make sure that count has to be power of 2 and should not
208  * be < 1.
209  */
210 static uchar_t
211 apic_find_multi_vectors(int pri, int count)
212 {
213 	int	lowest, highest, i, navail, start, msibits;
214 
215 	DDI_INTR_IMPLDBG((CE_CONT, "apic_find_mult: pri: %x, count: %x\n",
216 	    pri, count));
217 
218 	highest = apic_ipltopri[pri] + APIC_VECTOR_MASK;
219 	lowest = apic_ipltopri[pri - 1] + APIC_VECTOR_PER_IPL;
220 	navail = 0;
221 
222 	/*
223 	 * msibits is the no. of lower order message data bits for the
224 	 * allocated MSI vectors and is used to calculate the aligned
225 	 * starting vector
226 	 */
227 	msibits = count - 1;
228 
229 	/* It has to be contiguous */
230 	for (i = lowest; i < highest; i++) {
231 		navail = 0;
232 
233 		/*
234 		 * starting vector has to be aligned accordingly for
235 		 * multiple MSIs
236 		 */
237 		if (msibits)
238 			i = (i + msibits) & ~msibits;
239 		start = i;
240 		while ((apic_vector_to_irq[i] == APIC_RESV_IRQ) &&
241 			(i < highest)) {
242 			if (APIC_CHECK_RESERVE_VECTORS(i))
243 				break;
244 			navail++;
245 			if (navail >= count)
246 				return (start);
247 			i++;
248 		}
249 	}
250 	return (0);
251 }
252 
253 /*
254  * It finds the apic_irq_t associates with the dip, ispec and type.
255  */
256 apic_irq_t *
257 apic_find_irq(dev_info_t *dip, struct intrspec *ispec, int type)
258 {
259 	apic_irq_t	*irqp;
260 	int i;
261 
262 	DDI_INTR_IMPLDBG((CE_CONT, "apic_find_irq: dip=0x%p vec=0x%x "
263 	    "ipl=0x%x type=0x%x\n", (void *)dip, ispec->intrspec_vec,
264 	    ispec->intrspec_pri, type));
265 
266 	for (i = apic_min_device_irq; i <= apic_max_device_irq; i++) {
267 		if ((irqp = apic_irq_table[i]) == NULL)
268 			continue;
269 		if ((irqp->airq_dip == dip) &&
270 		    (irqp->airq_origirq == ispec->intrspec_vec) &&
271 		    (irqp->airq_ipl == ispec->intrspec_pri)) {
272 			if (DDI_INTR_IS_MSI_OR_MSIX(type)) {
273 				if (APIC_IS_MSI_OR_MSIX_INDEX(irqp->
274 				    airq_mps_intr_index))
275 					return (irqp);
276 			} else
277 				return (irqp);
278 		}
279 	}
280 	DDI_INTR_IMPLDBG((CE_CONT, "apic_find_irq: return NULL\n"));
281 	return (NULL);
282 }
283 
284 
285 /*
286  * This function will return the pending bit of the irqp.
287  * It either comes from the IRR register of the APIC or the RDT
288  * entry of the I/O APIC.
289  * For the IRR to work, it needs to be to its binding CPU
290  */
291 static int
292 apic_get_pending(apic_irq_t *irqp, int type)
293 {
294 	int			bit, index, irr, pending;
295 	int			intin_no;
296 	volatile int32_t 	*ioapic;
297 
298 	DDI_INTR_IMPLDBG((CE_CONT, "apic_get_pending: irqp: %p, cpuid: %x "
299 	    "type: %x\n", (void *)irqp, irqp->airq_cpu & ~IRQ_USER_BOUND,
300 	    type));
301 
302 	/* need to get on the bound cpu */
303 	mutex_enter(&cpu_lock);
304 	affinity_set(irqp->airq_cpu & ~IRQ_USER_BOUND);
305 
306 	index = irqp->airq_vector / 32;
307 	bit = irqp->airq_vector % 32;
308 	irr = apicadr[APIC_IRR_REG + index];
309 
310 	affinity_clear();
311 	mutex_exit(&cpu_lock);
312 
313 	pending = (irr & (1 << bit)) ? 1 : 0;
314 	if (!pending && (type == DDI_INTR_TYPE_FIXED)) {
315 		/* check I/O APIC for fixed interrupt */
316 		intin_no = irqp->airq_intin_no;
317 		ioapic = apicioadr[irqp->airq_ioapicindex];
318 		pending = (READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic, intin_no) &
319 		    AV_PENDING) ? 1 : 0;
320 	}
321 	return (pending);
322 }
323 
324 
325 /*
326  * This function will clear the mask for the interrupt on the I/O APIC
327  */
328 static void
329 apic_clear_mask(apic_irq_t *irqp)
330 {
331 	int			intin_no;
332 	int			iflag;
333 	int32_t			rdt_entry;
334 	volatile int32_t 	*ioapic;
335 
336 	DDI_INTR_IMPLDBG((CE_CONT, "apic_clear_mask: irqp: %p\n",
337 	    (void *)irqp));
338 
339 	intin_no = irqp->airq_intin_no;
340 	ioapic = apicioadr[irqp->airq_ioapicindex];
341 
342 	iflag = intr_clear();
343 	lock_set(&apic_ioapic_lock);
344 
345 	rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic, intin_no);
346 
347 	/* clear mask */
348 	WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic, intin_no,
349 	    ((~AV_MASK) & rdt_entry));
350 
351 	lock_clear(&apic_ioapic_lock);
352 	intr_restore(iflag);
353 }
354 
355 
356 /*
357  * This function will mask the interrupt on the I/O APIC
358  */
359 static void
360 apic_set_mask(apic_irq_t *irqp)
361 {
362 	int			intin_no;
363 	volatile int32_t 	*ioapic;
364 	int			iflag;
365 	int32_t			rdt_entry;
366 
367 	DDI_INTR_IMPLDBG((CE_CONT, "apic_set_mask: irqp: %p\n", (void *)irqp));
368 
369 	intin_no = irqp->airq_intin_no;
370 	ioapic = apicioadr[irqp->airq_ioapicindex];
371 
372 	iflag = intr_clear();
373 
374 	lock_set(&apic_ioapic_lock);
375 
376 	rdt_entry = READ_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic, intin_no);
377 
378 	/* mask it */
379 	WRITE_IOAPIC_RDT_ENTRY_LOW_DWORD(ioapic, intin_no,
380 	    (AV_MASK | rdt_entry));
381 
382 	lock_clear(&apic_ioapic_lock);
383 	intr_restore(iflag);
384 }
385 
386 
387 /*
388  * This function allocate "count" vector(s) for the given "dip/pri/type"
389  */
390 int
391 apic_alloc_vectors(dev_info_t *dip, int inum, int count, int pri, int type,
392     int behavior)
393 {
394 	int	rcount, i;
395 	uchar_t	start, irqno, cpu;
396 	major_t	major;
397 	apic_irq_t	*irqptr;
398 
399 	/* only supports MSI at the moment, will add MSI-X support later */
400 	if (type != DDI_INTR_TYPE_MSI)
401 		return (0);
402 
403 	DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_vectors: dip=0x%p type=%d "
404 	    "inum=0x%x  pri=0x%x count=0x%x behavior=%d\n",
405 	    (void *)dip, type, inum, pri, count, behavior));
406 
407 	if (count > 1) {
408 		if (behavior == DDI_INTR_ALLOC_STRICT &&
409 		    (apic_multi_msi_enable == 0 || count > apic_multi_msi_max))
410 			return (0);
411 
412 		if (apic_multi_msi_enable == 0)
413 			count = 1;
414 		else if (count > apic_multi_msi_max)
415 			count = apic_multi_msi_max;
416 	}
417 
418 	if ((rcount = apic_navail_vector(dip, pri)) > count)
419 		rcount = count;
420 	else if (rcount == 0 || (rcount < count &&
421 	    behavior == DDI_INTR_ALLOC_STRICT))
422 		return (0);
423 
424 	/* if not ISP2, then round it down */
425 	if (!ISP2(rcount))
426 		rcount = 1 << (highbit(rcount) - 1);
427 
428 	mutex_enter(&airq_mutex);
429 
430 	for (start = 0; rcount > 0; rcount >>= 1) {
431 		if ((start = apic_find_multi_vectors(pri, rcount)) != 0 ||
432 		    behavior == DDI_INTR_ALLOC_STRICT)
433 			break;
434 	}
435 
436 	if (start == 0) {
437 		/* no vector available */
438 		mutex_exit(&airq_mutex);
439 		return (0);
440 	}
441 
442 	major = (dip != NULL) ? ddi_name_to_major(ddi_get_name(dip)) : 0;
443 	for (i = 0; i < rcount; i++) {
444 		if ((irqno = apic_allocate_irq(apic_first_avail_irq)) ==
445 		    (uchar_t)-1) {
446 			mutex_exit(&airq_mutex);
447 			DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_vectors: "
448 			    "apic_allocate_irq failed\n"));
449 			return (i);
450 		}
451 		apic_max_device_irq = max(irqno, apic_max_device_irq);
452 		apic_min_device_irq = min(irqno, apic_min_device_irq);
453 		irqptr = apic_irq_table[irqno];
454 #ifdef	DEBUG
455 		if (apic_vector_to_irq[start + i] != APIC_RESV_IRQ)
456 			DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_vectors: "
457 			    "apic_vector_to_irq is not APIC_RESV_IRQ\n"));
458 #endif
459 		apic_vector_to_irq[start + i] = (uchar_t)irqno;
460 
461 		irqptr->airq_vector = (uchar_t)(start + i);
462 		irqptr->airq_ioapicindex = (uchar_t)inum;	/* start */
463 		irqptr->airq_intin_no = (uchar_t)rcount;
464 		irqptr->airq_ipl = pri;
465 		irqptr->airq_vector = start + i;
466 		irqptr->airq_origirq = (uchar_t)(inum + i);
467 		irqptr->airq_share_id = 0;
468 		irqptr->airq_mps_intr_index = MSI_INDEX;
469 		irqptr->airq_dip = dip;
470 		irqptr->airq_major = major;
471 		if (i == 0) /* they all bound to the same cpu */
472 			cpu = irqptr->airq_cpu = apic_bind_intr(dip, irqno,
473 				0xff, 0xff);
474 		else
475 			irqptr->airq_cpu = cpu;
476 		DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_vectors: irq=0x%x "
477 		    "dip=0x%p vector=0x%x origirq=0x%x pri=0x%x\n", irqno,
478 		    (void *)irqptr->airq_dip, irqptr->airq_vector,
479 		    irqptr->airq_origirq, pri));
480 	}
481 	mutex_exit(&airq_mutex);
482 	return (rcount);
483 }
484 
485 
486 void
487 apic_free_vectors(dev_info_t *dip, int inum, int count, int pri, int type)
488 {
489 	int i;
490 	apic_irq_t *irqptr;
491 	struct intrspec ispec;
492 
493 	DDI_INTR_IMPLDBG((CE_CONT, "apic_free_vectors: dip: %p inum: %x "
494 	    "count: %x pri: %x type: %x\n",
495 	    (void *)dip, inum, count, pri, type));
496 
497 	/* for MSI/X only */
498 	if (!DDI_INTR_IS_MSI_OR_MSIX(type))
499 		return;
500 
501 	for (i = 0; i < count; i++) {
502 		DDI_INTR_IMPLDBG((CE_CONT, "apic_free_vectors: inum=0x%x "
503 		    "pri=0x%x count=0x%x\n", inum, pri, count));
504 		ispec.intrspec_vec = inum + i;
505 		ispec.intrspec_pri = pri;
506 		if ((irqptr = apic_find_irq(dip, &ispec, type)) == NULL) {
507 			DDI_INTR_IMPLDBG((CE_CONT, "apic_free_vectors: "
508 			    "dip=0x%p inum=0x%x pri=0x%x apic_find_irq() "
509 			    "failed\n", (void *)dip, inum, pri));
510 			continue;
511 		}
512 		irqptr->airq_mps_intr_index = FREE_INDEX;
513 		apic_vector_to_irq[irqptr->airq_vector] = APIC_RESV_IRQ;
514 	}
515 }
516 
517 
518 /*
519  * check whether the system supports MSI
520  *
521  * If PCI-E capability is found, then this must be a PCI-E system.
522  * Since MSI is required for PCI-E system, it returns PSM_SUCCESS
523  * to indicate this system supports MSI.
524  */
525 int
526 apic_check_msi_support()
527 {
528 	dev_info_t *cdip;
529 	char dev_type[16];
530 	int dev_len;
531 
532 	DDI_INTR_IMPLDBG((CE_CONT, "apic_check_msi_support:\n"));
533 
534 	/*
535 	 * check whether the first level children of root_node have
536 	 * PCI-E capability
537 	 */
538 	for (cdip = ddi_get_child(ddi_root_node()); cdip != NULL;
539 	    cdip = ddi_get_next_sibling(cdip)) {
540 
541 		DDI_INTR_IMPLDBG((CE_CONT, "apic_check_msi_support: cdip: 0x%p,"
542 		    " driver: %s, binding: %s, nodename: %s\n", (void *)cdip,
543 		    ddi_driver_name(cdip), ddi_binding_name(cdip),
544 		    ddi_node_name(cdip)));
545 		dev_len = sizeof (dev_type);
546 		if (ddi_getlongprop_buf(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS,
547 		    "device_type", (caddr_t)dev_type, &dev_len)
548 		    != DDI_PROP_SUCCESS)
549 			continue;
550 		if (strcmp(dev_type, "pciex") == 0)
551 			return (PSM_SUCCESS);
552 	}
553 
554 	/* MSI is not supported on this system */
555 	DDI_INTR_IMPLDBG((CE_CONT, "apic_check_msi_support: no 'pciex' "
556 	    "device_type found\n"));
557 	return (PSM_FAILURE);
558 }
559 
560 int
561 apic_get_vector_intr_info(int vecirq, apic_get_intr_t *intr_params_p)
562 {
563 	struct autovec *av_dev;
564 	uchar_t irqno;
565 	int i;
566 	apic_irq_t *irq_p;
567 
568 	/* Sanity check the vector/irq argument. */
569 	ASSERT((vecirq >= 0) || (vecirq <= APIC_MAX_VECTOR));
570 
571 	mutex_enter(&airq_mutex);
572 
573 	/*
574 	 * Convert the vecirq arg to an irq using vector_to_irq table
575 	 * if the arg is a vector.  Pass thru if already an irq.
576 	 */
577 	if ((intr_params_p->avgi_req_flags & PSMGI_INTRBY_FLAGS) ==
578 	    PSMGI_INTRBY_VEC)
579 		irqno = apic_vector_to_irq[vecirq];
580 	else
581 		irqno = vecirq;
582 
583 	irq_p = apic_irq_table[irqno];
584 
585 	if ((irq_p == NULL) ||
586 	    (irq_p->airq_temp_cpu == IRQ_UNBOUND) ||
587 	    (irq_p->airq_temp_cpu == IRQ_UNINIT)) {
588 		mutex_exit(&airq_mutex);
589 		return (PSM_FAILURE);
590 	}
591 
592 	if (intr_params_p->avgi_req_flags & PSMGI_REQ_CPUID) {
593 
594 		/* Get the (temp) cpu from apic_irq table, indexed by irq. */
595 		intr_params_p->avgi_cpu_id = irq_p->airq_temp_cpu;
596 
597 		/* Return user bound info for intrd. */
598 		if (intr_params_p->avgi_cpu_id & IRQ_USER_BOUND) {
599 			intr_params_p->avgi_cpu_id &= ~IRQ_USER_BOUND;
600 			intr_params_p->avgi_cpu_id |= PSMGI_CPU_USER_BOUND;
601 		}
602 	}
603 
604 	if (intr_params_p->avgi_req_flags & PSMGI_REQ_VECTOR) {
605 		intr_params_p->avgi_vector = irq_p->airq_vector;
606 	}
607 
608 	if (intr_params_p->avgi_req_flags &
609 	    (PSMGI_REQ_NUM_DEVS | PSMGI_REQ_GET_DEVS)) {
610 		/* Get number of devices from apic_irq table shared field. */
611 		intr_params_p->avgi_num_devs = irq_p->airq_share;
612 	}
613 
614 	if (intr_params_p->avgi_req_flags &  PSMGI_REQ_GET_DEVS) {
615 
616 		intr_params_p->avgi_req_flags  |= PSMGI_REQ_NUM_DEVS;
617 
618 		/* Some devices have NULL dip.  Don't count these. */
619 		if (intr_params_p->avgi_num_devs > 0) {
620 			for (i = 0, av_dev = autovect[irqno].avh_link;
621 			    av_dev; av_dev = av_dev->av_link)
622 				if (av_dev->av_vector && av_dev->av_dip)
623 					i++;
624 			intr_params_p->avgi_num_devs =
625 			    MIN(intr_params_p->avgi_num_devs, i);
626 		}
627 
628 		/* There are no viable dips to return. */
629 		if (intr_params_p->avgi_num_devs == 0)
630 			intr_params_p->avgi_dip_list = NULL;
631 
632 		else {	/* Return list of dips */
633 
634 			/* Allocate space in array for that number of devs. */
635 			intr_params_p->avgi_dip_list = kmem_zalloc(
636 			    intr_params_p->avgi_num_devs *
637 			    sizeof (dev_info_t *),
638 			    KM_SLEEP);
639 
640 			/*
641 			 * Loop through the device list of the autovec table
642 			 * filling in the dip array.
643 			 *
644 			 * Note that the autovect table may have some special
645 			 * entries which contain NULL dips.  These will be
646 			 * ignored.
647 			 */
648 			for (i = 0, av_dev = autovect[irqno].avh_link;
649 			    av_dev; av_dev = av_dev->av_link)
650 				if (av_dev->av_vector && av_dev->av_dip)
651 					intr_params_p->avgi_dip_list[i++] =
652 					    av_dev->av_dip;
653 		}
654 	}
655 
656 	mutex_exit(&airq_mutex);
657 
658 	return (PSM_SUCCESS);
659 }
660 
661 /*
662  * apic_pci_msi_unconfigure:
663  *
664  * This and next two interfaces are copied from pci_intr_lib.c
665  * Do ensure that these two files stay in sync.
666  * These needed to be copied over here to avoid a deadlock situation on
667  * certain mp systems that use MSI interrupts.
668  *
669  * IMPORTANT regards next three interfaces:
670  * i) are called only for MSI/X interrupts.
671  * ii) called with interrupts disabled, and must not block
672  */
673 int
674 apic_pci_msi_unconfigure(dev_info_t *rdip, int type, int inum)
675 {
676 	ushort_t		msi_ctrl;
677 	int			cap_ptr = i_ddi_get_msi_msix_cap_ptr(rdip);
678 	ddi_acc_handle_t	handle = i_ddi_get_pci_config_handle(rdip);
679 
680 	if (handle == NULL)
681 		return (PSM_FAILURE);
682 
683 	if (type == DDI_INTR_TYPE_MSI) {
684 		msi_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSI_CTRL);
685 		msi_ctrl &= (~PCI_MSI_MME_MASK);
686 		pci_config_put16(handle, cap_ptr + PCI_MSI_CTRL, msi_ctrl);
687 		pci_config_put32(handle, cap_ptr + PCI_MSI_ADDR_OFFSET, 0);
688 
689 		if (msi_ctrl &  PCI_MSI_64BIT_MASK) {
690 			pci_config_put16(handle,
691 			    cap_ptr + PCI_MSI_64BIT_DATA, 0);
692 			pci_config_put32(handle,
693 			    cap_ptr + PCI_MSI_ADDR_OFFSET + 4, 0);
694 		} else {
695 			pci_config_put16(handle,
696 			    cap_ptr + PCI_MSI_32BIT_DATA, 0);
697 		}
698 
699 	} else if (type == DDI_INTR_TYPE_MSIX) {
700 		uintptr_t	off;
701 		ddi_intr_msix_t	*msix_p = i_ddi_get_msix(rdip);
702 
703 		/* Offset into the "inum"th entry in the MSI-X table */
704 		off = (uintptr_t)msix_p->msix_tbl_addr +
705 		    (inum * PCI_MSIX_VECTOR_SIZE);
706 
707 		/* Reset the "data" and "addr" bits */
708 		ddi_put32(msix_p->msix_tbl_hdl,
709 		    (uint32_t *)(off + PCI_MSIX_DATA_OFFSET), 0);
710 		ddi_put64(msix_p->msix_tbl_hdl, (uint64_t *)off, 0);
711 	}
712 
713 	return (PSM_SUCCESS);
714 }
715 
716 
717 /*
718  * apic_pci_msi_enable_mode:
719  */
720 int
721 apic_pci_msi_enable_mode(dev_info_t *rdip, int type, int inum)
722 {
723 	ushort_t		msi_ctrl;
724 	int			cap_ptr = i_ddi_get_msi_msix_cap_ptr(rdip);
725 	ddi_acc_handle_t	handle = i_ddi_get_pci_config_handle(rdip);
726 
727 	if (handle == NULL)
728 		return (PSM_FAILURE);
729 
730 	if (type == DDI_INTR_TYPE_MSI) {
731 		msi_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSI_CTRL);
732 		if ((msi_ctrl & PCI_MSI_ENABLE_BIT))
733 			return (PSM_SUCCESS);
734 
735 		msi_ctrl |= PCI_MSI_ENABLE_BIT;
736 		pci_config_put16(handle, cap_ptr + PCI_MSI_CTRL, msi_ctrl);
737 
738 	} else if (type == DDI_INTR_TYPE_MSIX) {
739 		uintptr_t	off;
740 		ddi_intr_msix_t	*msix_p;
741 
742 		msi_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSIX_CTRL);
743 
744 		if (msi_ctrl & PCI_MSIX_ENABLE_BIT)
745 			return (PSM_SUCCESS);
746 
747 		msi_ctrl |= PCI_MSIX_ENABLE_BIT;
748 		pci_config_put16(handle, cap_ptr + PCI_MSIX_CTRL, msi_ctrl);
749 
750 		msix_p = i_ddi_get_msix(rdip);
751 
752 		/* Offset into "inum"th entry in the MSI-X table & clear mask */
753 		off = (uintptr_t)msix_p->msix_tbl_addr + (inum *
754 		    PCI_MSIX_VECTOR_SIZE) + PCI_MSIX_VECTOR_CTRL_OFFSET;
755 		ddi_put32(msix_p->msix_tbl_hdl, (uint32_t *)off, 0);
756 	}
757 
758 	return (PSM_SUCCESS);
759 }
760 
761 /*
762  * apic_pci_msi_disable_mode:
763  */
764 int
765 apic_pci_msi_disable_mode(dev_info_t *rdip, int type, int inum)
766 {
767 	ushort_t		msi_ctrl;
768 	int			cap_ptr = i_ddi_get_msi_msix_cap_ptr(rdip);
769 	ddi_acc_handle_t	handle = i_ddi_get_pci_config_handle(rdip);
770 
771 	if (handle == NULL)
772 		return (PSM_FAILURE);
773 
774 	if (type == DDI_INTR_TYPE_MSI) {
775 		msi_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSI_CTRL);
776 		if (!(msi_ctrl & PCI_MSI_ENABLE_BIT))
777 			return (PSM_SUCCESS);
778 
779 		msi_ctrl &= ~PCI_MSI_ENABLE_BIT;	/* MSI disable */
780 		pci_config_put16(handle, cap_ptr + PCI_MSI_CTRL, msi_ctrl);
781 
782 	} else if (type == DDI_INTR_TYPE_MSIX) {
783 		uintptr_t	off;
784 		ddi_intr_msix_t	*msix_p;
785 
786 		msi_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSIX_CTRL);
787 
788 		if (!(msi_ctrl & PCI_MSIX_ENABLE_BIT))
789 			return (PSM_SUCCESS);
790 
791 		msix_p = i_ddi_get_msix(rdip);
792 
793 		/* Offset into "inum"th entry in the MSI-X table & mask it */
794 		off = (uintptr_t)msix_p->msix_tbl_addr + (inum *
795 		    PCI_MSIX_VECTOR_SIZE) + PCI_MSIX_VECTOR_CTRL_OFFSET;
796 		ddi_put32(msix_p->msix_tbl_hdl, (uint32_t *)off, 0x1);
797 	}
798 
799 	return (PSM_SUCCESS);
800 }
801 
802 /*
803  * This function provides external interface to the nexus for all
804  * functionalities related to the new DDI interrupt framework.
805  *
806  * Input:
807  * dip     - pointer to the dev_info structure of the requested device
808  * hdlp    - pointer to the internal interrupt handle structure for the
809  *	     requested interrupt
810  * intr_op - opcode for this call
811  * result  - pointer to the integer that will hold the result to be
812  *	     passed back if return value is PSM_SUCCESS
813  *
814  * Output:
815  * return value is either PSM_SUCCESS or PSM_FAILURE
816  */
817 int
818 apic_intr_ops(dev_info_t *dip, ddi_intr_handle_impl_t *hdlp,
819     psm_intr_op_t intr_op, int *result)
820 {
821 	int		cap, ret;
822 	int		count_vec;
823 	int		cpu;
824 	int		old_priority;
825 	int		new_priority;
826 	apic_irq_t	*irqp;
827 	struct intrspec *ispec, intr_spec;
828 
829 	DDI_INTR_IMPLDBG((CE_CONT, "apic_intr_ops: dip: %p hdlp: %p "
830 	    "intr_op: %x\n", (void *)dip, (void *)hdlp, intr_op));
831 
832 	ispec = &intr_spec;
833 	ispec->intrspec_pri = hdlp->ih_pri;
834 	ispec->intrspec_vec = hdlp->ih_inum;
835 	ispec->intrspec_func = hdlp->ih_cb_func;
836 
837 	switch (intr_op) {
838 	case PSM_INTR_OP_CHECK_MSI:
839 		/*
840 		 * Check MSI/X is supported or not at APIC level and
841 		 * masked off the MSI/X bits in hdlp->ih_type if not
842 		 * supported before return.  If MSI/X is supported,
843 		 * leave the ih_type unchanged and return.
844 		 *
845 		 * hdlp->ih_type passed in from the nexus has all the
846 		 * interrupt types supported by the device.
847 		 */
848 		if (apic_support_msi == 0) {
849 			/*
850 			 * if apic_support_msi is not set, call
851 			 * apic_check_msi_support() to check whether msi
852 			 * is supported first
853 			 */
854 			if (apic_check_msi_support() == PSM_SUCCESS)
855 				apic_support_msi = 1;
856 			else
857 				apic_support_msi = -1;
858 		}
859 		if (apic_support_msi == 1)
860 			*result = hdlp->ih_type;
861 		else
862 			*result = hdlp->ih_type & ~(DDI_INTR_TYPE_MSI |
863 			    DDI_INTR_TYPE_MSIX);
864 		break;
865 	case PSM_INTR_OP_ALLOC_VECTORS:
866 		*result = apic_alloc_vectors(dip, hdlp->ih_inum,
867 		    hdlp->ih_scratch1, hdlp->ih_pri, hdlp->ih_type,
868 		    (int)(uintptr_t)hdlp->ih_scratch2);
869 		break;
870 	case PSM_INTR_OP_FREE_VECTORS:
871 		apic_free_vectors(dip, hdlp->ih_inum, hdlp->ih_scratch1,
872 		    hdlp->ih_pri, hdlp->ih_type);
873 		break;
874 	case PSM_INTR_OP_NAVAIL_VECTORS:
875 		*result = apic_navail_vector(dip, hdlp->ih_pri);
876 		break;
877 	case PSM_INTR_OP_XLATE_VECTOR:
878 		ispec = ((ihdl_plat_t *)hdlp->ih_private)->ip_ispecp;
879 		*result = apic_introp_xlate(dip, ispec, hdlp->ih_type);
880 		break;
881 	case PSM_INTR_OP_GET_PENDING:
882 		if ((irqp = apic_find_irq(dip, ispec, hdlp->ih_type)) == NULL)
883 			return (PSM_FAILURE);
884 		*result = apic_get_pending(irqp, hdlp->ih_type);
885 		break;
886 	case PSM_INTR_OP_CLEAR_MASK:
887 		if (hdlp->ih_type != DDI_INTR_TYPE_FIXED)
888 			return (PSM_FAILURE);
889 		irqp = apic_find_irq(dip, ispec, hdlp->ih_type);
890 		if (irqp == NULL)
891 			return (PSM_FAILURE);
892 		apic_clear_mask(irqp);
893 		break;
894 	case PSM_INTR_OP_SET_MASK:
895 		if (hdlp->ih_type != DDI_INTR_TYPE_FIXED)
896 			return (PSM_FAILURE);
897 		if ((irqp = apic_find_irq(dip, ispec, hdlp->ih_type)) == NULL)
898 			return (PSM_FAILURE);
899 		apic_set_mask(irqp);
900 		break;
901 	case PSM_INTR_OP_GET_CAP:
902 		cap = DDI_INTR_FLAG_PENDING;
903 		if (hdlp->ih_type == DDI_INTR_TYPE_FIXED)
904 			cap |= DDI_INTR_FLAG_MASKABLE;
905 		*result = cap;
906 		break;
907 	case PSM_INTR_OP_GET_SHARED:
908 		if (hdlp->ih_type != DDI_INTR_TYPE_FIXED)
909 			return (PSM_FAILURE);
910 		if ((irqp = apic_find_irq(dip, ispec, hdlp->ih_type)) == NULL)
911 			return (PSM_FAILURE);
912 		*result = irqp->airq_share ? 1: 0;
913 		break;
914 	case PSM_INTR_OP_SET_PRI:
915 		old_priority = hdlp->ih_pri;	/* save old value */
916 		new_priority = *(int *)result;	/* try the new value */
917 
918 		/* First, check if "hdlp->ih_scratch1" vectors exist? */
919 		if (apic_navail_vector(dip, new_priority) < hdlp->ih_scratch1)
920 			return (PSM_FAILURE);
921 
922 		/* Now allocate the vectors */
923 		count_vec = apic_alloc_vectors(dip, hdlp->ih_inum,
924 		    hdlp->ih_scratch1, new_priority, hdlp->ih_type,
925 		    DDI_INTR_ALLOC_STRICT);
926 
927 		/* Did we get the new vectors? */
928 		if (!count_vec)
929 			return (PSM_FAILURE);
930 
931 		/* Finally, free the previously allocated vectors */
932 		apic_free_vectors(dip, hdlp->ih_inum, count_vec,
933 		    old_priority, hdlp->ih_type);
934 		hdlp->ih_pri = new_priority; /* set the new value */
935 		break;
936 	case PSM_INTR_OP_SET_CPU:
937 		/*
938 		 * The interrupt handle given here has been allocated
939 		 * specifically for this command, and ih_private carries
940 		 * a CPU value.
941 		 */
942 		cpu = (int)(intptr_t)hdlp->ih_private;
943 
944 		if (!apic_cpu_in_range(cpu)) {
945 			*result = EINVAL;
946 			return (PSM_FAILURE);
947 		}
948 
949 		mutex_enter(&airq_mutex);
950 
951 		/* Convert the vector to the irq using vector_to_irq table. */
952 		irqp = apic_irq_table[apic_vector_to_irq[hdlp->ih_vector]];
953 		if (irqp == NULL) {
954 			mutex_exit(&airq_mutex);
955 			*result = ENXIO;
956 			return (PSM_FAILURE);
957 		}
958 		ret = apic_rebind_all(irqp, cpu, 1);
959 		mutex_exit(&airq_mutex);
960 		if (ret) {
961 			*result = EIO;
962 			return (PSM_FAILURE);
963 		}
964 		*result = 0;
965 		break;
966 	case PSM_INTR_OP_GET_INTR:
967 		/*
968 		 * The interrupt handle given here has been allocated
969 		 * specifically for this command, and ih_private carries
970 		 * a pointer to a apic_get_intr_t.
971 		 */
972 		if (apic_get_vector_intr_info(
973 		    hdlp->ih_vector, hdlp->ih_private) != PSM_SUCCESS)
974 			return (PSM_FAILURE);
975 		break;
976 	case PSM_INTR_OP_SET_CAP:
977 	default:
978 		return (PSM_FAILURE);
979 	}
980 	return (PSM_SUCCESS);
981 }
982