xref: /illumos-gate/usr/src/uts/i86pc/io/pcplusmp/apic.c (revision d7e2bdfa66e3574ffcce3665a4cd1136fc6cb6a1)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1993, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 /*
26  * Copyright (c) 2010, Intel Corporation.
27  * All rights reserved.
28  * Copyright 2019 Joyent, Inc.
29  * Copyright 2020 Oxide Computer Company
30  */
31 
32 /*
33  * To understand how the pcplusmp module interacts with the interrupt subsystem
34  * read the theory statement in uts/i86pc/os/intr.c.
35  */
36 
37 /*
38  * PSMI 1.1 extensions are supported only in 2.6 and later versions.
39  * PSMI 1.2 extensions are supported only in 2.7 and later versions.
40  * PSMI 1.3 and 1.4 extensions are supported in Solaris 10.
41  * PSMI 1.5 extensions are supported in Solaris Nevada.
42  * PSMI 1.6 extensions are supported in Solaris Nevada.
43  * PSMI 1.7 extensions are supported in Solaris Nevada.
44  */
45 #define	PSMI_1_7
46 
47 #include <sys/processor.h>
48 #include <sys/time.h>
49 #include <sys/psm.h>
50 #include <sys/smp_impldefs.h>
51 #include <sys/cram.h>
52 #include <sys/acpi/acpi.h>
53 #include <sys/acpica.h>
54 #include <sys/psm_common.h>
55 #include <sys/apic.h>
56 #include <sys/pit.h>
57 #include <sys/ddi.h>
58 #include <sys/sunddi.h>
59 #include <sys/ddi_impldefs.h>
60 #include <sys/pci.h>
61 #include <sys/promif.h>
62 #include <sys/prom_debug.h>
63 #include <sys/x86_archext.h>
64 #include <sys/cpc_impl.h>
65 #include <sys/uadmin.h>
66 #include <sys/panic.h>
67 #include <sys/debug.h>
68 #include <sys/archsystm.h>
69 #include <sys/trap.h>
70 #include <sys/machsystm.h>
71 #include <sys/sysmacros.h>
72 #include <sys/cpuvar.h>
73 #include <sys/rm_platter.h>
74 #include <sys/privregs.h>
75 #include <sys/note.h>
76 #include <sys/pci_intr_lib.h>
77 #include <sys/spl.h>
78 #include <sys/clock.h>
79 #include <sys/cyclic.h>
80 #include <sys/dditypes.h>
81 #include <sys/sunddi.h>
82 #include <sys/x_call.h>
83 #include <sys/reboot.h>
84 #include <sys/hpet.h>
85 #include <sys/apic_common.h>
86 #include <sys/apic_timer.h>
87 #include <sys/smt.h>
88 
89 /*
90  *	Local Function Prototypes
91  */
92 static void apic_init_intr(void);
93 
94 /*
95  *	standard MP entries
96  */
97 static int	apic_probe(void);
98 static int	apic_getclkirq(int ipl);
99 static void	apic_init(void);
100 static void	apic_picinit(void);
101 static int	apic_post_cpu_start(void);
102 static int	apic_intr_enter(int ipl, int *vect);
103 static void	apic_setspl(int ipl);
104 static int	apic_addspl(int ipl, int vector, int min_ipl, int max_ipl);
105 static int	apic_delspl(int ipl, int vector, int min_ipl, int max_ipl);
106 static int	apic_disable_intr(processorid_t cpun);
107 static void	apic_enable_intr(processorid_t cpun);
108 static int		apic_get_ipivect(int ipl, int type);
109 static void	apic_post_cyclic_setup(void *arg);
110 
111 #define	UCHAR_MAX	UINT8_MAX
112 
113 /*
114  * The following vector assignments influence the value of ipltopri and
115  * vectortoipl. Note that vectors 0 - 0x1f are not used. We can program
116  * idle to 0 and IPL 0 to 0xf to differentiate idle in case
117  * we care to do so in future. Note some IPLs which are rarely used
118  * will share the vector ranges and heavily used IPLs (5 and 6) have
119  * a wide range.
120  *
121  * This array is used to initialize apic_ipls[] (in apic_init()).
122  *
123  *	IPL		Vector range.		as passed to intr_enter
124  *	0		none.
125  *	1,2,3		0x20-0x2f		0x0-0xf
126  *	4		0x30-0x3f		0x10-0x1f
127  *	5		0x40-0x5f		0x20-0x3f
128  *	6		0x60-0x7f		0x40-0x5f
129  *	7,8,9		0x80-0x8f		0x60-0x6f
130  *	10		0x90-0x9f		0x70-0x7f
131  *	11		0xa0-0xaf		0x80-0x8f
132  *	...		...
133  *	15		0xe0-0xef		0xc0-0xcf
134  *	15		0xf0-0xff		0xd0-0xdf
135  */
136 uchar_t apic_vectortoipl[APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL] = {
137 	3, 4, 5, 5, 6, 6, 9, 10, 11, 12, 13, 14, 15, 15
138 };
139 	/*
140 	 * The ipl of an ISR at vector X is apic_vectortoipl[X>>4]
141 	 * NOTE that this is vector as passed into intr_enter which is
142 	 * programmed vector - 0x20 (APIC_BASE_VECT)
143 	 */
144 
145 uchar_t	apic_ipltopri[MAXIPL + 1];	/* unix ipl to apic pri	*/
146 	/* The taskpri to be programmed into apic to mask given ipl */
147 
148 /*
149  * Correlation of the hardware vector to the IPL in use, initialized
150  * from apic_vectortoipl[] in apic_init().  The final IPLs may not correlate
151  * to the IPLs in apic_vectortoipl on some systems that share interrupt lines
152  * connected to errata-stricken IOAPICs
153  */
154 uchar_t apic_ipls[APIC_AVAIL_VECTOR];
155 
156 /*
157  * Patchable global variables.
158  */
159 int	apic_enable_hwsoftint = 0;	/* 0 - disable, 1 - enable	*/
160 int	apic_enable_bind_log = 1;	/* 1 - display interrupt binding log */
161 
162 /*
163  *	Local static data
164  */
165 static struct	psm_ops apic_ops = {
166 	apic_probe,
167 
168 	apic_init,
169 	apic_picinit,
170 	apic_intr_enter,
171 	apic_intr_exit,
172 	apic_setspl,
173 	apic_addspl,
174 	apic_delspl,
175 	apic_disable_intr,
176 	apic_enable_intr,
177 	(int (*)(int))NULL,		/* psm_softlvl_to_irq */
178 	(void (*)(int))NULL,		/* psm_set_softintr */
179 
180 	apic_set_idlecpu,
181 	apic_unset_idlecpu,
182 
183 	apic_clkinit,
184 	apic_getclkirq,
185 	(void (*)(void))NULL,		/* psm_hrtimeinit */
186 	apic_gethrtime,
187 
188 	apic_get_next_processorid,
189 	apic_cpu_start,
190 	apic_post_cpu_start,
191 	apic_shutdown,
192 	apic_get_ipivect,
193 	apic_send_ipi,
194 
195 	(int (*)(dev_info_t *, int))NULL,	/* psm_translate_irq */
196 	(void (*)(int, char *))NULL,	/* psm_notify_error */
197 	(void (*)(int))NULL,		/* psm_notify_func */
198 	apic_timer_reprogram,
199 	apic_timer_enable,
200 	apic_timer_disable,
201 	apic_post_cyclic_setup,
202 	apic_preshutdown,
203 	apic_intr_ops,			/* Advanced DDI Interrupt framework */
204 	apic_state,			/* save, restore apic state for S3 */
205 	apic_cpu_ops,			/* CPU control interface. */
206 
207 	apic_get_pir_ipivect,
208 	apic_send_pir_ipi,
209 	apic_cmci_setup,
210 };
211 
212 struct psm_ops *psmops = &apic_ops;
213 
214 static struct	psm_info apic_psm_info = {
215 	PSM_INFO_VER01_7,			/* version */
216 	PSM_OWN_EXCLUSIVE,			/* ownership */
217 	(struct psm_ops *)&apic_ops,		/* operation */
218 	APIC_PCPLUSMP_NAME,			/* machine name */
219 	"pcplusmp v1.4 compatible",
220 };
221 
222 static void *apic_hdlp;
223 
224 /* to gather intr data and redistribute */
225 static void apic_redistribute_compute(void);
226 
227 /*
228  *	This is the loadable module wrapper
229  */
230 
231 int
232 _init(void)
233 {
234 	if (apic_coarse_hrtime)
235 		apic_ops.psm_gethrtime = &apic_gettime;
236 	return (psm_mod_init(&apic_hdlp, &apic_psm_info));
237 }
238 
239 int
240 _fini(void)
241 {
242 	return (psm_mod_fini(&apic_hdlp, &apic_psm_info));
243 }
244 
245 int
246 _info(struct modinfo *modinfop)
247 {
248 	return (psm_mod_info(&apic_hdlp, &apic_psm_info, modinfop));
249 }
250 
251 static int
252 apic_probe(void)
253 {
254 	PRM_POINT("apic_probe()");
255 
256 	/* check if apix is initialized */
257 	if (apix_enable && apix_loaded()) {
258 		PRM_POINT("apic_probe FAILURE: apix is loaded");
259 		return (PSM_FAILURE);
260 	}
261 
262 	/*
263 	 * Check whether x2APIC mode was activated by BIOS. We don't support
264 	 * that in pcplusmp as apix normally handles that.
265 	 */
266 	PRM_POINT("apic_local_mode()");
267 	if (apic_local_mode() == LOCAL_X2APIC) {
268 		PRM_POINT("apic_probe FAILURE: in x2apic mode");
269 		return (PSM_FAILURE);
270 	}
271 
272 	/* continue using pcplusmp PSM */
273 	apix_enable = 0;
274 
275 	return (apic_probe_common(apic_psm_info.p_mach_idstring));
276 }
277 
278 static uchar_t
279 apic_xlate_vector_by_irq(uchar_t irq)
280 {
281 	if (apic_irq_table[irq] == NULL)
282 		return (0);
283 
284 	return (apic_irq_table[irq]->airq_vector);
285 }
286 
287 void
288 apic_init(void)
289 {
290 	int i;
291 	int	j = 1;
292 
293 	psm_get_ioapicid = apic_get_ioapicid;
294 	psm_get_localapicid = apic_get_localapicid;
295 	psm_xlate_vector_by_irq = apic_xlate_vector_by_irq;
296 
297 	apic_ipltopri[0] = APIC_VECTOR_PER_IPL; /* leave 0 for idle */
298 	for (i = 0; i < (APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL); i++) {
299 		if ((i < ((APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL) - 1)) &&
300 		    (apic_vectortoipl[i + 1] == apic_vectortoipl[i]))
301 			/* get to highest vector at the same ipl */
302 			continue;
303 		for (; j <= apic_vectortoipl[i]; j++) {
304 			apic_ipltopri[j] = (i << APIC_IPL_SHIFT) +
305 			    APIC_BASE_VECT;
306 		}
307 	}
308 	for (; j < MAXIPL + 1; j++)
309 		/* fill up any empty ipltopri slots */
310 		apic_ipltopri[j] = (i << APIC_IPL_SHIFT) + APIC_BASE_VECT;
311 	apic_init_common();
312 
313 	/*
314 	 * For pcplusmp, we'll keep things simple and always disable this.
315 	 */
316 	smt_intr_alloc_pil(XC_CPUPOKE_PIL);
317 
318 	apic_pir_vect = apic_get_ipivect(XC_CPUPOKE_PIL, -1);
319 
320 #if !defined(__amd64)
321 	if (cpuid_have_cr8access(CPU))
322 		apic_have_32bit_cr8 = 1;
323 #endif
324 }
325 
326 static void
327 apic_init_intr(void)
328 {
329 	processorid_t	cpun = psm_get_cpu_id();
330 	uint_t nlvt;
331 	uint32_t svr = AV_UNIT_ENABLE | APIC_SPUR_INTR;
332 
333 	apic_reg_ops->apic_write_task_reg(APIC_MASK_ALL);
334 
335 	ASSERT(apic_mode == LOCAL_APIC);
336 
337 	/*
338 	 * We are running APIC in MMIO mode.
339 	 */
340 	if (apic_flat_model) {
341 		apic_reg_ops->apic_write(APIC_FORMAT_REG, APIC_FLAT_MODEL);
342 	} else {
343 		apic_reg_ops->apic_write(APIC_FORMAT_REG, APIC_CLUSTER_MODEL);
344 	}
345 
346 	apic_reg_ops->apic_write(APIC_DEST_REG, AV_HIGH_ORDER >> cpun);
347 
348 	if (apic_directed_EOI_supported()) {
349 		/*
350 		 * Setting the 12th bit in the Spurious Interrupt Vector
351 		 * Register suppresses broadcast EOIs generated by the local
352 		 * APIC. The suppression of broadcast EOIs happens only when
353 		 * interrupts are level-triggered.
354 		 */
355 		svr |= APIC_SVR_SUPPRESS_BROADCAST_EOI;
356 	}
357 
358 	/* need to enable APIC before unmasking NMI */
359 	apic_reg_ops->apic_write(APIC_SPUR_INT_REG, svr);
360 
361 	/*
362 	 * Presence of an invalid vector with delivery mode AV_FIXED can
363 	 * cause an error interrupt, even if the entry is masked...so
364 	 * write a valid vector to LVT entries along with the mask bit
365 	 */
366 
367 	/* All APICs have timer and LINT0/1 */
368 	apic_reg_ops->apic_write(APIC_LOCAL_TIMER, AV_MASK|APIC_RESV_IRQ);
369 	apic_reg_ops->apic_write(APIC_INT_VECT0, AV_MASK|APIC_RESV_IRQ);
370 	apic_reg_ops->apic_write(APIC_INT_VECT1, AV_NMI);	/* enable NMI */
371 
372 	/*
373 	 * On integrated APICs, the number of LVT entries is
374 	 * 'Max LVT entry' + 1; on 82489DX's (non-integrated
375 	 * APICs), nlvt is "3" (LINT0, LINT1, and timer)
376 	 */
377 
378 	if (apic_cpus[cpun].aci_local_ver < APIC_INTEGRATED_VERS) {
379 		nlvt = 3;
380 	} else {
381 		nlvt = ((apic_reg_ops->apic_read(APIC_VERS_REG) >> 16) &
382 		    0xFF) + 1;
383 	}
384 
385 	if (nlvt >= 5) {
386 		/* Enable performance counter overflow interrupt */
387 
388 		if (!is_x86_feature(x86_featureset, X86FSET_MSR))
389 			apic_enable_cpcovf_intr = 0;
390 		if (apic_enable_cpcovf_intr) {
391 			if (apic_cpcovf_vect == 0) {
392 				int ipl = APIC_PCINT_IPL;
393 				int irq = apic_get_ipivect(ipl, -1);
394 
395 				ASSERT(irq != -1);
396 				apic_cpcovf_vect =
397 				    apic_irq_table[irq]->airq_vector;
398 				ASSERT(apic_cpcovf_vect);
399 				(void) add_avintr(NULL, ipl,
400 				    (avfunc)kcpc_hw_overflow_intr,
401 				    "apic pcint", irq, NULL, NULL, NULL, NULL);
402 				kcpc_hw_overflow_intr_installed = 1;
403 				kcpc_hw_enable_cpc_intr =
404 				    apic_cpcovf_mask_clear;
405 			}
406 			apic_reg_ops->apic_write(APIC_PCINT_VECT,
407 			    apic_cpcovf_vect);
408 		}
409 	}
410 
411 	if (nlvt >= 6) {
412 		/* Only mask TM intr if the BIOS apparently doesn't use it */
413 
414 		uint32_t lvtval;
415 
416 		lvtval = apic_reg_ops->apic_read(APIC_THERM_VECT);
417 		if (((lvtval & AV_MASK) == AV_MASK) ||
418 		    ((lvtval & AV_DELIV_MODE) != AV_SMI)) {
419 			apic_reg_ops->apic_write(APIC_THERM_VECT,
420 			    AV_MASK|APIC_RESV_IRQ);
421 		}
422 	}
423 
424 	/* Enable error interrupt */
425 
426 	if (nlvt >= 4 && apic_enable_error_intr) {
427 		if (apic_errvect == 0) {
428 			int ipl = 0xf;	/* get highest priority intr */
429 			int irq = apic_get_ipivect(ipl, -1);
430 
431 			ASSERT(irq != -1);
432 			apic_errvect = apic_irq_table[irq]->airq_vector;
433 			ASSERT(apic_errvect);
434 			/*
435 			 * Not PSMI compliant, but we are going to merge
436 			 * with ON anyway
437 			 */
438 			(void) add_avintr((void *)NULL, ipl,
439 			    (avfunc)apic_error_intr, "apic error intr",
440 			    irq, NULL, NULL, NULL, NULL);
441 		}
442 		apic_reg_ops->apic_write(APIC_ERR_VECT, apic_errvect);
443 		apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0);
444 		apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0);
445 	}
446 
447 	/*
448 	 * Ensure a CMCI interrupt is allocated, regardless of whether it is
449 	 * enabled or not.
450 	 */
451 	if (apic_cmci_vect == 0) {
452 		const int ipl = 0x2;
453 		int irq = apic_get_ipivect(ipl, -1);
454 
455 		ASSERT(irq != -1);
456 		apic_cmci_vect = apic_irq_table[irq]->airq_vector;
457 		ASSERT(apic_cmci_vect);
458 
459 		(void) add_avintr(NULL, ipl,
460 		    (avfunc)cmi_cmci_trap,
461 		    "apic cmci intr", irq, NULL, NULL, NULL, NULL);
462 	}
463 }
464 
465 static void
466 apic_picinit(void)
467 {
468 	int i, j;
469 	uint_t isr;
470 
471 	/*
472 	 * Initialize and enable interrupt remapping before apic
473 	 * hardware initialization
474 	 */
475 	apic_intrmap_init(apic_mode);
476 
477 	/*
478 	 * On UniSys Model 6520, the BIOS leaves vector 0x20 isr
479 	 * bit on without clearing it with EOI.  Since softint
480 	 * uses vector 0x20 to interrupt itself, so softint will
481 	 * not work on this machine.  In order to fix this problem
482 	 * a check is made to verify all the isr bits are clear.
483 	 * If not, EOIs are issued to clear the bits.
484 	 */
485 	for (i = 7; i >= 1; i--) {
486 		isr = apic_reg_ops->apic_read(APIC_ISR_REG + (i * 4));
487 		if (isr != 0)
488 			for (j = 0; ((j < 32) && (isr != 0)); j++)
489 				if (isr & (1 << j)) {
490 					apic_reg_ops->apic_write(
491 					    APIC_EOI_REG, 0);
492 					isr &= ~(1 << j);
493 					apic_error |= APIC_ERR_BOOT_EOI;
494 				}
495 	}
496 
497 	/* set a flag so we know we have run apic_picinit() */
498 	apic_picinit_called = 1;
499 	LOCK_INIT_CLEAR(&apic_gethrtime_lock);
500 	LOCK_INIT_CLEAR(&apic_ioapic_lock);
501 	LOCK_INIT_CLEAR(&apic_error_lock);
502 	LOCK_INIT_CLEAR(&apic_mode_switch_lock);
503 
504 	picsetup();	 /* initialise the 8259 */
505 
506 	/* add nmi handler - least priority nmi handler */
507 	LOCK_INIT_CLEAR(&apic_nmi_lock);
508 
509 	if (!psm_add_nmintr(0, (avfunc) apic_nmi_intr,
510 	    "pcplusmp NMI handler", (caddr_t)NULL))
511 		cmn_err(CE_WARN, "pcplusmp: Unable to add nmi handler");
512 
513 	/*
514 	 * Check for directed-EOI capability in the local APIC.
515 	 */
516 	if (apic_directed_EOI_supported() == 1) {
517 		apic_set_directed_EOI_handler();
518 	}
519 
520 	apic_init_intr();
521 
522 	/* enable apic mode if imcr present */
523 	if (apic_imcrp) {
524 		outb(APIC_IMCR_P1, (uchar_t)APIC_IMCR_SELECT);
525 		outb(APIC_IMCR_P2, (uchar_t)APIC_IMCR_APIC);
526 	}
527 
528 	ioapic_init_intr(IOAPIC_MASK);
529 }
530 
531 #ifdef	DEBUG
532 void
533 apic_break(void)
534 {
535 }
536 #endif /* DEBUG */
537 
538 /*
539  * platform_intr_enter
540  *
541  *	Called at the beginning of the interrupt service routine to
542  *	mask all level equal to and below the interrupt priority
543  *	of the interrupting vector.  An EOI should be given to
544  *	the interrupt controller to enable other HW interrupts.
545  *
546  *	Return -1 for spurious interrupts
547  *
548  */
549 /*ARGSUSED*/
550 static int
551 apic_intr_enter(int ipl, int *vectorp)
552 {
553 	uchar_t vector;
554 	int nipl;
555 	int irq;
556 	ulong_t iflag;
557 	apic_cpus_info_t *cpu_infop;
558 
559 	/*
560 	 * The real vector delivered is (*vectorp + 0x20), but our caller
561 	 * subtracts 0x20 from the vector before passing it to us.
562 	 * (That's why APIC_BASE_VECT is 0x20.)
563 	 */
564 	vector = (uchar_t)*vectorp;
565 
566 	/* if interrupted by the clock, increment apic_nsec_since_boot */
567 	if (vector == apic_clkvect) {
568 		if (!apic_oneshot) {
569 			/* NOTE: this is not MT aware */
570 			apic_hrtime_stamp++;
571 			apic_nsec_since_boot += apic_nsec_per_intr;
572 			apic_hrtime_stamp++;
573 			last_count_read = apic_hertz_count;
574 			apic_redistribute_compute();
575 		}
576 
577 		/* We will avoid all the book keeping overhead for clock */
578 		nipl = apic_ipls[vector];
579 
580 		*vectorp = apic_vector_to_irq[vector + APIC_BASE_VECT];
581 
582 		apic_reg_ops->apic_write_task_reg(apic_ipltopri[nipl]);
583 		apic_reg_ops->apic_send_eoi(0);
584 
585 		return (nipl);
586 	}
587 
588 	cpu_infop = &apic_cpus[psm_get_cpu_id()];
589 
590 	if (vector == (APIC_SPUR_INTR - APIC_BASE_VECT)) {
591 		cpu_infop->aci_spur_cnt++;
592 		return (APIC_INT_SPURIOUS);
593 	}
594 
595 	/* Check if the vector we got is really what we need */
596 	if (apic_revector_pending) {
597 		/*
598 		 * Disable interrupts for the duration of
599 		 * the vector translation to prevent a self-race for
600 		 * the apic_revector_lock.  This cannot be done
601 		 * in apic_xlate_vector because it is recursive and
602 		 * we want the vector translation to be atomic with
603 		 * respect to other (higher-priority) interrupts.
604 		 */
605 		iflag = intr_clear();
606 		vector = apic_xlate_vector(vector + APIC_BASE_VECT) -
607 		    APIC_BASE_VECT;
608 		intr_restore(iflag);
609 	}
610 
611 	nipl = apic_ipls[vector];
612 	*vectorp = irq = apic_vector_to_irq[vector + APIC_BASE_VECT];
613 
614 	apic_reg_ops->apic_write_task_reg(apic_ipltopri[nipl]);
615 
616 	cpu_infop->aci_current[nipl] = (uchar_t)irq;
617 	cpu_infop->aci_curipl = (uchar_t)nipl;
618 	cpu_infop->aci_ISR_in_progress |= 1 << nipl;
619 
620 	/*
621 	 * apic_level_intr could have been assimilated into the irq struct.
622 	 * but, having it as a character array is more efficient in terms of
623 	 * cache usage. So, we leave it as is.
624 	 */
625 	if (!apic_level_intr[irq]) {
626 		apic_reg_ops->apic_send_eoi(0);
627 	}
628 
629 #ifdef	DEBUG
630 	APIC_DEBUG_BUF_PUT(vector);
631 	APIC_DEBUG_BUF_PUT(irq);
632 	APIC_DEBUG_BUF_PUT(nipl);
633 	APIC_DEBUG_BUF_PUT(psm_get_cpu_id());
634 	if ((apic_stretch_interrupts) && (apic_stretch_ISR & (1 << nipl)))
635 		drv_usecwait(apic_stretch_interrupts);
636 
637 	if (apic_break_on_cpu == psm_get_cpu_id())
638 		apic_break();
639 #endif /* DEBUG */
640 	return (nipl);
641 }
642 
643 void
644 apic_intr_exit(int prev_ipl, int irq)
645 {
646 	apic_cpus_info_t *cpu_infop;
647 
648 	apic_reg_ops->apic_write_task_reg(apic_ipltopri[prev_ipl]);
649 
650 	cpu_infop = &apic_cpus[psm_get_cpu_id()];
651 	if (apic_level_intr[irq])
652 		apic_reg_ops->apic_send_eoi(irq);
653 	cpu_infop->aci_curipl = (uchar_t)prev_ipl;
654 	/* ISR above current pri could not be in progress */
655 	cpu_infop->aci_ISR_in_progress &= (2 << prev_ipl) - 1;
656 }
657 
658 intr_exit_fn_t
659 psm_intr_exit_fn(void)
660 {
661 	return (apic_intr_exit);
662 }
663 
664 /*
665  * Mask all interrupts below or equal to the given IPL.
666  */
667 static void
668 apic_setspl(int ipl)
669 {
670 	apic_reg_ops->apic_write_task_reg(apic_ipltopri[ipl]);
671 
672 	/* interrupts at ipl above this cannot be in progress */
673 	apic_cpus[psm_get_cpu_id()].aci_ISR_in_progress &= (2 << ipl) - 1;
674 	/*
675 	 * this is a patch fix for the ALR QSMP P5 machine, so that interrupts
676 	 * have enough time to come in before the priority is raised again
677 	 * during the idle() loop.
678 	 */
679 	if (apic_setspl_delay)
680 		(void) apic_reg_ops->apic_get_pri();
681 }
682 
683 /*ARGSUSED*/
684 static int
685 apic_addspl(int irqno, int ipl, int min_ipl, int max_ipl)
686 {
687 	return (apic_addspl_common(irqno, ipl, min_ipl, max_ipl));
688 }
689 
690 static int
691 apic_delspl(int irqno, int ipl, int min_ipl, int max_ipl)
692 {
693 	return (apic_delspl_common(irqno, ipl, min_ipl,  max_ipl));
694 }
695 
696 static int
697 apic_post_cpu_start(void)
698 {
699 	int cpun;
700 	static int cpus_started = 1;
701 
702 	/* We know this CPU + BSP  started successfully. */
703 	cpus_started++;
704 
705 	splx(ipltospl(LOCK_LEVEL));
706 	apic_init_intr();
707 
708 	/*
709 	 * since some systems don't enable the internal cache on the non-boot
710 	 * cpus, so we have to enable them here
711 	 */
712 	setcr0(getcr0() & ~(CR0_CD | CR0_NW));
713 
714 	APIC_AV_PENDING_SET();
715 
716 	/*
717 	 * We may be booting, or resuming from suspend; aci_status will
718 	 * be APIC_CPU_INTR_ENABLE if coming from suspend, so we add the
719 	 * APIC_CPU_ONLINE flag here rather than setting aci_status completely.
720 	 */
721 	cpun = psm_get_cpu_id();
722 	apic_cpus[cpun].aci_status |= APIC_CPU_ONLINE;
723 
724 	apic_reg_ops->apic_write(APIC_DIVIDE_REG, apic_divide_reg_init);
725 	return (PSM_SUCCESS);
726 }
727 
728 /*
729  * type == -1 indicates it is an internal request. Do not change
730  * resv_vector for these requests
731  */
732 static int
733 apic_get_ipivect(int ipl, int type)
734 {
735 	uchar_t vector;
736 	int irq;
737 
738 	if ((irq = apic_allocate_irq(APIC_VECTOR(ipl))) != -1) {
739 		if ((vector = apic_allocate_vector(ipl, irq, 1))) {
740 			apic_irq_table[irq]->airq_mps_intr_index =
741 			    RESERVE_INDEX;
742 			apic_irq_table[irq]->airq_vector = vector;
743 			if (type != -1) {
744 				apic_resv_vector[ipl] = vector;
745 			}
746 			return (irq);
747 		}
748 	}
749 	apic_error |= APIC_ERR_GET_IPIVECT_FAIL;
750 	return (-1);	/* shouldn't happen */
751 }
752 
753 static int
754 apic_getclkirq(int ipl)
755 {
756 	int	irq;
757 
758 	if ((irq = apic_get_ipivect(ipl, -1)) == -1)
759 		return (-1);
760 	/*
761 	 * Note the vector in apic_clkvect for per clock handling.
762 	 */
763 	apic_clkvect = apic_irq_table[irq]->airq_vector - APIC_BASE_VECT;
764 	APIC_VERBOSE_IOAPIC((CE_NOTE, "get_clkirq: vector = %x\n",
765 	    apic_clkvect));
766 	return (irq);
767 }
768 
769 /*
770  * Try and disable all interrupts. We just assign interrupts to other
771  * processors based on policy. If any were bound by user request, we
772  * let them continue and return failure. We do not bother to check
773  * for cache affinity while rebinding.
774  */
775 
776 static int
777 apic_disable_intr(processorid_t cpun)
778 {
779 	int bind_cpu = 0, i, hardbound = 0;
780 	apic_irq_t *irq_ptr;
781 	ulong_t iflag;
782 
783 	iflag = intr_clear();
784 	lock_set(&apic_ioapic_lock);
785 
786 	for (i = 0; i <= APIC_MAX_VECTOR; i++) {
787 		if (apic_reprogram_info[i].done == B_FALSE) {
788 			if (apic_reprogram_info[i].bindcpu == cpun) {
789 				/*
790 				 * CPU is busy -- it's the target of
791 				 * a pending reprogramming attempt
792 				 */
793 				lock_clear(&apic_ioapic_lock);
794 				intr_restore(iflag);
795 				return (PSM_FAILURE);
796 			}
797 		}
798 	}
799 
800 	apic_cpus[cpun].aci_status &= ~APIC_CPU_INTR_ENABLE;
801 
802 	apic_cpus[cpun].aci_curipl = 0;
803 
804 	i = apic_min_device_irq;
805 	for (; i <= apic_max_device_irq; i++) {
806 		/*
807 		 * If there are bound interrupts on this cpu, then
808 		 * rebind them to other processors.
809 		 */
810 		if ((irq_ptr = apic_irq_table[i]) != NULL) {
811 			ASSERT((irq_ptr->airq_temp_cpu == IRQ_UNBOUND) ||
812 			    (irq_ptr->airq_temp_cpu == IRQ_UNINIT) ||
813 			    (apic_cpu_in_range(irq_ptr->airq_temp_cpu)));
814 
815 			if (irq_ptr->airq_temp_cpu == (cpun | IRQ_USER_BOUND)) {
816 				hardbound = 1;
817 				continue;
818 			}
819 
820 			if (irq_ptr->airq_temp_cpu == cpun) {
821 				do {
822 					bind_cpu =
823 					    apic_find_cpu(APIC_CPU_INTR_ENABLE);
824 				} while (apic_rebind_all(irq_ptr, bind_cpu));
825 			}
826 		}
827 	}
828 
829 	lock_clear(&apic_ioapic_lock);
830 	intr_restore(iflag);
831 
832 	if (hardbound) {
833 		cmn_err(CE_WARN, "Could not disable interrupts on %d"
834 		    "due to user bound interrupts", cpun);
835 		return (PSM_FAILURE);
836 	}
837 	else
838 		return (PSM_SUCCESS);
839 }
840 
841 /*
842  * Bind interrupts to the CPU's local APIC.
843  * Interrupts should not be bound to a CPU's local APIC until the CPU
844  * is ready to receive interrupts.
845  */
846 static void
847 apic_enable_intr(processorid_t cpun)
848 {
849 	int	i;
850 	apic_irq_t *irq_ptr;
851 	ulong_t iflag;
852 
853 	iflag = intr_clear();
854 	lock_set(&apic_ioapic_lock);
855 
856 	apic_cpus[cpun].aci_status |= APIC_CPU_INTR_ENABLE;
857 
858 	i = apic_min_device_irq;
859 	for (i = apic_min_device_irq; i <= apic_max_device_irq; i++) {
860 		if ((irq_ptr = apic_irq_table[i]) != NULL) {
861 			if ((irq_ptr->airq_cpu & ~IRQ_USER_BOUND) == cpun) {
862 				(void) apic_rebind_all(irq_ptr,
863 				    irq_ptr->airq_cpu);
864 			}
865 		}
866 	}
867 
868 	if (apic_cpus[cpun].aci_status & APIC_CPU_SUSPEND)
869 		apic_cpus[cpun].aci_status &= ~APIC_CPU_SUSPEND;
870 
871 	lock_clear(&apic_ioapic_lock);
872 	intr_restore(iflag);
873 }
874 
875 /*
876  * If this module needs a periodic handler for the interrupt distribution, it
877  * can be added here. The argument to the periodic handler is not currently
878  * used, but is reserved for future.
879  */
880 static void
881 apic_post_cyclic_setup(void *arg)
882 {
883 _NOTE(ARGUNUSED(arg))
884 
885 	cyc_handler_t cyh;
886 	cyc_time_t cyt;
887 
888 	/* cpu_lock is held */
889 	/* set up a periodic handler for intr redistribution */
890 
891 	/*
892 	 * In peridoc mode intr redistribution processing is done in
893 	 * apic_intr_enter during clk intr processing
894 	 */
895 	if (!apic_oneshot)
896 		return;
897 
898 	/*
899 	 * Register a periodical handler for the redistribution processing.
900 	 * Though we would generally prefer to use the DDI interface for
901 	 * periodic handler invocation, ddi_periodic_add(9F), we are
902 	 * unfortunately already holding cpu_lock, which ddi_periodic_add will
903 	 * attempt to take for us.  Thus, we add our own cyclic directly:
904 	 */
905 	cyh.cyh_func = (void (*)(void *))apic_redistribute_compute;
906 	cyh.cyh_arg = NULL;
907 	cyh.cyh_level = CY_LOW_LEVEL;
908 
909 	cyt.cyt_when = 0;
910 	cyt.cyt_interval = apic_redistribute_sample_interval;
911 
912 	apic_cyclic_id = cyclic_add(&cyh, &cyt);
913 }
914 
915 static void
916 apic_redistribute_compute(void)
917 {
918 	int	i, j, max_busy;
919 
920 	if (apic_enable_dynamic_migration) {
921 		if (++apic_nticks == apic_sample_factor_redistribution) {
922 			/*
923 			 * Time to call apic_intr_redistribute().
924 			 * reset apic_nticks. This will cause max_busy
925 			 * to be calculated below and if it is more than
926 			 * apic_int_busy, we will do the whole thing
927 			 */
928 			apic_nticks = 0;
929 		}
930 		max_busy = 0;
931 		for (i = 0; i < apic_nproc; i++) {
932 			if (!apic_cpu_in_range(i))
933 				continue;
934 
935 			/*
936 			 * Check if curipl is non zero & if ISR is in
937 			 * progress
938 			 */
939 			if (((j = apic_cpus[i].aci_curipl) != 0) &&
940 			    (apic_cpus[i].aci_ISR_in_progress & (1 << j))) {
941 
942 				int	irq;
943 				apic_cpus[i].aci_busy++;
944 				irq = apic_cpus[i].aci_current[j];
945 				apic_irq_table[irq]->airq_busy++;
946 			}
947 
948 			if (!apic_nticks &&
949 			    (apic_cpus[i].aci_busy > max_busy))
950 				max_busy = apic_cpus[i].aci_busy;
951 		}
952 		if (!apic_nticks) {
953 			if (max_busy > apic_int_busy_mark) {
954 			/*
955 			 * We could make the following check be
956 			 * skipped > 1 in which case, we get a
957 			 * redistribution at half the busy mark (due to
958 			 * double interval). Need to be able to collect
959 			 * more empirical data to decide if that is a
960 			 * good strategy. Punt for now.
961 			 */
962 				if (apic_skipped_redistribute) {
963 					apic_cleanup_busy();
964 					apic_skipped_redistribute = 0;
965 				} else {
966 					apic_intr_redistribute();
967 				}
968 			} else
969 				apic_skipped_redistribute++;
970 		}
971 	}
972 }
973 
974 
975 /*
976  * The following functions are in the platform specific file so that they
977  * can be different functions depending on whether we are running on
978  * bare metal or a hypervisor.
979  */
980 
981 /*
982  * Check to make sure there are enough irq slots
983  */
984 int
985 apic_check_free_irqs(int count)
986 {
987 	int i, avail;
988 
989 	avail = 0;
990 	for (i = APIC_FIRST_FREE_IRQ; i < APIC_RESV_IRQ; i++) {
991 		if ((apic_irq_table[i] == NULL) ||
992 		    apic_irq_table[i]->airq_mps_intr_index == FREE_INDEX) {
993 			if (++avail >= count)
994 				return (PSM_SUCCESS);
995 		}
996 	}
997 	return (PSM_FAILURE);
998 }
999 
1000 /*
1001  * This function allocates "count" MSI vector(s) for the given "dip/pri/type"
1002  */
1003 int
1004 apic_alloc_msi_vectors(dev_info_t *dip, int inum, int count, int pri,
1005     int behavior)
1006 {
1007 	int	rcount, i;
1008 	uchar_t	start, irqno;
1009 	uint32_t cpu = 0;
1010 	major_t	major;
1011 	apic_irq_t	*irqptr;
1012 
1013 	DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: dip=0x%p "
1014 	    "inum=0x%x  pri=0x%x count=0x%x behavior=%d\n",
1015 	    (void *)dip, inum, pri, count, behavior));
1016 
1017 	if (count > 1) {
1018 		if (behavior == DDI_INTR_ALLOC_STRICT &&
1019 		    apic_multi_msi_enable == 0)
1020 			return (0);
1021 		if (apic_multi_msi_enable == 0)
1022 			count = 1;
1023 	}
1024 
1025 	if ((rcount = apic_navail_vector(dip, pri)) > count)
1026 		rcount = count;
1027 	else if (rcount == 0 || (rcount < count &&
1028 	    behavior == DDI_INTR_ALLOC_STRICT))
1029 		return (0);
1030 
1031 	/* if not ISP2, then round it down */
1032 	if (!ISP2(rcount))
1033 		rcount = 1 << (highbit(rcount) - 1);
1034 
1035 	mutex_enter(&airq_mutex);
1036 
1037 	for (start = 0; rcount > 0; rcount >>= 1) {
1038 		if ((start = apic_find_multi_vectors(pri, rcount)) != 0 ||
1039 		    behavior == DDI_INTR_ALLOC_STRICT)
1040 			break;
1041 	}
1042 
1043 	if (start == 0) {
1044 		/* no vector available */
1045 		mutex_exit(&airq_mutex);
1046 		return (0);
1047 	}
1048 
1049 	if (apic_check_free_irqs(rcount) == PSM_FAILURE) {
1050 		/* not enough free irq slots available */
1051 		mutex_exit(&airq_mutex);
1052 		return (0);
1053 	}
1054 
1055 	major = (dip != NULL) ? ddi_driver_major(dip) : 0;
1056 	for (i = 0; i < rcount; i++) {
1057 		if ((irqno = apic_allocate_irq(apic_first_avail_irq)) ==
1058 		    (uchar_t)-1) {
1059 			/*
1060 			 * shouldn't happen because of the
1061 			 * apic_check_free_irqs() check earlier
1062 			 */
1063 			mutex_exit(&airq_mutex);
1064 			DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: "
1065 			    "apic_allocate_irq failed\n"));
1066 			return (i);
1067 		}
1068 		apic_max_device_irq = max(irqno, apic_max_device_irq);
1069 		apic_min_device_irq = min(irqno, apic_min_device_irq);
1070 		irqptr = apic_irq_table[irqno];
1071 #ifdef	DEBUG
1072 		if (apic_vector_to_irq[start + i] != APIC_RESV_IRQ)
1073 			DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: "
1074 			    "apic_vector_to_irq is not APIC_RESV_IRQ\n"));
1075 #endif
1076 		apic_vector_to_irq[start + i] = (uchar_t)irqno;
1077 
1078 		irqptr->airq_vector = (uchar_t)(start + i);
1079 		irqptr->airq_ioapicindex = (uchar_t)inum;	/* start */
1080 		irqptr->airq_intin_no = (uchar_t)rcount;
1081 		ASSERT(pri >= 0 && pri <= UCHAR_MAX);
1082 		irqptr->airq_ipl = (uchar_t)pri;
1083 		irqptr->airq_vector = start + i;
1084 		irqptr->airq_origirq = (uchar_t)(inum + i);
1085 		irqptr->airq_share_id = 0;
1086 		irqptr->airq_mps_intr_index = MSI_INDEX;
1087 		irqptr->airq_dip = dip;
1088 		irqptr->airq_major = major;
1089 		if (i == 0) /* they all bound to the same cpu */
1090 			cpu = irqptr->airq_cpu = apic_bind_intr(dip, irqno,
1091 			    0xff, 0xff);
1092 		else
1093 			irqptr->airq_cpu = cpu;
1094 		DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: irq=0x%x "
1095 		    "dip=0x%p vector=0x%x origirq=0x%x pri=0x%x\n", irqno,
1096 		    (void *)irqptr->airq_dip, irqptr->airq_vector,
1097 		    irqptr->airq_origirq, pri));
1098 	}
1099 	mutex_exit(&airq_mutex);
1100 	return (rcount);
1101 }
1102 
1103 /*
1104  * This function allocates "count" MSI-X vector(s) for the given "dip/pri/type"
1105  */
1106 int
1107 apic_alloc_msix_vectors(dev_info_t *dip, int inum, int count, int pri,
1108     int behavior)
1109 {
1110 	int	rcount, i;
1111 	major_t	major;
1112 
1113 	mutex_enter(&airq_mutex);
1114 
1115 	if ((rcount = apic_navail_vector(dip, pri)) > count)
1116 		rcount = count;
1117 	else if (rcount == 0 || (rcount < count &&
1118 	    behavior == DDI_INTR_ALLOC_STRICT)) {
1119 		rcount = 0;
1120 		goto out;
1121 	}
1122 
1123 	if (apic_check_free_irqs(rcount) == PSM_FAILURE) {
1124 		/* not enough free irq slots available */
1125 		rcount = 0;
1126 		goto out;
1127 	}
1128 
1129 	major = (dip != NULL) ? ddi_driver_major(dip) : 0;
1130 	for (i = 0; i < rcount; i++) {
1131 		uchar_t	vector, irqno;
1132 		apic_irq_t	*irqptr;
1133 
1134 		if ((irqno = apic_allocate_irq(apic_first_avail_irq)) ==
1135 		    (uchar_t)-1) {
1136 			/*
1137 			 * shouldn't happen because of the
1138 			 * apic_check_free_irqs() check earlier
1139 			 */
1140 			DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msix_vectors: "
1141 			    "apic_allocate_irq failed\n"));
1142 			rcount = i;
1143 			goto out;
1144 		}
1145 		if ((vector = apic_allocate_vector(pri, irqno, 1)) == 0) {
1146 			/*
1147 			 * shouldn't happen because of the
1148 			 * apic_navail_vector() call earlier
1149 			 */
1150 			DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msix_vectors: "
1151 			    "apic_allocate_vector failed\n"));
1152 			rcount = i;
1153 			goto out;
1154 		}
1155 		apic_max_device_irq = max(irqno, apic_max_device_irq);
1156 		apic_min_device_irq = min(irqno, apic_min_device_irq);
1157 		irqptr = apic_irq_table[irqno];
1158 		irqptr->airq_vector = (uchar_t)vector;
1159 		ASSERT(pri >= 0 && pri <= UCHAR_MAX);
1160 		irqptr->airq_ipl = (uchar_t)pri;
1161 		irqptr->airq_origirq = (uchar_t)(inum + i);
1162 		irqptr->airq_share_id = 0;
1163 		irqptr->airq_mps_intr_index = MSIX_INDEX;
1164 		irqptr->airq_dip = dip;
1165 		irqptr->airq_major = major;
1166 		irqptr->airq_cpu = apic_bind_intr(dip, irqno, 0xff, 0xff);
1167 	}
1168 out:
1169 	mutex_exit(&airq_mutex);
1170 	return (rcount);
1171 }
1172 
1173 /*
1174  * Allocate a free vector for irq at ipl. Takes care of merging of multiple
1175  * IPLs into a single APIC level as well as stretching some IPLs onto multiple
1176  * levels. APIC_HI_PRI_VECTS interrupts are reserved for high priority
1177  * requests and allocated only when pri is set.
1178  */
1179 uchar_t
1180 apic_allocate_vector(int ipl, int irq, int pri)
1181 {
1182 	int	lowest, highest, i;
1183 
1184 	highest = apic_ipltopri[ipl] + APIC_VECTOR_MASK;
1185 	lowest = apic_ipltopri[ipl - 1] + APIC_VECTOR_PER_IPL;
1186 
1187 	if (highest < lowest) /* Both ipl and ipl - 1 map to same pri */
1188 		lowest -= APIC_VECTOR_PER_IPL;
1189 
1190 #ifdef	DEBUG
1191 	if (apic_restrict_vector)	/* for testing shared interrupt logic */
1192 		highest = lowest + apic_restrict_vector + APIC_HI_PRI_VECTS;
1193 #endif /* DEBUG */
1194 	if (pri == 0)
1195 		highest -= APIC_HI_PRI_VECTS;
1196 
1197 	for (i = lowest; i <= highest; i++) {
1198 		if (APIC_CHECK_RESERVE_VECTORS(i))
1199 			continue;
1200 		if (apic_vector_to_irq[i] == APIC_RESV_IRQ) {
1201 			apic_vector_to_irq[i] = (uchar_t)irq;
1202 			ASSERT(i >= 0 && i <= UCHAR_MAX);
1203 			return ((uchar_t)i);
1204 		}
1205 	}
1206 
1207 	return (0);
1208 }
1209 
1210 /* Mark vector as not being used by any irq */
1211 void
1212 apic_free_vector(uchar_t vector)
1213 {
1214 	apic_vector_to_irq[vector] = APIC_RESV_IRQ;
1215 }
1216 
1217 /*
1218  * Call rebind to do the actual programming.
1219  * Must be called with interrupts disabled and apic_ioapic_lock held
1220  * 'p' is polymorphic -- if this function is called to process a deferred
1221  * reprogramming, p is of type 'struct ioapic_reprogram_data *', from which
1222  * the irq pointer is retrieved.  If not doing deferred reprogramming,
1223  * p is of the type 'apic_irq_t *'.
1224  *
1225  * apic_ioapic_lock must be held across this call, as it protects apic_rebind
1226  * and it protects apic_get_next_bind_cpu() from a race in which a CPU can be
1227  * taken offline after a cpu is selected, but before apic_rebind is called to
1228  * bind interrupts to it.
1229  */
1230 int
1231 apic_setup_io_intr(void *p, int irq, boolean_t deferred)
1232 {
1233 	apic_irq_t *irqptr;
1234 	struct ioapic_reprogram_data *drep = NULL;
1235 	int rv;
1236 
1237 	if (deferred) {
1238 		drep = (struct ioapic_reprogram_data *)p;
1239 		ASSERT(drep != NULL);
1240 		irqptr = drep->irqp;
1241 	} else
1242 		irqptr = (apic_irq_t *)p;
1243 
1244 	ASSERT(irqptr != NULL);
1245 
1246 	rv = apic_rebind(irqptr, apic_irq_table[irq]->airq_cpu, drep);
1247 	if (rv) {
1248 		/*
1249 		 * CPU is not up or interrupts are disabled. Fall back to
1250 		 * the first available CPU
1251 		 */
1252 		rv = apic_rebind(irqptr, apic_find_cpu(APIC_CPU_INTR_ENABLE),
1253 		    drep);
1254 	}
1255 
1256 	return (rv);
1257 }
1258 
1259 
1260 uchar_t
1261 apic_modify_vector(uchar_t vector, int irq)
1262 {
1263 	apic_vector_to_irq[vector] = (uchar_t)irq;
1264 	return (vector);
1265 }
1266 
1267 char *
1268 apic_get_apic_type(void)
1269 {
1270 	return (apic_psm_info.p_mach_idstring);
1271 }
1272 
1273 void
1274 apic_switch_ipi_callback(boolean_t enter)
1275 {
1276 	ASSERT(enter == B_TRUE);
1277 }
1278 
1279 int
1280 apic_detect_x2apic(void)
1281 {
1282 	return (0);
1283 }
1284 
1285 void
1286 apic_enable_x2apic(void)
1287 {
1288 	cmn_err(CE_PANIC, "apic_enable_x2apic() called in pcplusmp");
1289 }
1290 
1291 void
1292 x2apic_update_psm(void)
1293 {
1294 	cmn_err(CE_PANIC, "x2apic_update_psm() called in pcplusmp");
1295 }
1296