xref: /illumos-gate/usr/src/uts/i86pc/io/pcplusmp/apic.c (revision d48be21240dfd051b689384ce2b23479d757f2d8)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1993, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 /*
26  * Copyright (c) 2010, Intel Corporation.
27  * All rights reserved.
28  * Copyright 2019 Joyent, Inc.
29  * Copyright 2020 Oxide Computer Company
30  */
31 
32 /*
33  * To understand how the pcplusmp module interacts with the interrupt subsystem
34  * read the theory statement in uts/i86pc/os/intr.c.
35  */
36 
37 /*
38  * PSMI 1.1 extensions are supported only in 2.6 and later versions.
39  * PSMI 1.2 extensions are supported only in 2.7 and later versions.
40  * PSMI 1.3 and 1.4 extensions are supported in Solaris 10.
41  * PSMI 1.5 extensions are supported in Solaris Nevada.
42  * PSMI 1.6 extensions are supported in Solaris Nevada.
43  * PSMI 1.7 extensions are supported in Solaris Nevada.
44  */
45 #define	PSMI_1_7
46 
47 #include <sys/processor.h>
48 #include <sys/time.h>
49 #include <sys/psm.h>
50 #include <sys/smp_impldefs.h>
51 #include <sys/cram.h>
52 #include <sys/acpi/acpi.h>
53 #include <sys/acpica.h>
54 #include <sys/psm_common.h>
55 #include <sys/apic.h>
56 #include <sys/pit.h>
57 #include <sys/ddi.h>
58 #include <sys/sunddi.h>
59 #include <sys/ddi_impldefs.h>
60 #include <sys/pci.h>
61 #include <sys/promif.h>
62 #include <sys/prom_debug.h>
63 #include <sys/x86_archext.h>
64 #include <sys/cpc_impl.h>
65 #include <sys/uadmin.h>
66 #include <sys/panic.h>
67 #include <sys/debug.h>
68 #include <sys/archsystm.h>
69 #include <sys/trap.h>
70 #include <sys/machsystm.h>
71 #include <sys/sysmacros.h>
72 #include <sys/cpuvar.h>
73 #include <sys/rm_platter.h>
74 #include <sys/privregs.h>
75 #include <sys/note.h>
76 #include <sys/pci_intr_lib.h>
77 #include <sys/spl.h>
78 #include <sys/clock.h>
79 #include <sys/cyclic.h>
80 #include <sys/dditypes.h>
81 #include <sys/sunddi.h>
82 #include <sys/x_call.h>
83 #include <sys/reboot.h>
84 #include <sys/hpet.h>
85 #include <sys/apic_common.h>
86 #include <sys/apic_timer.h>
87 #include <sys/smt.h>
88 
89 /*
90  *	Local Function Prototypes
91  */
92 static void apic_init_intr(void);
93 
94 /*
95  *	standard MP entries
96  */
97 static int	apic_probe(void);
98 static int	apic_getclkirq(int ipl);
99 static void	apic_init(void);
100 static void	apic_picinit(void);
101 static int	apic_post_cpu_start(void);
102 static int	apic_intr_enter(int ipl, int *vect);
103 static void	apic_setspl(int ipl);
104 static int	apic_addspl(int ipl, int vector, int min_ipl, int max_ipl);
105 static int	apic_delspl(int ipl, int vector, int min_ipl, int max_ipl);
106 static int	apic_disable_intr(processorid_t cpun);
107 static void	apic_enable_intr(processorid_t cpun);
108 static int		apic_get_ipivect(int ipl, int type);
109 static void	apic_post_cyclic_setup(void *arg);
110 
111 #define	UCHAR_MAX	UINT8_MAX
112 
113 /*
114  * The following vector assignments influence the value of ipltopri and
115  * vectortoipl. Note that vectors 0 - 0x1f are not used. We can program
116  * idle to 0 and IPL 0 to 0xf to differentiate idle in case
117  * we care to do so in future. Note some IPLs which are rarely used
118  * will share the vector ranges and heavily used IPLs (5 and 6) have
119  * a wide range.
120  *
121  * This array is used to initialize apic_ipls[] (in apic_init()).
122  *
123  *	IPL		Vector range.		as passed to intr_enter
124  *	0		none.
125  *	1,2,3		0x20-0x2f		0x0-0xf
126  *	4		0x30-0x3f		0x10-0x1f
127  *	5		0x40-0x5f		0x20-0x3f
128  *	6		0x60-0x7f		0x40-0x5f
129  *	7,8,9		0x80-0x8f		0x60-0x6f
130  *	10		0x90-0x9f		0x70-0x7f
131  *	11		0xa0-0xaf		0x80-0x8f
132  *	...		...
133  *	15		0xe0-0xef		0xc0-0xcf
134  *	15		0xf0-0xff		0xd0-0xdf
135  */
136 uchar_t apic_vectortoipl[APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL] = {
137 	3, 4, 5, 5, 6, 6, 9, 10, 11, 12, 13, 14, 15, 15
138 };
139 	/*
140 	 * The ipl of an ISR at vector X is apic_vectortoipl[X>>4]
141 	 * NOTE that this is vector as passed into intr_enter which is
142 	 * programmed vector - 0x20 (APIC_BASE_VECT)
143 	 */
144 
145 uchar_t	apic_ipltopri[MAXIPL + 1];	/* unix ipl to apic pri	*/
146 	/* The taskpri to be programmed into apic to mask given ipl */
147 
148 /*
149  * Correlation of the hardware vector to the IPL in use, initialized
150  * from apic_vectortoipl[] in apic_init().  The final IPLs may not correlate
151  * to the IPLs in apic_vectortoipl on some systems that share interrupt lines
152  * connected to errata-stricken IOAPICs
153  */
154 uchar_t apic_ipls[APIC_AVAIL_VECTOR];
155 
156 /*
157  * Patchable global variables.
158  */
159 int	apic_enable_hwsoftint = 0;	/* 0 - disable, 1 - enable	*/
160 int	apic_enable_bind_log = 1;	/* 1 - display interrupt binding log */
161 
162 /*
163  *	Local static data
164  */
165 static struct	psm_ops apic_ops = {
166 	apic_probe,
167 
168 	apic_init,
169 	apic_picinit,
170 	apic_intr_enter,
171 	apic_intr_exit,
172 	apic_setspl,
173 	apic_addspl,
174 	apic_delspl,
175 	apic_disable_intr,
176 	apic_enable_intr,
177 	(int (*)(int))NULL,		/* psm_softlvl_to_irq */
178 	(void (*)(int))NULL,		/* psm_set_softintr */
179 
180 	apic_set_idlecpu,
181 	apic_unset_idlecpu,
182 
183 	apic_clkinit,
184 	apic_getclkirq,
185 	(void (*)(void))NULL,		/* psm_hrtimeinit */
186 	apic_gethrtime,
187 
188 	apic_get_next_processorid,
189 	apic_cpu_start,
190 	apic_post_cpu_start,
191 	apic_shutdown,
192 	apic_get_ipivect,
193 	apic_send_ipi,
194 
195 	(int (*)(dev_info_t *, int))NULL,	/* psm_translate_irq */
196 	(void (*)(int, char *))NULL,	/* psm_notify_error */
197 	(void (*)(int))NULL,		/* psm_notify_func */
198 	apic_timer_reprogram,
199 	apic_timer_enable,
200 	apic_timer_disable,
201 	apic_post_cyclic_setup,
202 	apic_preshutdown,
203 	apic_intr_ops,			/* Advanced DDI Interrupt framework */
204 	apic_state,			/* save, restore apic state for S3 */
205 	apic_cpu_ops,			/* CPU control interface. */
206 
207 	apic_get_pir_ipivect,
208 	apic_send_pir_ipi,
209 	apic_cmci_setup,
210 };
211 
212 struct psm_ops *psmops = &apic_ops;
213 
214 static struct	psm_info apic_psm_info = {
215 	PSM_INFO_VER01_7,			/* version */
216 	PSM_OWN_EXCLUSIVE,			/* ownership */
217 	(struct psm_ops *)&apic_ops,		/* operation */
218 	APIC_PCPLUSMP_NAME,			/* machine name */
219 	"pcplusmp v1.4 compatible",
220 };
221 
222 static void *apic_hdlp;
223 
224 /* to gather intr data and redistribute */
225 static void apic_redistribute_compute(void);
226 
227 /*
228  *	This is the loadable module wrapper
229  */
230 
231 int
232 _init(void)
233 {
234 	if (apic_coarse_hrtime)
235 		apic_ops.psm_gethrtime = &apic_gettime;
236 	return (psm_mod_init(&apic_hdlp, &apic_psm_info));
237 }
238 
239 int
240 _fini(void)
241 {
242 	return (psm_mod_fini(&apic_hdlp, &apic_psm_info));
243 }
244 
245 int
246 _info(struct modinfo *modinfop)
247 {
248 	return (psm_mod_info(&apic_hdlp, &apic_psm_info, modinfop));
249 }
250 
251 static int
252 apic_probe(void)
253 {
254 	PRM_POINT("apic_probe()");
255 
256 	/* check if apix is initialized */
257 	if (apix_enable && apix_loaded()) {
258 		PRM_POINT("apic_probe FAILURE: apix is loaded");
259 		return (PSM_FAILURE);
260 	}
261 
262 	/*
263 	 * Check whether x2APIC mode was activated by BIOS. We don't support
264 	 * that in pcplusmp as apix normally handles that.
265 	 */
266 	PRM_POINT("apic_local_mode()");
267 	if (apic_local_mode() == LOCAL_X2APIC) {
268 		PRM_POINT("apic_probe FAILURE: in x2apic mode");
269 		return (PSM_FAILURE);
270 	}
271 
272 	/* continue using pcplusmp PSM */
273 	apix_enable = 0;
274 
275 	return (apic_probe_common(apic_psm_info.p_mach_idstring));
276 }
277 
278 static uchar_t
279 apic_xlate_vector_by_irq(uchar_t irq)
280 {
281 	if (apic_irq_table[irq] == NULL)
282 		return (0);
283 
284 	return (apic_irq_table[irq]->airq_vector);
285 }
286 
287 void
288 apic_init(void)
289 {
290 	int i;
291 	int	j = 1;
292 
293 	psm_get_ioapicid = apic_get_ioapicid;
294 	psm_get_localapicid = apic_get_localapicid;
295 	psm_xlate_vector_by_irq = apic_xlate_vector_by_irq;
296 
297 	apic_ipltopri[0] = APIC_VECTOR_PER_IPL; /* leave 0 for idle */
298 	for (i = 0; i < (APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL); i++) {
299 		if ((i < ((APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL) - 1)) &&
300 		    (apic_vectortoipl[i + 1] == apic_vectortoipl[i]))
301 			/* get to highest vector at the same ipl */
302 			continue;
303 		for (; j <= apic_vectortoipl[i]; j++) {
304 			apic_ipltopri[j] = (i << APIC_IPL_SHIFT) +
305 			    APIC_BASE_VECT;
306 		}
307 	}
308 	for (; j < MAXIPL + 1; j++)
309 		/* fill up any empty ipltopri slots */
310 		apic_ipltopri[j] = (i << APIC_IPL_SHIFT) + APIC_BASE_VECT;
311 	apic_init_common();
312 
313 	/*
314 	 * For pcplusmp, we'll keep things simple and always disable this.
315 	 */
316 	smt_intr_alloc_pil(XC_CPUPOKE_PIL);
317 
318 	apic_pir_vect = apic_get_ipivect(XC_CPUPOKE_PIL, -1);
319 
320 }
321 
322 static void
323 apic_init_intr(void)
324 {
325 	processorid_t	cpun = psm_get_cpu_id();
326 	uint_t nlvt;
327 	uint32_t svr = AV_UNIT_ENABLE | APIC_SPUR_INTR;
328 
329 	apic_reg_ops->apic_write_task_reg(APIC_MASK_ALL);
330 
331 	ASSERT(apic_mode == LOCAL_APIC);
332 
333 	/*
334 	 * We are running APIC in MMIO mode.
335 	 */
336 	if (apic_flat_model) {
337 		apic_reg_ops->apic_write(APIC_FORMAT_REG, APIC_FLAT_MODEL);
338 	} else {
339 		apic_reg_ops->apic_write(APIC_FORMAT_REG, APIC_CLUSTER_MODEL);
340 	}
341 
342 	apic_reg_ops->apic_write(APIC_DEST_REG, AV_HIGH_ORDER >> cpun);
343 
344 	if (apic_directed_EOI_supported()) {
345 		/*
346 		 * Setting the 12th bit in the Spurious Interrupt Vector
347 		 * Register suppresses broadcast EOIs generated by the local
348 		 * APIC. The suppression of broadcast EOIs happens only when
349 		 * interrupts are level-triggered.
350 		 */
351 		svr |= APIC_SVR_SUPPRESS_BROADCAST_EOI;
352 	}
353 
354 	/* need to enable APIC before unmasking NMI */
355 	apic_reg_ops->apic_write(APIC_SPUR_INT_REG, svr);
356 
357 	/*
358 	 * Presence of an invalid vector with delivery mode AV_FIXED can
359 	 * cause an error interrupt, even if the entry is masked...so
360 	 * write a valid vector to LVT entries along with the mask bit
361 	 */
362 
363 	/* All APICs have timer and LINT0/1 */
364 	apic_reg_ops->apic_write(APIC_LOCAL_TIMER, AV_MASK|APIC_RESV_IRQ);
365 	apic_reg_ops->apic_write(APIC_INT_VECT0, AV_MASK|APIC_RESV_IRQ);
366 	apic_reg_ops->apic_write(APIC_INT_VECT1, AV_NMI);	/* enable NMI */
367 
368 	/*
369 	 * On integrated APICs, the number of LVT entries is
370 	 * 'Max LVT entry' + 1; on 82489DX's (non-integrated
371 	 * APICs), nlvt is "3" (LINT0, LINT1, and timer)
372 	 */
373 
374 	if (apic_cpus[cpun].aci_local_ver < APIC_INTEGRATED_VERS) {
375 		nlvt = 3;
376 	} else {
377 		nlvt = ((apic_reg_ops->apic_read(APIC_VERS_REG) >> 16) &
378 		    0xFF) + 1;
379 	}
380 
381 	if (nlvt >= 5) {
382 		/* Enable performance counter overflow interrupt */
383 
384 		if (!is_x86_feature(x86_featureset, X86FSET_MSR))
385 			apic_enable_cpcovf_intr = 0;
386 		if (apic_enable_cpcovf_intr) {
387 			if (apic_cpcovf_vect == 0) {
388 				int ipl = APIC_PCINT_IPL;
389 				int irq = apic_get_ipivect(ipl, -1);
390 
391 				ASSERT(irq != -1);
392 				apic_cpcovf_vect =
393 				    apic_irq_table[irq]->airq_vector;
394 				ASSERT(apic_cpcovf_vect);
395 				(void) add_avintr(NULL, ipl,
396 				    (avfunc)kcpc_hw_overflow_intr,
397 				    "apic pcint", irq, NULL, NULL, NULL, NULL);
398 				kcpc_hw_overflow_intr_installed = 1;
399 				kcpc_hw_enable_cpc_intr =
400 				    apic_cpcovf_mask_clear;
401 			}
402 			apic_reg_ops->apic_write(APIC_PCINT_VECT,
403 			    apic_cpcovf_vect);
404 		}
405 	}
406 
407 	if (nlvt >= 6) {
408 		/* Only mask TM intr if the BIOS apparently doesn't use it */
409 
410 		uint32_t lvtval;
411 
412 		lvtval = apic_reg_ops->apic_read(APIC_THERM_VECT);
413 		if (((lvtval & AV_MASK) == AV_MASK) ||
414 		    ((lvtval & AV_DELIV_MODE) != AV_SMI)) {
415 			apic_reg_ops->apic_write(APIC_THERM_VECT,
416 			    AV_MASK|APIC_RESV_IRQ);
417 		}
418 	}
419 
420 	/* Enable error interrupt */
421 
422 	if (nlvt >= 4 && apic_enable_error_intr) {
423 		if (apic_errvect == 0) {
424 			int ipl = 0xf;	/* get highest priority intr */
425 			int irq = apic_get_ipivect(ipl, -1);
426 
427 			ASSERT(irq != -1);
428 			apic_errvect = apic_irq_table[irq]->airq_vector;
429 			ASSERT(apic_errvect);
430 			/*
431 			 * Not PSMI compliant, but we are going to merge
432 			 * with ON anyway
433 			 */
434 			(void) add_avintr((void *)NULL, ipl,
435 			    (avfunc)apic_error_intr, "apic error intr",
436 			    irq, NULL, NULL, NULL, NULL);
437 		}
438 		apic_reg_ops->apic_write(APIC_ERR_VECT, apic_errvect);
439 		apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0);
440 		apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0);
441 	}
442 
443 	/*
444 	 * Ensure a CMCI interrupt is allocated, regardless of whether it is
445 	 * enabled or not.
446 	 */
447 	if (apic_cmci_vect == 0) {
448 		const int ipl = 0x2;
449 		int irq = apic_get_ipivect(ipl, -1);
450 
451 		ASSERT(irq != -1);
452 		apic_cmci_vect = apic_irq_table[irq]->airq_vector;
453 		ASSERT(apic_cmci_vect);
454 
455 		(void) add_avintr(NULL, ipl,
456 		    (avfunc)cmi_cmci_trap,
457 		    "apic cmci intr", irq, NULL, NULL, NULL, NULL);
458 	}
459 }
460 
461 static void
462 apic_picinit(void)
463 {
464 	int i, j;
465 	uint_t isr;
466 
467 	/*
468 	 * Initialize and enable interrupt remapping before apic
469 	 * hardware initialization
470 	 */
471 	apic_intrmap_init(apic_mode);
472 
473 	/*
474 	 * On UniSys Model 6520, the BIOS leaves vector 0x20 isr
475 	 * bit on without clearing it with EOI.  Since softint
476 	 * uses vector 0x20 to interrupt itself, so softint will
477 	 * not work on this machine.  In order to fix this problem
478 	 * a check is made to verify all the isr bits are clear.
479 	 * If not, EOIs are issued to clear the bits.
480 	 */
481 	for (i = 7; i >= 1; i--) {
482 		isr = apic_reg_ops->apic_read(APIC_ISR_REG + (i * 4));
483 		if (isr != 0)
484 			for (j = 0; ((j < 32) && (isr != 0)); j++)
485 				if (isr & (1 << j)) {
486 					apic_reg_ops->apic_write(
487 					    APIC_EOI_REG, 0);
488 					isr &= ~(1 << j);
489 					apic_error |= APIC_ERR_BOOT_EOI;
490 				}
491 	}
492 
493 	/* set a flag so we know we have run apic_picinit() */
494 	apic_picinit_called = 1;
495 	LOCK_INIT_CLEAR(&apic_gethrtime_lock);
496 	LOCK_INIT_CLEAR(&apic_ioapic_lock);
497 	LOCK_INIT_CLEAR(&apic_error_lock);
498 	LOCK_INIT_CLEAR(&apic_mode_switch_lock);
499 
500 	picsetup();	 /* initialise the 8259 */
501 
502 	/* add nmi handler - least priority nmi handler */
503 	LOCK_INIT_CLEAR(&apic_nmi_lock);
504 
505 	if (!psm_add_nmintr(0, (avfunc) apic_nmi_intr,
506 	    "pcplusmp NMI handler", (caddr_t)NULL))
507 		cmn_err(CE_WARN, "pcplusmp: Unable to add nmi handler");
508 
509 	/*
510 	 * Check for directed-EOI capability in the local APIC.
511 	 */
512 	if (apic_directed_EOI_supported() == 1) {
513 		apic_set_directed_EOI_handler();
514 	}
515 
516 	apic_init_intr();
517 
518 	/* enable apic mode if imcr present */
519 	if (apic_imcrp) {
520 		outb(APIC_IMCR_P1, (uchar_t)APIC_IMCR_SELECT);
521 		outb(APIC_IMCR_P2, (uchar_t)APIC_IMCR_APIC);
522 	}
523 
524 	ioapic_init_intr(IOAPIC_MASK);
525 }
526 
527 #ifdef	DEBUG
528 void
529 apic_break(void)
530 {
531 }
532 #endif /* DEBUG */
533 
534 /*
535  * platform_intr_enter
536  *
537  *	Called at the beginning of the interrupt service routine to
538  *	mask all level equal to and below the interrupt priority
539  *	of the interrupting vector.  An EOI should be given to
540  *	the interrupt controller to enable other HW interrupts.
541  *
542  *	Return -1 for spurious interrupts
543  *
544  */
545 /*ARGSUSED*/
546 static int
547 apic_intr_enter(int ipl, int *vectorp)
548 {
549 	uchar_t vector;
550 	int nipl;
551 	int irq;
552 	ulong_t iflag;
553 	apic_cpus_info_t *cpu_infop;
554 
555 	/*
556 	 * The real vector delivered is (*vectorp + 0x20), but our caller
557 	 * subtracts 0x20 from the vector before passing it to us.
558 	 * (That's why APIC_BASE_VECT is 0x20.)
559 	 */
560 	vector = (uchar_t)*vectorp;
561 
562 	/* if interrupted by the clock, increment apic_nsec_since_boot */
563 	if (vector == apic_clkvect) {
564 		if (!apic_oneshot) {
565 			/* NOTE: this is not MT aware */
566 			apic_hrtime_stamp++;
567 			apic_nsec_since_boot += apic_nsec_per_intr;
568 			apic_hrtime_stamp++;
569 			last_count_read = apic_hertz_count;
570 			apic_redistribute_compute();
571 		}
572 
573 		/* We will avoid all the book keeping overhead for clock */
574 		nipl = apic_ipls[vector];
575 
576 		*vectorp = apic_vector_to_irq[vector + APIC_BASE_VECT];
577 
578 		apic_reg_ops->apic_write_task_reg(apic_ipltopri[nipl]);
579 		apic_reg_ops->apic_send_eoi(0);
580 
581 		return (nipl);
582 	}
583 
584 	cpu_infop = &apic_cpus[psm_get_cpu_id()];
585 
586 	if (vector == (APIC_SPUR_INTR - APIC_BASE_VECT)) {
587 		cpu_infop->aci_spur_cnt++;
588 		return (APIC_INT_SPURIOUS);
589 	}
590 
591 	/* Check if the vector we got is really what we need */
592 	if (apic_revector_pending) {
593 		/*
594 		 * Disable interrupts for the duration of
595 		 * the vector translation to prevent a self-race for
596 		 * the apic_revector_lock.  This cannot be done
597 		 * in apic_xlate_vector because it is recursive and
598 		 * we want the vector translation to be atomic with
599 		 * respect to other (higher-priority) interrupts.
600 		 */
601 		iflag = intr_clear();
602 		vector = apic_xlate_vector(vector + APIC_BASE_VECT) -
603 		    APIC_BASE_VECT;
604 		intr_restore(iflag);
605 	}
606 
607 	nipl = apic_ipls[vector];
608 	*vectorp = irq = apic_vector_to_irq[vector + APIC_BASE_VECT];
609 
610 	apic_reg_ops->apic_write_task_reg(apic_ipltopri[nipl]);
611 
612 	cpu_infop->aci_current[nipl] = (uchar_t)irq;
613 	cpu_infop->aci_curipl = (uchar_t)nipl;
614 	cpu_infop->aci_ISR_in_progress |= 1 << nipl;
615 
616 	/*
617 	 * apic_level_intr could have been assimilated into the irq struct.
618 	 * but, having it as a character array is more efficient in terms of
619 	 * cache usage. So, we leave it as is.
620 	 */
621 	if (!apic_level_intr[irq]) {
622 		apic_reg_ops->apic_send_eoi(0);
623 	}
624 
625 #ifdef	DEBUG
626 	APIC_DEBUG_BUF_PUT(vector);
627 	APIC_DEBUG_BUF_PUT(irq);
628 	APIC_DEBUG_BUF_PUT(nipl);
629 	APIC_DEBUG_BUF_PUT(psm_get_cpu_id());
630 	if ((apic_stretch_interrupts) && (apic_stretch_ISR & (1 << nipl)))
631 		drv_usecwait(apic_stretch_interrupts);
632 
633 	if (apic_break_on_cpu == psm_get_cpu_id())
634 		apic_break();
635 #endif /* DEBUG */
636 	return (nipl);
637 }
638 
639 void
640 apic_intr_exit(int prev_ipl, int irq)
641 {
642 	apic_cpus_info_t *cpu_infop;
643 
644 	apic_reg_ops->apic_write_task_reg(apic_ipltopri[prev_ipl]);
645 
646 	cpu_infop = &apic_cpus[psm_get_cpu_id()];
647 	if (apic_level_intr[irq])
648 		apic_reg_ops->apic_send_eoi(irq);
649 	cpu_infop->aci_curipl = (uchar_t)prev_ipl;
650 	/* ISR above current pri could not be in progress */
651 	cpu_infop->aci_ISR_in_progress &= (2 << prev_ipl) - 1;
652 }
653 
654 intr_exit_fn_t
655 psm_intr_exit_fn(void)
656 {
657 	return (apic_intr_exit);
658 }
659 
660 /*
661  * Mask all interrupts below or equal to the given IPL.
662  */
663 static void
664 apic_setspl(int ipl)
665 {
666 	apic_reg_ops->apic_write_task_reg(apic_ipltopri[ipl]);
667 
668 	/* interrupts at ipl above this cannot be in progress */
669 	apic_cpus[psm_get_cpu_id()].aci_ISR_in_progress &= (2 << ipl) - 1;
670 	/*
671 	 * this is a patch fix for the ALR QSMP P5 machine, so that interrupts
672 	 * have enough time to come in before the priority is raised again
673 	 * during the idle() loop.
674 	 */
675 	if (apic_setspl_delay)
676 		(void) apic_reg_ops->apic_get_pri();
677 }
678 
679 /*ARGSUSED*/
680 static int
681 apic_addspl(int irqno, int ipl, int min_ipl, int max_ipl)
682 {
683 	return (apic_addspl_common(irqno, ipl, min_ipl, max_ipl));
684 }
685 
686 static int
687 apic_delspl(int irqno, int ipl, int min_ipl, int max_ipl)
688 {
689 	return (apic_delspl_common(irqno, ipl, min_ipl,  max_ipl));
690 }
691 
692 static int
693 apic_post_cpu_start(void)
694 {
695 	int cpun;
696 	static int cpus_started = 1;
697 
698 	/* We know this CPU + BSP  started successfully. */
699 	cpus_started++;
700 
701 	splx(ipltospl(LOCK_LEVEL));
702 	apic_init_intr();
703 
704 	/*
705 	 * since some systems don't enable the internal cache on the non-boot
706 	 * cpus, so we have to enable them here
707 	 */
708 	setcr0(getcr0() & ~(CR0_CD | CR0_NW));
709 
710 	APIC_AV_PENDING_SET();
711 
712 	/*
713 	 * We may be booting, or resuming from suspend; aci_status will
714 	 * be APIC_CPU_INTR_ENABLE if coming from suspend, so we add the
715 	 * APIC_CPU_ONLINE flag here rather than setting aci_status completely.
716 	 */
717 	cpun = psm_get_cpu_id();
718 	apic_cpus[cpun].aci_status |= APIC_CPU_ONLINE;
719 
720 	apic_reg_ops->apic_write(APIC_DIVIDE_REG, apic_divide_reg_init);
721 	return (PSM_SUCCESS);
722 }
723 
724 /*
725  * type == -1 indicates it is an internal request. Do not change
726  * resv_vector for these requests
727  */
728 static int
729 apic_get_ipivect(int ipl, int type)
730 {
731 	uchar_t vector;
732 	int irq;
733 
734 	if ((irq = apic_allocate_irq(APIC_VECTOR(ipl))) != -1) {
735 		if ((vector = apic_allocate_vector(ipl, irq, 1))) {
736 			apic_irq_table[irq]->airq_mps_intr_index =
737 			    RESERVE_INDEX;
738 			apic_irq_table[irq]->airq_vector = vector;
739 			if (type != -1) {
740 				apic_resv_vector[ipl] = vector;
741 			}
742 			return (irq);
743 		}
744 	}
745 	apic_error |= APIC_ERR_GET_IPIVECT_FAIL;
746 	return (-1);	/* shouldn't happen */
747 }
748 
749 static int
750 apic_getclkirq(int ipl)
751 {
752 	int	irq;
753 
754 	if ((irq = apic_get_ipivect(ipl, -1)) == -1)
755 		return (-1);
756 	/*
757 	 * Note the vector in apic_clkvect for per clock handling.
758 	 */
759 	apic_clkvect = apic_irq_table[irq]->airq_vector - APIC_BASE_VECT;
760 	APIC_VERBOSE_IOAPIC((CE_NOTE, "get_clkirq: vector = %x\n",
761 	    apic_clkvect));
762 	return (irq);
763 }
764 
765 /*
766  * Try and disable all interrupts. We just assign interrupts to other
767  * processors based on policy. If any were bound by user request, we
768  * let them continue and return failure. We do not bother to check
769  * for cache affinity while rebinding.
770  */
771 
772 static int
773 apic_disable_intr(processorid_t cpun)
774 {
775 	int bind_cpu = 0, i, hardbound = 0;
776 	apic_irq_t *irq_ptr;
777 	ulong_t iflag;
778 
779 	iflag = intr_clear();
780 	lock_set(&apic_ioapic_lock);
781 
782 	for (i = 0; i <= APIC_MAX_VECTOR; i++) {
783 		if (apic_reprogram_info[i].done == B_FALSE) {
784 			if (apic_reprogram_info[i].bindcpu == cpun) {
785 				/*
786 				 * CPU is busy -- it's the target of
787 				 * a pending reprogramming attempt
788 				 */
789 				lock_clear(&apic_ioapic_lock);
790 				intr_restore(iflag);
791 				return (PSM_FAILURE);
792 			}
793 		}
794 	}
795 
796 	apic_cpus[cpun].aci_status &= ~APIC_CPU_INTR_ENABLE;
797 
798 	apic_cpus[cpun].aci_curipl = 0;
799 
800 	i = apic_min_device_irq;
801 	for (; i <= apic_max_device_irq; i++) {
802 		/*
803 		 * If there are bound interrupts on this cpu, then
804 		 * rebind them to other processors.
805 		 */
806 		if ((irq_ptr = apic_irq_table[i]) != NULL) {
807 			ASSERT((irq_ptr->airq_temp_cpu == IRQ_UNBOUND) ||
808 			    (irq_ptr->airq_temp_cpu == IRQ_UNINIT) ||
809 			    (apic_cpu_in_range(irq_ptr->airq_temp_cpu)));
810 
811 			if (irq_ptr->airq_temp_cpu == (cpun | IRQ_USER_BOUND)) {
812 				hardbound = 1;
813 				continue;
814 			}
815 
816 			if (irq_ptr->airq_temp_cpu == cpun) {
817 				do {
818 					bind_cpu =
819 					    apic_find_cpu(APIC_CPU_INTR_ENABLE);
820 				} while (apic_rebind_all(irq_ptr, bind_cpu));
821 			}
822 		}
823 	}
824 
825 	lock_clear(&apic_ioapic_lock);
826 	intr_restore(iflag);
827 
828 	if (hardbound) {
829 		cmn_err(CE_WARN, "Could not disable interrupts on %d"
830 		    "due to user bound interrupts", cpun);
831 		return (PSM_FAILURE);
832 	}
833 	else
834 		return (PSM_SUCCESS);
835 }
836 
837 /*
838  * Bind interrupts to the CPU's local APIC.
839  * Interrupts should not be bound to a CPU's local APIC until the CPU
840  * is ready to receive interrupts.
841  */
842 static void
843 apic_enable_intr(processorid_t cpun)
844 {
845 	int	i;
846 	apic_irq_t *irq_ptr;
847 	ulong_t iflag;
848 
849 	iflag = intr_clear();
850 	lock_set(&apic_ioapic_lock);
851 
852 	apic_cpus[cpun].aci_status |= APIC_CPU_INTR_ENABLE;
853 
854 	i = apic_min_device_irq;
855 	for (i = apic_min_device_irq; i <= apic_max_device_irq; i++) {
856 		if ((irq_ptr = apic_irq_table[i]) != NULL) {
857 			if ((irq_ptr->airq_cpu & ~IRQ_USER_BOUND) == cpun) {
858 				(void) apic_rebind_all(irq_ptr,
859 				    irq_ptr->airq_cpu);
860 			}
861 		}
862 	}
863 
864 	if (apic_cpus[cpun].aci_status & APIC_CPU_SUSPEND)
865 		apic_cpus[cpun].aci_status &= ~APIC_CPU_SUSPEND;
866 
867 	lock_clear(&apic_ioapic_lock);
868 	intr_restore(iflag);
869 }
870 
871 /*
872  * If this module needs a periodic handler for the interrupt distribution, it
873  * can be added here. The argument to the periodic handler is not currently
874  * used, but is reserved for future.
875  */
876 static void
877 apic_post_cyclic_setup(void *arg)
878 {
879 _NOTE(ARGUNUSED(arg))
880 
881 	cyc_handler_t cyh;
882 	cyc_time_t cyt;
883 
884 	/* cpu_lock is held */
885 	/* set up a periodic handler for intr redistribution */
886 
887 	/*
888 	 * In peridoc mode intr redistribution processing is done in
889 	 * apic_intr_enter during clk intr processing
890 	 */
891 	if (!apic_oneshot)
892 		return;
893 
894 	/*
895 	 * Register a periodical handler for the redistribution processing.
896 	 * Though we would generally prefer to use the DDI interface for
897 	 * periodic handler invocation, ddi_periodic_add(9F), we are
898 	 * unfortunately already holding cpu_lock, which ddi_periodic_add will
899 	 * attempt to take for us.  Thus, we add our own cyclic directly:
900 	 */
901 	cyh.cyh_func = (void (*)(void *))apic_redistribute_compute;
902 	cyh.cyh_arg = NULL;
903 	cyh.cyh_level = CY_LOW_LEVEL;
904 
905 	cyt.cyt_when = 0;
906 	cyt.cyt_interval = apic_redistribute_sample_interval;
907 
908 	apic_cyclic_id = cyclic_add(&cyh, &cyt);
909 }
910 
911 static void
912 apic_redistribute_compute(void)
913 {
914 	int	i, j, max_busy;
915 
916 	if (apic_enable_dynamic_migration) {
917 		if (++apic_nticks == apic_sample_factor_redistribution) {
918 			/*
919 			 * Time to call apic_intr_redistribute().
920 			 * reset apic_nticks. This will cause max_busy
921 			 * to be calculated below and if it is more than
922 			 * apic_int_busy, we will do the whole thing
923 			 */
924 			apic_nticks = 0;
925 		}
926 		max_busy = 0;
927 		for (i = 0; i < apic_nproc; i++) {
928 			if (!apic_cpu_in_range(i))
929 				continue;
930 
931 			/*
932 			 * Check if curipl is non zero & if ISR is in
933 			 * progress
934 			 */
935 			if (((j = apic_cpus[i].aci_curipl) != 0) &&
936 			    (apic_cpus[i].aci_ISR_in_progress & (1 << j))) {
937 
938 				int	irq;
939 				apic_cpus[i].aci_busy++;
940 				irq = apic_cpus[i].aci_current[j];
941 				apic_irq_table[irq]->airq_busy++;
942 			}
943 
944 			if (!apic_nticks &&
945 			    (apic_cpus[i].aci_busy > max_busy))
946 				max_busy = apic_cpus[i].aci_busy;
947 		}
948 		if (!apic_nticks) {
949 			if (max_busy > apic_int_busy_mark) {
950 			/*
951 			 * We could make the following check be
952 			 * skipped > 1 in which case, we get a
953 			 * redistribution at half the busy mark (due to
954 			 * double interval). Need to be able to collect
955 			 * more empirical data to decide if that is a
956 			 * good strategy. Punt for now.
957 			 */
958 				if (apic_skipped_redistribute) {
959 					apic_cleanup_busy();
960 					apic_skipped_redistribute = 0;
961 				} else {
962 					apic_intr_redistribute();
963 				}
964 			} else
965 				apic_skipped_redistribute++;
966 		}
967 	}
968 }
969 
970 
971 /*
972  * The following functions are in the platform specific file so that they
973  * can be different functions depending on whether we are running on
974  * bare metal or a hypervisor.
975  */
976 
977 /*
978  * Check to make sure there are enough irq slots
979  */
980 int
981 apic_check_free_irqs(int count)
982 {
983 	int i, avail;
984 
985 	avail = 0;
986 	for (i = APIC_FIRST_FREE_IRQ; i < APIC_RESV_IRQ; i++) {
987 		if ((apic_irq_table[i] == NULL) ||
988 		    apic_irq_table[i]->airq_mps_intr_index == FREE_INDEX) {
989 			if (++avail >= count)
990 				return (PSM_SUCCESS);
991 		}
992 	}
993 	return (PSM_FAILURE);
994 }
995 
996 /*
997  * This function allocates "count" MSI vector(s) for the given "dip/pri/type"
998  */
999 int
1000 apic_alloc_msi_vectors(dev_info_t *dip, int inum, int count, int pri,
1001     int behavior)
1002 {
1003 	int	rcount, i;
1004 	uchar_t	start, irqno;
1005 	uint32_t cpu = 0;
1006 	major_t	major;
1007 	apic_irq_t	*irqptr;
1008 
1009 	DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: dip=0x%p "
1010 	    "inum=0x%x  pri=0x%x count=0x%x behavior=%d\n",
1011 	    (void *)dip, inum, pri, count, behavior));
1012 
1013 	if (count > 1) {
1014 		if (behavior == DDI_INTR_ALLOC_STRICT &&
1015 		    apic_multi_msi_enable == 0)
1016 			return (0);
1017 		if (apic_multi_msi_enable == 0)
1018 			count = 1;
1019 	}
1020 
1021 	if ((rcount = apic_navail_vector(dip, pri)) > count)
1022 		rcount = count;
1023 	else if (rcount == 0 || (rcount < count &&
1024 	    behavior == DDI_INTR_ALLOC_STRICT))
1025 		return (0);
1026 
1027 	/* if not ISP2, then round it down */
1028 	if (!ISP2(rcount))
1029 		rcount = 1 << (highbit(rcount) - 1);
1030 
1031 	mutex_enter(&airq_mutex);
1032 
1033 	for (start = 0; rcount > 0; rcount >>= 1) {
1034 		if ((start = apic_find_multi_vectors(pri, rcount)) != 0 ||
1035 		    behavior == DDI_INTR_ALLOC_STRICT)
1036 			break;
1037 	}
1038 
1039 	if (start == 0) {
1040 		/* no vector available */
1041 		mutex_exit(&airq_mutex);
1042 		return (0);
1043 	}
1044 
1045 	if (apic_check_free_irqs(rcount) == PSM_FAILURE) {
1046 		/* not enough free irq slots available */
1047 		mutex_exit(&airq_mutex);
1048 		return (0);
1049 	}
1050 
1051 	major = (dip != NULL) ? ddi_driver_major(dip) : 0;
1052 	for (i = 0; i < rcount; i++) {
1053 		if ((irqno = apic_allocate_irq(apic_first_avail_irq)) ==
1054 		    (uchar_t)-1) {
1055 			/*
1056 			 * shouldn't happen because of the
1057 			 * apic_check_free_irqs() check earlier
1058 			 */
1059 			mutex_exit(&airq_mutex);
1060 			DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: "
1061 			    "apic_allocate_irq failed\n"));
1062 			return (i);
1063 		}
1064 		apic_max_device_irq = max(irqno, apic_max_device_irq);
1065 		apic_min_device_irq = min(irqno, apic_min_device_irq);
1066 		irqptr = apic_irq_table[irqno];
1067 #ifdef	DEBUG
1068 		if (apic_vector_to_irq[start + i] != APIC_RESV_IRQ)
1069 			DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: "
1070 			    "apic_vector_to_irq is not APIC_RESV_IRQ\n"));
1071 #endif
1072 		apic_vector_to_irq[start + i] = (uchar_t)irqno;
1073 
1074 		irqptr->airq_vector = (uchar_t)(start + i);
1075 		irqptr->airq_ioapicindex = (uchar_t)inum;	/* start */
1076 		irqptr->airq_intin_no = (uchar_t)rcount;
1077 		ASSERT(pri >= 0 && pri <= UCHAR_MAX);
1078 		irqptr->airq_ipl = (uchar_t)pri;
1079 		irqptr->airq_vector = start + i;
1080 		irqptr->airq_origirq = (uchar_t)(inum + i);
1081 		irqptr->airq_share_id = 0;
1082 		irqptr->airq_mps_intr_index = MSI_INDEX;
1083 		irqptr->airq_dip = dip;
1084 		irqptr->airq_major = major;
1085 		if (i == 0) /* they all bound to the same cpu */
1086 			cpu = irqptr->airq_cpu = apic_bind_intr(dip, irqno,
1087 			    0xff, 0xff);
1088 		else
1089 			irqptr->airq_cpu = cpu;
1090 		DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: irq=0x%x "
1091 		    "dip=0x%p vector=0x%x origirq=0x%x pri=0x%x\n", irqno,
1092 		    (void *)irqptr->airq_dip, irqptr->airq_vector,
1093 		    irqptr->airq_origirq, pri));
1094 	}
1095 	mutex_exit(&airq_mutex);
1096 	return (rcount);
1097 }
1098 
1099 /*
1100  * This function allocates "count" MSI-X vector(s) for the given "dip/pri/type"
1101  */
1102 int
1103 apic_alloc_msix_vectors(dev_info_t *dip, int inum, int count, int pri,
1104     int behavior)
1105 {
1106 	int	rcount, i;
1107 	major_t	major;
1108 
1109 	mutex_enter(&airq_mutex);
1110 
1111 	if ((rcount = apic_navail_vector(dip, pri)) > count)
1112 		rcount = count;
1113 	else if (rcount == 0 || (rcount < count &&
1114 	    behavior == DDI_INTR_ALLOC_STRICT)) {
1115 		rcount = 0;
1116 		goto out;
1117 	}
1118 
1119 	if (apic_check_free_irqs(rcount) == PSM_FAILURE) {
1120 		/* not enough free irq slots available */
1121 		rcount = 0;
1122 		goto out;
1123 	}
1124 
1125 	major = (dip != NULL) ? ddi_driver_major(dip) : 0;
1126 	for (i = 0; i < rcount; i++) {
1127 		uchar_t	vector, irqno;
1128 		apic_irq_t	*irqptr;
1129 
1130 		if ((irqno = apic_allocate_irq(apic_first_avail_irq)) ==
1131 		    (uchar_t)-1) {
1132 			/*
1133 			 * shouldn't happen because of the
1134 			 * apic_check_free_irqs() check earlier
1135 			 */
1136 			DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msix_vectors: "
1137 			    "apic_allocate_irq failed\n"));
1138 			rcount = i;
1139 			goto out;
1140 		}
1141 		if ((vector = apic_allocate_vector(pri, irqno, 1)) == 0) {
1142 			/*
1143 			 * shouldn't happen because of the
1144 			 * apic_navail_vector() call earlier
1145 			 */
1146 			DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msix_vectors: "
1147 			    "apic_allocate_vector failed\n"));
1148 			rcount = i;
1149 			goto out;
1150 		}
1151 		apic_max_device_irq = max(irqno, apic_max_device_irq);
1152 		apic_min_device_irq = min(irqno, apic_min_device_irq);
1153 		irqptr = apic_irq_table[irqno];
1154 		irqptr->airq_vector = (uchar_t)vector;
1155 		ASSERT(pri >= 0 && pri <= UCHAR_MAX);
1156 		irqptr->airq_ipl = (uchar_t)pri;
1157 		irqptr->airq_origirq = (uchar_t)(inum + i);
1158 		irqptr->airq_share_id = 0;
1159 		irqptr->airq_mps_intr_index = MSIX_INDEX;
1160 		irqptr->airq_dip = dip;
1161 		irqptr->airq_major = major;
1162 		irqptr->airq_cpu = apic_bind_intr(dip, irqno, 0xff, 0xff);
1163 	}
1164 out:
1165 	mutex_exit(&airq_mutex);
1166 	return (rcount);
1167 }
1168 
1169 /*
1170  * Allocate a free vector for irq at ipl. Takes care of merging of multiple
1171  * IPLs into a single APIC level as well as stretching some IPLs onto multiple
1172  * levels. APIC_HI_PRI_VECTS interrupts are reserved for high priority
1173  * requests and allocated only when pri is set.
1174  */
1175 uchar_t
1176 apic_allocate_vector(int ipl, int irq, int pri)
1177 {
1178 	int	lowest, highest, i;
1179 
1180 	highest = apic_ipltopri[ipl] + APIC_VECTOR_MASK;
1181 	lowest = apic_ipltopri[ipl - 1] + APIC_VECTOR_PER_IPL;
1182 
1183 	if (highest < lowest) /* Both ipl and ipl - 1 map to same pri */
1184 		lowest -= APIC_VECTOR_PER_IPL;
1185 
1186 #ifdef	DEBUG
1187 	if (apic_restrict_vector)	/* for testing shared interrupt logic */
1188 		highest = lowest + apic_restrict_vector + APIC_HI_PRI_VECTS;
1189 #endif /* DEBUG */
1190 	if (pri == 0)
1191 		highest -= APIC_HI_PRI_VECTS;
1192 
1193 	for (i = lowest; i <= highest; i++) {
1194 		if (APIC_CHECK_RESERVE_VECTORS(i))
1195 			continue;
1196 		if (apic_vector_to_irq[i] == APIC_RESV_IRQ) {
1197 			apic_vector_to_irq[i] = (uchar_t)irq;
1198 			ASSERT(i >= 0 && i <= UCHAR_MAX);
1199 			return ((uchar_t)i);
1200 		}
1201 	}
1202 
1203 	return (0);
1204 }
1205 
1206 /* Mark vector as not being used by any irq */
1207 void
1208 apic_free_vector(uchar_t vector)
1209 {
1210 	apic_vector_to_irq[vector] = APIC_RESV_IRQ;
1211 }
1212 
1213 /*
1214  * Call rebind to do the actual programming.
1215  * Must be called with interrupts disabled and apic_ioapic_lock held
1216  * 'p' is polymorphic -- if this function is called to process a deferred
1217  * reprogramming, p is of type 'struct ioapic_reprogram_data *', from which
1218  * the irq pointer is retrieved.  If not doing deferred reprogramming,
1219  * p is of the type 'apic_irq_t *'.
1220  *
1221  * apic_ioapic_lock must be held across this call, as it protects apic_rebind
1222  * and it protects apic_get_next_bind_cpu() from a race in which a CPU can be
1223  * taken offline after a cpu is selected, but before apic_rebind is called to
1224  * bind interrupts to it.
1225  */
1226 int
1227 apic_setup_io_intr(void *p, int irq, boolean_t deferred)
1228 {
1229 	apic_irq_t *irqptr;
1230 	struct ioapic_reprogram_data *drep = NULL;
1231 	int rv;
1232 
1233 	if (deferred) {
1234 		drep = (struct ioapic_reprogram_data *)p;
1235 		ASSERT(drep != NULL);
1236 		irqptr = drep->irqp;
1237 	} else
1238 		irqptr = (apic_irq_t *)p;
1239 
1240 	ASSERT(irqptr != NULL);
1241 
1242 	rv = apic_rebind(irqptr, apic_irq_table[irq]->airq_cpu, drep);
1243 	if (rv) {
1244 		/*
1245 		 * CPU is not up or interrupts are disabled. Fall back to
1246 		 * the first available CPU
1247 		 */
1248 		rv = apic_rebind(irqptr, apic_find_cpu(APIC_CPU_INTR_ENABLE),
1249 		    drep);
1250 	}
1251 
1252 	return (rv);
1253 }
1254 
1255 
1256 uchar_t
1257 apic_modify_vector(uchar_t vector, int irq)
1258 {
1259 	apic_vector_to_irq[vector] = (uchar_t)irq;
1260 	return (vector);
1261 }
1262 
1263 char *
1264 apic_get_apic_type(void)
1265 {
1266 	return (apic_psm_info.p_mach_idstring);
1267 }
1268 
1269 void
1270 apic_switch_ipi_callback(boolean_t enter)
1271 {
1272 	ASSERT(enter == B_TRUE);
1273 }
1274 
1275 int
1276 apic_detect_x2apic(void)
1277 {
1278 	return (0);
1279 }
1280 
1281 void
1282 apic_enable_x2apic(void)
1283 {
1284 	cmn_err(CE_PANIC, "apic_enable_x2apic() called in pcplusmp");
1285 }
1286 
1287 void
1288 x2apic_update_psm(void)
1289 {
1290 	cmn_err(CE_PANIC, "x2apic_update_psm() called in pcplusmp");
1291 }
1292