xref: /illumos-gate/usr/src/uts/i86pc/io/pcplusmp/apic.c (revision fa79a855d371dfcb29461ad6ebaf48a458bf9f14)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1993, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 /*
26  * Copyright (c) 2010, Intel Corporation.
27  * All rights reserved.
28  * Copyright 2018 Joyent, Inc.
29  */
30 
31 /*
32  * To understand how the pcplusmp module interacts with the interrupt subsystem
33  * read the theory statement in uts/i86pc/os/intr.c.
34  */
35 
36 /*
37  * PSMI 1.1 extensions are supported only in 2.6 and later versions.
38  * PSMI 1.2 extensions are supported only in 2.7 and later versions.
39  * PSMI 1.3 and 1.4 extensions are supported in Solaris 10.
40  * PSMI 1.5 extensions are supported in Solaris Nevada.
41  * PSMI 1.6 extensions are supported in Solaris Nevada.
42  * PSMI 1.7 extensions are supported in Solaris Nevada.
43  */
44 #define	PSMI_1_7
45 
46 #include <sys/processor.h>
47 #include <sys/time.h>
48 #include <sys/psm.h>
49 #include <sys/smp_impldefs.h>
50 #include <sys/cram.h>
51 #include <sys/acpi/acpi.h>
52 #include <sys/acpica.h>
53 #include <sys/psm_common.h>
54 #include <sys/apic.h>
55 #include <sys/pit.h>
56 #include <sys/ddi.h>
57 #include <sys/sunddi.h>
58 #include <sys/ddi_impldefs.h>
59 #include <sys/pci.h>
60 #include <sys/promif.h>
61 #include <sys/x86_archext.h>
62 #include <sys/cpc_impl.h>
63 #include <sys/uadmin.h>
64 #include <sys/panic.h>
65 #include <sys/debug.h>
66 #include <sys/archsystm.h>
67 #include <sys/trap.h>
68 #include <sys/machsystm.h>
69 #include <sys/sysmacros.h>
70 #include <sys/cpuvar.h>
71 #include <sys/rm_platter.h>
72 #include <sys/privregs.h>
73 #include <sys/note.h>
74 #include <sys/pci_intr_lib.h>
75 #include <sys/spl.h>
76 #include <sys/clock.h>
77 #include <sys/cyclic.h>
78 #include <sys/dditypes.h>
79 #include <sys/sunddi.h>
80 #include <sys/x_call.h>
81 #include <sys/reboot.h>
82 #include <sys/hpet.h>
83 #include <sys/apic_common.h>
84 #include <sys/apic_timer.h>
85 
86 /*
87  *	Local Function Prototypes
88  */
89 static void apic_init_intr(void);
90 
91 /*
92  *	standard MP entries
93  */
94 static int	apic_probe(void);
95 static int	apic_getclkirq(int ipl);
96 static void	apic_init(void);
97 static void	apic_picinit(void);
98 static int	apic_post_cpu_start(void);
99 static int	apic_intr_enter(int ipl, int *vect);
100 static void	apic_setspl(int ipl);
101 static int	apic_addspl(int ipl, int vector, int min_ipl, int max_ipl);
102 static int	apic_delspl(int ipl, int vector, int min_ipl, int max_ipl);
103 static int	apic_disable_intr(processorid_t cpun);
104 static void	apic_enable_intr(processorid_t cpun);
105 static int		apic_get_ipivect(int ipl, int type);
106 static void	apic_post_cyclic_setup(void *arg);
107 
108 #define	UCHAR_MAX	UINT8_MAX
109 
110 /*
111  * The following vector assignments influence the value of ipltopri and
112  * vectortoipl. Note that vectors 0 - 0x1f are not used. We can program
113  * idle to 0 and IPL 0 to 0xf to differentiate idle in case
114  * we care to do so in future. Note some IPLs which are rarely used
115  * will share the vector ranges and heavily used IPLs (5 and 6) have
116  * a wide range.
117  *
118  * This array is used to initialize apic_ipls[] (in apic_init()).
119  *
120  *	IPL		Vector range.		as passed to intr_enter
121  *	0		none.
122  *	1,2,3		0x20-0x2f		0x0-0xf
123  *	4		0x30-0x3f		0x10-0x1f
124  *	5		0x40-0x5f		0x20-0x3f
125  *	6		0x60-0x7f		0x40-0x5f
126  *	7,8,9		0x80-0x8f		0x60-0x6f
127  *	10		0x90-0x9f		0x70-0x7f
128  *	11		0xa0-0xaf		0x80-0x8f
129  *	...		...
130  *	15		0xe0-0xef		0xc0-0xcf
131  *	15		0xf0-0xff		0xd0-0xdf
132  */
133 uchar_t apic_vectortoipl[APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL] = {
134 	3, 4, 5, 5, 6, 6, 9, 10, 11, 12, 13, 14, 15, 15
135 };
136 	/*
137 	 * The ipl of an ISR at vector X is apic_vectortoipl[X>>4]
138 	 * NOTE that this is vector as passed into intr_enter which is
139 	 * programmed vector - 0x20 (APIC_BASE_VECT)
140 	 */
141 
142 uchar_t	apic_ipltopri[MAXIPL + 1];	/* unix ipl to apic pri	*/
143 	/* The taskpri to be programmed into apic to mask given ipl */
144 
145 /*
146  * Correlation of the hardware vector to the IPL in use, initialized
147  * from apic_vectortoipl[] in apic_init().  The final IPLs may not correlate
148  * to the IPLs in apic_vectortoipl on some systems that share interrupt lines
149  * connected to errata-stricken IOAPICs
150  */
151 uchar_t apic_ipls[APIC_AVAIL_VECTOR];
152 
153 /*
154  * Patchable global variables.
155  */
156 int	apic_enable_hwsoftint = 0;	/* 0 - disable, 1 - enable	*/
157 int	apic_enable_bind_log = 1;	/* 1 - display interrupt binding log */
158 
159 /*
160  *	Local static data
161  */
162 static struct	psm_ops apic_ops = {
163 	apic_probe,
164 
165 	apic_init,
166 	apic_picinit,
167 	apic_intr_enter,
168 	apic_intr_exit,
169 	apic_setspl,
170 	apic_addspl,
171 	apic_delspl,
172 	apic_disable_intr,
173 	apic_enable_intr,
174 	(int (*)(int))NULL,		/* psm_softlvl_to_irq */
175 	(void (*)(int))NULL,		/* psm_set_softintr */
176 
177 	apic_set_idlecpu,
178 	apic_unset_idlecpu,
179 
180 	apic_clkinit,
181 	apic_getclkirq,
182 	(void (*)(void))NULL,		/* psm_hrtimeinit */
183 	apic_gethrtime,
184 
185 	apic_get_next_processorid,
186 	apic_cpu_start,
187 	apic_post_cpu_start,
188 	apic_shutdown,
189 	apic_get_ipivect,
190 	apic_send_ipi,
191 
192 	(int (*)(dev_info_t *, int))NULL,	/* psm_translate_irq */
193 	(void (*)(int, char *))NULL,	/* psm_notify_error */
194 	(void (*)(int))NULL,		/* psm_notify_func */
195 	apic_timer_reprogram,
196 	apic_timer_enable,
197 	apic_timer_disable,
198 	apic_post_cyclic_setup,
199 	apic_preshutdown,
200 	apic_intr_ops,			/* Advanced DDI Interrupt framework */
201 	apic_state,			/* save, restore apic state for S3 */
202 	apic_cpu_ops,			/* CPU control interface. */
203 
204 	apic_get_pir_ipivect,
205 	apic_send_pir_ipi,
206 };
207 
208 struct psm_ops *psmops = &apic_ops;
209 
210 static struct	psm_info apic_psm_info = {
211 	PSM_INFO_VER01_7,			/* version */
212 	PSM_OWN_EXCLUSIVE,			/* ownership */
213 	(struct psm_ops *)&apic_ops,		/* operation */
214 	APIC_PCPLUSMP_NAME,			/* machine name */
215 	"pcplusmp v1.4 compatible",
216 };
217 
218 static void *apic_hdlp;
219 
220 /* to gather intr data and redistribute */
221 static void apic_redistribute_compute(void);
222 
223 /*
224  *	This is the loadable module wrapper
225  */
226 
227 int
228 _init(void)
229 {
230 	if (apic_coarse_hrtime)
231 		apic_ops.psm_gethrtime = &apic_gettime;
232 	return (psm_mod_init(&apic_hdlp, &apic_psm_info));
233 }
234 
235 int
236 _fini(void)
237 {
238 	return (psm_mod_fini(&apic_hdlp, &apic_psm_info));
239 }
240 
241 int
242 _info(struct modinfo *modinfop)
243 {
244 	return (psm_mod_info(&apic_hdlp, &apic_psm_info, modinfop));
245 }
246 
247 static int
248 apic_probe(void)
249 {
250 	/* check if apix is initialized */
251 	if (apix_enable && apix_loaded())
252 		return (PSM_FAILURE);
253 
254 	/*
255 	 * Check whether x2APIC mode was activated by BIOS. We don't support
256 	 * that in pcplusmp as apix normally handles that.
257 	 */
258 	if (apic_local_mode() == LOCAL_X2APIC)
259 		return (PSM_FAILURE);
260 
261 	/* continue using pcplusmp PSM */
262 	apix_enable = 0;
263 
264 	return (apic_probe_common(apic_psm_info.p_mach_idstring));
265 }
266 
267 static uchar_t
268 apic_xlate_vector_by_irq(uchar_t irq)
269 {
270 	if (apic_irq_table[irq] == NULL)
271 		return (0);
272 
273 	return (apic_irq_table[irq]->airq_vector);
274 }
275 
276 void
277 apic_init(void)
278 {
279 	int i;
280 	int	j = 1;
281 
282 	psm_get_ioapicid = apic_get_ioapicid;
283 	psm_get_localapicid = apic_get_localapicid;
284 	psm_xlate_vector_by_irq = apic_xlate_vector_by_irq;
285 
286 	apic_ipltopri[0] = APIC_VECTOR_PER_IPL; /* leave 0 for idle */
287 	for (i = 0; i < (APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL); i++) {
288 		if ((i < ((APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL) - 1)) &&
289 		    (apic_vectortoipl[i + 1] == apic_vectortoipl[i]))
290 			/* get to highest vector at the same ipl */
291 			continue;
292 		for (; j <= apic_vectortoipl[i]; j++) {
293 			apic_ipltopri[j] = (i << APIC_IPL_SHIFT) +
294 			    APIC_BASE_VECT;
295 		}
296 	}
297 	for (; j < MAXIPL + 1; j++)
298 		/* fill up any empty ipltopri slots */
299 		apic_ipltopri[j] = (i << APIC_IPL_SHIFT) + APIC_BASE_VECT;
300 	apic_init_common();
301 
302 	apic_pir_vect = apic_get_ipivect(XC_CPUPOKE_PIL, -1);
303 
304 #if !defined(__amd64)
305 	if (cpuid_have_cr8access(CPU))
306 		apic_have_32bit_cr8 = 1;
307 #endif
308 }
309 
310 static void
311 apic_init_intr(void)
312 {
313 	processorid_t	cpun = psm_get_cpu_id();
314 	uint_t nlvt;
315 	uint32_t svr = AV_UNIT_ENABLE | APIC_SPUR_INTR;
316 
317 	apic_reg_ops->apic_write_task_reg(APIC_MASK_ALL);
318 
319 	ASSERT(apic_mode == LOCAL_APIC);
320 
321 	/*
322 	 * We are running APIC in MMIO mode.
323 	 */
324 	if (apic_flat_model) {
325 		apic_reg_ops->apic_write(APIC_FORMAT_REG, APIC_FLAT_MODEL);
326 	} else {
327 		apic_reg_ops->apic_write(APIC_FORMAT_REG, APIC_CLUSTER_MODEL);
328 	}
329 
330 	apic_reg_ops->apic_write(APIC_DEST_REG, AV_HIGH_ORDER >> cpun);
331 
332 	if (apic_directed_EOI_supported()) {
333 		/*
334 		 * Setting the 12th bit in the Spurious Interrupt Vector
335 		 * Register suppresses broadcast EOIs generated by the local
336 		 * APIC. The suppression of broadcast EOIs happens only when
337 		 * interrupts are level-triggered.
338 		 */
339 		svr |= APIC_SVR_SUPPRESS_BROADCAST_EOI;
340 	}
341 
342 	/* need to enable APIC before unmasking NMI */
343 	apic_reg_ops->apic_write(APIC_SPUR_INT_REG, svr);
344 
345 	/*
346 	 * Presence of an invalid vector with delivery mode AV_FIXED can
347 	 * cause an error interrupt, even if the entry is masked...so
348 	 * write a valid vector to LVT entries along with the mask bit
349 	 */
350 
351 	/* All APICs have timer and LINT0/1 */
352 	apic_reg_ops->apic_write(APIC_LOCAL_TIMER, AV_MASK|APIC_RESV_IRQ);
353 	apic_reg_ops->apic_write(APIC_INT_VECT0, AV_MASK|APIC_RESV_IRQ);
354 	apic_reg_ops->apic_write(APIC_INT_VECT1, AV_NMI);	/* enable NMI */
355 
356 	/*
357 	 * On integrated APICs, the number of LVT entries is
358 	 * 'Max LVT entry' + 1; on 82489DX's (non-integrated
359 	 * APICs), nlvt is "3" (LINT0, LINT1, and timer)
360 	 */
361 
362 	if (apic_cpus[cpun].aci_local_ver < APIC_INTEGRATED_VERS) {
363 		nlvt = 3;
364 	} else {
365 		nlvt = ((apic_reg_ops->apic_read(APIC_VERS_REG) >> 16) &
366 		    0xFF) + 1;
367 	}
368 
369 	if (nlvt >= 5) {
370 		/* Enable performance counter overflow interrupt */
371 
372 		if (!is_x86_feature(x86_featureset, X86FSET_MSR))
373 			apic_enable_cpcovf_intr = 0;
374 		if (apic_enable_cpcovf_intr) {
375 			if (apic_cpcovf_vect == 0) {
376 				int ipl = APIC_PCINT_IPL;
377 				int irq = apic_get_ipivect(ipl, -1);
378 
379 				ASSERT(irq != -1);
380 				apic_cpcovf_vect =
381 				    apic_irq_table[irq]->airq_vector;
382 				ASSERT(apic_cpcovf_vect);
383 				(void) add_avintr(NULL, ipl,
384 				    (avfunc)kcpc_hw_overflow_intr,
385 				    "apic pcint", irq, NULL, NULL, NULL, NULL);
386 				kcpc_hw_overflow_intr_installed = 1;
387 				kcpc_hw_enable_cpc_intr =
388 				    apic_cpcovf_mask_clear;
389 			}
390 			apic_reg_ops->apic_write(APIC_PCINT_VECT,
391 			    apic_cpcovf_vect);
392 		}
393 	}
394 
395 	if (nlvt >= 6) {
396 		/* Only mask TM intr if the BIOS apparently doesn't use it */
397 
398 		uint32_t lvtval;
399 
400 		lvtval = apic_reg_ops->apic_read(APIC_THERM_VECT);
401 		if (((lvtval & AV_MASK) == AV_MASK) ||
402 		    ((lvtval & AV_DELIV_MODE) != AV_SMI)) {
403 			apic_reg_ops->apic_write(APIC_THERM_VECT,
404 			    AV_MASK|APIC_RESV_IRQ);
405 		}
406 	}
407 
408 	/* Enable error interrupt */
409 
410 	if (nlvt >= 4 && apic_enable_error_intr) {
411 		if (apic_errvect == 0) {
412 			int ipl = 0xf;	/* get highest priority intr */
413 			int irq = apic_get_ipivect(ipl, -1);
414 
415 			ASSERT(irq != -1);
416 			apic_errvect = apic_irq_table[irq]->airq_vector;
417 			ASSERT(apic_errvect);
418 			/*
419 			 * Not PSMI compliant, but we are going to merge
420 			 * with ON anyway
421 			 */
422 			(void) add_avintr((void *)NULL, ipl,
423 			    (avfunc)apic_error_intr, "apic error intr",
424 			    irq, NULL, NULL, NULL, NULL);
425 		}
426 		apic_reg_ops->apic_write(APIC_ERR_VECT, apic_errvect);
427 		apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0);
428 		apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0);
429 	}
430 
431 	/* Enable CMCI interrupt */
432 	if (cmi_enable_cmci) {
433 
434 		mutex_enter(&cmci_cpu_setup_lock);
435 		if (cmci_cpu_setup_registered == 0) {
436 			mutex_enter(&cpu_lock);
437 			register_cpu_setup_func(cmci_cpu_setup, NULL);
438 			mutex_exit(&cpu_lock);
439 			cmci_cpu_setup_registered = 1;
440 		}
441 		mutex_exit(&cmci_cpu_setup_lock);
442 
443 		if (apic_cmci_vect == 0) {
444 			int ipl = 0x2;
445 			int irq = apic_get_ipivect(ipl, -1);
446 
447 			ASSERT(irq != -1);
448 			apic_cmci_vect = apic_irq_table[irq]->airq_vector;
449 			ASSERT(apic_cmci_vect);
450 
451 			(void) add_avintr(NULL, ipl,
452 			    (avfunc)cmi_cmci_trap,
453 			    "apic cmci intr", irq, NULL, NULL, NULL, NULL);
454 		}
455 		apic_reg_ops->apic_write(APIC_CMCI_VECT, apic_cmci_vect);
456 	}
457 }
458 
459 static void
460 apic_picinit(void)
461 {
462 	int i, j;
463 	uint_t isr;
464 
465 	/*
466 	 * Initialize and enable interrupt remapping before apic
467 	 * hardware initialization
468 	 */
469 	apic_intrmap_init(apic_mode);
470 
471 	/*
472 	 * On UniSys Model 6520, the BIOS leaves vector 0x20 isr
473 	 * bit on without clearing it with EOI.  Since softint
474 	 * uses vector 0x20 to interrupt itself, so softint will
475 	 * not work on this machine.  In order to fix this problem
476 	 * a check is made to verify all the isr bits are clear.
477 	 * If not, EOIs are issued to clear the bits.
478 	 */
479 	for (i = 7; i >= 1; i--) {
480 		isr = apic_reg_ops->apic_read(APIC_ISR_REG + (i * 4));
481 		if (isr != 0)
482 			for (j = 0; ((j < 32) && (isr != 0)); j++)
483 				if (isr & (1 << j)) {
484 					apic_reg_ops->apic_write(
485 					    APIC_EOI_REG, 0);
486 					isr &= ~(1 << j);
487 					apic_error |= APIC_ERR_BOOT_EOI;
488 				}
489 	}
490 
491 	/* set a flag so we know we have run apic_picinit() */
492 	apic_picinit_called = 1;
493 	LOCK_INIT_CLEAR(&apic_gethrtime_lock);
494 	LOCK_INIT_CLEAR(&apic_ioapic_lock);
495 	LOCK_INIT_CLEAR(&apic_error_lock);
496 	LOCK_INIT_CLEAR(&apic_mode_switch_lock);
497 
498 	picsetup();	 /* initialise the 8259 */
499 
500 	/* add nmi handler - least priority nmi handler */
501 	LOCK_INIT_CLEAR(&apic_nmi_lock);
502 
503 	if (!psm_add_nmintr(0, (avfunc) apic_nmi_intr,
504 	    "pcplusmp NMI handler", (caddr_t)NULL))
505 		cmn_err(CE_WARN, "pcplusmp: Unable to add nmi handler");
506 
507 	/*
508 	 * Check for directed-EOI capability in the local APIC.
509 	 */
510 	if (apic_directed_EOI_supported() == 1) {
511 		apic_set_directed_EOI_handler();
512 	}
513 
514 	apic_init_intr();
515 
516 	/* enable apic mode if imcr present */
517 	if (apic_imcrp) {
518 		outb(APIC_IMCR_P1, (uchar_t)APIC_IMCR_SELECT);
519 		outb(APIC_IMCR_P2, (uchar_t)APIC_IMCR_APIC);
520 	}
521 
522 	ioapic_init_intr(IOAPIC_MASK);
523 }
524 
525 #ifdef	DEBUG
526 void
527 apic_break(void)
528 {
529 }
530 #endif /* DEBUG */
531 
532 /*
533  * platform_intr_enter
534  *
535  *	Called at the beginning of the interrupt service routine to
536  *	mask all level equal to and below the interrupt priority
537  *	of the interrupting vector.  An EOI should be given to
538  *	the interrupt controller to enable other HW interrupts.
539  *
540  *	Return -1 for spurious interrupts
541  *
542  */
543 /*ARGSUSED*/
544 static int
545 apic_intr_enter(int ipl, int *vectorp)
546 {
547 	uchar_t vector;
548 	int nipl;
549 	int irq;
550 	ulong_t iflag;
551 	apic_cpus_info_t *cpu_infop;
552 
553 	/*
554 	 * The real vector delivered is (*vectorp + 0x20), but our caller
555 	 * subtracts 0x20 from the vector before passing it to us.
556 	 * (That's why APIC_BASE_VECT is 0x20.)
557 	 */
558 	vector = (uchar_t)*vectorp;
559 
560 	/* if interrupted by the clock, increment apic_nsec_since_boot */
561 	if (vector == apic_clkvect) {
562 		if (!apic_oneshot) {
563 			/* NOTE: this is not MT aware */
564 			apic_hrtime_stamp++;
565 			apic_nsec_since_boot += apic_nsec_per_intr;
566 			apic_hrtime_stamp++;
567 			last_count_read = apic_hertz_count;
568 			apic_redistribute_compute();
569 		}
570 
571 		/* We will avoid all the book keeping overhead for clock */
572 		nipl = apic_ipls[vector];
573 
574 		*vectorp = apic_vector_to_irq[vector + APIC_BASE_VECT];
575 
576 		apic_reg_ops->apic_write_task_reg(apic_ipltopri[nipl]);
577 		apic_reg_ops->apic_send_eoi(0);
578 
579 		return (nipl);
580 	}
581 
582 	cpu_infop = &apic_cpus[psm_get_cpu_id()];
583 
584 	if (vector == (APIC_SPUR_INTR - APIC_BASE_VECT)) {
585 		cpu_infop->aci_spur_cnt++;
586 		return (APIC_INT_SPURIOUS);
587 	}
588 
589 	/* Check if the vector we got is really what we need */
590 	if (apic_revector_pending) {
591 		/*
592 		 * Disable interrupts for the duration of
593 		 * the vector translation to prevent a self-race for
594 		 * the apic_revector_lock.  This cannot be done
595 		 * in apic_xlate_vector because it is recursive and
596 		 * we want the vector translation to be atomic with
597 		 * respect to other (higher-priority) interrupts.
598 		 */
599 		iflag = intr_clear();
600 		vector = apic_xlate_vector(vector + APIC_BASE_VECT) -
601 		    APIC_BASE_VECT;
602 		intr_restore(iflag);
603 	}
604 
605 	nipl = apic_ipls[vector];
606 	*vectorp = irq = apic_vector_to_irq[vector + APIC_BASE_VECT];
607 
608 	apic_reg_ops->apic_write_task_reg(apic_ipltopri[nipl]);
609 
610 	cpu_infop->aci_current[nipl] = (uchar_t)irq;
611 	cpu_infop->aci_curipl = (uchar_t)nipl;
612 	cpu_infop->aci_ISR_in_progress |= 1 << nipl;
613 
614 	/*
615 	 * apic_level_intr could have been assimilated into the irq struct.
616 	 * but, having it as a character array is more efficient in terms of
617 	 * cache usage. So, we leave it as is.
618 	 */
619 	if (!apic_level_intr[irq]) {
620 		apic_reg_ops->apic_send_eoi(0);
621 	}
622 
623 #ifdef	DEBUG
624 	APIC_DEBUG_BUF_PUT(vector);
625 	APIC_DEBUG_BUF_PUT(irq);
626 	APIC_DEBUG_BUF_PUT(nipl);
627 	APIC_DEBUG_BUF_PUT(psm_get_cpu_id());
628 	if ((apic_stretch_interrupts) && (apic_stretch_ISR & (1 << nipl)))
629 		drv_usecwait(apic_stretch_interrupts);
630 
631 	if (apic_break_on_cpu == psm_get_cpu_id())
632 		apic_break();
633 #endif /* DEBUG */
634 	return (nipl);
635 }
636 
637 void
638 apic_intr_exit(int prev_ipl, int irq)
639 {
640 	apic_cpus_info_t *cpu_infop;
641 
642 	apic_reg_ops->apic_write_task_reg(apic_ipltopri[prev_ipl]);
643 
644 	cpu_infop = &apic_cpus[psm_get_cpu_id()];
645 	if (apic_level_intr[irq])
646 		apic_reg_ops->apic_send_eoi(irq);
647 	cpu_infop->aci_curipl = (uchar_t)prev_ipl;
648 	/* ISR above current pri could not be in progress */
649 	cpu_infop->aci_ISR_in_progress &= (2 << prev_ipl) - 1;
650 }
651 
652 intr_exit_fn_t
653 psm_intr_exit_fn(void)
654 {
655 	return (apic_intr_exit);
656 }
657 
658 /*
659  * Mask all interrupts below or equal to the given IPL.
660  */
661 static void
662 apic_setspl(int ipl)
663 {
664 	apic_reg_ops->apic_write_task_reg(apic_ipltopri[ipl]);
665 
666 	/* interrupts at ipl above this cannot be in progress */
667 	apic_cpus[psm_get_cpu_id()].aci_ISR_in_progress &= (2 << ipl) - 1;
668 	/*
669 	 * this is a patch fix for the ALR QSMP P5 machine, so that interrupts
670 	 * have enough time to come in before the priority is raised again
671 	 * during the idle() loop.
672 	 */
673 	if (apic_setspl_delay)
674 		(void) apic_reg_ops->apic_get_pri();
675 }
676 
677 /*ARGSUSED*/
678 static int
679 apic_addspl(int irqno, int ipl, int min_ipl, int max_ipl)
680 {
681 	return (apic_addspl_common(irqno, ipl, min_ipl, max_ipl));
682 }
683 
684 static int
685 apic_delspl(int irqno, int ipl, int min_ipl, int max_ipl)
686 {
687 	return (apic_delspl_common(irqno, ipl, min_ipl,  max_ipl));
688 }
689 
690 static int
691 apic_post_cpu_start(void)
692 {
693 	int cpun;
694 	static int cpus_started = 1;
695 
696 	/* We know this CPU + BSP  started successfully. */
697 	cpus_started++;
698 
699 	splx(ipltospl(LOCK_LEVEL));
700 	apic_init_intr();
701 
702 	/*
703 	 * since some systems don't enable the internal cache on the non-boot
704 	 * cpus, so we have to enable them here
705 	 */
706 	setcr0(getcr0() & ~(CR0_CD | CR0_NW));
707 
708 	APIC_AV_PENDING_SET();
709 
710 	/*
711 	 * We may be booting, or resuming from suspend; aci_status will
712 	 * be APIC_CPU_INTR_ENABLE if coming from suspend, so we add the
713 	 * APIC_CPU_ONLINE flag here rather than setting aci_status completely.
714 	 */
715 	cpun = psm_get_cpu_id();
716 	apic_cpus[cpun].aci_status |= APIC_CPU_ONLINE;
717 
718 	apic_reg_ops->apic_write(APIC_DIVIDE_REG, apic_divide_reg_init);
719 	return (PSM_SUCCESS);
720 }
721 
722 /*
723  * type == -1 indicates it is an internal request. Do not change
724  * resv_vector for these requests
725  */
726 static int
727 apic_get_ipivect(int ipl, int type)
728 {
729 	uchar_t vector;
730 	int irq;
731 
732 	if ((irq = apic_allocate_irq(APIC_VECTOR(ipl))) != -1) {
733 		if ((vector = apic_allocate_vector(ipl, irq, 1))) {
734 			apic_irq_table[irq]->airq_mps_intr_index =
735 			    RESERVE_INDEX;
736 			apic_irq_table[irq]->airq_vector = vector;
737 			if (type != -1) {
738 				apic_resv_vector[ipl] = vector;
739 			}
740 			return (irq);
741 		}
742 	}
743 	apic_error |= APIC_ERR_GET_IPIVECT_FAIL;
744 	return (-1);	/* shouldn't happen */
745 }
746 
747 static int
748 apic_getclkirq(int ipl)
749 {
750 	int	irq;
751 
752 	if ((irq = apic_get_ipivect(ipl, -1)) == -1)
753 		return (-1);
754 	/*
755 	 * Note the vector in apic_clkvect for per clock handling.
756 	 */
757 	apic_clkvect = apic_irq_table[irq]->airq_vector - APIC_BASE_VECT;
758 	APIC_VERBOSE_IOAPIC((CE_NOTE, "get_clkirq: vector = %x\n",
759 	    apic_clkvect));
760 	return (irq);
761 }
762 
763 /*
764  * Try and disable all interrupts. We just assign interrupts to other
765  * processors based on policy. If any were bound by user request, we
766  * let them continue and return failure. We do not bother to check
767  * for cache affinity while rebinding.
768  */
769 
770 static int
771 apic_disable_intr(processorid_t cpun)
772 {
773 	int bind_cpu = 0, i, hardbound = 0;
774 	apic_irq_t *irq_ptr;
775 	ulong_t iflag;
776 
777 	iflag = intr_clear();
778 	lock_set(&apic_ioapic_lock);
779 
780 	for (i = 0; i <= APIC_MAX_VECTOR; i++) {
781 		if (apic_reprogram_info[i].done == B_FALSE) {
782 			if (apic_reprogram_info[i].bindcpu == cpun) {
783 				/*
784 				 * CPU is busy -- it's the target of
785 				 * a pending reprogramming attempt
786 				 */
787 				lock_clear(&apic_ioapic_lock);
788 				intr_restore(iflag);
789 				return (PSM_FAILURE);
790 			}
791 		}
792 	}
793 
794 	apic_cpus[cpun].aci_status &= ~APIC_CPU_INTR_ENABLE;
795 
796 	apic_cpus[cpun].aci_curipl = 0;
797 
798 	i = apic_min_device_irq;
799 	for (; i <= apic_max_device_irq; i++) {
800 		/*
801 		 * If there are bound interrupts on this cpu, then
802 		 * rebind them to other processors.
803 		 */
804 		if ((irq_ptr = apic_irq_table[i]) != NULL) {
805 			ASSERT((irq_ptr->airq_temp_cpu == IRQ_UNBOUND) ||
806 			    (irq_ptr->airq_temp_cpu == IRQ_UNINIT) ||
807 			    (apic_cpu_in_range(irq_ptr->airq_temp_cpu)));
808 
809 			if (irq_ptr->airq_temp_cpu == (cpun | IRQ_USER_BOUND)) {
810 				hardbound = 1;
811 				continue;
812 			}
813 
814 			if (irq_ptr->airq_temp_cpu == cpun) {
815 				do {
816 					bind_cpu =
817 					    apic_find_cpu(APIC_CPU_INTR_ENABLE);
818 				} while (apic_rebind_all(irq_ptr, bind_cpu));
819 			}
820 		}
821 	}
822 
823 	lock_clear(&apic_ioapic_lock);
824 	intr_restore(iflag);
825 
826 	if (hardbound) {
827 		cmn_err(CE_WARN, "Could not disable interrupts on %d"
828 		    "due to user bound interrupts", cpun);
829 		return (PSM_FAILURE);
830 	}
831 	else
832 		return (PSM_SUCCESS);
833 }
834 
835 /*
836  * Bind interrupts to the CPU's local APIC.
837  * Interrupts should not be bound to a CPU's local APIC until the CPU
838  * is ready to receive interrupts.
839  */
840 static void
841 apic_enable_intr(processorid_t cpun)
842 {
843 	int	i;
844 	apic_irq_t *irq_ptr;
845 	ulong_t iflag;
846 
847 	iflag = intr_clear();
848 	lock_set(&apic_ioapic_lock);
849 
850 	apic_cpus[cpun].aci_status |= APIC_CPU_INTR_ENABLE;
851 
852 	i = apic_min_device_irq;
853 	for (i = apic_min_device_irq; i <= apic_max_device_irq; i++) {
854 		if ((irq_ptr = apic_irq_table[i]) != NULL) {
855 			if ((irq_ptr->airq_cpu & ~IRQ_USER_BOUND) == cpun) {
856 				(void) apic_rebind_all(irq_ptr,
857 				    irq_ptr->airq_cpu);
858 			}
859 		}
860 	}
861 
862 	if (apic_cpus[cpun].aci_status & APIC_CPU_SUSPEND)
863 		apic_cpus[cpun].aci_status &= ~APIC_CPU_SUSPEND;
864 
865 	lock_clear(&apic_ioapic_lock);
866 	intr_restore(iflag);
867 }
868 
869 /*
870  * If this module needs a periodic handler for the interrupt distribution, it
871  * can be added here. The argument to the periodic handler is not currently
872  * used, but is reserved for future.
873  */
874 static void
875 apic_post_cyclic_setup(void *arg)
876 {
877 _NOTE(ARGUNUSED(arg))
878 
879 	cyc_handler_t cyh;
880 	cyc_time_t cyt;
881 
882 	/* cpu_lock is held */
883 	/* set up a periodic handler for intr redistribution */
884 
885 	/*
886 	 * In peridoc mode intr redistribution processing is done in
887 	 * apic_intr_enter during clk intr processing
888 	 */
889 	if (!apic_oneshot)
890 		return;
891 
892 	/*
893 	 * Register a periodical handler for the redistribution processing.
894 	 * Though we would generally prefer to use the DDI interface for
895 	 * periodic handler invocation, ddi_periodic_add(9F), we are
896 	 * unfortunately already holding cpu_lock, which ddi_periodic_add will
897 	 * attempt to take for us.  Thus, we add our own cyclic directly:
898 	 */
899 	cyh.cyh_func = (void (*)(void *))apic_redistribute_compute;
900 	cyh.cyh_arg = NULL;
901 	cyh.cyh_level = CY_LOW_LEVEL;
902 
903 	cyt.cyt_when = 0;
904 	cyt.cyt_interval = apic_redistribute_sample_interval;
905 
906 	apic_cyclic_id = cyclic_add(&cyh, &cyt);
907 }
908 
909 static void
910 apic_redistribute_compute(void)
911 {
912 	int	i, j, max_busy;
913 
914 	if (apic_enable_dynamic_migration) {
915 		if (++apic_nticks == apic_sample_factor_redistribution) {
916 			/*
917 			 * Time to call apic_intr_redistribute().
918 			 * reset apic_nticks. This will cause max_busy
919 			 * to be calculated below and if it is more than
920 			 * apic_int_busy, we will do the whole thing
921 			 */
922 			apic_nticks = 0;
923 		}
924 		max_busy = 0;
925 		for (i = 0; i < apic_nproc; i++) {
926 			if (!apic_cpu_in_range(i))
927 				continue;
928 
929 			/*
930 			 * Check if curipl is non zero & if ISR is in
931 			 * progress
932 			 */
933 			if (((j = apic_cpus[i].aci_curipl) != 0) &&
934 			    (apic_cpus[i].aci_ISR_in_progress & (1 << j))) {
935 
936 				int	irq;
937 				apic_cpus[i].aci_busy++;
938 				irq = apic_cpus[i].aci_current[j];
939 				apic_irq_table[irq]->airq_busy++;
940 			}
941 
942 			if (!apic_nticks &&
943 			    (apic_cpus[i].aci_busy > max_busy))
944 				max_busy = apic_cpus[i].aci_busy;
945 		}
946 		if (!apic_nticks) {
947 			if (max_busy > apic_int_busy_mark) {
948 			/*
949 			 * We could make the following check be
950 			 * skipped > 1 in which case, we get a
951 			 * redistribution at half the busy mark (due to
952 			 * double interval). Need to be able to collect
953 			 * more empirical data to decide if that is a
954 			 * good strategy. Punt for now.
955 			 */
956 				if (apic_skipped_redistribute) {
957 					apic_cleanup_busy();
958 					apic_skipped_redistribute = 0;
959 				} else {
960 					apic_intr_redistribute();
961 				}
962 			} else
963 				apic_skipped_redistribute++;
964 		}
965 	}
966 }
967 
968 
969 /*
970  * The following functions are in the platform specific file so that they
971  * can be different functions depending on whether we are running on
972  * bare metal or a hypervisor.
973  */
974 
975 /*
976  * Check to make sure there are enough irq slots
977  */
978 int
979 apic_check_free_irqs(int count)
980 {
981 	int i, avail;
982 
983 	avail = 0;
984 	for (i = APIC_FIRST_FREE_IRQ; i < APIC_RESV_IRQ; i++) {
985 		if ((apic_irq_table[i] == NULL) ||
986 		    apic_irq_table[i]->airq_mps_intr_index == FREE_INDEX) {
987 			if (++avail >= count)
988 				return (PSM_SUCCESS);
989 		}
990 	}
991 	return (PSM_FAILURE);
992 }
993 
994 /*
995  * This function allocates "count" MSI vector(s) for the given "dip/pri/type"
996  */
997 int
998 apic_alloc_msi_vectors(dev_info_t *dip, int inum, int count, int pri,
999     int behavior)
1000 {
1001 	int	rcount, i;
1002 	uchar_t	start, irqno;
1003 	uint32_t cpu = 0;
1004 	major_t	major;
1005 	apic_irq_t	*irqptr;
1006 
1007 	DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: dip=0x%p "
1008 	    "inum=0x%x  pri=0x%x count=0x%x behavior=%d\n",
1009 	    (void *)dip, inum, pri, count, behavior));
1010 
1011 	if (count > 1) {
1012 		if (behavior == DDI_INTR_ALLOC_STRICT &&
1013 		    apic_multi_msi_enable == 0)
1014 			return (0);
1015 		if (apic_multi_msi_enable == 0)
1016 			count = 1;
1017 	}
1018 
1019 	if ((rcount = apic_navail_vector(dip, pri)) > count)
1020 		rcount = count;
1021 	else if (rcount == 0 || (rcount < count &&
1022 	    behavior == DDI_INTR_ALLOC_STRICT))
1023 		return (0);
1024 
1025 	/* if not ISP2, then round it down */
1026 	if (!ISP2(rcount))
1027 		rcount = 1 << (highbit(rcount) - 1);
1028 
1029 	mutex_enter(&airq_mutex);
1030 
1031 	for (start = 0; rcount > 0; rcount >>= 1) {
1032 		if ((start = apic_find_multi_vectors(pri, rcount)) != 0 ||
1033 		    behavior == DDI_INTR_ALLOC_STRICT)
1034 			break;
1035 	}
1036 
1037 	if (start == 0) {
1038 		/* no vector available */
1039 		mutex_exit(&airq_mutex);
1040 		return (0);
1041 	}
1042 
1043 	if (apic_check_free_irqs(rcount) == PSM_FAILURE) {
1044 		/* not enough free irq slots available */
1045 		mutex_exit(&airq_mutex);
1046 		return (0);
1047 	}
1048 
1049 	major = (dip != NULL) ? ddi_driver_major(dip) : 0;
1050 	for (i = 0; i < rcount; i++) {
1051 		if ((irqno = apic_allocate_irq(apic_first_avail_irq)) ==
1052 		    (uchar_t)-1) {
1053 			/*
1054 			 * shouldn't happen because of the
1055 			 * apic_check_free_irqs() check earlier
1056 			 */
1057 			mutex_exit(&airq_mutex);
1058 			DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: "
1059 			    "apic_allocate_irq failed\n"));
1060 			return (i);
1061 		}
1062 		apic_max_device_irq = max(irqno, apic_max_device_irq);
1063 		apic_min_device_irq = min(irqno, apic_min_device_irq);
1064 		irqptr = apic_irq_table[irqno];
1065 #ifdef	DEBUG
1066 		if (apic_vector_to_irq[start + i] != APIC_RESV_IRQ)
1067 			DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: "
1068 			    "apic_vector_to_irq is not APIC_RESV_IRQ\n"));
1069 #endif
1070 		apic_vector_to_irq[start + i] = (uchar_t)irqno;
1071 
1072 		irqptr->airq_vector = (uchar_t)(start + i);
1073 		irqptr->airq_ioapicindex = (uchar_t)inum;	/* start */
1074 		irqptr->airq_intin_no = (uchar_t)rcount;
1075 		ASSERT(pri >= 0 && pri <= UCHAR_MAX);
1076 		irqptr->airq_ipl = (uchar_t)pri;
1077 		irqptr->airq_vector = start + i;
1078 		irqptr->airq_origirq = (uchar_t)(inum + i);
1079 		irqptr->airq_share_id = 0;
1080 		irqptr->airq_mps_intr_index = MSI_INDEX;
1081 		irqptr->airq_dip = dip;
1082 		irqptr->airq_major = major;
1083 		if (i == 0) /* they all bound to the same cpu */
1084 			cpu = irqptr->airq_cpu = apic_bind_intr(dip, irqno,
1085 			    0xff, 0xff);
1086 		else
1087 			irqptr->airq_cpu = cpu;
1088 		DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: irq=0x%x "
1089 		    "dip=0x%p vector=0x%x origirq=0x%x pri=0x%x\n", irqno,
1090 		    (void *)irqptr->airq_dip, irqptr->airq_vector,
1091 		    irqptr->airq_origirq, pri));
1092 	}
1093 	mutex_exit(&airq_mutex);
1094 	return (rcount);
1095 }
1096 
1097 /*
1098  * This function allocates "count" MSI-X vector(s) for the given "dip/pri/type"
1099  */
1100 int
1101 apic_alloc_msix_vectors(dev_info_t *dip, int inum, int count, int pri,
1102     int behavior)
1103 {
1104 	int	rcount, i;
1105 	major_t	major;
1106 
1107 	mutex_enter(&airq_mutex);
1108 
1109 	if ((rcount = apic_navail_vector(dip, pri)) > count)
1110 		rcount = count;
1111 	else if (rcount == 0 || (rcount < count &&
1112 	    behavior == DDI_INTR_ALLOC_STRICT)) {
1113 		rcount = 0;
1114 		goto out;
1115 	}
1116 
1117 	if (apic_check_free_irqs(rcount) == PSM_FAILURE) {
1118 		/* not enough free irq slots available */
1119 		rcount = 0;
1120 		goto out;
1121 	}
1122 
1123 	major = (dip != NULL) ? ddi_driver_major(dip) : 0;
1124 	for (i = 0; i < rcount; i++) {
1125 		uchar_t	vector, irqno;
1126 		apic_irq_t	*irqptr;
1127 
1128 		if ((irqno = apic_allocate_irq(apic_first_avail_irq)) ==
1129 		    (uchar_t)-1) {
1130 			/*
1131 			 * shouldn't happen because of the
1132 			 * apic_check_free_irqs() check earlier
1133 			 */
1134 			DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msix_vectors: "
1135 			    "apic_allocate_irq failed\n"));
1136 			rcount = i;
1137 			goto out;
1138 		}
1139 		if ((vector = apic_allocate_vector(pri, irqno, 1)) == 0) {
1140 			/*
1141 			 * shouldn't happen because of the
1142 			 * apic_navail_vector() call earlier
1143 			 */
1144 			DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msix_vectors: "
1145 			    "apic_allocate_vector failed\n"));
1146 			rcount = i;
1147 			goto out;
1148 		}
1149 		apic_max_device_irq = max(irqno, apic_max_device_irq);
1150 		apic_min_device_irq = min(irqno, apic_min_device_irq);
1151 		irqptr = apic_irq_table[irqno];
1152 		irqptr->airq_vector = (uchar_t)vector;
1153 		ASSERT(pri >= 0 && pri <= UCHAR_MAX);
1154 		irqptr->airq_ipl = (uchar_t)pri;
1155 		irqptr->airq_origirq = (uchar_t)(inum + i);
1156 		irqptr->airq_share_id = 0;
1157 		irqptr->airq_mps_intr_index = MSIX_INDEX;
1158 		irqptr->airq_dip = dip;
1159 		irqptr->airq_major = major;
1160 		irqptr->airq_cpu = apic_bind_intr(dip, irqno, 0xff, 0xff);
1161 	}
1162 out:
1163 	mutex_exit(&airq_mutex);
1164 	return (rcount);
1165 }
1166 
1167 /*
1168  * Allocate a free vector for irq at ipl. Takes care of merging of multiple
1169  * IPLs into a single APIC level as well as stretching some IPLs onto multiple
1170  * levels. APIC_HI_PRI_VECTS interrupts are reserved for high priority
1171  * requests and allocated only when pri is set.
1172  */
1173 uchar_t
1174 apic_allocate_vector(int ipl, int irq, int pri)
1175 {
1176 	int	lowest, highest, i;
1177 
1178 	highest = apic_ipltopri[ipl] + APIC_VECTOR_MASK;
1179 	lowest = apic_ipltopri[ipl - 1] + APIC_VECTOR_PER_IPL;
1180 
1181 	if (highest < lowest) /* Both ipl and ipl - 1 map to same pri */
1182 		lowest -= APIC_VECTOR_PER_IPL;
1183 
1184 #ifdef	DEBUG
1185 	if (apic_restrict_vector)	/* for testing shared interrupt logic */
1186 		highest = lowest + apic_restrict_vector + APIC_HI_PRI_VECTS;
1187 #endif /* DEBUG */
1188 	if (pri == 0)
1189 		highest -= APIC_HI_PRI_VECTS;
1190 
1191 	for (i = lowest; i <= highest; i++) {
1192 		if (APIC_CHECK_RESERVE_VECTORS(i))
1193 			continue;
1194 		if (apic_vector_to_irq[i] == APIC_RESV_IRQ) {
1195 			apic_vector_to_irq[i] = (uchar_t)irq;
1196 			ASSERT(i >= 0 && i <= UCHAR_MAX);
1197 			return ((uchar_t)i);
1198 		}
1199 	}
1200 
1201 	return (0);
1202 }
1203 
1204 /* Mark vector as not being used by any irq */
1205 void
1206 apic_free_vector(uchar_t vector)
1207 {
1208 	apic_vector_to_irq[vector] = APIC_RESV_IRQ;
1209 }
1210 
1211 /*
1212  * Call rebind to do the actual programming.
1213  * Must be called with interrupts disabled and apic_ioapic_lock held
1214  * 'p' is polymorphic -- if this function is called to process a deferred
1215  * reprogramming, p is of type 'struct ioapic_reprogram_data *', from which
1216  * the irq pointer is retrieved.  If not doing deferred reprogramming,
1217  * p is of the type 'apic_irq_t *'.
1218  *
1219  * apic_ioapic_lock must be held across this call, as it protects apic_rebind
1220  * and it protects apic_get_next_bind_cpu() from a race in which a CPU can be
1221  * taken offline after a cpu is selected, but before apic_rebind is called to
1222  * bind interrupts to it.
1223  */
1224 int
1225 apic_setup_io_intr(void *p, int irq, boolean_t deferred)
1226 {
1227 	apic_irq_t *irqptr;
1228 	struct ioapic_reprogram_data *drep = NULL;
1229 	int rv;
1230 
1231 	if (deferred) {
1232 		drep = (struct ioapic_reprogram_data *)p;
1233 		ASSERT(drep != NULL);
1234 		irqptr = drep->irqp;
1235 	} else
1236 		irqptr = (apic_irq_t *)p;
1237 
1238 	ASSERT(irqptr != NULL);
1239 
1240 	rv = apic_rebind(irqptr, apic_irq_table[irq]->airq_cpu, drep);
1241 	if (rv) {
1242 		/*
1243 		 * CPU is not up or interrupts are disabled. Fall back to
1244 		 * the first available CPU
1245 		 */
1246 		rv = apic_rebind(irqptr, apic_find_cpu(APIC_CPU_INTR_ENABLE),
1247 		    drep);
1248 	}
1249 
1250 	return (rv);
1251 }
1252 
1253 
1254 uchar_t
1255 apic_modify_vector(uchar_t vector, int irq)
1256 {
1257 	apic_vector_to_irq[vector] = (uchar_t)irq;
1258 	return (vector);
1259 }
1260 
1261 char *
1262 apic_get_apic_type(void)
1263 {
1264 	return (apic_psm_info.p_mach_idstring);
1265 }
1266 
1267 void
1268 apic_switch_ipi_callback(boolean_t enter)
1269 {
1270 	ASSERT(enter == B_TRUE);
1271 }
1272 
1273 int
1274 apic_detect_x2apic(void)
1275 {
1276 	return (0);
1277 }
1278 
1279 void
1280 apic_enable_x2apic(void)
1281 {
1282 	cmn_err(CE_PANIC, "apic_enable_x2apic() called in pcplusmp");
1283 }
1284 
1285 void
1286 x2apic_update_psm(void)
1287 {
1288 	cmn_err(CE_PANIC, "x2apic_update_psm() called in pcplusmp");
1289 }
1290