1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 /* 26 * Copyright (c) 2013, Joyent, Inc. All rights reserved. 27 * Copyright (c) 2016 by Delphix. All rights reserved. 28 */ 29 30 /* 31 * PSMI 1.1 extensions are supported only in 2.6 and later versions. 32 * PSMI 1.2 extensions are supported only in 2.7 and later versions. 33 * PSMI 1.3 and 1.4 extensions are supported in Solaris 10. 34 * PSMI 1.5 extensions are supported in Solaris Nevada. 35 * PSMI 1.6 extensions are supported in Solaris Nevada. 36 * PSMI 1.7 extensions are supported in Solaris Nevada. 37 */ 38 #define PSMI_1_7 39 40 #include <sys/processor.h> 41 #include <sys/time.h> 42 #include <sys/psm.h> 43 #include <sys/smp_impldefs.h> 44 #include <sys/cram.h> 45 #include <sys/acpi/acpi.h> 46 #include <sys/acpica.h> 47 #include <sys/psm_common.h> 48 #include <sys/apic.h> 49 #include <sys/pit.h> 50 #include <sys/ddi.h> 51 #include <sys/sunddi.h> 52 #include <sys/ddi_impldefs.h> 53 #include <sys/pci.h> 54 #include <sys/promif.h> 55 #include <sys/x86_archext.h> 56 #include <sys/cpc_impl.h> 57 #include <sys/uadmin.h> 58 #include <sys/panic.h> 59 #include <sys/debug.h> 60 #include <sys/archsystm.h> 61 #include <sys/trap.h> 62 #include <sys/machsystm.h> 63 #include <sys/sysmacros.h> 64 #include <sys/cpuvar.h> 65 #include <sys/rm_platter.h> 66 #include <sys/privregs.h> 67 #include <sys/note.h> 68 #include <sys/pci_intr_lib.h> 69 #include <sys/spl.h> 70 #include <sys/clock.h> 71 #include <sys/dditypes.h> 72 #include <sys/sunddi.h> 73 #include <sys/x_call.h> 74 #include <sys/reboot.h> 75 #include <sys/hpet.h> 76 #include <sys/apic_common.h> 77 #include <sys/apic_timer.h> 78 79 static void apic_record_ioapic_rdt(void *intrmap_private, 80 ioapic_rdt_t *irdt); 81 static void apic_record_msi(void *intrmap_private, msi_regs_t *mregs); 82 83 /* 84 * Common routines between pcplusmp & apix (taken from apic.c). 85 */ 86 87 int apic_clkinit(int); 88 hrtime_t apic_gethrtime(void); 89 void apic_send_ipi(int, int); 90 void apic_set_idlecpu(processorid_t); 91 void apic_unset_idlecpu(processorid_t); 92 void apic_shutdown(int, int); 93 void apic_preshutdown(int, int); 94 processorid_t apic_get_next_processorid(processorid_t); 95 96 hrtime_t apic_gettime(); 97 98 enum apic_ioapic_method_type apix_mul_ioapic_method = APIC_MUL_IOAPIC_PCPLUSMP; 99 100 /* Now the ones for Dynamic Interrupt distribution */ 101 int apic_enable_dynamic_migration = 0; 102 103 /* maximum loop count when sending Start IPIs. */ 104 int apic_sipi_max_loop_count = 0x1000; 105 106 /* 107 * These variables are frequently accessed in apic_intr_enter(), 108 * apic_intr_exit and apic_setspl, so group them together 109 */ 110 volatile uint32_t *apicadr = NULL; /* virtual addr of local APIC */ 111 int apic_setspl_delay = 1; /* apic_setspl - delay enable */ 112 int apic_clkvect; 113 114 /* vector at which error interrupts come in */ 115 int apic_errvect; 116 int apic_enable_error_intr = 1; 117 int apic_error_display_delay = 100; 118 119 /* vector at which performance counter overflow interrupts come in */ 120 int apic_cpcovf_vect; 121 int apic_enable_cpcovf_intr = 1; 122 123 /* vector at which CMCI interrupts come in */ 124 int apic_cmci_vect; 125 extern int cmi_enable_cmci; 126 extern void cmi_cmci_trap(void); 127 128 kmutex_t cmci_cpu_setup_lock; /* protects cmci_cpu_setup_registered */ 129 int cmci_cpu_setup_registered; 130 131 /* number of CPUs in power-on transition state */ 132 static int apic_poweron_cnt = 0; 133 lock_t apic_mode_switch_lock; 134 135 /* 136 * Patchable global variables. 137 */ 138 int apic_forceload = 0; 139 140 int apic_coarse_hrtime = 1; /* 0 - use accurate slow gethrtime() */ 141 142 int apic_flat_model = 0; /* 0 - clustered. 1 - flat */ 143 int apic_panic_on_nmi = 0; 144 int apic_panic_on_apic_error = 0; 145 146 int apic_verbose = 0; /* 0x1ff */ 147 148 #ifdef DEBUG 149 int apic_debug = 0; 150 int apic_restrict_vector = 0; 151 152 int apic_debug_msgbuf[APIC_DEBUG_MSGBUFSIZE]; 153 int apic_debug_msgbufindex = 0; 154 155 #endif /* DEBUG */ 156 157 uint_t apic_nticks = 0; 158 uint_t apic_skipped_redistribute = 0; 159 160 uint_t last_count_read = 0; 161 lock_t apic_gethrtime_lock; 162 volatile int apic_hrtime_stamp = 0; 163 volatile hrtime_t apic_nsec_since_boot = 0; 164 165 static hrtime_t apic_last_hrtime = 0; 166 int apic_hrtime_error = 0; 167 int apic_remote_hrterr = 0; 168 int apic_num_nmis = 0; 169 int apic_apic_error = 0; 170 int apic_num_apic_errors = 0; 171 int apic_num_cksum_errors = 0; 172 173 int apic_error = 0; 174 175 static int apic_cmos_ssb_set = 0; 176 177 /* use to make sure only one cpu handles the nmi */ 178 lock_t apic_nmi_lock; 179 /* use to make sure only one cpu handles the error interrupt */ 180 lock_t apic_error_lock; 181 182 static struct { 183 uchar_t cntl; 184 uchar_t data; 185 } aspen_bmc[] = { 186 { CC_SMS_WR_START, 0x18 }, /* NetFn/LUN */ 187 { CC_SMS_WR_NEXT, 0x24 }, /* Cmd SET_WATCHDOG_TIMER */ 188 { CC_SMS_WR_NEXT, 0x84 }, /* DataByte 1: SMS/OS no log */ 189 { CC_SMS_WR_NEXT, 0x2 }, /* DataByte 2: Power Down */ 190 { CC_SMS_WR_NEXT, 0x0 }, /* DataByte 3: no pre-timeout */ 191 { CC_SMS_WR_NEXT, 0x0 }, /* DataByte 4: timer expir. */ 192 { CC_SMS_WR_NEXT, 0xa }, /* DataByte 5: init countdown */ 193 { CC_SMS_WR_END, 0x0 }, /* DataByte 6: init countdown */ 194 195 { CC_SMS_WR_START, 0x18 }, /* NetFn/LUN */ 196 { CC_SMS_WR_END, 0x22 } /* Cmd RESET_WATCHDOG_TIMER */ 197 }; 198 199 static struct { 200 int port; 201 uchar_t data; 202 } sitka_bmc[] = { 203 { SMS_COMMAND_REGISTER, SMS_WRITE_START }, 204 { SMS_DATA_REGISTER, 0x18 }, /* NetFn/LUN */ 205 { SMS_DATA_REGISTER, 0x24 }, /* Cmd SET_WATCHDOG_TIMER */ 206 { SMS_DATA_REGISTER, 0x84 }, /* DataByte 1: SMS/OS no log */ 207 { SMS_DATA_REGISTER, 0x2 }, /* DataByte 2: Power Down */ 208 { SMS_DATA_REGISTER, 0x0 }, /* DataByte 3: no pre-timeout */ 209 { SMS_DATA_REGISTER, 0x0 }, /* DataByte 4: timer expir. */ 210 { SMS_DATA_REGISTER, 0xa }, /* DataByte 5: init countdown */ 211 { SMS_COMMAND_REGISTER, SMS_WRITE_END }, 212 { SMS_DATA_REGISTER, 0x0 }, /* DataByte 6: init countdown */ 213 214 { SMS_COMMAND_REGISTER, SMS_WRITE_START }, 215 { SMS_DATA_REGISTER, 0x18 }, /* NetFn/LUN */ 216 { SMS_COMMAND_REGISTER, SMS_WRITE_END }, 217 { SMS_DATA_REGISTER, 0x22 } /* Cmd RESET_WATCHDOG_TIMER */ 218 }; 219 220 /* Patchable global variables. */ 221 int apic_kmdb_on_nmi = 0; /* 0 - no, 1 - yes enter kmdb */ 222 uint32_t apic_divide_reg_init = 0; /* 0 - divide by 2 */ 223 224 /* default apic ops without interrupt remapping */ 225 static apic_intrmap_ops_t apic_nointrmap_ops = { 226 (int (*)(int))return_instr, 227 (void (*)(int))return_instr, 228 (void (*)(void **, dev_info_t *, uint16_t, int, uchar_t))return_instr, 229 (void (*)(void *, void *, uint16_t, int))return_instr, 230 (void (*)(void **))return_instr, 231 apic_record_ioapic_rdt, 232 apic_record_msi, 233 }; 234 235 apic_intrmap_ops_t *apic_vt_ops = &apic_nointrmap_ops; 236 apic_cpus_info_t *apic_cpus = NULL; 237 cpuset_t apic_cpumask; 238 uint_t apic_picinit_called; 239 240 /* Flag to indicate that we need to shut down all processors */ 241 static uint_t apic_shutdown_processors; 242 243 /* 244 * Probe the ioapic method for apix module. Called in apic_probe_common() 245 */ 246 int 247 apic_ioapic_method_probe() 248 { 249 if (apix_enable == 0) 250 return (PSM_SUCCESS); 251 252 /* 253 * Set IOAPIC EOI handling method. The priority from low to high is: 254 * 1. IOxAPIC: with EOI register 255 * 2. IOMMU interrupt mapping 256 * 3. Mask-Before-EOI method for systems without boot 257 * interrupt routing, such as systems with only one IOAPIC; 258 * NVIDIA CK8-04/MCP55 systems; systems with bridge solution 259 * which disables the boot interrupt routing already. 260 * 4. Directed EOI 261 */ 262 if (apic_io_ver[0] >= 0x20) 263 apix_mul_ioapic_method = APIC_MUL_IOAPIC_IOXAPIC; 264 if ((apic_io_max == 1) || (apic_nvidia_io_max == apic_io_max)) 265 apix_mul_ioapic_method = APIC_MUL_IOAPIC_MASK; 266 if (apic_directed_EOI_supported()) 267 apix_mul_ioapic_method = APIC_MUL_IOAPIC_DEOI; 268 269 /* fall back to pcplusmp */ 270 if (apix_mul_ioapic_method == APIC_MUL_IOAPIC_PCPLUSMP) { 271 /* make sure apix is after pcplusmp in /etc/mach */ 272 apix_enable = 0; /* go ahead with pcplusmp install next */ 273 return (PSM_FAILURE); 274 } 275 276 return (PSM_SUCCESS); 277 } 278 279 /* 280 * handler for APIC Error interrupt. Just print a warning and continue 281 */ 282 int 283 apic_error_intr() 284 { 285 uint_t error0, error1, error; 286 uint_t i; 287 288 /* 289 * We need to write before read as per 7.4.17 of system prog manual. 290 * We do both and or the results to be safe 291 */ 292 error0 = apic_reg_ops->apic_read(APIC_ERROR_STATUS); 293 apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0); 294 error1 = apic_reg_ops->apic_read(APIC_ERROR_STATUS); 295 error = error0 | error1; 296 297 /* 298 * Clear the APIC error status (do this on all cpus that enter here) 299 * (two writes are required due to the semantics of accessing the 300 * error status register.) 301 */ 302 apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0); 303 apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0); 304 305 /* 306 * Prevent more than 1 CPU from handling error interrupt causing 307 * double printing (interleave of characters from multiple 308 * CPU's when using prom_printf) 309 */ 310 if (lock_try(&apic_error_lock) == 0) 311 return (error ? DDI_INTR_CLAIMED : DDI_INTR_UNCLAIMED); 312 if (error) { 313 #if DEBUG 314 if (apic_debug) 315 debug_enter("pcplusmp: APIC Error interrupt received"); 316 #endif /* DEBUG */ 317 if (apic_panic_on_apic_error) 318 cmn_err(CE_PANIC, 319 "APIC Error interrupt on CPU %d. Status = %x", 320 psm_get_cpu_id(), error); 321 else { 322 if ((error & ~APIC_CS_ERRORS) == 0) { 323 /* cksum error only */ 324 apic_error |= APIC_ERR_APIC_ERROR; 325 apic_apic_error |= error; 326 apic_num_apic_errors++; 327 apic_num_cksum_errors++; 328 } else { 329 /* 330 * prom_printf is the best shot we have of 331 * something which is problem free from 332 * high level/NMI type of interrupts 333 */ 334 prom_printf("APIC Error interrupt on CPU %d. " 335 "Status 0 = %x, Status 1 = %x\n", 336 psm_get_cpu_id(), error0, error1); 337 apic_error |= APIC_ERR_APIC_ERROR; 338 apic_apic_error |= error; 339 apic_num_apic_errors++; 340 for (i = 0; i < apic_error_display_delay; i++) { 341 tenmicrosec(); 342 } 343 /* 344 * provide more delay next time limited to 345 * roughly 1 clock tick time 346 */ 347 if (apic_error_display_delay < 500) 348 apic_error_display_delay *= 2; 349 } 350 } 351 lock_clear(&apic_error_lock); 352 return (DDI_INTR_CLAIMED); 353 } else { 354 lock_clear(&apic_error_lock); 355 return (DDI_INTR_UNCLAIMED); 356 } 357 } 358 359 /* 360 * Turn off the mask bit in the performance counter Local Vector Table entry. 361 */ 362 void 363 apic_cpcovf_mask_clear(void) 364 { 365 apic_reg_ops->apic_write(APIC_PCINT_VECT, 366 (apic_reg_ops->apic_read(APIC_PCINT_VECT) & ~APIC_LVT_MASK)); 367 } 368 369 /*ARGSUSED*/ 370 static int 371 apic_cmci_enable(xc_arg_t arg1, xc_arg_t arg2, xc_arg_t arg3) 372 { 373 apic_reg_ops->apic_write(APIC_CMCI_VECT, apic_cmci_vect); 374 return (0); 375 } 376 377 /*ARGSUSED*/ 378 static int 379 apic_cmci_disable(xc_arg_t arg1, xc_arg_t arg2, xc_arg_t arg3) 380 { 381 apic_reg_ops->apic_write(APIC_CMCI_VECT, apic_cmci_vect | AV_MASK); 382 return (0); 383 } 384 385 /*ARGSUSED*/ 386 int 387 cmci_cpu_setup(cpu_setup_t what, int cpuid, void *arg) 388 { 389 cpuset_t cpu_set; 390 391 CPUSET_ONLY(cpu_set, cpuid); 392 393 switch (what) { 394 case CPU_ON: 395 xc_call(NULL, NULL, NULL, CPUSET2BV(cpu_set), 396 (xc_func_t)apic_cmci_enable); 397 break; 398 399 case CPU_OFF: 400 xc_call(NULL, NULL, NULL, CPUSET2BV(cpu_set), 401 (xc_func_t)apic_cmci_disable); 402 break; 403 404 default: 405 break; 406 } 407 408 return (0); 409 } 410 411 static void 412 apic_disable_local_apic(void) 413 { 414 apic_reg_ops->apic_write_task_reg(APIC_MASK_ALL); 415 apic_reg_ops->apic_write(APIC_LOCAL_TIMER, AV_MASK); 416 417 /* local intr reg 0 */ 418 apic_reg_ops->apic_write(APIC_INT_VECT0, AV_MASK); 419 420 /* disable NMI */ 421 apic_reg_ops->apic_write(APIC_INT_VECT1, AV_MASK); 422 423 /* and error interrupt */ 424 apic_reg_ops->apic_write(APIC_ERR_VECT, AV_MASK); 425 426 /* and perf counter intr */ 427 apic_reg_ops->apic_write(APIC_PCINT_VECT, AV_MASK); 428 429 apic_reg_ops->apic_write(APIC_SPUR_INT_REG, APIC_SPUR_INTR); 430 } 431 432 static void 433 apic_cpu_send_SIPI(processorid_t cpun, boolean_t start) 434 { 435 int loop_count; 436 uint32_t vector; 437 uint_t apicid; 438 ulong_t iflag; 439 440 apicid = apic_cpus[cpun].aci_local_id; 441 442 /* 443 * Interrupts on current CPU will be disabled during the 444 * steps in order to avoid unwanted side effects from 445 * executing interrupt handlers on a problematic BIOS. 446 */ 447 iflag = intr_clear(); 448 449 if (start) { 450 outb(CMOS_ADDR, SSB); 451 outb(CMOS_DATA, BIOS_SHUTDOWN); 452 } 453 454 /* 455 * According to X2APIC specification in section '2.3.5.1' of 456 * Interrupt Command Register Semantics, the semantics of 457 * programming the Interrupt Command Register to dispatch an interrupt 458 * is simplified. A single MSR write to the 64-bit ICR is required 459 * for dispatching an interrupt. Specifically, with the 64-bit MSR 460 * interface to ICR, system software is not required to check the 461 * status of the delivery status bit prior to writing to the ICR 462 * to send an IPI. With the removal of the Delivery Status bit, 463 * system software no longer has a reason to read the ICR. It remains 464 * readable only to aid in debugging. 465 */ 466 #ifdef DEBUG 467 APIC_AV_PENDING_SET(); 468 #else 469 if (apic_mode == LOCAL_APIC) { 470 APIC_AV_PENDING_SET(); 471 } 472 #endif /* DEBUG */ 473 474 /* for integrated - make sure there is one INIT IPI in buffer */ 475 /* for external - it will wake up the cpu */ 476 apic_reg_ops->apic_write_int_cmd(apicid, AV_ASSERT | AV_RESET); 477 478 /* If only 1 CPU is installed, PENDING bit will not go low */ 479 for (loop_count = apic_sipi_max_loop_count; loop_count; loop_count--) { 480 if (apic_mode == LOCAL_APIC && 481 apic_reg_ops->apic_read(APIC_INT_CMD1) & AV_PENDING) 482 apic_ret(); 483 else 484 break; 485 } 486 487 apic_reg_ops->apic_write_int_cmd(apicid, AV_DEASSERT | AV_RESET); 488 drv_usecwait(20000); /* 20 milli sec */ 489 490 if (apic_cpus[cpun].aci_local_ver >= APIC_INTEGRATED_VERS) { 491 /* integrated apic */ 492 493 vector = (rm_platter_pa >> MMU_PAGESHIFT) & 494 (APIC_VECTOR_MASK | APIC_IPL_MASK); 495 496 /* to offset the INIT IPI queue up in the buffer */ 497 apic_reg_ops->apic_write_int_cmd(apicid, vector | AV_STARTUP); 498 drv_usecwait(200); /* 20 micro sec */ 499 500 /* 501 * send the second SIPI (Startup IPI) as recommended by Intel 502 * software development manual. 503 */ 504 apic_reg_ops->apic_write_int_cmd(apicid, vector | AV_STARTUP); 505 drv_usecwait(200); /* 20 micro sec */ 506 } 507 508 intr_restore(iflag); 509 } 510 511 /*ARGSUSED1*/ 512 int 513 apic_cpu_start(processorid_t cpun, caddr_t arg) 514 { 515 ASSERT(MUTEX_HELD(&cpu_lock)); 516 517 if (!apic_cpu_in_range(cpun)) { 518 return (EINVAL); 519 } 520 521 /* 522 * Switch to apic_common_send_ipi for safety during starting other CPUs. 523 */ 524 if (apic_mode == LOCAL_X2APIC) { 525 apic_switch_ipi_callback(B_TRUE); 526 } 527 528 apic_cmos_ssb_set = 1; 529 apic_cpu_send_SIPI(cpun, B_TRUE); 530 531 return (0); 532 } 533 534 /* 535 * Put CPU into halted state with interrupts disabled. 536 */ 537 /*ARGSUSED1*/ 538 int 539 apic_cpu_stop(processorid_t cpun, caddr_t arg) 540 { 541 int rc; 542 cpu_t *cp; 543 extern cpuset_t cpu_ready_set; 544 extern void cpu_idle_intercept_cpu(cpu_t *cp); 545 546 ASSERT(MUTEX_HELD(&cpu_lock)); 547 548 if (!apic_cpu_in_range(cpun)) { 549 return (EINVAL); 550 } 551 if (apic_cpus[cpun].aci_local_ver < APIC_INTEGRATED_VERS) { 552 return (ENOTSUP); 553 } 554 555 cp = cpu_get(cpun); 556 ASSERT(cp != NULL); 557 ASSERT((cp->cpu_flags & CPU_OFFLINE) != 0); 558 ASSERT((cp->cpu_flags & CPU_QUIESCED) != 0); 559 ASSERT((cp->cpu_flags & CPU_ENABLE) == 0); 560 561 /* Clear CPU_READY flag to disable cross calls. */ 562 cp->cpu_flags &= ~CPU_READY; 563 CPUSET_ATOMIC_DEL(cpu_ready_set, cpun); 564 rc = xc_flush_cpu(cp); 565 if (rc != 0) { 566 CPUSET_ATOMIC_ADD(cpu_ready_set, cpun); 567 cp->cpu_flags |= CPU_READY; 568 return (rc); 569 } 570 571 /* Intercept target CPU at a safe point before powering it off. */ 572 cpu_idle_intercept_cpu(cp); 573 574 apic_cpu_send_SIPI(cpun, B_FALSE); 575 cp->cpu_flags &= ~CPU_RUNNING; 576 577 return (0); 578 } 579 580 int 581 apic_cpu_ops(psm_cpu_request_t *reqp) 582 { 583 if (reqp == NULL) { 584 return (EINVAL); 585 } 586 587 switch (reqp->pcr_cmd) { 588 case PSM_CPU_ADD: 589 return (apic_cpu_add(reqp)); 590 591 case PSM_CPU_REMOVE: 592 return (apic_cpu_remove(reqp)); 593 594 case PSM_CPU_STOP: 595 return (apic_cpu_stop(reqp->req.cpu_stop.cpuid, 596 reqp->req.cpu_stop.ctx)); 597 598 default: 599 return (ENOTSUP); 600 } 601 } 602 603 #ifdef DEBUG 604 int apic_break_on_cpu = 9; 605 int apic_stretch_interrupts = 0; 606 int apic_stretch_ISR = 1 << 3; /* IPL of 3 matches nothing now */ 607 #endif /* DEBUG */ 608 609 /* 610 * generates an interprocessor interrupt to another CPU. Any changes made to 611 * this routine must be accompanied by similar changes to 612 * apic_common_send_ipi(). 613 */ 614 void 615 apic_send_ipi(int cpun, int ipl) 616 { 617 int vector; 618 ulong_t flag; 619 620 vector = apic_resv_vector[ipl]; 621 622 ASSERT((vector >= APIC_BASE_VECT) && (vector <= APIC_SPUR_INTR)); 623 624 flag = intr_clear(); 625 626 APIC_AV_PENDING_SET(); 627 628 apic_reg_ops->apic_write_int_cmd(apic_cpus[cpun].aci_local_id, 629 vector); 630 631 intr_restore(flag); 632 } 633 634 635 /*ARGSUSED*/ 636 void 637 apic_set_idlecpu(processorid_t cpun) 638 { 639 } 640 641 /*ARGSUSED*/ 642 void 643 apic_unset_idlecpu(processorid_t cpun) 644 { 645 } 646 647 648 void 649 apic_ret() 650 { 651 } 652 653 /* 654 * If apic_coarse_time == 1, then apic_gettime() is used instead of 655 * apic_gethrtime(). This is used for performance instead of accuracy. 656 */ 657 658 hrtime_t 659 apic_gettime() 660 { 661 int old_hrtime_stamp; 662 hrtime_t temp; 663 664 /* 665 * In one-shot mode, we do not keep time, so if anyone 666 * calls psm_gettime() directly, we vector over to 667 * gethrtime(). 668 * one-shot mode MUST NOT be enabled if this psm is the source of 669 * hrtime. 670 */ 671 672 if (apic_oneshot) 673 return (gethrtime()); 674 675 676 gettime_again: 677 while ((old_hrtime_stamp = apic_hrtime_stamp) & 1) 678 apic_ret(); 679 680 temp = apic_nsec_since_boot; 681 682 if (apic_hrtime_stamp != old_hrtime_stamp) { /* got an interrupt */ 683 goto gettime_again; 684 } 685 return (temp); 686 } 687 688 /* 689 * Here we return the number of nanoseconds since booting. Note every 690 * clock interrupt increments apic_nsec_since_boot by the appropriate 691 * amount. 692 */ 693 hrtime_t 694 apic_gethrtime(void) 695 { 696 int curr_timeval, countval, elapsed_ticks; 697 int old_hrtime_stamp, status; 698 hrtime_t temp; 699 uint32_t cpun; 700 ulong_t oflags; 701 702 /* 703 * In one-shot mode, we do not keep time, so if anyone 704 * calls psm_gethrtime() directly, we vector over to 705 * gethrtime(). 706 * one-shot mode MUST NOT be enabled if this psm is the source of 707 * hrtime. 708 */ 709 710 if (apic_oneshot) 711 return (gethrtime()); 712 713 oflags = intr_clear(); /* prevent migration */ 714 715 cpun = apic_reg_ops->apic_read(APIC_LID_REG); 716 if (apic_mode == LOCAL_APIC) 717 cpun >>= APIC_ID_BIT_OFFSET; 718 719 lock_set(&apic_gethrtime_lock); 720 721 gethrtime_again: 722 while ((old_hrtime_stamp = apic_hrtime_stamp) & 1) 723 apic_ret(); 724 725 /* 726 * Check to see which CPU we are on. Note the time is kept on 727 * the local APIC of CPU 0. If on CPU 0, simply read the current 728 * counter. If on another CPU, issue a remote read command to CPU 0. 729 */ 730 if (cpun == apic_cpus[0].aci_local_id) { 731 countval = apic_reg_ops->apic_read(APIC_CURR_COUNT); 732 } else { 733 #ifdef DEBUG 734 APIC_AV_PENDING_SET(); 735 #else 736 if (apic_mode == LOCAL_APIC) 737 APIC_AV_PENDING_SET(); 738 #endif /* DEBUG */ 739 740 apic_reg_ops->apic_write_int_cmd( 741 apic_cpus[0].aci_local_id, APIC_CURR_ADD | AV_REMOTE); 742 743 while ((status = apic_reg_ops->apic_read(APIC_INT_CMD1)) 744 & AV_READ_PENDING) { 745 apic_ret(); 746 } 747 748 if (status & AV_REMOTE_STATUS) /* 1 = valid */ 749 countval = apic_reg_ops->apic_read(APIC_REMOTE_READ); 750 else { /* 0 = invalid */ 751 apic_remote_hrterr++; 752 /* 753 * return last hrtime right now, will need more 754 * testing if change to retry 755 */ 756 temp = apic_last_hrtime; 757 758 lock_clear(&apic_gethrtime_lock); 759 760 intr_restore(oflags); 761 762 return (temp); 763 } 764 } 765 if (countval > last_count_read) 766 countval = 0; 767 else 768 last_count_read = countval; 769 770 elapsed_ticks = apic_hertz_count - countval; 771 772 curr_timeval = APIC_TICKS_TO_NSECS(elapsed_ticks); 773 temp = apic_nsec_since_boot + curr_timeval; 774 775 if (apic_hrtime_stamp != old_hrtime_stamp) { /* got an interrupt */ 776 /* we might have clobbered last_count_read. Restore it */ 777 last_count_read = apic_hertz_count; 778 goto gethrtime_again; 779 } 780 781 if (temp < apic_last_hrtime) { 782 /* return last hrtime if error occurs */ 783 apic_hrtime_error++; 784 temp = apic_last_hrtime; 785 } 786 else 787 apic_last_hrtime = temp; 788 789 lock_clear(&apic_gethrtime_lock); 790 intr_restore(oflags); 791 792 return (temp); 793 } 794 795 /* apic NMI handler */ 796 /*ARGSUSED*/ 797 void 798 apic_nmi_intr(caddr_t arg, struct regs *rp) 799 { 800 if (apic_shutdown_processors) { 801 apic_disable_local_apic(); 802 return; 803 } 804 805 apic_error |= APIC_ERR_NMI; 806 807 if (!lock_try(&apic_nmi_lock)) 808 return; 809 apic_num_nmis++; 810 811 if (apic_kmdb_on_nmi && psm_debugger()) { 812 debug_enter("NMI received: entering kmdb\n"); 813 } else if (apic_panic_on_nmi) { 814 /* Keep panic from entering kmdb. */ 815 nopanicdebug = 1; 816 panic("NMI received\n"); 817 } else { 818 /* 819 * prom_printf is the best shot we have of something which is 820 * problem free from high level/NMI type of interrupts 821 */ 822 prom_printf("NMI received\n"); 823 } 824 825 lock_clear(&apic_nmi_lock); 826 } 827 828 processorid_t 829 apic_get_next_processorid(processorid_t cpu_id) 830 { 831 832 int i; 833 834 if (cpu_id == -1) 835 return ((processorid_t)0); 836 837 for (i = cpu_id + 1; i < NCPU; i++) { 838 if (apic_cpu_in_range(i)) 839 return (i); 840 } 841 842 return ((processorid_t)-1); 843 } 844 845 int 846 apic_cpu_add(psm_cpu_request_t *reqp) 847 { 848 int i, rv = 0; 849 ulong_t iflag; 850 boolean_t first = B_TRUE; 851 uchar_t localver; 852 uint32_t localid, procid; 853 processorid_t cpuid = (processorid_t)-1; 854 mach_cpu_add_arg_t *ap; 855 856 ASSERT(reqp != NULL); 857 reqp->req.cpu_add.cpuid = (processorid_t)-1; 858 859 /* Check whether CPU hotplug is supported. */ 860 if (!plat_dr_support_cpu() || apic_max_nproc == -1) { 861 return (ENOTSUP); 862 } 863 864 ap = (mach_cpu_add_arg_t *)reqp->req.cpu_add.argp; 865 switch (ap->type) { 866 case MACH_CPU_ARG_LOCAL_APIC: 867 localid = ap->arg.apic.apic_id; 868 procid = ap->arg.apic.proc_id; 869 if (localid >= 255 || procid > 255) { 870 cmn_err(CE_WARN, 871 "!apic: apicid(%u) or procid(%u) is invalid.", 872 localid, procid); 873 return (EINVAL); 874 } 875 break; 876 877 case MACH_CPU_ARG_LOCAL_X2APIC: 878 localid = ap->arg.apic.apic_id; 879 procid = ap->arg.apic.proc_id; 880 if (localid >= UINT32_MAX) { 881 cmn_err(CE_WARN, 882 "!apic: x2apicid(%u) is invalid.", localid); 883 return (EINVAL); 884 } else if (localid >= 255 && apic_mode == LOCAL_APIC) { 885 cmn_err(CE_WARN, "!apic: system is in APIC mode, " 886 "can't support x2APIC processor."); 887 return (ENOTSUP); 888 } 889 break; 890 891 default: 892 cmn_err(CE_WARN, 893 "!apic: unknown argument type %d to apic_cpu_add().", 894 ap->type); 895 return (EINVAL); 896 } 897 898 /* Use apic_ioapic_lock to sync with apic_get_next_bind_cpu. */ 899 iflag = intr_clear(); 900 lock_set(&apic_ioapic_lock); 901 902 /* Check whether local APIC id already exists. */ 903 for (i = 0; i < apic_nproc; i++) { 904 if (!CPU_IN_SET(apic_cpumask, i)) 905 continue; 906 if (apic_cpus[i].aci_local_id == localid) { 907 lock_clear(&apic_ioapic_lock); 908 intr_restore(iflag); 909 cmn_err(CE_WARN, 910 "!apic: local apic id %u already exists.", 911 localid); 912 return (EEXIST); 913 } else if (apic_cpus[i].aci_processor_id == procid) { 914 lock_clear(&apic_ioapic_lock); 915 intr_restore(iflag); 916 cmn_err(CE_WARN, 917 "!apic: processor id %u already exists.", 918 (int)procid); 919 return (EEXIST); 920 } 921 922 /* 923 * There's no local APIC version number available in MADT table, 924 * so assume that all CPUs are homogeneous and use local APIC 925 * version number of the first existing CPU. 926 */ 927 if (first) { 928 first = B_FALSE; 929 localver = apic_cpus[i].aci_local_ver; 930 } 931 } 932 ASSERT(first == B_FALSE); 933 934 /* 935 * Try to assign the same cpuid if APIC id exists in the dirty cache. 936 */ 937 for (i = 0; i < apic_max_nproc; i++) { 938 if (CPU_IN_SET(apic_cpumask, i)) { 939 ASSERT((apic_cpus[i].aci_status & APIC_CPU_FREE) == 0); 940 continue; 941 } 942 ASSERT(apic_cpus[i].aci_status & APIC_CPU_FREE); 943 if ((apic_cpus[i].aci_status & APIC_CPU_DIRTY) && 944 apic_cpus[i].aci_local_id == localid && 945 apic_cpus[i].aci_processor_id == procid) { 946 cpuid = i; 947 break; 948 } 949 } 950 951 /* Avoid the dirty cache and allocate fresh slot if possible. */ 952 if (cpuid == (processorid_t)-1) { 953 for (i = 0; i < apic_max_nproc; i++) { 954 if ((apic_cpus[i].aci_status & APIC_CPU_FREE) && 955 (apic_cpus[i].aci_status & APIC_CPU_DIRTY) == 0) { 956 cpuid = i; 957 break; 958 } 959 } 960 } 961 962 /* Try to find any free slot as last resort. */ 963 if (cpuid == (processorid_t)-1) { 964 for (i = 0; i < apic_max_nproc; i++) { 965 if (apic_cpus[i].aci_status & APIC_CPU_FREE) { 966 cpuid = i; 967 break; 968 } 969 } 970 } 971 972 if (cpuid == (processorid_t)-1) { 973 lock_clear(&apic_ioapic_lock); 974 intr_restore(iflag); 975 cmn_err(CE_NOTE, 976 "!apic: failed to allocate cpu id for processor %u.", 977 procid); 978 rv = EAGAIN; 979 } else if (ACPI_FAILURE(acpica_map_cpu(cpuid, procid))) { 980 lock_clear(&apic_ioapic_lock); 981 intr_restore(iflag); 982 cmn_err(CE_NOTE, 983 "!apic: failed to build mapping for processor %u.", 984 procid); 985 rv = EBUSY; 986 } else { 987 ASSERT(cpuid >= 0 && cpuid < NCPU); 988 ASSERT(cpuid < apic_max_nproc && cpuid < max_ncpus); 989 bzero(&apic_cpus[cpuid], sizeof (apic_cpus[0])); 990 apic_cpus[cpuid].aci_processor_id = procid; 991 apic_cpus[cpuid].aci_local_id = localid; 992 apic_cpus[cpuid].aci_local_ver = localver; 993 CPUSET_ATOMIC_ADD(apic_cpumask, cpuid); 994 if (cpuid >= apic_nproc) { 995 apic_nproc = cpuid + 1; 996 } 997 lock_clear(&apic_ioapic_lock); 998 intr_restore(iflag); 999 reqp->req.cpu_add.cpuid = cpuid; 1000 } 1001 1002 return (rv); 1003 } 1004 1005 int 1006 apic_cpu_remove(psm_cpu_request_t *reqp) 1007 { 1008 int i; 1009 ulong_t iflag; 1010 processorid_t cpuid; 1011 1012 /* Check whether CPU hotplug is supported. */ 1013 if (!plat_dr_support_cpu() || apic_max_nproc == -1) { 1014 return (ENOTSUP); 1015 } 1016 1017 cpuid = reqp->req.cpu_remove.cpuid; 1018 1019 /* Use apic_ioapic_lock to sync with apic_get_next_bind_cpu. */ 1020 iflag = intr_clear(); 1021 lock_set(&apic_ioapic_lock); 1022 1023 if (!apic_cpu_in_range(cpuid)) { 1024 lock_clear(&apic_ioapic_lock); 1025 intr_restore(iflag); 1026 cmn_err(CE_WARN, 1027 "!apic: cpuid %d doesn't exist in apic_cpus array.", 1028 cpuid); 1029 return (ENODEV); 1030 } 1031 ASSERT((apic_cpus[cpuid].aci_status & APIC_CPU_FREE) == 0); 1032 1033 if (ACPI_FAILURE(acpica_unmap_cpu(cpuid))) { 1034 lock_clear(&apic_ioapic_lock); 1035 intr_restore(iflag); 1036 return (ENOENT); 1037 } 1038 1039 if (cpuid == apic_nproc - 1) { 1040 /* 1041 * We are removing the highest numbered cpuid so we need to 1042 * find the next highest cpuid as the new value for apic_nproc. 1043 */ 1044 for (i = apic_nproc; i > 0; i--) { 1045 if (CPU_IN_SET(apic_cpumask, i - 1)) { 1046 apic_nproc = i; 1047 break; 1048 } 1049 } 1050 /* at least one CPU left */ 1051 ASSERT(i > 0); 1052 } 1053 CPUSET_ATOMIC_DEL(apic_cpumask, cpuid); 1054 /* mark slot as free and keep it in the dirty cache */ 1055 apic_cpus[cpuid].aci_status = APIC_CPU_FREE | APIC_CPU_DIRTY; 1056 1057 lock_clear(&apic_ioapic_lock); 1058 intr_restore(iflag); 1059 1060 return (0); 1061 } 1062 1063 /* 1064 * Return the number of APIC clock ticks elapsed for 8245 to decrement 1065 * (APIC_TIME_COUNT + pit_ticks_adj) ticks. 1066 */ 1067 uint_t 1068 apic_calibrate(volatile uint32_t *addr, uint16_t *pit_ticks_adj) 1069 { 1070 uint8_t pit_tick_lo; 1071 uint16_t pit_tick, target_pit_tick; 1072 uint32_t start_apic_tick, end_apic_tick; 1073 ulong_t iflag; 1074 uint32_t reg; 1075 1076 reg = addr + APIC_CURR_COUNT - apicadr; 1077 1078 iflag = intr_clear(); 1079 1080 do { 1081 pit_tick_lo = inb(PITCTR0_PORT); 1082 pit_tick = (inb(PITCTR0_PORT) << 8) | pit_tick_lo; 1083 } while (pit_tick < APIC_TIME_MIN || 1084 pit_tick_lo <= APIC_LB_MIN || pit_tick_lo >= APIC_LB_MAX); 1085 1086 /* 1087 * Wait for the 8254 to decrement by 5 ticks to ensure 1088 * we didn't start in the middle of a tick. 1089 * Compare with 0x10 for the wrap around case. 1090 */ 1091 target_pit_tick = pit_tick - 5; 1092 do { 1093 pit_tick_lo = inb(PITCTR0_PORT); 1094 pit_tick = (inb(PITCTR0_PORT) << 8) | pit_tick_lo; 1095 } while (pit_tick > target_pit_tick || pit_tick_lo < 0x10); 1096 1097 start_apic_tick = apic_reg_ops->apic_read(reg); 1098 1099 /* 1100 * Wait for the 8254 to decrement by 1101 * (APIC_TIME_COUNT + pit_ticks_adj) ticks 1102 */ 1103 target_pit_tick = pit_tick - APIC_TIME_COUNT; 1104 do { 1105 pit_tick_lo = inb(PITCTR0_PORT); 1106 pit_tick = (inb(PITCTR0_PORT) << 8) | pit_tick_lo; 1107 } while (pit_tick > target_pit_tick || pit_tick_lo < 0x10); 1108 1109 end_apic_tick = apic_reg_ops->apic_read(reg); 1110 1111 *pit_ticks_adj = target_pit_tick - pit_tick; 1112 1113 intr_restore(iflag); 1114 1115 return (start_apic_tick - end_apic_tick); 1116 } 1117 1118 /* 1119 * Initialise the APIC timer on the local APIC of CPU 0 to the desired 1120 * frequency. Note at this stage in the boot sequence, the boot processor 1121 * is the only active processor. 1122 * hertz value of 0 indicates a one-shot mode request. In this case 1123 * the function returns the resolution (in nanoseconds) for the hardware 1124 * timer interrupt. If one-shot mode capability is not available, 1125 * the return value will be 0. apic_enable_oneshot is a global switch 1126 * for disabling the functionality. 1127 * A non-zero positive value for hertz indicates a periodic mode request. 1128 * In this case the hardware will be programmed to generate clock interrupts 1129 * at hertz frequency and returns the resolution of interrupts in 1130 * nanosecond. 1131 */ 1132 1133 int 1134 apic_clkinit(int hertz) 1135 { 1136 int ret; 1137 1138 apic_int_busy_mark = (apic_int_busy_mark * 1139 apic_sample_factor_redistribution) / 100; 1140 apic_int_free_mark = (apic_int_free_mark * 1141 apic_sample_factor_redistribution) / 100; 1142 apic_diff_for_redistribution = (apic_diff_for_redistribution * 1143 apic_sample_factor_redistribution) / 100; 1144 1145 ret = apic_timer_init(hertz); 1146 return (ret); 1147 1148 } 1149 1150 /* 1151 * apic_preshutdown: 1152 * Called early in shutdown whilst we can still access filesystems to do 1153 * things like loading modules which will be required to complete shutdown 1154 * after filesystems are all unmounted. 1155 */ 1156 void 1157 apic_preshutdown(int cmd, int fcn) 1158 { 1159 APIC_VERBOSE_POWEROFF(("apic_preshutdown(%d,%d); m=%d a=%d\n", 1160 cmd, fcn, apic_poweroff_method, apic_enable_acpi)); 1161 } 1162 1163 void 1164 apic_shutdown(int cmd, int fcn) 1165 { 1166 int restarts, attempts; 1167 int i; 1168 uchar_t byte; 1169 ulong_t iflag; 1170 1171 hpet_acpi_fini(); 1172 1173 /* Send NMI to all CPUs except self to do per processor shutdown */ 1174 iflag = intr_clear(); 1175 #ifdef DEBUG 1176 APIC_AV_PENDING_SET(); 1177 #else 1178 if (apic_mode == LOCAL_APIC) 1179 APIC_AV_PENDING_SET(); 1180 #endif /* DEBUG */ 1181 apic_shutdown_processors = 1; 1182 apic_reg_ops->apic_write(APIC_INT_CMD1, 1183 AV_NMI | AV_LEVEL | AV_SH_ALL_EXCSELF); 1184 1185 /* restore cmos shutdown byte before reboot */ 1186 if (apic_cmos_ssb_set) { 1187 outb(CMOS_ADDR, SSB); 1188 outb(CMOS_DATA, 0); 1189 } 1190 1191 ioapic_disable_redirection(); 1192 1193 /* disable apic mode if imcr present */ 1194 if (apic_imcrp) { 1195 outb(APIC_IMCR_P1, (uchar_t)APIC_IMCR_SELECT); 1196 outb(APIC_IMCR_P2, (uchar_t)APIC_IMCR_PIC); 1197 } 1198 1199 apic_disable_local_apic(); 1200 1201 intr_restore(iflag); 1202 1203 /* remainder of function is for shutdown cases only */ 1204 if (cmd != A_SHUTDOWN) 1205 return; 1206 1207 /* 1208 * Switch system back into Legacy-Mode if using ACPI and 1209 * not powering-off. Some BIOSes need to remain in ACPI-mode 1210 * for power-off to succeed (Dell Dimension 4600) 1211 * Do not disable ACPI while doing fastreboot 1212 */ 1213 if (apic_enable_acpi && fcn != AD_POWEROFF && fcn != AD_FASTREBOOT) 1214 (void) AcpiDisable(); 1215 1216 if (fcn == AD_FASTREBOOT) { 1217 apic_reg_ops->apic_write(APIC_INT_CMD1, 1218 AV_ASSERT | AV_RESET | AV_SH_ALL_EXCSELF); 1219 } 1220 1221 /* remainder of function is for shutdown+poweroff case only */ 1222 if (fcn != AD_POWEROFF) 1223 return; 1224 1225 switch (apic_poweroff_method) { 1226 case APIC_POWEROFF_VIA_RTC: 1227 1228 /* select the extended NVRAM bank in the RTC */ 1229 outb(CMOS_ADDR, RTC_REGA); 1230 byte = inb(CMOS_DATA); 1231 outb(CMOS_DATA, (byte | EXT_BANK)); 1232 1233 outb(CMOS_ADDR, PFR_REG); 1234 1235 /* for Predator must toggle the PAB bit */ 1236 byte = inb(CMOS_DATA); 1237 1238 /* 1239 * clear power active bar, wakeup alarm and 1240 * kickstart 1241 */ 1242 byte &= ~(PAB_CBIT | WF_FLAG | KS_FLAG); 1243 outb(CMOS_DATA, byte); 1244 1245 /* delay before next write */ 1246 drv_usecwait(1000); 1247 1248 /* for S40 the following would suffice */ 1249 byte = inb(CMOS_DATA); 1250 1251 /* power active bar control bit */ 1252 byte |= PAB_CBIT; 1253 outb(CMOS_DATA, byte); 1254 1255 break; 1256 1257 case APIC_POWEROFF_VIA_ASPEN_BMC: 1258 restarts = 0; 1259 restart_aspen_bmc: 1260 if (++restarts == 3) 1261 break; 1262 attempts = 0; 1263 do { 1264 byte = inb(MISMIC_FLAG_REGISTER); 1265 byte &= MISMIC_BUSY_MASK; 1266 if (byte != 0) { 1267 drv_usecwait(1000); 1268 if (attempts >= 3) 1269 goto restart_aspen_bmc; 1270 ++attempts; 1271 } 1272 } while (byte != 0); 1273 outb(MISMIC_CNTL_REGISTER, CC_SMS_GET_STATUS); 1274 byte = inb(MISMIC_FLAG_REGISTER); 1275 byte |= 0x1; 1276 outb(MISMIC_FLAG_REGISTER, byte); 1277 i = 0; 1278 for (; i < (sizeof (aspen_bmc)/sizeof (aspen_bmc[0])); 1279 i++) { 1280 attempts = 0; 1281 do { 1282 byte = inb(MISMIC_FLAG_REGISTER); 1283 byte &= MISMIC_BUSY_MASK; 1284 if (byte != 0) { 1285 drv_usecwait(1000); 1286 if (attempts >= 3) 1287 goto restart_aspen_bmc; 1288 ++attempts; 1289 } 1290 } while (byte != 0); 1291 outb(MISMIC_CNTL_REGISTER, aspen_bmc[i].cntl); 1292 outb(MISMIC_DATA_REGISTER, aspen_bmc[i].data); 1293 byte = inb(MISMIC_FLAG_REGISTER); 1294 byte |= 0x1; 1295 outb(MISMIC_FLAG_REGISTER, byte); 1296 } 1297 break; 1298 1299 case APIC_POWEROFF_VIA_SITKA_BMC: 1300 restarts = 0; 1301 restart_sitka_bmc: 1302 if (++restarts == 3) 1303 break; 1304 attempts = 0; 1305 do { 1306 byte = inb(SMS_STATUS_REGISTER); 1307 byte &= SMS_STATE_MASK; 1308 if ((byte == SMS_READ_STATE) || 1309 (byte == SMS_WRITE_STATE)) { 1310 drv_usecwait(1000); 1311 if (attempts >= 3) 1312 goto restart_sitka_bmc; 1313 ++attempts; 1314 } 1315 } while ((byte == SMS_READ_STATE) || 1316 (byte == SMS_WRITE_STATE)); 1317 outb(SMS_COMMAND_REGISTER, SMS_GET_STATUS); 1318 i = 0; 1319 for (; i < (sizeof (sitka_bmc)/sizeof (sitka_bmc[0])); 1320 i++) { 1321 attempts = 0; 1322 do { 1323 byte = inb(SMS_STATUS_REGISTER); 1324 byte &= SMS_IBF_MASK; 1325 if (byte != 0) { 1326 drv_usecwait(1000); 1327 if (attempts >= 3) 1328 goto restart_sitka_bmc; 1329 ++attempts; 1330 } 1331 } while (byte != 0); 1332 outb(sitka_bmc[i].port, sitka_bmc[i].data); 1333 } 1334 break; 1335 1336 case APIC_POWEROFF_NONE: 1337 1338 /* If no APIC direct method, we will try using ACPI */ 1339 if (apic_enable_acpi) { 1340 if (acpi_poweroff() == 1) 1341 return; 1342 } else 1343 return; 1344 1345 break; 1346 } 1347 /* 1348 * Wait a limited time here for power to go off. 1349 * If the power does not go off, then there was a 1350 * problem and we should continue to the halt which 1351 * prints a message for the user to press a key to 1352 * reboot. 1353 */ 1354 drv_usecwait(7000000); /* wait seven seconds */ 1355 1356 } 1357 1358 cyclic_id_t apic_cyclic_id; 1359 1360 /* 1361 * The following functions are in the platform specific file so that they 1362 * can be different functions depending on whether we are running on 1363 * bare metal or a hypervisor. 1364 */ 1365 1366 /* 1367 * map an apic for memory-mapped access 1368 */ 1369 uint32_t * 1370 mapin_apic(uint32_t addr, size_t len, int flags) 1371 { 1372 return ((void *)psm_map_phys(addr, len, flags)); 1373 } 1374 1375 uint32_t * 1376 mapin_ioapic(uint32_t addr, size_t len, int flags) 1377 { 1378 return (mapin_apic(addr, len, flags)); 1379 } 1380 1381 /* 1382 * unmap an apic 1383 */ 1384 void 1385 mapout_apic(caddr_t addr, size_t len) 1386 { 1387 psm_unmap_phys(addr, len); 1388 } 1389 1390 void 1391 mapout_ioapic(caddr_t addr, size_t len) 1392 { 1393 mapout_apic(addr, len); 1394 } 1395 1396 uint32_t 1397 ioapic_read(int ioapic_ix, uint32_t reg) 1398 { 1399 volatile uint32_t *ioapic; 1400 1401 ioapic = apicioadr[ioapic_ix]; 1402 ioapic[APIC_IO_REG] = reg; 1403 return (ioapic[APIC_IO_DATA]); 1404 } 1405 1406 void 1407 ioapic_write(int ioapic_ix, uint32_t reg, uint32_t value) 1408 { 1409 volatile uint32_t *ioapic; 1410 1411 ioapic = apicioadr[ioapic_ix]; 1412 ioapic[APIC_IO_REG] = reg; 1413 ioapic[APIC_IO_DATA] = value; 1414 } 1415 1416 void 1417 ioapic_write_eoi(int ioapic_ix, uint32_t value) 1418 { 1419 volatile uint32_t *ioapic; 1420 1421 ioapic = apicioadr[ioapic_ix]; 1422 ioapic[APIC_IO_EOI] = value; 1423 } 1424 1425 /* 1426 * Round-robin algorithm to find the next CPU with interrupts enabled. 1427 * It can't share the same static variable apic_next_bind_cpu with 1428 * apic_get_next_bind_cpu(), since that will cause all interrupts to be 1429 * bound to CPU1 at boot time. During boot, only CPU0 is online with 1430 * interrupts enabled when apic_get_next_bind_cpu() and apic_find_cpu() 1431 * are called. However, the pcplusmp driver assumes that there will be 1432 * boot_ncpus CPUs configured eventually so it tries to distribute all 1433 * interrupts among CPU0 - CPU[boot_ncpus - 1]. Thus to prevent all 1434 * interrupts being targetted at CPU1, we need to use a dedicated static 1435 * variable for find_next_cpu() instead of sharing apic_next_bind_cpu. 1436 */ 1437 1438 processorid_t 1439 apic_find_cpu(int flag) 1440 { 1441 int i; 1442 static processorid_t acid = 0; 1443 1444 /* Find the first CPU with the passed-in flag set */ 1445 for (i = 0; i < apic_nproc; i++) { 1446 if (++acid >= apic_nproc) { 1447 acid = 0; 1448 } 1449 if (apic_cpu_in_range(acid) && 1450 (apic_cpus[acid].aci_status & flag)) { 1451 break; 1452 } 1453 } 1454 1455 ASSERT((apic_cpus[acid].aci_status & flag) != 0); 1456 return (acid); 1457 } 1458 1459 /* 1460 * Switch between safe and x2APIC IPI sending method. 1461 * CPU may power on in xapic mode or x2apic mode. If CPU needs to send IPI to 1462 * other CPUs before entering x2APIC mode, it still needs to xAPIC method. 1463 * Before sending StartIPI to target CPU, psm_send_ipi will be changed to 1464 * apic_common_send_ipi, which detects current local APIC mode and use right 1465 * method to send IPI. If some CPUs fail to start up, apic_poweron_cnt 1466 * won't return to zero, so apic_common_send_ipi will always be used. 1467 * psm_send_ipi can't be simply changed back to x2apic_send_ipi if some CPUs 1468 * failed to start up because those failed CPUs may recover itself later at 1469 * unpredictable time. 1470 */ 1471 void 1472 apic_switch_ipi_callback(boolean_t enter) 1473 { 1474 ulong_t iflag; 1475 struct psm_ops *pops = psmops; 1476 1477 iflag = intr_clear(); 1478 lock_set(&apic_mode_switch_lock); 1479 if (enter) { 1480 ASSERT(apic_poweron_cnt >= 0); 1481 if (apic_poweron_cnt == 0) { 1482 pops->psm_send_ipi = apic_common_send_ipi; 1483 send_dirintf = pops->psm_send_ipi; 1484 } 1485 apic_poweron_cnt++; 1486 } else { 1487 ASSERT(apic_poweron_cnt > 0); 1488 apic_poweron_cnt--; 1489 if (apic_poweron_cnt == 0) { 1490 pops->psm_send_ipi = x2apic_send_ipi; 1491 send_dirintf = pops->psm_send_ipi; 1492 } 1493 } 1494 lock_clear(&apic_mode_switch_lock); 1495 intr_restore(iflag); 1496 } 1497 1498 void 1499 apic_intrmap_init(int apic_mode) 1500 { 1501 int suppress_brdcst_eoi = 0; 1502 1503 /* 1504 * Intel Software Developer's Manual 3A, 10.12.7: 1505 * 1506 * Routing of device interrupts to local APIC units operating in 1507 * x2APIC mode requires use of the interrupt-remapping architecture 1508 * specified in the Intel Virtualization Technology for Directed 1509 * I/O, Revision 1.3. Because of this, BIOS must enumerate support 1510 * for and software must enable this interrupt remapping with 1511 * Extended Interrupt Mode Enabled before it enabling x2APIC mode in 1512 * the local APIC units. 1513 * 1514 * 1515 * In other words, to use the APIC in x2APIC mode, we need interrupt 1516 * remapping. Since we don't start up the IOMMU by default, we 1517 * won't be able to do any interrupt remapping and therefore have to 1518 * use the APIC in traditional 'local APIC' mode with memory mapped 1519 * I/O. 1520 */ 1521 1522 if (psm_vt_ops != NULL) { 1523 if (((apic_intrmap_ops_t *)psm_vt_ops)-> 1524 apic_intrmap_init(apic_mode) == DDI_SUCCESS) { 1525 1526 apic_vt_ops = psm_vt_ops; 1527 1528 /* 1529 * We leverage the interrupt remapping engine to 1530 * suppress broadcast EOI; thus we must send the 1531 * directed EOI with the directed-EOI handler. 1532 */ 1533 if (apic_directed_EOI_supported() == 0) { 1534 suppress_brdcst_eoi = 1; 1535 } 1536 1537 apic_vt_ops->apic_intrmap_enable(suppress_brdcst_eoi); 1538 1539 if (apic_detect_x2apic()) { 1540 apic_enable_x2apic(); 1541 } 1542 1543 if (apic_directed_EOI_supported() == 0) { 1544 apic_set_directed_EOI_handler(); 1545 } 1546 } 1547 } 1548 } 1549 1550 /*ARGSUSED*/ 1551 static void 1552 apic_record_ioapic_rdt(void *intrmap_private, ioapic_rdt_t *irdt) 1553 { 1554 irdt->ir_hi <<= APIC_ID_BIT_OFFSET; 1555 } 1556 1557 /*ARGSUSED*/ 1558 static void 1559 apic_record_msi(void *intrmap_private, msi_regs_t *mregs) 1560 { 1561 mregs->mr_addr = MSI_ADDR_HDR | 1562 (MSI_ADDR_RH_FIXED << MSI_ADDR_RH_SHIFT) | 1563 (MSI_ADDR_DM_PHYSICAL << MSI_ADDR_DM_SHIFT) | 1564 (mregs->mr_addr << MSI_ADDR_DEST_SHIFT); 1565 mregs->mr_data = (MSI_DATA_TM_EDGE << MSI_DATA_TM_SHIFT) | 1566 mregs->mr_data; 1567 } 1568 1569 /* 1570 * Functions from apic_introp.c 1571 * 1572 * Those functions are used by apic_intr_ops(). 1573 */ 1574 1575 /* 1576 * MSI support flag: 1577 * reflects whether MSI is supported at APIC level 1578 * it can also be patched through /etc/system 1579 * 1580 * 0 = default value - don't know and need to call apic_check_msi_support() 1581 * to find out then set it accordingly 1582 * 1 = supported 1583 * -1 = not supported 1584 */ 1585 int apic_support_msi = 0; 1586 1587 /* Multiple vector support for MSI-X */ 1588 int apic_msix_enable = 1; 1589 1590 /* Multiple vector support for MSI */ 1591 int apic_multi_msi_enable = 1; 1592 1593 /* 1594 * Check whether the system supports MSI. 1595 * 1596 * MSI is required for PCI-E and for PCI versions later than 2.2, so if we find 1597 * a PCI-E bus or we find a PCI bus whose version we know is >= 2.2, then we 1598 * return PSM_SUCCESS to indicate this system supports MSI. 1599 * 1600 * (Currently the only way we check whether a given PCI bus supports >= 2.2 is 1601 * by detecting if we are running inside the KVM hypervisor, which guarantees 1602 * this version number.) 1603 */ 1604 int 1605 apic_check_msi_support() 1606 { 1607 dev_info_t *cdip; 1608 char dev_type[16]; 1609 int dev_len; 1610 1611 DDI_INTR_IMPLDBG((CE_CONT, "apic_check_msi_support:\n")); 1612 1613 /* 1614 * check whether the first level children of root_node have 1615 * PCI-E or PCI capability. 1616 */ 1617 for (cdip = ddi_get_child(ddi_root_node()); cdip != NULL; 1618 cdip = ddi_get_next_sibling(cdip)) { 1619 1620 DDI_INTR_IMPLDBG((CE_CONT, "apic_check_msi_support: cdip: 0x%p," 1621 " driver: %s, binding: %s, nodename: %s\n", (void *)cdip, 1622 ddi_driver_name(cdip), ddi_binding_name(cdip), 1623 ddi_node_name(cdip))); 1624 dev_len = sizeof (dev_type); 1625 if (ddi_getlongprop_buf(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS, 1626 "device_type", (caddr_t)dev_type, &dev_len) 1627 != DDI_PROP_SUCCESS) 1628 continue; 1629 if (strcmp(dev_type, "pciex") == 0) 1630 return (PSM_SUCCESS); 1631 if (strcmp(dev_type, "pci") == 0 && get_hwenv() == HW_KVM) 1632 return (PSM_SUCCESS); 1633 } 1634 1635 /* MSI is not supported on this system */ 1636 DDI_INTR_IMPLDBG((CE_CONT, "apic_check_msi_support: no 'pciex' " 1637 "device_type found\n")); 1638 return (PSM_FAILURE); 1639 } 1640 1641 /* 1642 * apic_pci_msi_unconfigure: 1643 * 1644 * This and next two interfaces are copied from pci_intr_lib.c 1645 * Do ensure that these two files stay in sync. 1646 * These needed to be copied over here to avoid a deadlock situation on 1647 * certain mp systems that use MSI interrupts. 1648 * 1649 * IMPORTANT regards next three interfaces: 1650 * i) are called only for MSI/X interrupts. 1651 * ii) called with interrupts disabled, and must not block 1652 */ 1653 void 1654 apic_pci_msi_unconfigure(dev_info_t *rdip, int type, int inum) 1655 { 1656 ushort_t msi_ctrl; 1657 int cap_ptr = i_ddi_get_msi_msix_cap_ptr(rdip); 1658 ddi_acc_handle_t handle = i_ddi_get_pci_config_handle(rdip); 1659 1660 ASSERT((handle != NULL) && (cap_ptr != 0)); 1661 1662 if (type == DDI_INTR_TYPE_MSI) { 1663 msi_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSI_CTRL); 1664 msi_ctrl &= (~PCI_MSI_MME_MASK); 1665 pci_config_put16(handle, cap_ptr + PCI_MSI_CTRL, msi_ctrl); 1666 pci_config_put32(handle, cap_ptr + PCI_MSI_ADDR_OFFSET, 0); 1667 1668 if (msi_ctrl & PCI_MSI_64BIT_MASK) { 1669 pci_config_put16(handle, 1670 cap_ptr + PCI_MSI_64BIT_DATA, 0); 1671 pci_config_put32(handle, 1672 cap_ptr + PCI_MSI_ADDR_OFFSET + 4, 0); 1673 } else { 1674 pci_config_put16(handle, 1675 cap_ptr + PCI_MSI_32BIT_DATA, 0); 1676 } 1677 1678 } else if (type == DDI_INTR_TYPE_MSIX) { 1679 uintptr_t off; 1680 uint32_t mask; 1681 ddi_intr_msix_t *msix_p = i_ddi_get_msix(rdip); 1682 1683 ASSERT(msix_p != NULL); 1684 1685 /* Offset into "inum"th entry in the MSI-X table & mask it */ 1686 off = (uintptr_t)msix_p->msix_tbl_addr + (inum * 1687 PCI_MSIX_VECTOR_SIZE) + PCI_MSIX_VECTOR_CTRL_OFFSET; 1688 1689 mask = ddi_get32(msix_p->msix_tbl_hdl, (uint32_t *)off); 1690 1691 ddi_put32(msix_p->msix_tbl_hdl, (uint32_t *)off, (mask | 1)); 1692 1693 /* Offset into the "inum"th entry in the MSI-X table */ 1694 off = (uintptr_t)msix_p->msix_tbl_addr + 1695 (inum * PCI_MSIX_VECTOR_SIZE); 1696 1697 /* Reset the "data" and "addr" bits */ 1698 ddi_put32(msix_p->msix_tbl_hdl, 1699 (uint32_t *)(off + PCI_MSIX_DATA_OFFSET), 0); 1700 ddi_put64(msix_p->msix_tbl_hdl, (uint64_t *)off, 0); 1701 } 1702 } 1703 1704 /* 1705 * apic_pci_msi_disable_mode: 1706 */ 1707 void 1708 apic_pci_msi_disable_mode(dev_info_t *rdip, int type) 1709 { 1710 ushort_t msi_ctrl; 1711 int cap_ptr = i_ddi_get_msi_msix_cap_ptr(rdip); 1712 ddi_acc_handle_t handle = i_ddi_get_pci_config_handle(rdip); 1713 1714 ASSERT((handle != NULL) && (cap_ptr != 0)); 1715 1716 if (type == DDI_INTR_TYPE_MSI) { 1717 msi_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSI_CTRL); 1718 if (!(msi_ctrl & PCI_MSI_ENABLE_BIT)) 1719 return; 1720 1721 msi_ctrl &= ~PCI_MSI_ENABLE_BIT; /* MSI disable */ 1722 pci_config_put16(handle, cap_ptr + PCI_MSI_CTRL, msi_ctrl); 1723 1724 } else if (type == DDI_INTR_TYPE_MSIX) { 1725 msi_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSIX_CTRL); 1726 if (msi_ctrl & PCI_MSIX_ENABLE_BIT) { 1727 msi_ctrl &= ~PCI_MSIX_ENABLE_BIT; 1728 pci_config_put16(handle, cap_ptr + PCI_MSIX_CTRL, 1729 msi_ctrl); 1730 } 1731 } 1732 } 1733 1734 uint32_t 1735 apic_get_localapicid(uint32_t cpuid) 1736 { 1737 ASSERT(cpuid < apic_nproc && apic_cpus != NULL); 1738 1739 return (apic_cpus[cpuid].aci_local_id); 1740 } 1741 1742 uchar_t 1743 apic_get_ioapicid(uchar_t ioapicindex) 1744 { 1745 ASSERT(ioapicindex < MAX_IO_APIC); 1746 1747 return (apic_io_id[ioapicindex]); 1748 } 1749