xref: /illumos-gate/usr/src/uts/i86pc/io/pcplusmp/apic_common.c (revision a0fb1590788f4dcbcee3fabaeb082ab7d1ad4203)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 /*
26  * Copyright (c) 2013, Joyent, Inc.  All rights reserved.
27  * Copyright (c) 2016 by Delphix. All rights reserved.
28  */
29 
30 /*
31  * PSMI 1.1 extensions are supported only in 2.6 and later versions.
32  * PSMI 1.2 extensions are supported only in 2.7 and later versions.
33  * PSMI 1.3 and 1.4 extensions are supported in Solaris 10.
34  * PSMI 1.5 extensions are supported in Solaris Nevada.
35  * PSMI 1.6 extensions are supported in Solaris Nevada.
36  * PSMI 1.7 extensions are supported in Solaris Nevada.
37  */
38 #define	PSMI_1_7
39 
40 #include <sys/processor.h>
41 #include <sys/time.h>
42 #include <sys/psm.h>
43 #include <sys/smp_impldefs.h>
44 #include <sys/cram.h>
45 #include <sys/acpi/acpi.h>
46 #include <sys/acpica.h>
47 #include <sys/psm_common.h>
48 #include <sys/apic.h>
49 #include <sys/pit.h>
50 #include <sys/ddi.h>
51 #include <sys/sunddi.h>
52 #include <sys/ddi_impldefs.h>
53 #include <sys/pci.h>
54 #include <sys/promif.h>
55 #include <sys/x86_archext.h>
56 #include <sys/cpc_impl.h>
57 #include <sys/uadmin.h>
58 #include <sys/panic.h>
59 #include <sys/debug.h>
60 #include <sys/archsystm.h>
61 #include <sys/trap.h>
62 #include <sys/machsystm.h>
63 #include <sys/sysmacros.h>
64 #include <sys/cpuvar.h>
65 #include <sys/rm_platter.h>
66 #include <sys/privregs.h>
67 #include <sys/note.h>
68 #include <sys/pci_intr_lib.h>
69 #include <sys/spl.h>
70 #include <sys/clock.h>
71 #include <sys/dditypes.h>
72 #include <sys/sunddi.h>
73 #include <sys/x_call.h>
74 #include <sys/reboot.h>
75 #include <sys/hpet.h>
76 #include <sys/apic_common.h>
77 #include <sys/apic_timer.h>
78 
79 static void	apic_record_ioapic_rdt(void *intrmap_private,
80 		    ioapic_rdt_t *irdt);
81 static void	apic_record_msi(void *intrmap_private, msi_regs_t *mregs);
82 
83 /*
84  * Common routines between pcplusmp & apix (taken from apic.c).
85  */
86 
87 int	apic_clkinit(int);
88 hrtime_t apic_gethrtime(void);
89 void	apic_send_ipi(int, int);
90 void	apic_set_idlecpu(processorid_t);
91 void	apic_unset_idlecpu(processorid_t);
92 void	apic_shutdown(int, int);
93 void	apic_preshutdown(int, int);
94 processorid_t	apic_get_next_processorid(processorid_t);
95 
96 hrtime_t apic_gettime();
97 
98 enum apic_ioapic_method_type apix_mul_ioapic_method = APIC_MUL_IOAPIC_PCPLUSMP;
99 
100 /* Now the ones for Dynamic Interrupt distribution */
101 int	apic_enable_dynamic_migration = 0;
102 
103 /* maximum loop count when sending Start IPIs. */
104 int apic_sipi_max_loop_count = 0x1000;
105 
106 /*
107  * These variables are frequently accessed in apic_intr_enter(),
108  * apic_intr_exit and apic_setspl, so group them together
109  */
110 volatile uint32_t *apicadr =  NULL;	/* virtual addr of local APIC	*/
111 int apic_setspl_delay = 1;		/* apic_setspl - delay enable	*/
112 int apic_clkvect;
113 
114 /* vector at which error interrupts come in */
115 int apic_errvect;
116 int apic_enable_error_intr = 1;
117 int apic_error_display_delay = 100;
118 
119 /* vector at which performance counter overflow interrupts come in */
120 int apic_cpcovf_vect;
121 int apic_enable_cpcovf_intr = 1;
122 
123 /* vector at which CMCI interrupts come in */
124 int apic_cmci_vect;
125 extern int cmi_enable_cmci;
126 extern void cmi_cmci_trap(void);
127 
128 kmutex_t cmci_cpu_setup_lock;	/* protects cmci_cpu_setup_registered */
129 int cmci_cpu_setup_registered;
130 
131 /* number of CPUs in power-on transition state */
132 static int apic_poweron_cnt = 0;
133 lock_t apic_mode_switch_lock;
134 
135 /*
136  * Patchable global variables.
137  */
138 int	apic_forceload = 0;
139 
140 int	apic_coarse_hrtime = 1;		/* 0 - use accurate slow gethrtime() */
141 
142 int	apic_flat_model = 0;		/* 0 - clustered. 1 - flat */
143 int	apic_panic_on_nmi = 0;
144 int	apic_panic_on_apic_error = 0;
145 
146 int	apic_verbose = 0;	/* 0x1ff */
147 
148 #ifdef DEBUG
149 int	apic_debug = 0;
150 int	apic_restrict_vector = 0;
151 
152 int	apic_debug_msgbuf[APIC_DEBUG_MSGBUFSIZE];
153 int	apic_debug_msgbufindex = 0;
154 
155 #endif /* DEBUG */
156 
157 uint_t apic_nticks = 0;
158 uint_t apic_skipped_redistribute = 0;
159 
160 uint_t last_count_read = 0;
161 lock_t	apic_gethrtime_lock;
162 volatile int	apic_hrtime_stamp = 0;
163 volatile hrtime_t apic_nsec_since_boot = 0;
164 
165 static	hrtime_t	apic_last_hrtime = 0;
166 int		apic_hrtime_error = 0;
167 int		apic_remote_hrterr = 0;
168 int		apic_num_nmis = 0;
169 int		apic_apic_error = 0;
170 int		apic_num_apic_errors = 0;
171 int		apic_num_cksum_errors = 0;
172 
173 int	apic_error = 0;
174 
175 static	int	apic_cmos_ssb_set = 0;
176 
177 /* use to make sure only one cpu handles the nmi */
178 lock_t	apic_nmi_lock;
179 /* use to make sure only one cpu handles the error interrupt */
180 lock_t	apic_error_lock;
181 
182 static	struct {
183 	uchar_t	cntl;
184 	uchar_t	data;
185 } aspen_bmc[] = {
186 	{ CC_SMS_WR_START,	0x18 },		/* NetFn/LUN */
187 	{ CC_SMS_WR_NEXT,	0x24 },		/* Cmd SET_WATCHDOG_TIMER */
188 	{ CC_SMS_WR_NEXT,	0x84 },		/* DataByte 1: SMS/OS no log */
189 	{ CC_SMS_WR_NEXT,	0x2 },		/* DataByte 2: Power Down */
190 	{ CC_SMS_WR_NEXT,	0x0 },		/* DataByte 3: no pre-timeout */
191 	{ CC_SMS_WR_NEXT,	0x0 },		/* DataByte 4: timer expir. */
192 	{ CC_SMS_WR_NEXT,	0xa },		/* DataByte 5: init countdown */
193 	{ CC_SMS_WR_END,	0x0 },		/* DataByte 6: init countdown */
194 
195 	{ CC_SMS_WR_START,	0x18 },		/* NetFn/LUN */
196 	{ CC_SMS_WR_END,	0x22 }		/* Cmd RESET_WATCHDOG_TIMER */
197 };
198 
199 static	struct {
200 	int	port;
201 	uchar_t	data;
202 } sitka_bmc[] = {
203 	{ SMS_COMMAND_REGISTER,	SMS_WRITE_START },
204 	{ SMS_DATA_REGISTER,	0x18 },		/* NetFn/LUN */
205 	{ SMS_DATA_REGISTER,	0x24 },		/* Cmd SET_WATCHDOG_TIMER */
206 	{ SMS_DATA_REGISTER,	0x84 },		/* DataByte 1: SMS/OS no log */
207 	{ SMS_DATA_REGISTER,	0x2 },		/* DataByte 2: Power Down */
208 	{ SMS_DATA_REGISTER,	0x0 },		/* DataByte 3: no pre-timeout */
209 	{ SMS_DATA_REGISTER,	0x0 },		/* DataByte 4: timer expir. */
210 	{ SMS_DATA_REGISTER,	0xa },		/* DataByte 5: init countdown */
211 	{ SMS_COMMAND_REGISTER,	SMS_WRITE_END },
212 	{ SMS_DATA_REGISTER,	0x0 },		/* DataByte 6: init countdown */
213 
214 	{ SMS_COMMAND_REGISTER,	SMS_WRITE_START },
215 	{ SMS_DATA_REGISTER,	0x18 },		/* NetFn/LUN */
216 	{ SMS_COMMAND_REGISTER,	SMS_WRITE_END },
217 	{ SMS_DATA_REGISTER,	0x22 }		/* Cmd RESET_WATCHDOG_TIMER */
218 };
219 
220 /* Patchable global variables. */
221 int		apic_kmdb_on_nmi = 0;		/* 0 - no, 1 - yes enter kmdb */
222 uint32_t	apic_divide_reg_init = 0;	/* 0 - divide by 2 */
223 
224 /* default apic ops without interrupt remapping */
225 static apic_intrmap_ops_t apic_nointrmap_ops = {
226 	(int (*)(int))return_instr,
227 	(void (*)(int))return_instr,
228 	(void (*)(void **, dev_info_t *, uint16_t, int, uchar_t))return_instr,
229 	(void (*)(void *, void *, uint16_t, int))return_instr,
230 	(void (*)(void **))return_instr,
231 	apic_record_ioapic_rdt,
232 	apic_record_msi,
233 };
234 
235 apic_intrmap_ops_t *apic_vt_ops = &apic_nointrmap_ops;
236 apic_cpus_info_t	*apic_cpus = NULL;
237 cpuset_t	apic_cpumask;
238 uint_t		apic_picinit_called;
239 
240 /* Flag to indicate that we need to shut down all processors */
241 static uint_t	apic_shutdown_processors;
242 
243 /*
244  * Probe the ioapic method for apix module. Called in apic_probe_common()
245  */
246 int
247 apic_ioapic_method_probe()
248 {
249 	if (apix_enable == 0)
250 		return (PSM_SUCCESS);
251 
252 	/*
253 	 * Set IOAPIC EOI handling method. The priority from low to high is:
254 	 * 	1. IOxAPIC: with EOI register
255 	 * 	2. IOMMU interrupt mapping
256 	 *	3. Mask-Before-EOI method for systems without boot
257 	 *	interrupt routing, such as systems with only one IOAPIC;
258 	 *	NVIDIA CK8-04/MCP55 systems; systems with bridge solution
259 	 *	which disables the boot interrupt routing already.
260 	 * 	4. Directed EOI
261 	 */
262 	if (apic_io_ver[0] >= 0x20)
263 		apix_mul_ioapic_method = APIC_MUL_IOAPIC_IOXAPIC;
264 	if ((apic_io_max == 1) || (apic_nvidia_io_max == apic_io_max))
265 		apix_mul_ioapic_method = APIC_MUL_IOAPIC_MASK;
266 	if (apic_directed_EOI_supported())
267 		apix_mul_ioapic_method = APIC_MUL_IOAPIC_DEOI;
268 
269 	/* fall back to pcplusmp */
270 	if (apix_mul_ioapic_method == APIC_MUL_IOAPIC_PCPLUSMP) {
271 		/* make sure apix is after pcplusmp in /etc/mach */
272 		apix_enable = 0; /* go ahead with pcplusmp install next */
273 		return (PSM_FAILURE);
274 	}
275 
276 	return (PSM_SUCCESS);
277 }
278 
279 /*
280  * handler for APIC Error interrupt. Just print a warning and continue
281  */
282 int
283 apic_error_intr()
284 {
285 	uint_t	error0, error1, error;
286 	uint_t	i;
287 
288 	/*
289 	 * We need to write before read as per 7.4.17 of system prog manual.
290 	 * We do both and or the results to be safe
291 	 */
292 	error0 = apic_reg_ops->apic_read(APIC_ERROR_STATUS);
293 	apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0);
294 	error1 = apic_reg_ops->apic_read(APIC_ERROR_STATUS);
295 	error = error0 | error1;
296 
297 	/*
298 	 * Clear the APIC error status (do this on all cpus that enter here)
299 	 * (two writes are required due to the semantics of accessing the
300 	 * error status register.)
301 	 */
302 	apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0);
303 	apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0);
304 
305 	/*
306 	 * Prevent more than 1 CPU from handling error interrupt causing
307 	 * double printing (interleave of characters from multiple
308 	 * CPU's when using prom_printf)
309 	 */
310 	if (lock_try(&apic_error_lock) == 0)
311 		return (error ? DDI_INTR_CLAIMED : DDI_INTR_UNCLAIMED);
312 	if (error) {
313 #if	DEBUG
314 		if (apic_debug)
315 			debug_enter("pcplusmp: APIC Error interrupt received");
316 #endif /* DEBUG */
317 		if (apic_panic_on_apic_error)
318 			cmn_err(CE_PANIC,
319 			    "APIC Error interrupt on CPU %d. Status = %x",
320 			    psm_get_cpu_id(), error);
321 		else {
322 			if ((error & ~APIC_CS_ERRORS) == 0) {
323 				/* cksum error only */
324 				apic_error |= APIC_ERR_APIC_ERROR;
325 				apic_apic_error |= error;
326 				apic_num_apic_errors++;
327 				apic_num_cksum_errors++;
328 			} else {
329 				/*
330 				 * prom_printf is the best shot we have of
331 				 * something which is problem free from
332 				 * high level/NMI type of interrupts
333 				 */
334 				prom_printf("APIC Error interrupt on CPU %d. "
335 				    "Status 0 = %x, Status 1 = %x\n",
336 				    psm_get_cpu_id(), error0, error1);
337 				apic_error |= APIC_ERR_APIC_ERROR;
338 				apic_apic_error |= error;
339 				apic_num_apic_errors++;
340 				for (i = 0; i < apic_error_display_delay; i++) {
341 					tenmicrosec();
342 				}
343 				/*
344 				 * provide more delay next time limited to
345 				 * roughly 1 clock tick time
346 				 */
347 				if (apic_error_display_delay < 500)
348 					apic_error_display_delay *= 2;
349 			}
350 		}
351 		lock_clear(&apic_error_lock);
352 		return (DDI_INTR_CLAIMED);
353 	} else {
354 		lock_clear(&apic_error_lock);
355 		return (DDI_INTR_UNCLAIMED);
356 	}
357 }
358 
359 /*
360  * Turn off the mask bit in the performance counter Local Vector Table entry.
361  */
362 void
363 apic_cpcovf_mask_clear(void)
364 {
365 	apic_reg_ops->apic_write(APIC_PCINT_VECT,
366 	    (apic_reg_ops->apic_read(APIC_PCINT_VECT) & ~APIC_LVT_MASK));
367 }
368 
369 /*ARGSUSED*/
370 static int
371 apic_cmci_enable(xc_arg_t arg1, xc_arg_t arg2, xc_arg_t arg3)
372 {
373 	apic_reg_ops->apic_write(APIC_CMCI_VECT, apic_cmci_vect);
374 	return (0);
375 }
376 
377 /*ARGSUSED*/
378 static int
379 apic_cmci_disable(xc_arg_t arg1, xc_arg_t arg2, xc_arg_t arg3)
380 {
381 	apic_reg_ops->apic_write(APIC_CMCI_VECT, apic_cmci_vect | AV_MASK);
382 	return (0);
383 }
384 
385 /*ARGSUSED*/
386 int
387 cmci_cpu_setup(cpu_setup_t what, int cpuid, void *arg)
388 {
389 	cpuset_t	cpu_set;
390 
391 	CPUSET_ONLY(cpu_set, cpuid);
392 
393 	switch (what) {
394 		case CPU_ON:
395 			xc_call(NULL, NULL, NULL, CPUSET2BV(cpu_set),
396 			    (xc_func_t)apic_cmci_enable);
397 			break;
398 
399 		case CPU_OFF:
400 			xc_call(NULL, NULL, NULL, CPUSET2BV(cpu_set),
401 			    (xc_func_t)apic_cmci_disable);
402 			break;
403 
404 		default:
405 			break;
406 	}
407 
408 	return (0);
409 }
410 
411 static void
412 apic_disable_local_apic(void)
413 {
414 	apic_reg_ops->apic_write_task_reg(APIC_MASK_ALL);
415 	apic_reg_ops->apic_write(APIC_LOCAL_TIMER, AV_MASK);
416 
417 	/* local intr reg 0 */
418 	apic_reg_ops->apic_write(APIC_INT_VECT0, AV_MASK);
419 
420 	/* disable NMI */
421 	apic_reg_ops->apic_write(APIC_INT_VECT1, AV_MASK);
422 
423 	/* and error interrupt */
424 	apic_reg_ops->apic_write(APIC_ERR_VECT, AV_MASK);
425 
426 	/* and perf counter intr */
427 	apic_reg_ops->apic_write(APIC_PCINT_VECT, AV_MASK);
428 
429 	apic_reg_ops->apic_write(APIC_SPUR_INT_REG, APIC_SPUR_INTR);
430 }
431 
432 static void
433 apic_cpu_send_SIPI(processorid_t cpun, boolean_t start)
434 {
435 	int		loop_count;
436 	uint32_t	vector;
437 	uint_t		apicid;
438 	ulong_t		iflag;
439 
440 	apicid =  apic_cpus[cpun].aci_local_id;
441 
442 	/*
443 	 * Interrupts on current CPU will be disabled during the
444 	 * steps in order to avoid unwanted side effects from
445 	 * executing interrupt handlers on a problematic BIOS.
446 	 */
447 	iflag = intr_clear();
448 
449 	if (start) {
450 		outb(CMOS_ADDR, SSB);
451 		outb(CMOS_DATA, BIOS_SHUTDOWN);
452 	}
453 
454 	/*
455 	 * According to X2APIC specification in section '2.3.5.1' of
456 	 * Interrupt Command Register Semantics, the semantics of
457 	 * programming the Interrupt Command Register to dispatch an interrupt
458 	 * is simplified. A single MSR write to the 64-bit ICR is required
459 	 * for dispatching an interrupt. Specifically, with the 64-bit MSR
460 	 * interface to ICR, system software is not required to check the
461 	 * status of the delivery status bit prior to writing to the ICR
462 	 * to send an IPI. With the removal of the Delivery Status bit,
463 	 * system software no longer has a reason to read the ICR. It remains
464 	 * readable only to aid in debugging.
465 	 */
466 #ifdef	DEBUG
467 	APIC_AV_PENDING_SET();
468 #else
469 	if (apic_mode == LOCAL_APIC) {
470 		APIC_AV_PENDING_SET();
471 	}
472 #endif /* DEBUG */
473 
474 	/* for integrated - make sure there is one INIT IPI in buffer */
475 	/* for external - it will wake up the cpu */
476 	apic_reg_ops->apic_write_int_cmd(apicid, AV_ASSERT | AV_RESET);
477 
478 	/* If only 1 CPU is installed, PENDING bit will not go low */
479 	for (loop_count = apic_sipi_max_loop_count; loop_count; loop_count--) {
480 		if (apic_mode == LOCAL_APIC &&
481 		    apic_reg_ops->apic_read(APIC_INT_CMD1) & AV_PENDING)
482 			apic_ret();
483 		else
484 			break;
485 	}
486 
487 	apic_reg_ops->apic_write_int_cmd(apicid, AV_DEASSERT | AV_RESET);
488 	drv_usecwait(20000);		/* 20 milli sec */
489 
490 	if (apic_cpus[cpun].aci_local_ver >= APIC_INTEGRATED_VERS) {
491 		/* integrated apic */
492 
493 		vector = (rm_platter_pa >> MMU_PAGESHIFT) &
494 		    (APIC_VECTOR_MASK | APIC_IPL_MASK);
495 
496 		/* to offset the INIT IPI queue up in the buffer */
497 		apic_reg_ops->apic_write_int_cmd(apicid, vector | AV_STARTUP);
498 		drv_usecwait(200);		/* 20 micro sec */
499 
500 		/*
501 		 * send the second SIPI (Startup IPI) as recommended by Intel
502 		 * software development manual.
503 		 */
504 		apic_reg_ops->apic_write_int_cmd(apicid, vector | AV_STARTUP);
505 		drv_usecwait(200);	/* 20 micro sec */
506 	}
507 
508 	intr_restore(iflag);
509 }
510 
511 /*ARGSUSED1*/
512 int
513 apic_cpu_start(processorid_t cpun, caddr_t arg)
514 {
515 	ASSERT(MUTEX_HELD(&cpu_lock));
516 
517 	if (!apic_cpu_in_range(cpun)) {
518 		return (EINVAL);
519 	}
520 
521 	/*
522 	 * Switch to apic_common_send_ipi for safety during starting other CPUs.
523 	 */
524 	if (apic_mode == LOCAL_X2APIC) {
525 		apic_switch_ipi_callback(B_TRUE);
526 	}
527 
528 	apic_cmos_ssb_set = 1;
529 	apic_cpu_send_SIPI(cpun, B_TRUE);
530 
531 	return (0);
532 }
533 
534 /*
535  * Put CPU into halted state with interrupts disabled.
536  */
537 /*ARGSUSED1*/
538 int
539 apic_cpu_stop(processorid_t cpun, caddr_t arg)
540 {
541 	int		rc;
542 	cpu_t 		*cp;
543 	extern cpuset_t cpu_ready_set;
544 	extern void cpu_idle_intercept_cpu(cpu_t *cp);
545 
546 	ASSERT(MUTEX_HELD(&cpu_lock));
547 
548 	if (!apic_cpu_in_range(cpun)) {
549 		return (EINVAL);
550 	}
551 	if (apic_cpus[cpun].aci_local_ver < APIC_INTEGRATED_VERS) {
552 		return (ENOTSUP);
553 	}
554 
555 	cp = cpu_get(cpun);
556 	ASSERT(cp != NULL);
557 	ASSERT((cp->cpu_flags & CPU_OFFLINE) != 0);
558 	ASSERT((cp->cpu_flags & CPU_QUIESCED) != 0);
559 	ASSERT((cp->cpu_flags & CPU_ENABLE) == 0);
560 
561 	/* Clear CPU_READY flag to disable cross calls. */
562 	cp->cpu_flags &= ~CPU_READY;
563 	CPUSET_ATOMIC_DEL(cpu_ready_set, cpun);
564 	rc = xc_flush_cpu(cp);
565 	if (rc != 0) {
566 		CPUSET_ATOMIC_ADD(cpu_ready_set, cpun);
567 		cp->cpu_flags |= CPU_READY;
568 		return (rc);
569 	}
570 
571 	/* Intercept target CPU at a safe point before powering it off. */
572 	cpu_idle_intercept_cpu(cp);
573 
574 	apic_cpu_send_SIPI(cpun, B_FALSE);
575 	cp->cpu_flags &= ~CPU_RUNNING;
576 
577 	return (0);
578 }
579 
580 int
581 apic_cpu_ops(psm_cpu_request_t *reqp)
582 {
583 	if (reqp == NULL) {
584 		return (EINVAL);
585 	}
586 
587 	switch (reqp->pcr_cmd) {
588 	case PSM_CPU_ADD:
589 		return (apic_cpu_add(reqp));
590 
591 	case PSM_CPU_REMOVE:
592 		return (apic_cpu_remove(reqp));
593 
594 	case PSM_CPU_STOP:
595 		return (apic_cpu_stop(reqp->req.cpu_stop.cpuid,
596 		    reqp->req.cpu_stop.ctx));
597 
598 	default:
599 		return (ENOTSUP);
600 	}
601 }
602 
603 #ifdef	DEBUG
604 int	apic_break_on_cpu = 9;
605 int	apic_stretch_interrupts = 0;
606 int	apic_stretch_ISR = 1 << 3;	/* IPL of 3 matches nothing now */
607 #endif /* DEBUG */
608 
609 /*
610  * generates an interprocessor interrupt to another CPU. Any changes made to
611  * this routine must be accompanied by similar changes to
612  * apic_common_send_ipi().
613  */
614 void
615 apic_send_ipi(int cpun, int ipl)
616 {
617 	int vector;
618 	ulong_t flag;
619 
620 	vector = apic_resv_vector[ipl];
621 
622 	ASSERT((vector >= APIC_BASE_VECT) && (vector <= APIC_SPUR_INTR));
623 
624 	flag = intr_clear();
625 
626 	APIC_AV_PENDING_SET();
627 
628 	apic_reg_ops->apic_write_int_cmd(apic_cpus[cpun].aci_local_id,
629 	    vector);
630 
631 	intr_restore(flag);
632 }
633 
634 
635 /*ARGSUSED*/
636 void
637 apic_set_idlecpu(processorid_t cpun)
638 {
639 }
640 
641 /*ARGSUSED*/
642 void
643 apic_unset_idlecpu(processorid_t cpun)
644 {
645 }
646 
647 
648 void
649 apic_ret()
650 {
651 }
652 
653 /*
654  * If apic_coarse_time == 1, then apic_gettime() is used instead of
655  * apic_gethrtime().  This is used for performance instead of accuracy.
656  */
657 
658 hrtime_t
659 apic_gettime()
660 {
661 	int old_hrtime_stamp;
662 	hrtime_t temp;
663 
664 	/*
665 	 * In one-shot mode, we do not keep time, so if anyone
666 	 * calls psm_gettime() directly, we vector over to
667 	 * gethrtime().
668 	 * one-shot mode MUST NOT be enabled if this psm is the source of
669 	 * hrtime.
670 	 */
671 
672 	if (apic_oneshot)
673 		return (gethrtime());
674 
675 
676 gettime_again:
677 	while ((old_hrtime_stamp = apic_hrtime_stamp) & 1)
678 		apic_ret();
679 
680 	temp = apic_nsec_since_boot;
681 
682 	if (apic_hrtime_stamp != old_hrtime_stamp) {	/* got an interrupt */
683 		goto gettime_again;
684 	}
685 	return (temp);
686 }
687 
688 /*
689  * Here we return the number of nanoseconds since booting.  Note every
690  * clock interrupt increments apic_nsec_since_boot by the appropriate
691  * amount.
692  */
693 hrtime_t
694 apic_gethrtime(void)
695 {
696 	int curr_timeval, countval, elapsed_ticks;
697 	int old_hrtime_stamp, status;
698 	hrtime_t temp;
699 	uint32_t cpun;
700 	ulong_t oflags;
701 
702 	/*
703 	 * In one-shot mode, we do not keep time, so if anyone
704 	 * calls psm_gethrtime() directly, we vector over to
705 	 * gethrtime().
706 	 * one-shot mode MUST NOT be enabled if this psm is the source of
707 	 * hrtime.
708 	 */
709 
710 	if (apic_oneshot)
711 		return (gethrtime());
712 
713 	oflags = intr_clear();	/* prevent migration */
714 
715 	cpun = apic_reg_ops->apic_read(APIC_LID_REG);
716 	if (apic_mode == LOCAL_APIC)
717 		cpun >>= APIC_ID_BIT_OFFSET;
718 
719 	lock_set(&apic_gethrtime_lock);
720 
721 gethrtime_again:
722 	while ((old_hrtime_stamp = apic_hrtime_stamp) & 1)
723 		apic_ret();
724 
725 	/*
726 	 * Check to see which CPU we are on.  Note the time is kept on
727 	 * the local APIC of CPU 0.  If on CPU 0, simply read the current
728 	 * counter.  If on another CPU, issue a remote read command to CPU 0.
729 	 */
730 	if (cpun == apic_cpus[0].aci_local_id) {
731 		countval = apic_reg_ops->apic_read(APIC_CURR_COUNT);
732 	} else {
733 #ifdef	DEBUG
734 		APIC_AV_PENDING_SET();
735 #else
736 		if (apic_mode == LOCAL_APIC)
737 			APIC_AV_PENDING_SET();
738 #endif /* DEBUG */
739 
740 		apic_reg_ops->apic_write_int_cmd(
741 		    apic_cpus[0].aci_local_id, APIC_CURR_ADD | AV_REMOTE);
742 
743 		while ((status = apic_reg_ops->apic_read(APIC_INT_CMD1))
744 		    & AV_READ_PENDING) {
745 			apic_ret();
746 		}
747 
748 		if (status & AV_REMOTE_STATUS)	/* 1 = valid */
749 			countval = apic_reg_ops->apic_read(APIC_REMOTE_READ);
750 		else {	/* 0 = invalid */
751 			apic_remote_hrterr++;
752 			/*
753 			 * return last hrtime right now, will need more
754 			 * testing if change to retry
755 			 */
756 			temp = apic_last_hrtime;
757 
758 			lock_clear(&apic_gethrtime_lock);
759 
760 			intr_restore(oflags);
761 
762 			return (temp);
763 		}
764 	}
765 	if (countval > last_count_read)
766 		countval = 0;
767 	else
768 		last_count_read = countval;
769 
770 	elapsed_ticks = apic_hertz_count - countval;
771 
772 	curr_timeval = APIC_TICKS_TO_NSECS(elapsed_ticks);
773 	temp = apic_nsec_since_boot + curr_timeval;
774 
775 	if (apic_hrtime_stamp != old_hrtime_stamp) {	/* got an interrupt */
776 		/* we might have clobbered last_count_read. Restore it */
777 		last_count_read = apic_hertz_count;
778 		goto gethrtime_again;
779 	}
780 
781 	if (temp < apic_last_hrtime) {
782 		/* return last hrtime if error occurs */
783 		apic_hrtime_error++;
784 		temp = apic_last_hrtime;
785 	}
786 	else
787 		apic_last_hrtime = temp;
788 
789 	lock_clear(&apic_gethrtime_lock);
790 	intr_restore(oflags);
791 
792 	return (temp);
793 }
794 
795 /* apic NMI handler */
796 /*ARGSUSED*/
797 void
798 apic_nmi_intr(caddr_t arg, struct regs *rp)
799 {
800 	if (apic_shutdown_processors) {
801 		apic_disable_local_apic();
802 		return;
803 	}
804 
805 	apic_error |= APIC_ERR_NMI;
806 
807 	if (!lock_try(&apic_nmi_lock))
808 		return;
809 	apic_num_nmis++;
810 
811 	if (apic_kmdb_on_nmi && psm_debugger()) {
812 		debug_enter("NMI received: entering kmdb\n");
813 	} else if (apic_panic_on_nmi) {
814 		/* Keep panic from entering kmdb. */
815 		nopanicdebug = 1;
816 		panic("NMI received\n");
817 	} else {
818 		/*
819 		 * prom_printf is the best shot we have of something which is
820 		 * problem free from high level/NMI type of interrupts
821 		 */
822 		prom_printf("NMI received\n");
823 	}
824 
825 	lock_clear(&apic_nmi_lock);
826 }
827 
828 processorid_t
829 apic_get_next_processorid(processorid_t cpu_id)
830 {
831 
832 	int i;
833 
834 	if (cpu_id == -1)
835 		return ((processorid_t)0);
836 
837 	for (i = cpu_id + 1; i < NCPU; i++) {
838 		if (apic_cpu_in_range(i))
839 			return (i);
840 	}
841 
842 	return ((processorid_t)-1);
843 }
844 
845 int
846 apic_cpu_add(psm_cpu_request_t *reqp)
847 {
848 	int i, rv = 0;
849 	ulong_t iflag;
850 	boolean_t first = B_TRUE;
851 	uchar_t localver;
852 	uint32_t localid, procid;
853 	processorid_t cpuid = (processorid_t)-1;
854 	mach_cpu_add_arg_t *ap;
855 
856 	ASSERT(reqp != NULL);
857 	reqp->req.cpu_add.cpuid = (processorid_t)-1;
858 
859 	/* Check whether CPU hotplug is supported. */
860 	if (!plat_dr_support_cpu() || apic_max_nproc == -1) {
861 		return (ENOTSUP);
862 	}
863 
864 	ap = (mach_cpu_add_arg_t *)reqp->req.cpu_add.argp;
865 	switch (ap->type) {
866 	case MACH_CPU_ARG_LOCAL_APIC:
867 		localid = ap->arg.apic.apic_id;
868 		procid = ap->arg.apic.proc_id;
869 		if (localid >= 255 || procid > 255) {
870 			cmn_err(CE_WARN,
871 			    "!apic: apicid(%u) or procid(%u) is invalid.",
872 			    localid, procid);
873 			return (EINVAL);
874 		}
875 		break;
876 
877 	case MACH_CPU_ARG_LOCAL_X2APIC:
878 		localid = ap->arg.apic.apic_id;
879 		procid = ap->arg.apic.proc_id;
880 		if (localid >= UINT32_MAX) {
881 			cmn_err(CE_WARN,
882 			    "!apic: x2apicid(%u) is invalid.", localid);
883 			return (EINVAL);
884 		} else if (localid >= 255 && apic_mode == LOCAL_APIC) {
885 			cmn_err(CE_WARN, "!apic: system is in APIC mode, "
886 			    "can't support x2APIC processor.");
887 			return (ENOTSUP);
888 		}
889 		break;
890 
891 	default:
892 		cmn_err(CE_WARN,
893 		    "!apic: unknown argument type %d to apic_cpu_add().",
894 		    ap->type);
895 		return (EINVAL);
896 	}
897 
898 	/* Use apic_ioapic_lock to sync with apic_get_next_bind_cpu. */
899 	iflag = intr_clear();
900 	lock_set(&apic_ioapic_lock);
901 
902 	/* Check whether local APIC id already exists. */
903 	for (i = 0; i < apic_nproc; i++) {
904 		if (!CPU_IN_SET(apic_cpumask, i))
905 			continue;
906 		if (apic_cpus[i].aci_local_id == localid) {
907 			lock_clear(&apic_ioapic_lock);
908 			intr_restore(iflag);
909 			cmn_err(CE_WARN,
910 			    "!apic: local apic id %u already exists.",
911 			    localid);
912 			return (EEXIST);
913 		} else if (apic_cpus[i].aci_processor_id == procid) {
914 			lock_clear(&apic_ioapic_lock);
915 			intr_restore(iflag);
916 			cmn_err(CE_WARN,
917 			    "!apic: processor id %u already exists.",
918 			    (int)procid);
919 			return (EEXIST);
920 		}
921 
922 		/*
923 		 * There's no local APIC version number available in MADT table,
924 		 * so assume that all CPUs are homogeneous and use local APIC
925 		 * version number of the first existing CPU.
926 		 */
927 		if (first) {
928 			first = B_FALSE;
929 			localver = apic_cpus[i].aci_local_ver;
930 		}
931 	}
932 	ASSERT(first == B_FALSE);
933 
934 	/*
935 	 * Try to assign the same cpuid if APIC id exists in the dirty cache.
936 	 */
937 	for (i = 0; i < apic_max_nproc; i++) {
938 		if (CPU_IN_SET(apic_cpumask, i)) {
939 			ASSERT((apic_cpus[i].aci_status & APIC_CPU_FREE) == 0);
940 			continue;
941 		}
942 		ASSERT(apic_cpus[i].aci_status & APIC_CPU_FREE);
943 		if ((apic_cpus[i].aci_status & APIC_CPU_DIRTY) &&
944 		    apic_cpus[i].aci_local_id == localid &&
945 		    apic_cpus[i].aci_processor_id == procid) {
946 			cpuid = i;
947 			break;
948 		}
949 	}
950 
951 	/* Avoid the dirty cache and allocate fresh slot if possible. */
952 	if (cpuid == (processorid_t)-1) {
953 		for (i = 0; i < apic_max_nproc; i++) {
954 			if ((apic_cpus[i].aci_status & APIC_CPU_FREE) &&
955 			    (apic_cpus[i].aci_status & APIC_CPU_DIRTY) == 0) {
956 				cpuid = i;
957 				break;
958 			}
959 		}
960 	}
961 
962 	/* Try to find any free slot as last resort. */
963 	if (cpuid == (processorid_t)-1) {
964 		for (i = 0; i < apic_max_nproc; i++) {
965 			if (apic_cpus[i].aci_status & APIC_CPU_FREE) {
966 				cpuid = i;
967 				break;
968 			}
969 		}
970 	}
971 
972 	if (cpuid == (processorid_t)-1) {
973 		lock_clear(&apic_ioapic_lock);
974 		intr_restore(iflag);
975 		cmn_err(CE_NOTE,
976 		    "!apic: failed to allocate cpu id for processor %u.",
977 		    procid);
978 		rv = EAGAIN;
979 	} else if (ACPI_FAILURE(acpica_map_cpu(cpuid, procid))) {
980 		lock_clear(&apic_ioapic_lock);
981 		intr_restore(iflag);
982 		cmn_err(CE_NOTE,
983 		    "!apic: failed to build mapping for processor %u.",
984 		    procid);
985 		rv = EBUSY;
986 	} else {
987 		ASSERT(cpuid >= 0 && cpuid < NCPU);
988 		ASSERT(cpuid < apic_max_nproc && cpuid < max_ncpus);
989 		bzero(&apic_cpus[cpuid], sizeof (apic_cpus[0]));
990 		apic_cpus[cpuid].aci_processor_id = procid;
991 		apic_cpus[cpuid].aci_local_id = localid;
992 		apic_cpus[cpuid].aci_local_ver = localver;
993 		CPUSET_ATOMIC_ADD(apic_cpumask, cpuid);
994 		if (cpuid >= apic_nproc) {
995 			apic_nproc = cpuid + 1;
996 		}
997 		lock_clear(&apic_ioapic_lock);
998 		intr_restore(iflag);
999 		reqp->req.cpu_add.cpuid = cpuid;
1000 	}
1001 
1002 	return (rv);
1003 }
1004 
1005 int
1006 apic_cpu_remove(psm_cpu_request_t *reqp)
1007 {
1008 	int i;
1009 	ulong_t iflag;
1010 	processorid_t cpuid;
1011 
1012 	/* Check whether CPU hotplug is supported. */
1013 	if (!plat_dr_support_cpu() || apic_max_nproc == -1) {
1014 		return (ENOTSUP);
1015 	}
1016 
1017 	cpuid = reqp->req.cpu_remove.cpuid;
1018 
1019 	/* Use apic_ioapic_lock to sync with apic_get_next_bind_cpu. */
1020 	iflag = intr_clear();
1021 	lock_set(&apic_ioapic_lock);
1022 
1023 	if (!apic_cpu_in_range(cpuid)) {
1024 		lock_clear(&apic_ioapic_lock);
1025 		intr_restore(iflag);
1026 		cmn_err(CE_WARN,
1027 		    "!apic: cpuid %d doesn't exist in apic_cpus array.",
1028 		    cpuid);
1029 		return (ENODEV);
1030 	}
1031 	ASSERT((apic_cpus[cpuid].aci_status & APIC_CPU_FREE) == 0);
1032 
1033 	if (ACPI_FAILURE(acpica_unmap_cpu(cpuid))) {
1034 		lock_clear(&apic_ioapic_lock);
1035 		intr_restore(iflag);
1036 		return (ENOENT);
1037 	}
1038 
1039 	if (cpuid == apic_nproc - 1) {
1040 		/*
1041 		 * We are removing the highest numbered cpuid so we need to
1042 		 * find the next highest cpuid as the new value for apic_nproc.
1043 		 */
1044 		for (i = apic_nproc; i > 0; i--) {
1045 			if (CPU_IN_SET(apic_cpumask, i - 1)) {
1046 				apic_nproc = i;
1047 				break;
1048 			}
1049 		}
1050 		/* at least one CPU left */
1051 		ASSERT(i > 0);
1052 	}
1053 	CPUSET_ATOMIC_DEL(apic_cpumask, cpuid);
1054 	/* mark slot as free and keep it in the dirty cache */
1055 	apic_cpus[cpuid].aci_status = APIC_CPU_FREE | APIC_CPU_DIRTY;
1056 
1057 	lock_clear(&apic_ioapic_lock);
1058 	intr_restore(iflag);
1059 
1060 	return (0);
1061 }
1062 
1063 /*
1064  * Return the number of APIC clock ticks elapsed for 8245 to decrement
1065  * (APIC_TIME_COUNT + pit_ticks_adj) ticks.
1066  */
1067 uint_t
1068 apic_calibrate(volatile uint32_t *addr, uint16_t *pit_ticks_adj)
1069 {
1070 	uint8_t		pit_tick_lo;
1071 	uint16_t	pit_tick, target_pit_tick;
1072 	uint32_t	start_apic_tick, end_apic_tick;
1073 	ulong_t		iflag;
1074 	uint32_t	reg;
1075 
1076 	reg = addr + APIC_CURR_COUNT - apicadr;
1077 
1078 	iflag = intr_clear();
1079 
1080 	do {
1081 		pit_tick_lo = inb(PITCTR0_PORT);
1082 		pit_tick = (inb(PITCTR0_PORT) << 8) | pit_tick_lo;
1083 	} while (pit_tick < APIC_TIME_MIN ||
1084 	    pit_tick_lo <= APIC_LB_MIN || pit_tick_lo >= APIC_LB_MAX);
1085 
1086 	/*
1087 	 * Wait for the 8254 to decrement by 5 ticks to ensure
1088 	 * we didn't start in the middle of a tick.
1089 	 * Compare with 0x10 for the wrap around case.
1090 	 */
1091 	target_pit_tick = pit_tick - 5;
1092 	do {
1093 		pit_tick_lo = inb(PITCTR0_PORT);
1094 		pit_tick = (inb(PITCTR0_PORT) << 8) | pit_tick_lo;
1095 	} while (pit_tick > target_pit_tick || pit_tick_lo < 0x10);
1096 
1097 	start_apic_tick = apic_reg_ops->apic_read(reg);
1098 
1099 	/*
1100 	 * Wait for the 8254 to decrement by
1101 	 * (APIC_TIME_COUNT + pit_ticks_adj) ticks
1102 	 */
1103 	target_pit_tick = pit_tick - APIC_TIME_COUNT;
1104 	do {
1105 		pit_tick_lo = inb(PITCTR0_PORT);
1106 		pit_tick = (inb(PITCTR0_PORT) << 8) | pit_tick_lo;
1107 	} while (pit_tick > target_pit_tick || pit_tick_lo < 0x10);
1108 
1109 	end_apic_tick = apic_reg_ops->apic_read(reg);
1110 
1111 	*pit_ticks_adj = target_pit_tick - pit_tick;
1112 
1113 	intr_restore(iflag);
1114 
1115 	return (start_apic_tick - end_apic_tick);
1116 }
1117 
1118 /*
1119  * Initialise the APIC timer on the local APIC of CPU 0 to the desired
1120  * frequency.  Note at this stage in the boot sequence, the boot processor
1121  * is the only active processor.
1122  * hertz value of 0 indicates a one-shot mode request.  In this case
1123  * the function returns the resolution (in nanoseconds) for the hardware
1124  * timer interrupt.  If one-shot mode capability is not available,
1125  * the return value will be 0. apic_enable_oneshot is a global switch
1126  * for disabling the functionality.
1127  * A non-zero positive value for hertz indicates a periodic mode request.
1128  * In this case the hardware will be programmed to generate clock interrupts
1129  * at hertz frequency and returns the resolution of interrupts in
1130  * nanosecond.
1131  */
1132 
1133 int
1134 apic_clkinit(int hertz)
1135 {
1136 	int		ret;
1137 
1138 	apic_int_busy_mark = (apic_int_busy_mark *
1139 	    apic_sample_factor_redistribution) / 100;
1140 	apic_int_free_mark = (apic_int_free_mark *
1141 	    apic_sample_factor_redistribution) / 100;
1142 	apic_diff_for_redistribution = (apic_diff_for_redistribution *
1143 	    apic_sample_factor_redistribution) / 100;
1144 
1145 	ret = apic_timer_init(hertz);
1146 	return (ret);
1147 
1148 }
1149 
1150 /*
1151  * apic_preshutdown:
1152  * Called early in shutdown whilst we can still access filesystems to do
1153  * things like loading modules which will be required to complete shutdown
1154  * after filesystems are all unmounted.
1155  */
1156 void
1157 apic_preshutdown(int cmd, int fcn)
1158 {
1159 	APIC_VERBOSE_POWEROFF(("apic_preshutdown(%d,%d); m=%d a=%d\n",
1160 	    cmd, fcn, apic_poweroff_method, apic_enable_acpi));
1161 }
1162 
1163 void
1164 apic_shutdown(int cmd, int fcn)
1165 {
1166 	int restarts, attempts;
1167 	int i;
1168 	uchar_t	byte;
1169 	ulong_t iflag;
1170 
1171 	hpet_acpi_fini();
1172 
1173 	/* Send NMI to all CPUs except self to do per processor shutdown */
1174 	iflag = intr_clear();
1175 #ifdef	DEBUG
1176 	APIC_AV_PENDING_SET();
1177 #else
1178 	if (apic_mode == LOCAL_APIC)
1179 		APIC_AV_PENDING_SET();
1180 #endif /* DEBUG */
1181 	apic_shutdown_processors = 1;
1182 	apic_reg_ops->apic_write(APIC_INT_CMD1,
1183 	    AV_NMI | AV_LEVEL | AV_SH_ALL_EXCSELF);
1184 
1185 	/* restore cmos shutdown byte before reboot */
1186 	if (apic_cmos_ssb_set) {
1187 		outb(CMOS_ADDR, SSB);
1188 		outb(CMOS_DATA, 0);
1189 	}
1190 
1191 	ioapic_disable_redirection();
1192 
1193 	/*	disable apic mode if imcr present	*/
1194 	if (apic_imcrp) {
1195 		outb(APIC_IMCR_P1, (uchar_t)APIC_IMCR_SELECT);
1196 		outb(APIC_IMCR_P2, (uchar_t)APIC_IMCR_PIC);
1197 	}
1198 
1199 	apic_disable_local_apic();
1200 
1201 	intr_restore(iflag);
1202 
1203 	/* remainder of function is for shutdown cases only */
1204 	if (cmd != A_SHUTDOWN)
1205 		return;
1206 
1207 	/*
1208 	 * Switch system back into Legacy-Mode if using ACPI and
1209 	 * not powering-off.  Some BIOSes need to remain in ACPI-mode
1210 	 * for power-off to succeed (Dell Dimension 4600)
1211 	 * Do not disable ACPI while doing fastreboot
1212 	 */
1213 	if (apic_enable_acpi && fcn != AD_POWEROFF && fcn != AD_FASTREBOOT)
1214 		(void) AcpiDisable();
1215 
1216 	if (fcn == AD_FASTREBOOT) {
1217 		apic_reg_ops->apic_write(APIC_INT_CMD1,
1218 		    AV_ASSERT | AV_RESET | AV_SH_ALL_EXCSELF);
1219 	}
1220 
1221 	/* remainder of function is for shutdown+poweroff case only */
1222 	if (fcn != AD_POWEROFF)
1223 		return;
1224 
1225 	switch (apic_poweroff_method) {
1226 		case APIC_POWEROFF_VIA_RTC:
1227 
1228 			/* select the extended NVRAM bank in the RTC */
1229 			outb(CMOS_ADDR, RTC_REGA);
1230 			byte = inb(CMOS_DATA);
1231 			outb(CMOS_DATA, (byte | EXT_BANK));
1232 
1233 			outb(CMOS_ADDR, PFR_REG);
1234 
1235 			/* for Predator must toggle the PAB bit */
1236 			byte = inb(CMOS_DATA);
1237 
1238 			/*
1239 			 * clear power active bar, wakeup alarm and
1240 			 * kickstart
1241 			 */
1242 			byte &= ~(PAB_CBIT | WF_FLAG | KS_FLAG);
1243 			outb(CMOS_DATA, byte);
1244 
1245 			/* delay before next write */
1246 			drv_usecwait(1000);
1247 
1248 			/* for S40 the following would suffice */
1249 			byte = inb(CMOS_DATA);
1250 
1251 			/* power active bar control bit */
1252 			byte |= PAB_CBIT;
1253 			outb(CMOS_DATA, byte);
1254 
1255 			break;
1256 
1257 		case APIC_POWEROFF_VIA_ASPEN_BMC:
1258 			restarts = 0;
1259 restart_aspen_bmc:
1260 			if (++restarts == 3)
1261 				break;
1262 			attempts = 0;
1263 			do {
1264 				byte = inb(MISMIC_FLAG_REGISTER);
1265 				byte &= MISMIC_BUSY_MASK;
1266 				if (byte != 0) {
1267 					drv_usecwait(1000);
1268 					if (attempts >= 3)
1269 						goto restart_aspen_bmc;
1270 					++attempts;
1271 				}
1272 			} while (byte != 0);
1273 			outb(MISMIC_CNTL_REGISTER, CC_SMS_GET_STATUS);
1274 			byte = inb(MISMIC_FLAG_REGISTER);
1275 			byte |= 0x1;
1276 			outb(MISMIC_FLAG_REGISTER, byte);
1277 			i = 0;
1278 			for (; i < (sizeof (aspen_bmc)/sizeof (aspen_bmc[0]));
1279 			    i++) {
1280 				attempts = 0;
1281 				do {
1282 					byte = inb(MISMIC_FLAG_REGISTER);
1283 					byte &= MISMIC_BUSY_MASK;
1284 					if (byte != 0) {
1285 						drv_usecwait(1000);
1286 						if (attempts >= 3)
1287 							goto restart_aspen_bmc;
1288 						++attempts;
1289 					}
1290 				} while (byte != 0);
1291 				outb(MISMIC_CNTL_REGISTER, aspen_bmc[i].cntl);
1292 				outb(MISMIC_DATA_REGISTER, aspen_bmc[i].data);
1293 				byte = inb(MISMIC_FLAG_REGISTER);
1294 				byte |= 0x1;
1295 				outb(MISMIC_FLAG_REGISTER, byte);
1296 			}
1297 			break;
1298 
1299 		case APIC_POWEROFF_VIA_SITKA_BMC:
1300 			restarts = 0;
1301 restart_sitka_bmc:
1302 			if (++restarts == 3)
1303 				break;
1304 			attempts = 0;
1305 			do {
1306 				byte = inb(SMS_STATUS_REGISTER);
1307 				byte &= SMS_STATE_MASK;
1308 				if ((byte == SMS_READ_STATE) ||
1309 				    (byte == SMS_WRITE_STATE)) {
1310 					drv_usecwait(1000);
1311 					if (attempts >= 3)
1312 						goto restart_sitka_bmc;
1313 					++attempts;
1314 				}
1315 			} while ((byte == SMS_READ_STATE) ||
1316 			    (byte == SMS_WRITE_STATE));
1317 			outb(SMS_COMMAND_REGISTER, SMS_GET_STATUS);
1318 			i = 0;
1319 			for (; i < (sizeof (sitka_bmc)/sizeof (sitka_bmc[0]));
1320 			    i++) {
1321 				attempts = 0;
1322 				do {
1323 					byte = inb(SMS_STATUS_REGISTER);
1324 					byte &= SMS_IBF_MASK;
1325 					if (byte != 0) {
1326 						drv_usecwait(1000);
1327 						if (attempts >= 3)
1328 							goto restart_sitka_bmc;
1329 						++attempts;
1330 					}
1331 				} while (byte != 0);
1332 				outb(sitka_bmc[i].port, sitka_bmc[i].data);
1333 			}
1334 			break;
1335 
1336 		case APIC_POWEROFF_NONE:
1337 
1338 			/* If no APIC direct method, we will try using ACPI */
1339 			if (apic_enable_acpi) {
1340 				if (acpi_poweroff() == 1)
1341 					return;
1342 			} else
1343 				return;
1344 
1345 			break;
1346 	}
1347 	/*
1348 	 * Wait a limited time here for power to go off.
1349 	 * If the power does not go off, then there was a
1350 	 * problem and we should continue to the halt which
1351 	 * prints a message for the user to press a key to
1352 	 * reboot.
1353 	 */
1354 	drv_usecwait(7000000); /* wait seven seconds */
1355 
1356 }
1357 
1358 cyclic_id_t apic_cyclic_id;
1359 
1360 /*
1361  * The following functions are in the platform specific file so that they
1362  * can be different functions depending on whether we are running on
1363  * bare metal or a hypervisor.
1364  */
1365 
1366 /*
1367  * map an apic for memory-mapped access
1368  */
1369 uint32_t *
1370 mapin_apic(uint32_t addr, size_t len, int flags)
1371 {
1372 	return ((void *)psm_map_phys(addr, len, flags));
1373 }
1374 
1375 uint32_t *
1376 mapin_ioapic(uint32_t addr, size_t len, int flags)
1377 {
1378 	return (mapin_apic(addr, len, flags));
1379 }
1380 
1381 /*
1382  * unmap an apic
1383  */
1384 void
1385 mapout_apic(caddr_t addr, size_t len)
1386 {
1387 	psm_unmap_phys(addr, len);
1388 }
1389 
1390 void
1391 mapout_ioapic(caddr_t addr, size_t len)
1392 {
1393 	mapout_apic(addr, len);
1394 }
1395 
1396 uint32_t
1397 ioapic_read(int ioapic_ix, uint32_t reg)
1398 {
1399 	volatile uint32_t *ioapic;
1400 
1401 	ioapic = apicioadr[ioapic_ix];
1402 	ioapic[APIC_IO_REG] = reg;
1403 	return (ioapic[APIC_IO_DATA]);
1404 }
1405 
1406 void
1407 ioapic_write(int ioapic_ix, uint32_t reg, uint32_t value)
1408 {
1409 	volatile uint32_t *ioapic;
1410 
1411 	ioapic = apicioadr[ioapic_ix];
1412 	ioapic[APIC_IO_REG] = reg;
1413 	ioapic[APIC_IO_DATA] = value;
1414 }
1415 
1416 void
1417 ioapic_write_eoi(int ioapic_ix, uint32_t value)
1418 {
1419 	volatile uint32_t *ioapic;
1420 
1421 	ioapic = apicioadr[ioapic_ix];
1422 	ioapic[APIC_IO_EOI] = value;
1423 }
1424 
1425 /*
1426  * Round-robin algorithm to find the next CPU with interrupts enabled.
1427  * It can't share the same static variable apic_next_bind_cpu with
1428  * apic_get_next_bind_cpu(), since that will cause all interrupts to be
1429  * bound to CPU1 at boot time.  During boot, only CPU0 is online with
1430  * interrupts enabled when apic_get_next_bind_cpu() and apic_find_cpu()
1431  * are called.  However, the pcplusmp driver assumes that there will be
1432  * boot_ncpus CPUs configured eventually so it tries to distribute all
1433  * interrupts among CPU0 - CPU[boot_ncpus - 1].  Thus to prevent all
1434  * interrupts being targetted at CPU1, we need to use a dedicated static
1435  * variable for find_next_cpu() instead of sharing apic_next_bind_cpu.
1436  */
1437 
1438 processorid_t
1439 apic_find_cpu(int flag)
1440 {
1441 	int i;
1442 	static processorid_t acid = 0;
1443 
1444 	/* Find the first CPU with the passed-in flag set */
1445 	for (i = 0; i < apic_nproc; i++) {
1446 		if (++acid >= apic_nproc) {
1447 			acid = 0;
1448 		}
1449 		if (apic_cpu_in_range(acid) &&
1450 		    (apic_cpus[acid].aci_status & flag)) {
1451 			break;
1452 		}
1453 	}
1454 
1455 	ASSERT((apic_cpus[acid].aci_status & flag) != 0);
1456 	return (acid);
1457 }
1458 
1459 /*
1460  * Switch between safe and x2APIC IPI sending method.
1461  * CPU may power on in xapic mode or x2apic mode. If CPU needs to send IPI to
1462  * other CPUs before entering x2APIC mode, it still needs to xAPIC method.
1463  * Before sending StartIPI to target CPU, psm_send_ipi will be changed to
1464  * apic_common_send_ipi, which detects current local APIC mode and use right
1465  * method to send IPI. If some CPUs fail to start up, apic_poweron_cnt
1466  * won't return to zero, so apic_common_send_ipi will always be used.
1467  * psm_send_ipi can't be simply changed back to x2apic_send_ipi if some CPUs
1468  * failed to start up because those failed CPUs may recover itself later at
1469  * unpredictable time.
1470  */
1471 void
1472 apic_switch_ipi_callback(boolean_t enter)
1473 {
1474 	ulong_t iflag;
1475 	struct psm_ops *pops = psmops;
1476 
1477 	iflag = intr_clear();
1478 	lock_set(&apic_mode_switch_lock);
1479 	if (enter) {
1480 		ASSERT(apic_poweron_cnt >= 0);
1481 		if (apic_poweron_cnt == 0) {
1482 			pops->psm_send_ipi = apic_common_send_ipi;
1483 			send_dirintf = pops->psm_send_ipi;
1484 		}
1485 		apic_poweron_cnt++;
1486 	} else {
1487 		ASSERT(apic_poweron_cnt > 0);
1488 		apic_poweron_cnt--;
1489 		if (apic_poweron_cnt == 0) {
1490 			pops->psm_send_ipi = x2apic_send_ipi;
1491 			send_dirintf = pops->psm_send_ipi;
1492 		}
1493 	}
1494 	lock_clear(&apic_mode_switch_lock);
1495 	intr_restore(iflag);
1496 }
1497 
1498 void
1499 apic_intrmap_init(int apic_mode)
1500 {
1501 	int suppress_brdcst_eoi = 0;
1502 
1503 	/*
1504 	 * Intel Software Developer's Manual 3A, 10.12.7:
1505 	 *
1506 	 * Routing of device interrupts to local APIC units operating in
1507 	 * x2APIC mode requires use of the interrupt-remapping architecture
1508 	 * specified in the Intel Virtualization Technology for Directed
1509 	 * I/O, Revision 1.3.  Because of this, BIOS must enumerate support
1510 	 * for and software must enable this interrupt remapping with
1511 	 * Extended Interrupt Mode Enabled before it enabling x2APIC mode in
1512 	 * the local APIC units.
1513 	 *
1514 	 *
1515 	 * In other words, to use the APIC in x2APIC mode, we need interrupt
1516 	 * remapping.  Since we don't start up the IOMMU by default, we
1517 	 * won't be able to do any interrupt remapping and therefore have to
1518 	 * use the APIC in traditional 'local APIC' mode with memory mapped
1519 	 * I/O.
1520 	 */
1521 
1522 	if (psm_vt_ops != NULL) {
1523 		if (((apic_intrmap_ops_t *)psm_vt_ops)->
1524 		    apic_intrmap_init(apic_mode) == DDI_SUCCESS) {
1525 
1526 			apic_vt_ops = psm_vt_ops;
1527 
1528 			/*
1529 			 * We leverage the interrupt remapping engine to
1530 			 * suppress broadcast EOI; thus we must send the
1531 			 * directed EOI with the directed-EOI handler.
1532 			 */
1533 			if (apic_directed_EOI_supported() == 0) {
1534 				suppress_brdcst_eoi = 1;
1535 			}
1536 
1537 			apic_vt_ops->apic_intrmap_enable(suppress_brdcst_eoi);
1538 
1539 			if (apic_detect_x2apic()) {
1540 				apic_enable_x2apic();
1541 			}
1542 
1543 			if (apic_directed_EOI_supported() == 0) {
1544 				apic_set_directed_EOI_handler();
1545 			}
1546 		}
1547 	}
1548 }
1549 
1550 /*ARGSUSED*/
1551 static void
1552 apic_record_ioapic_rdt(void *intrmap_private, ioapic_rdt_t *irdt)
1553 {
1554 	irdt->ir_hi <<= APIC_ID_BIT_OFFSET;
1555 }
1556 
1557 /*ARGSUSED*/
1558 static void
1559 apic_record_msi(void *intrmap_private, msi_regs_t *mregs)
1560 {
1561 	mregs->mr_addr = MSI_ADDR_HDR |
1562 	    (MSI_ADDR_RH_FIXED << MSI_ADDR_RH_SHIFT) |
1563 	    (MSI_ADDR_DM_PHYSICAL << MSI_ADDR_DM_SHIFT) |
1564 	    (mregs->mr_addr << MSI_ADDR_DEST_SHIFT);
1565 	mregs->mr_data = (MSI_DATA_TM_EDGE << MSI_DATA_TM_SHIFT) |
1566 	    mregs->mr_data;
1567 }
1568 
1569 /*
1570  * Functions from apic_introp.c
1571  *
1572  * Those functions are used by apic_intr_ops().
1573  */
1574 
1575 /*
1576  * MSI support flag:
1577  * reflects whether MSI is supported at APIC level
1578  * it can also be patched through /etc/system
1579  *
1580  *  0 = default value - don't know and need to call apic_check_msi_support()
1581  *      to find out then set it accordingly
1582  *  1 = supported
1583  * -1 = not supported
1584  */
1585 int	apic_support_msi = 0;
1586 
1587 /* Multiple vector support for MSI-X */
1588 int	apic_msix_enable = 1;
1589 
1590 /* Multiple vector support for MSI */
1591 int	apic_multi_msi_enable = 1;
1592 
1593 /*
1594  * Check whether the system supports MSI.
1595  *
1596  * MSI is required for PCI-E and for PCI versions later than 2.2, so if we find
1597  * a PCI-E bus or we find a PCI bus whose version we know is >= 2.2, then we
1598  * return PSM_SUCCESS to indicate this system supports MSI.
1599  *
1600  * (Currently the only way we check whether a given PCI bus supports >= 2.2 is
1601  * by detecting if we are running inside the KVM hypervisor, which guarantees
1602  * this version number.)
1603  */
1604 int
1605 apic_check_msi_support()
1606 {
1607 	dev_info_t *cdip;
1608 	char dev_type[16];
1609 	int dev_len;
1610 
1611 	DDI_INTR_IMPLDBG((CE_CONT, "apic_check_msi_support:\n"));
1612 
1613 	/*
1614 	 * check whether the first level children of root_node have
1615 	 * PCI-E or PCI capability.
1616 	 */
1617 	for (cdip = ddi_get_child(ddi_root_node()); cdip != NULL;
1618 	    cdip = ddi_get_next_sibling(cdip)) {
1619 
1620 		DDI_INTR_IMPLDBG((CE_CONT, "apic_check_msi_support: cdip: 0x%p,"
1621 		    " driver: %s, binding: %s, nodename: %s\n", (void *)cdip,
1622 		    ddi_driver_name(cdip), ddi_binding_name(cdip),
1623 		    ddi_node_name(cdip)));
1624 		dev_len = sizeof (dev_type);
1625 		if (ddi_getlongprop_buf(DDI_DEV_T_ANY, cdip, DDI_PROP_DONTPASS,
1626 		    "device_type", (caddr_t)dev_type, &dev_len)
1627 		    != DDI_PROP_SUCCESS)
1628 			continue;
1629 		if (strcmp(dev_type, "pciex") == 0)
1630 			return (PSM_SUCCESS);
1631 		if (strcmp(dev_type, "pci") == 0 && get_hwenv() == HW_KVM)
1632 			return (PSM_SUCCESS);
1633 	}
1634 
1635 	/* MSI is not supported on this system */
1636 	DDI_INTR_IMPLDBG((CE_CONT, "apic_check_msi_support: no 'pciex' "
1637 	    "device_type found\n"));
1638 	return (PSM_FAILURE);
1639 }
1640 
1641 /*
1642  * apic_pci_msi_unconfigure:
1643  *
1644  * This and next two interfaces are copied from pci_intr_lib.c
1645  * Do ensure that these two files stay in sync.
1646  * These needed to be copied over here to avoid a deadlock situation on
1647  * certain mp systems that use MSI interrupts.
1648  *
1649  * IMPORTANT regards next three interfaces:
1650  * i) are called only for MSI/X interrupts.
1651  * ii) called with interrupts disabled, and must not block
1652  */
1653 void
1654 apic_pci_msi_unconfigure(dev_info_t *rdip, int type, int inum)
1655 {
1656 	ushort_t		msi_ctrl;
1657 	int			cap_ptr = i_ddi_get_msi_msix_cap_ptr(rdip);
1658 	ddi_acc_handle_t	handle = i_ddi_get_pci_config_handle(rdip);
1659 
1660 	ASSERT((handle != NULL) && (cap_ptr != 0));
1661 
1662 	if (type == DDI_INTR_TYPE_MSI) {
1663 		msi_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSI_CTRL);
1664 		msi_ctrl &= (~PCI_MSI_MME_MASK);
1665 		pci_config_put16(handle, cap_ptr + PCI_MSI_CTRL, msi_ctrl);
1666 		pci_config_put32(handle, cap_ptr + PCI_MSI_ADDR_OFFSET, 0);
1667 
1668 		if (msi_ctrl &  PCI_MSI_64BIT_MASK) {
1669 			pci_config_put16(handle,
1670 			    cap_ptr + PCI_MSI_64BIT_DATA, 0);
1671 			pci_config_put32(handle,
1672 			    cap_ptr + PCI_MSI_ADDR_OFFSET + 4, 0);
1673 		} else {
1674 			pci_config_put16(handle,
1675 			    cap_ptr + PCI_MSI_32BIT_DATA, 0);
1676 		}
1677 
1678 	} else if (type == DDI_INTR_TYPE_MSIX) {
1679 		uintptr_t	off;
1680 		uint32_t	mask;
1681 		ddi_intr_msix_t	*msix_p = i_ddi_get_msix(rdip);
1682 
1683 		ASSERT(msix_p != NULL);
1684 
1685 		/* Offset into "inum"th entry in the MSI-X table & mask it */
1686 		off = (uintptr_t)msix_p->msix_tbl_addr + (inum *
1687 		    PCI_MSIX_VECTOR_SIZE) + PCI_MSIX_VECTOR_CTRL_OFFSET;
1688 
1689 		mask = ddi_get32(msix_p->msix_tbl_hdl, (uint32_t *)off);
1690 
1691 		ddi_put32(msix_p->msix_tbl_hdl, (uint32_t *)off, (mask | 1));
1692 
1693 		/* Offset into the "inum"th entry in the MSI-X table */
1694 		off = (uintptr_t)msix_p->msix_tbl_addr +
1695 		    (inum * PCI_MSIX_VECTOR_SIZE);
1696 
1697 		/* Reset the "data" and "addr" bits */
1698 		ddi_put32(msix_p->msix_tbl_hdl,
1699 		    (uint32_t *)(off + PCI_MSIX_DATA_OFFSET), 0);
1700 		ddi_put64(msix_p->msix_tbl_hdl, (uint64_t *)off, 0);
1701 	}
1702 }
1703 
1704 /*
1705  * apic_pci_msi_disable_mode:
1706  */
1707 void
1708 apic_pci_msi_disable_mode(dev_info_t *rdip, int type)
1709 {
1710 	ushort_t		msi_ctrl;
1711 	int			cap_ptr = i_ddi_get_msi_msix_cap_ptr(rdip);
1712 	ddi_acc_handle_t	handle = i_ddi_get_pci_config_handle(rdip);
1713 
1714 	ASSERT((handle != NULL) && (cap_ptr != 0));
1715 
1716 	if (type == DDI_INTR_TYPE_MSI) {
1717 		msi_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSI_CTRL);
1718 		if (!(msi_ctrl & PCI_MSI_ENABLE_BIT))
1719 			return;
1720 
1721 		msi_ctrl &= ~PCI_MSI_ENABLE_BIT;	/* MSI disable */
1722 		pci_config_put16(handle, cap_ptr + PCI_MSI_CTRL, msi_ctrl);
1723 
1724 	} else if (type == DDI_INTR_TYPE_MSIX) {
1725 		msi_ctrl = pci_config_get16(handle, cap_ptr + PCI_MSIX_CTRL);
1726 		if (msi_ctrl & PCI_MSIX_ENABLE_BIT) {
1727 			msi_ctrl &= ~PCI_MSIX_ENABLE_BIT;
1728 			pci_config_put16(handle, cap_ptr + PCI_MSIX_CTRL,
1729 			    msi_ctrl);
1730 		}
1731 	}
1732 }
1733 
1734 uint32_t
1735 apic_get_localapicid(uint32_t cpuid)
1736 {
1737 	ASSERT(cpuid < apic_nproc && apic_cpus != NULL);
1738 
1739 	return (apic_cpus[cpuid].aci_local_id);
1740 }
1741 
1742 uchar_t
1743 apic_get_ioapicid(uchar_t ioapicindex)
1744 {
1745 	ASSERT(ioapicindex < MAX_IO_APIC);
1746 
1747 	return (apic_io_id[ioapicindex]);
1748 }
1749