xref: /illumos-gate/usr/src/uts/i86pc/io/pcplusmp/apic.c (revision a6422048521434dc250a1832c980645e5de26b4e)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1993, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 /*
26  * Copyright (c) 2010, Intel Corporation.
27  * All rights reserved.
28  * Copyright 2018 Joyent, Inc.
29  */
30 
31 /*
32  * To understand how the pcplusmp module interacts with the interrupt subsystem
33  * read the theory statement in uts/i86pc/os/intr.c.
34  */
35 
36 /*
37  * PSMI 1.1 extensions are supported only in 2.6 and later versions.
38  * PSMI 1.2 extensions are supported only in 2.7 and later versions.
39  * PSMI 1.3 and 1.4 extensions are supported in Solaris 10.
40  * PSMI 1.5 extensions are supported in Solaris Nevada.
41  * PSMI 1.6 extensions are supported in Solaris Nevada.
42  * PSMI 1.7 extensions are supported in Solaris Nevada.
43  */
44 #define	PSMI_1_7
45 
46 #include <sys/processor.h>
47 #include <sys/time.h>
48 #include <sys/psm.h>
49 #include <sys/smp_impldefs.h>
50 #include <sys/cram.h>
51 #include <sys/acpi/acpi.h>
52 #include <sys/acpica.h>
53 #include <sys/psm_common.h>
54 #include <sys/apic.h>
55 #include <sys/pit.h>
56 #include <sys/ddi.h>
57 #include <sys/sunddi.h>
58 #include <sys/ddi_impldefs.h>
59 #include <sys/pci.h>
60 #include <sys/promif.h>
61 #include <sys/x86_archext.h>
62 #include <sys/cpc_impl.h>
63 #include <sys/uadmin.h>
64 #include <sys/panic.h>
65 #include <sys/debug.h>
66 #include <sys/archsystm.h>
67 #include <sys/trap.h>
68 #include <sys/machsystm.h>
69 #include <sys/sysmacros.h>
70 #include <sys/cpuvar.h>
71 #include <sys/rm_platter.h>
72 #include <sys/privregs.h>
73 #include <sys/note.h>
74 #include <sys/pci_intr_lib.h>
75 #include <sys/spl.h>
76 #include <sys/clock.h>
77 #include <sys/cyclic.h>
78 #include <sys/dditypes.h>
79 #include <sys/sunddi.h>
80 #include <sys/x_call.h>
81 #include <sys/reboot.h>
82 #include <sys/hpet.h>
83 #include <sys/apic_common.h>
84 #include <sys/apic_timer.h>
85 
86 /*
87  *	Local Function Prototypes
88  */
89 static void apic_init_intr(void);
90 
91 /*
92  *	standard MP entries
93  */
94 static int	apic_probe(void);
95 static int	apic_getclkirq(int ipl);
96 static void	apic_init(void);
97 static void	apic_picinit(void);
98 static int	apic_post_cpu_start(void);
99 static int	apic_intr_enter(int ipl, int *vect);
100 static void	apic_setspl(int ipl);
101 static int	apic_addspl(int ipl, int vector, int min_ipl, int max_ipl);
102 static int	apic_delspl(int ipl, int vector, int min_ipl, int max_ipl);
103 static int	apic_disable_intr(processorid_t cpun);
104 static void	apic_enable_intr(processorid_t cpun);
105 static int		apic_get_ipivect(int ipl, int type);
106 static void	apic_post_cyclic_setup(void *arg);
107 
108 #define	UCHAR_MAX	UINT8_MAX
109 
110 /*
111  * The following vector assignments influence the value of ipltopri and
112  * vectortoipl. Note that vectors 0 - 0x1f are not used. We can program
113  * idle to 0 and IPL 0 to 0xf to differentiate idle in case
114  * we care to do so in future. Note some IPLs which are rarely used
115  * will share the vector ranges and heavily used IPLs (5 and 6) have
116  * a wide range.
117  *
118  * This array is used to initialize apic_ipls[] (in apic_init()).
119  *
120  *	IPL		Vector range.		as passed to intr_enter
121  *	0		none.
122  *	1,2,3		0x20-0x2f		0x0-0xf
123  *	4		0x30-0x3f		0x10-0x1f
124  *	5		0x40-0x5f		0x20-0x3f
125  *	6		0x60-0x7f		0x40-0x5f
126  *	7,8,9		0x80-0x8f		0x60-0x6f
127  *	10		0x90-0x9f		0x70-0x7f
128  *	11		0xa0-0xaf		0x80-0x8f
129  *	...		...
130  *	15		0xe0-0xef		0xc0-0xcf
131  *	15		0xf0-0xff		0xd0-0xdf
132  */
133 uchar_t apic_vectortoipl[APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL] = {
134 	3, 4, 5, 5, 6, 6, 9, 10, 11, 12, 13, 14, 15, 15
135 };
136 	/*
137 	 * The ipl of an ISR at vector X is apic_vectortoipl[X>>4]
138 	 * NOTE that this is vector as passed into intr_enter which is
139 	 * programmed vector - 0x20 (APIC_BASE_VECT)
140 	 */
141 
142 uchar_t	apic_ipltopri[MAXIPL + 1];	/* unix ipl to apic pri	*/
143 	/* The taskpri to be programmed into apic to mask given ipl */
144 
145 /*
146  * Correlation of the hardware vector to the IPL in use, initialized
147  * from apic_vectortoipl[] in apic_init().  The final IPLs may not correlate
148  * to the IPLs in apic_vectortoipl on some systems that share interrupt lines
149  * connected to errata-stricken IOAPICs
150  */
151 uchar_t apic_ipls[APIC_AVAIL_VECTOR];
152 
153 /*
154  * Patchable global variables.
155  */
156 int	apic_enable_hwsoftint = 0;	/* 0 - disable, 1 - enable	*/
157 int	apic_enable_bind_log = 1;	/* 1 - display interrupt binding log */
158 
159 /*
160  *	Local static data
161  */
162 static struct	psm_ops apic_ops = {
163 	apic_probe,
164 
165 	apic_init,
166 	apic_picinit,
167 	apic_intr_enter,
168 	apic_intr_exit,
169 	apic_setspl,
170 	apic_addspl,
171 	apic_delspl,
172 	apic_disable_intr,
173 	apic_enable_intr,
174 	(int (*)(int))NULL,		/* psm_softlvl_to_irq */
175 	(void (*)(int))NULL,		/* psm_set_softintr */
176 
177 	apic_set_idlecpu,
178 	apic_unset_idlecpu,
179 
180 	apic_clkinit,
181 	apic_getclkirq,
182 	(void (*)(void))NULL,		/* psm_hrtimeinit */
183 	apic_gethrtime,
184 
185 	apic_get_next_processorid,
186 	apic_cpu_start,
187 	apic_post_cpu_start,
188 	apic_shutdown,
189 	apic_get_ipivect,
190 	apic_send_ipi,
191 
192 	(int (*)(dev_info_t *, int))NULL,	/* psm_translate_irq */
193 	(void (*)(int, char *))NULL,	/* psm_notify_error */
194 	(void (*)(int))NULL,		/* psm_notify_func */
195 	apic_timer_reprogram,
196 	apic_timer_enable,
197 	apic_timer_disable,
198 	apic_post_cyclic_setup,
199 	apic_preshutdown,
200 	apic_intr_ops,			/* Advanced DDI Interrupt framework */
201 	apic_state,			/* save, restore apic state for S3 */
202 	apic_cpu_ops,			/* CPU control interface. */
203 
204 	apic_get_pir_ipivect,
205 	apic_send_pir_ipi,
206 	apic_cmci_setup,
207 };
208 
209 struct psm_ops *psmops = &apic_ops;
210 
211 static struct	psm_info apic_psm_info = {
212 	PSM_INFO_VER01_7,			/* version */
213 	PSM_OWN_EXCLUSIVE,			/* ownership */
214 	(struct psm_ops *)&apic_ops,		/* operation */
215 	APIC_PCPLUSMP_NAME,			/* machine name */
216 	"pcplusmp v1.4 compatible",
217 };
218 
219 static void *apic_hdlp;
220 
221 /* to gather intr data and redistribute */
222 static void apic_redistribute_compute(void);
223 
224 /*
225  *	This is the loadable module wrapper
226  */
227 
228 int
229 _init(void)
230 {
231 	if (apic_coarse_hrtime)
232 		apic_ops.psm_gethrtime = &apic_gettime;
233 	return (psm_mod_init(&apic_hdlp, &apic_psm_info));
234 }
235 
236 int
237 _fini(void)
238 {
239 	return (psm_mod_fini(&apic_hdlp, &apic_psm_info));
240 }
241 
242 int
243 _info(struct modinfo *modinfop)
244 {
245 	return (psm_mod_info(&apic_hdlp, &apic_psm_info, modinfop));
246 }
247 
248 static int
249 apic_probe(void)
250 {
251 	/* check if apix is initialized */
252 	if (apix_enable && apix_loaded())
253 		return (PSM_FAILURE);
254 
255 	/*
256 	 * Check whether x2APIC mode was activated by BIOS. We don't support
257 	 * that in pcplusmp as apix normally handles that.
258 	 */
259 	if (apic_local_mode() == LOCAL_X2APIC)
260 		return (PSM_FAILURE);
261 
262 	/* continue using pcplusmp PSM */
263 	apix_enable = 0;
264 
265 	return (apic_probe_common(apic_psm_info.p_mach_idstring));
266 }
267 
268 static uchar_t
269 apic_xlate_vector_by_irq(uchar_t irq)
270 {
271 	if (apic_irq_table[irq] == NULL)
272 		return (0);
273 
274 	return (apic_irq_table[irq]->airq_vector);
275 }
276 
277 void
278 apic_init(void)
279 {
280 	int i;
281 	int	j = 1;
282 
283 	psm_get_ioapicid = apic_get_ioapicid;
284 	psm_get_localapicid = apic_get_localapicid;
285 	psm_xlate_vector_by_irq = apic_xlate_vector_by_irq;
286 
287 	apic_ipltopri[0] = APIC_VECTOR_PER_IPL; /* leave 0 for idle */
288 	for (i = 0; i < (APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL); i++) {
289 		if ((i < ((APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL) - 1)) &&
290 		    (apic_vectortoipl[i + 1] == apic_vectortoipl[i]))
291 			/* get to highest vector at the same ipl */
292 			continue;
293 		for (; j <= apic_vectortoipl[i]; j++) {
294 			apic_ipltopri[j] = (i << APIC_IPL_SHIFT) +
295 			    APIC_BASE_VECT;
296 		}
297 	}
298 	for (; j < MAXIPL + 1; j++)
299 		/* fill up any empty ipltopri slots */
300 		apic_ipltopri[j] = (i << APIC_IPL_SHIFT) + APIC_BASE_VECT;
301 	apic_init_common();
302 
303 	apic_pir_vect = apic_get_ipivect(XC_CPUPOKE_PIL, -1);
304 
305 #if !defined(__amd64)
306 	if (cpuid_have_cr8access(CPU))
307 		apic_have_32bit_cr8 = 1;
308 #endif
309 }
310 
311 static void
312 apic_init_intr(void)
313 {
314 	processorid_t	cpun = psm_get_cpu_id();
315 	uint_t nlvt;
316 	uint32_t svr = AV_UNIT_ENABLE | APIC_SPUR_INTR;
317 
318 	apic_reg_ops->apic_write_task_reg(APIC_MASK_ALL);
319 
320 	ASSERT(apic_mode == LOCAL_APIC);
321 
322 	/*
323 	 * We are running APIC in MMIO mode.
324 	 */
325 	if (apic_flat_model) {
326 		apic_reg_ops->apic_write(APIC_FORMAT_REG, APIC_FLAT_MODEL);
327 	} else {
328 		apic_reg_ops->apic_write(APIC_FORMAT_REG, APIC_CLUSTER_MODEL);
329 	}
330 
331 	apic_reg_ops->apic_write(APIC_DEST_REG, AV_HIGH_ORDER >> cpun);
332 
333 	if (apic_directed_EOI_supported()) {
334 		/*
335 		 * Setting the 12th bit in the Spurious Interrupt Vector
336 		 * Register suppresses broadcast EOIs generated by the local
337 		 * APIC. The suppression of broadcast EOIs happens only when
338 		 * interrupts are level-triggered.
339 		 */
340 		svr |= APIC_SVR_SUPPRESS_BROADCAST_EOI;
341 	}
342 
343 	/* need to enable APIC before unmasking NMI */
344 	apic_reg_ops->apic_write(APIC_SPUR_INT_REG, svr);
345 
346 	/*
347 	 * Presence of an invalid vector with delivery mode AV_FIXED can
348 	 * cause an error interrupt, even if the entry is masked...so
349 	 * write a valid vector to LVT entries along with the mask bit
350 	 */
351 
352 	/* All APICs have timer and LINT0/1 */
353 	apic_reg_ops->apic_write(APIC_LOCAL_TIMER, AV_MASK|APIC_RESV_IRQ);
354 	apic_reg_ops->apic_write(APIC_INT_VECT0, AV_MASK|APIC_RESV_IRQ);
355 	apic_reg_ops->apic_write(APIC_INT_VECT1, AV_NMI);	/* enable NMI */
356 
357 	/*
358 	 * On integrated APICs, the number of LVT entries is
359 	 * 'Max LVT entry' + 1; on 82489DX's (non-integrated
360 	 * APICs), nlvt is "3" (LINT0, LINT1, and timer)
361 	 */
362 
363 	if (apic_cpus[cpun].aci_local_ver < APIC_INTEGRATED_VERS) {
364 		nlvt = 3;
365 	} else {
366 		nlvt = ((apic_reg_ops->apic_read(APIC_VERS_REG) >> 16) &
367 		    0xFF) + 1;
368 	}
369 
370 	if (nlvt >= 5) {
371 		/* Enable performance counter overflow interrupt */
372 
373 		if (!is_x86_feature(x86_featureset, X86FSET_MSR))
374 			apic_enable_cpcovf_intr = 0;
375 		if (apic_enable_cpcovf_intr) {
376 			if (apic_cpcovf_vect == 0) {
377 				int ipl = APIC_PCINT_IPL;
378 				int irq = apic_get_ipivect(ipl, -1);
379 
380 				ASSERT(irq != -1);
381 				apic_cpcovf_vect =
382 				    apic_irq_table[irq]->airq_vector;
383 				ASSERT(apic_cpcovf_vect);
384 				(void) add_avintr(NULL, ipl,
385 				    (avfunc)kcpc_hw_overflow_intr,
386 				    "apic pcint", irq, NULL, NULL, NULL, NULL);
387 				kcpc_hw_overflow_intr_installed = 1;
388 				kcpc_hw_enable_cpc_intr =
389 				    apic_cpcovf_mask_clear;
390 			}
391 			apic_reg_ops->apic_write(APIC_PCINT_VECT,
392 			    apic_cpcovf_vect);
393 		}
394 	}
395 
396 	if (nlvt >= 6) {
397 		/* Only mask TM intr if the BIOS apparently doesn't use it */
398 
399 		uint32_t lvtval;
400 
401 		lvtval = apic_reg_ops->apic_read(APIC_THERM_VECT);
402 		if (((lvtval & AV_MASK) == AV_MASK) ||
403 		    ((lvtval & AV_DELIV_MODE) != AV_SMI)) {
404 			apic_reg_ops->apic_write(APIC_THERM_VECT,
405 			    AV_MASK|APIC_RESV_IRQ);
406 		}
407 	}
408 
409 	/* Enable error interrupt */
410 
411 	if (nlvt >= 4 && apic_enable_error_intr) {
412 		if (apic_errvect == 0) {
413 			int ipl = 0xf;	/* get highest priority intr */
414 			int irq = apic_get_ipivect(ipl, -1);
415 
416 			ASSERT(irq != -1);
417 			apic_errvect = apic_irq_table[irq]->airq_vector;
418 			ASSERT(apic_errvect);
419 			/*
420 			 * Not PSMI compliant, but we are going to merge
421 			 * with ON anyway
422 			 */
423 			(void) add_avintr((void *)NULL, ipl,
424 			    (avfunc)apic_error_intr, "apic error intr",
425 			    irq, NULL, NULL, NULL, NULL);
426 		}
427 		apic_reg_ops->apic_write(APIC_ERR_VECT, apic_errvect);
428 		apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0);
429 		apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0);
430 	}
431 
432 	/*
433 	 * Ensure a CMCI interrupt is allocated, regardless of whether it is
434 	 * enabled or not.
435 	 */
436 	if (apic_cmci_vect == 0) {
437 		const int ipl = 0x2;
438 		int irq = apic_get_ipivect(ipl, -1);
439 
440 		ASSERT(irq != -1);
441 		apic_cmci_vect = apic_irq_table[irq]->airq_vector;
442 		ASSERT(apic_cmci_vect);
443 
444 		(void) add_avintr(NULL, ipl,
445 		    (avfunc)cmi_cmci_trap,
446 		    "apic cmci intr", irq, NULL, NULL, NULL, NULL);
447 	}
448 }
449 
450 static void
451 apic_picinit(void)
452 {
453 	int i, j;
454 	uint_t isr;
455 
456 	/*
457 	 * Initialize and enable interrupt remapping before apic
458 	 * hardware initialization
459 	 */
460 	apic_intrmap_init(apic_mode);
461 
462 	/*
463 	 * On UniSys Model 6520, the BIOS leaves vector 0x20 isr
464 	 * bit on without clearing it with EOI.  Since softint
465 	 * uses vector 0x20 to interrupt itself, so softint will
466 	 * not work on this machine.  In order to fix this problem
467 	 * a check is made to verify all the isr bits are clear.
468 	 * If not, EOIs are issued to clear the bits.
469 	 */
470 	for (i = 7; i >= 1; i--) {
471 		isr = apic_reg_ops->apic_read(APIC_ISR_REG + (i * 4));
472 		if (isr != 0)
473 			for (j = 0; ((j < 32) && (isr != 0)); j++)
474 				if (isr & (1 << j)) {
475 					apic_reg_ops->apic_write(
476 					    APIC_EOI_REG, 0);
477 					isr &= ~(1 << j);
478 					apic_error |= APIC_ERR_BOOT_EOI;
479 				}
480 	}
481 
482 	/* set a flag so we know we have run apic_picinit() */
483 	apic_picinit_called = 1;
484 	LOCK_INIT_CLEAR(&apic_gethrtime_lock);
485 	LOCK_INIT_CLEAR(&apic_ioapic_lock);
486 	LOCK_INIT_CLEAR(&apic_error_lock);
487 	LOCK_INIT_CLEAR(&apic_mode_switch_lock);
488 
489 	picsetup();	 /* initialise the 8259 */
490 
491 	/* add nmi handler - least priority nmi handler */
492 	LOCK_INIT_CLEAR(&apic_nmi_lock);
493 
494 	if (!psm_add_nmintr(0, (avfunc) apic_nmi_intr,
495 	    "pcplusmp NMI handler", (caddr_t)NULL))
496 		cmn_err(CE_WARN, "pcplusmp: Unable to add nmi handler");
497 
498 	/*
499 	 * Check for directed-EOI capability in the local APIC.
500 	 */
501 	if (apic_directed_EOI_supported() == 1) {
502 		apic_set_directed_EOI_handler();
503 	}
504 
505 	apic_init_intr();
506 
507 	/* enable apic mode if imcr present */
508 	if (apic_imcrp) {
509 		outb(APIC_IMCR_P1, (uchar_t)APIC_IMCR_SELECT);
510 		outb(APIC_IMCR_P2, (uchar_t)APIC_IMCR_APIC);
511 	}
512 
513 	ioapic_init_intr(IOAPIC_MASK);
514 }
515 
516 #ifdef	DEBUG
517 void
518 apic_break(void)
519 {
520 }
521 #endif /* DEBUG */
522 
523 /*
524  * platform_intr_enter
525  *
526  *	Called at the beginning of the interrupt service routine to
527  *	mask all level equal to and below the interrupt priority
528  *	of the interrupting vector.  An EOI should be given to
529  *	the interrupt controller to enable other HW interrupts.
530  *
531  *	Return -1 for spurious interrupts
532  *
533  */
534 /*ARGSUSED*/
535 static int
536 apic_intr_enter(int ipl, int *vectorp)
537 {
538 	uchar_t vector;
539 	int nipl;
540 	int irq;
541 	ulong_t iflag;
542 	apic_cpus_info_t *cpu_infop;
543 
544 	/*
545 	 * The real vector delivered is (*vectorp + 0x20), but our caller
546 	 * subtracts 0x20 from the vector before passing it to us.
547 	 * (That's why APIC_BASE_VECT is 0x20.)
548 	 */
549 	vector = (uchar_t)*vectorp;
550 
551 	/* if interrupted by the clock, increment apic_nsec_since_boot */
552 	if (vector == apic_clkvect) {
553 		if (!apic_oneshot) {
554 			/* NOTE: this is not MT aware */
555 			apic_hrtime_stamp++;
556 			apic_nsec_since_boot += apic_nsec_per_intr;
557 			apic_hrtime_stamp++;
558 			last_count_read = apic_hertz_count;
559 			apic_redistribute_compute();
560 		}
561 
562 		/* We will avoid all the book keeping overhead for clock */
563 		nipl = apic_ipls[vector];
564 
565 		*vectorp = apic_vector_to_irq[vector + APIC_BASE_VECT];
566 
567 		apic_reg_ops->apic_write_task_reg(apic_ipltopri[nipl]);
568 		apic_reg_ops->apic_send_eoi(0);
569 
570 		return (nipl);
571 	}
572 
573 	cpu_infop = &apic_cpus[psm_get_cpu_id()];
574 
575 	if (vector == (APIC_SPUR_INTR - APIC_BASE_VECT)) {
576 		cpu_infop->aci_spur_cnt++;
577 		return (APIC_INT_SPURIOUS);
578 	}
579 
580 	/* Check if the vector we got is really what we need */
581 	if (apic_revector_pending) {
582 		/*
583 		 * Disable interrupts for the duration of
584 		 * the vector translation to prevent a self-race for
585 		 * the apic_revector_lock.  This cannot be done
586 		 * in apic_xlate_vector because it is recursive and
587 		 * we want the vector translation to be atomic with
588 		 * respect to other (higher-priority) interrupts.
589 		 */
590 		iflag = intr_clear();
591 		vector = apic_xlate_vector(vector + APIC_BASE_VECT) -
592 		    APIC_BASE_VECT;
593 		intr_restore(iflag);
594 	}
595 
596 	nipl = apic_ipls[vector];
597 	*vectorp = irq = apic_vector_to_irq[vector + APIC_BASE_VECT];
598 
599 	apic_reg_ops->apic_write_task_reg(apic_ipltopri[nipl]);
600 
601 	cpu_infop->aci_current[nipl] = (uchar_t)irq;
602 	cpu_infop->aci_curipl = (uchar_t)nipl;
603 	cpu_infop->aci_ISR_in_progress |= 1 << nipl;
604 
605 	/*
606 	 * apic_level_intr could have been assimilated into the irq struct.
607 	 * but, having it as a character array is more efficient in terms of
608 	 * cache usage. So, we leave it as is.
609 	 */
610 	if (!apic_level_intr[irq]) {
611 		apic_reg_ops->apic_send_eoi(0);
612 	}
613 
614 #ifdef	DEBUG
615 	APIC_DEBUG_BUF_PUT(vector);
616 	APIC_DEBUG_BUF_PUT(irq);
617 	APIC_DEBUG_BUF_PUT(nipl);
618 	APIC_DEBUG_BUF_PUT(psm_get_cpu_id());
619 	if ((apic_stretch_interrupts) && (apic_stretch_ISR & (1 << nipl)))
620 		drv_usecwait(apic_stretch_interrupts);
621 
622 	if (apic_break_on_cpu == psm_get_cpu_id())
623 		apic_break();
624 #endif /* DEBUG */
625 	return (nipl);
626 }
627 
628 void
629 apic_intr_exit(int prev_ipl, int irq)
630 {
631 	apic_cpus_info_t *cpu_infop;
632 
633 	apic_reg_ops->apic_write_task_reg(apic_ipltopri[prev_ipl]);
634 
635 	cpu_infop = &apic_cpus[psm_get_cpu_id()];
636 	if (apic_level_intr[irq])
637 		apic_reg_ops->apic_send_eoi(irq);
638 	cpu_infop->aci_curipl = (uchar_t)prev_ipl;
639 	/* ISR above current pri could not be in progress */
640 	cpu_infop->aci_ISR_in_progress &= (2 << prev_ipl) - 1;
641 }
642 
643 intr_exit_fn_t
644 psm_intr_exit_fn(void)
645 {
646 	return (apic_intr_exit);
647 }
648 
649 /*
650  * Mask all interrupts below or equal to the given IPL.
651  */
652 static void
653 apic_setspl(int ipl)
654 {
655 	apic_reg_ops->apic_write_task_reg(apic_ipltopri[ipl]);
656 
657 	/* interrupts at ipl above this cannot be in progress */
658 	apic_cpus[psm_get_cpu_id()].aci_ISR_in_progress &= (2 << ipl) - 1;
659 	/*
660 	 * this is a patch fix for the ALR QSMP P5 machine, so that interrupts
661 	 * have enough time to come in before the priority is raised again
662 	 * during the idle() loop.
663 	 */
664 	if (apic_setspl_delay)
665 		(void) apic_reg_ops->apic_get_pri();
666 }
667 
668 /*ARGSUSED*/
669 static int
670 apic_addspl(int irqno, int ipl, int min_ipl, int max_ipl)
671 {
672 	return (apic_addspl_common(irqno, ipl, min_ipl, max_ipl));
673 }
674 
675 static int
676 apic_delspl(int irqno, int ipl, int min_ipl, int max_ipl)
677 {
678 	return (apic_delspl_common(irqno, ipl, min_ipl,  max_ipl));
679 }
680 
681 static int
682 apic_post_cpu_start(void)
683 {
684 	int cpun;
685 	static int cpus_started = 1;
686 
687 	/* We know this CPU + BSP  started successfully. */
688 	cpus_started++;
689 
690 	splx(ipltospl(LOCK_LEVEL));
691 	apic_init_intr();
692 
693 	/*
694 	 * since some systems don't enable the internal cache on the non-boot
695 	 * cpus, so we have to enable them here
696 	 */
697 	setcr0(getcr0() & ~(CR0_CD | CR0_NW));
698 
699 	APIC_AV_PENDING_SET();
700 
701 	/*
702 	 * We may be booting, or resuming from suspend; aci_status will
703 	 * be APIC_CPU_INTR_ENABLE if coming from suspend, so we add the
704 	 * APIC_CPU_ONLINE flag here rather than setting aci_status completely.
705 	 */
706 	cpun = psm_get_cpu_id();
707 	apic_cpus[cpun].aci_status |= APIC_CPU_ONLINE;
708 
709 	apic_reg_ops->apic_write(APIC_DIVIDE_REG, apic_divide_reg_init);
710 	return (PSM_SUCCESS);
711 }
712 
713 /*
714  * type == -1 indicates it is an internal request. Do not change
715  * resv_vector for these requests
716  */
717 static int
718 apic_get_ipivect(int ipl, int type)
719 {
720 	uchar_t vector;
721 	int irq;
722 
723 	if ((irq = apic_allocate_irq(APIC_VECTOR(ipl))) != -1) {
724 		if ((vector = apic_allocate_vector(ipl, irq, 1))) {
725 			apic_irq_table[irq]->airq_mps_intr_index =
726 			    RESERVE_INDEX;
727 			apic_irq_table[irq]->airq_vector = vector;
728 			if (type != -1) {
729 				apic_resv_vector[ipl] = vector;
730 			}
731 			return (irq);
732 		}
733 	}
734 	apic_error |= APIC_ERR_GET_IPIVECT_FAIL;
735 	return (-1);	/* shouldn't happen */
736 }
737 
738 static int
739 apic_getclkirq(int ipl)
740 {
741 	int	irq;
742 
743 	if ((irq = apic_get_ipivect(ipl, -1)) == -1)
744 		return (-1);
745 	/*
746 	 * Note the vector in apic_clkvect for per clock handling.
747 	 */
748 	apic_clkvect = apic_irq_table[irq]->airq_vector - APIC_BASE_VECT;
749 	APIC_VERBOSE_IOAPIC((CE_NOTE, "get_clkirq: vector = %x\n",
750 	    apic_clkvect));
751 	return (irq);
752 }
753 
754 /*
755  * Try and disable all interrupts. We just assign interrupts to other
756  * processors based on policy. If any were bound by user request, we
757  * let them continue and return failure. We do not bother to check
758  * for cache affinity while rebinding.
759  */
760 
761 static int
762 apic_disable_intr(processorid_t cpun)
763 {
764 	int bind_cpu = 0, i, hardbound = 0;
765 	apic_irq_t *irq_ptr;
766 	ulong_t iflag;
767 
768 	iflag = intr_clear();
769 	lock_set(&apic_ioapic_lock);
770 
771 	for (i = 0; i <= APIC_MAX_VECTOR; i++) {
772 		if (apic_reprogram_info[i].done == B_FALSE) {
773 			if (apic_reprogram_info[i].bindcpu == cpun) {
774 				/*
775 				 * CPU is busy -- it's the target of
776 				 * a pending reprogramming attempt
777 				 */
778 				lock_clear(&apic_ioapic_lock);
779 				intr_restore(iflag);
780 				return (PSM_FAILURE);
781 			}
782 		}
783 	}
784 
785 	apic_cpus[cpun].aci_status &= ~APIC_CPU_INTR_ENABLE;
786 
787 	apic_cpus[cpun].aci_curipl = 0;
788 
789 	i = apic_min_device_irq;
790 	for (; i <= apic_max_device_irq; i++) {
791 		/*
792 		 * If there are bound interrupts on this cpu, then
793 		 * rebind them to other processors.
794 		 */
795 		if ((irq_ptr = apic_irq_table[i]) != NULL) {
796 			ASSERT((irq_ptr->airq_temp_cpu == IRQ_UNBOUND) ||
797 			    (irq_ptr->airq_temp_cpu == IRQ_UNINIT) ||
798 			    (apic_cpu_in_range(irq_ptr->airq_temp_cpu)));
799 
800 			if (irq_ptr->airq_temp_cpu == (cpun | IRQ_USER_BOUND)) {
801 				hardbound = 1;
802 				continue;
803 			}
804 
805 			if (irq_ptr->airq_temp_cpu == cpun) {
806 				do {
807 					bind_cpu =
808 					    apic_find_cpu(APIC_CPU_INTR_ENABLE);
809 				} while (apic_rebind_all(irq_ptr, bind_cpu));
810 			}
811 		}
812 	}
813 
814 	lock_clear(&apic_ioapic_lock);
815 	intr_restore(iflag);
816 
817 	if (hardbound) {
818 		cmn_err(CE_WARN, "Could not disable interrupts on %d"
819 		    "due to user bound interrupts", cpun);
820 		return (PSM_FAILURE);
821 	}
822 	else
823 		return (PSM_SUCCESS);
824 }
825 
826 /*
827  * Bind interrupts to the CPU's local APIC.
828  * Interrupts should not be bound to a CPU's local APIC until the CPU
829  * is ready to receive interrupts.
830  */
831 static void
832 apic_enable_intr(processorid_t cpun)
833 {
834 	int	i;
835 	apic_irq_t *irq_ptr;
836 	ulong_t iflag;
837 
838 	iflag = intr_clear();
839 	lock_set(&apic_ioapic_lock);
840 
841 	apic_cpus[cpun].aci_status |= APIC_CPU_INTR_ENABLE;
842 
843 	i = apic_min_device_irq;
844 	for (i = apic_min_device_irq; i <= apic_max_device_irq; i++) {
845 		if ((irq_ptr = apic_irq_table[i]) != NULL) {
846 			if ((irq_ptr->airq_cpu & ~IRQ_USER_BOUND) == cpun) {
847 				(void) apic_rebind_all(irq_ptr,
848 				    irq_ptr->airq_cpu);
849 			}
850 		}
851 	}
852 
853 	if (apic_cpus[cpun].aci_status & APIC_CPU_SUSPEND)
854 		apic_cpus[cpun].aci_status &= ~APIC_CPU_SUSPEND;
855 
856 	lock_clear(&apic_ioapic_lock);
857 	intr_restore(iflag);
858 }
859 
860 /*
861  * If this module needs a periodic handler for the interrupt distribution, it
862  * can be added here. The argument to the periodic handler is not currently
863  * used, but is reserved for future.
864  */
865 static void
866 apic_post_cyclic_setup(void *arg)
867 {
868 _NOTE(ARGUNUSED(arg))
869 
870 	cyc_handler_t cyh;
871 	cyc_time_t cyt;
872 
873 	/* cpu_lock is held */
874 	/* set up a periodic handler for intr redistribution */
875 
876 	/*
877 	 * In peridoc mode intr redistribution processing is done in
878 	 * apic_intr_enter during clk intr processing
879 	 */
880 	if (!apic_oneshot)
881 		return;
882 
883 	/*
884 	 * Register a periodical handler for the redistribution processing.
885 	 * Though we would generally prefer to use the DDI interface for
886 	 * periodic handler invocation, ddi_periodic_add(9F), we are
887 	 * unfortunately already holding cpu_lock, which ddi_periodic_add will
888 	 * attempt to take for us.  Thus, we add our own cyclic directly:
889 	 */
890 	cyh.cyh_func = (void (*)(void *))apic_redistribute_compute;
891 	cyh.cyh_arg = NULL;
892 	cyh.cyh_level = CY_LOW_LEVEL;
893 
894 	cyt.cyt_when = 0;
895 	cyt.cyt_interval = apic_redistribute_sample_interval;
896 
897 	apic_cyclic_id = cyclic_add(&cyh, &cyt);
898 }
899 
900 static void
901 apic_redistribute_compute(void)
902 {
903 	int	i, j, max_busy;
904 
905 	if (apic_enable_dynamic_migration) {
906 		if (++apic_nticks == apic_sample_factor_redistribution) {
907 			/*
908 			 * Time to call apic_intr_redistribute().
909 			 * reset apic_nticks. This will cause max_busy
910 			 * to be calculated below and if it is more than
911 			 * apic_int_busy, we will do the whole thing
912 			 */
913 			apic_nticks = 0;
914 		}
915 		max_busy = 0;
916 		for (i = 0; i < apic_nproc; i++) {
917 			if (!apic_cpu_in_range(i))
918 				continue;
919 
920 			/*
921 			 * Check if curipl is non zero & if ISR is in
922 			 * progress
923 			 */
924 			if (((j = apic_cpus[i].aci_curipl) != 0) &&
925 			    (apic_cpus[i].aci_ISR_in_progress & (1 << j))) {
926 
927 				int	irq;
928 				apic_cpus[i].aci_busy++;
929 				irq = apic_cpus[i].aci_current[j];
930 				apic_irq_table[irq]->airq_busy++;
931 			}
932 
933 			if (!apic_nticks &&
934 			    (apic_cpus[i].aci_busy > max_busy))
935 				max_busy = apic_cpus[i].aci_busy;
936 		}
937 		if (!apic_nticks) {
938 			if (max_busy > apic_int_busy_mark) {
939 			/*
940 			 * We could make the following check be
941 			 * skipped > 1 in which case, we get a
942 			 * redistribution at half the busy mark (due to
943 			 * double interval). Need to be able to collect
944 			 * more empirical data to decide if that is a
945 			 * good strategy. Punt for now.
946 			 */
947 				if (apic_skipped_redistribute) {
948 					apic_cleanup_busy();
949 					apic_skipped_redistribute = 0;
950 				} else {
951 					apic_intr_redistribute();
952 				}
953 			} else
954 				apic_skipped_redistribute++;
955 		}
956 	}
957 }
958 
959 
960 /*
961  * The following functions are in the platform specific file so that they
962  * can be different functions depending on whether we are running on
963  * bare metal or a hypervisor.
964  */
965 
966 /*
967  * Check to make sure there are enough irq slots
968  */
969 int
970 apic_check_free_irqs(int count)
971 {
972 	int i, avail;
973 
974 	avail = 0;
975 	for (i = APIC_FIRST_FREE_IRQ; i < APIC_RESV_IRQ; i++) {
976 		if ((apic_irq_table[i] == NULL) ||
977 		    apic_irq_table[i]->airq_mps_intr_index == FREE_INDEX) {
978 			if (++avail >= count)
979 				return (PSM_SUCCESS);
980 		}
981 	}
982 	return (PSM_FAILURE);
983 }
984 
985 /*
986  * This function allocates "count" MSI vector(s) for the given "dip/pri/type"
987  */
988 int
989 apic_alloc_msi_vectors(dev_info_t *dip, int inum, int count, int pri,
990     int behavior)
991 {
992 	int	rcount, i;
993 	uchar_t	start, irqno;
994 	uint32_t cpu = 0;
995 	major_t	major;
996 	apic_irq_t	*irqptr;
997 
998 	DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: dip=0x%p "
999 	    "inum=0x%x  pri=0x%x count=0x%x behavior=%d\n",
1000 	    (void *)dip, inum, pri, count, behavior));
1001 
1002 	if (count > 1) {
1003 		if (behavior == DDI_INTR_ALLOC_STRICT &&
1004 		    apic_multi_msi_enable == 0)
1005 			return (0);
1006 		if (apic_multi_msi_enable == 0)
1007 			count = 1;
1008 	}
1009 
1010 	if ((rcount = apic_navail_vector(dip, pri)) > count)
1011 		rcount = count;
1012 	else if (rcount == 0 || (rcount < count &&
1013 	    behavior == DDI_INTR_ALLOC_STRICT))
1014 		return (0);
1015 
1016 	/* if not ISP2, then round it down */
1017 	if (!ISP2(rcount))
1018 		rcount = 1 << (highbit(rcount) - 1);
1019 
1020 	mutex_enter(&airq_mutex);
1021 
1022 	for (start = 0; rcount > 0; rcount >>= 1) {
1023 		if ((start = apic_find_multi_vectors(pri, rcount)) != 0 ||
1024 		    behavior == DDI_INTR_ALLOC_STRICT)
1025 			break;
1026 	}
1027 
1028 	if (start == 0) {
1029 		/* no vector available */
1030 		mutex_exit(&airq_mutex);
1031 		return (0);
1032 	}
1033 
1034 	if (apic_check_free_irqs(rcount) == PSM_FAILURE) {
1035 		/* not enough free irq slots available */
1036 		mutex_exit(&airq_mutex);
1037 		return (0);
1038 	}
1039 
1040 	major = (dip != NULL) ? ddi_driver_major(dip) : 0;
1041 	for (i = 0; i < rcount; i++) {
1042 		if ((irqno = apic_allocate_irq(apic_first_avail_irq)) ==
1043 		    (uchar_t)-1) {
1044 			/*
1045 			 * shouldn't happen because of the
1046 			 * apic_check_free_irqs() check earlier
1047 			 */
1048 			mutex_exit(&airq_mutex);
1049 			DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: "
1050 			    "apic_allocate_irq failed\n"));
1051 			return (i);
1052 		}
1053 		apic_max_device_irq = max(irqno, apic_max_device_irq);
1054 		apic_min_device_irq = min(irqno, apic_min_device_irq);
1055 		irqptr = apic_irq_table[irqno];
1056 #ifdef	DEBUG
1057 		if (apic_vector_to_irq[start + i] != APIC_RESV_IRQ)
1058 			DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: "
1059 			    "apic_vector_to_irq is not APIC_RESV_IRQ\n"));
1060 #endif
1061 		apic_vector_to_irq[start + i] = (uchar_t)irqno;
1062 
1063 		irqptr->airq_vector = (uchar_t)(start + i);
1064 		irqptr->airq_ioapicindex = (uchar_t)inum;	/* start */
1065 		irqptr->airq_intin_no = (uchar_t)rcount;
1066 		ASSERT(pri >= 0 && pri <= UCHAR_MAX);
1067 		irqptr->airq_ipl = (uchar_t)pri;
1068 		irqptr->airq_vector = start + i;
1069 		irqptr->airq_origirq = (uchar_t)(inum + i);
1070 		irqptr->airq_share_id = 0;
1071 		irqptr->airq_mps_intr_index = MSI_INDEX;
1072 		irqptr->airq_dip = dip;
1073 		irqptr->airq_major = major;
1074 		if (i == 0) /* they all bound to the same cpu */
1075 			cpu = irqptr->airq_cpu = apic_bind_intr(dip, irqno,
1076 			    0xff, 0xff);
1077 		else
1078 			irqptr->airq_cpu = cpu;
1079 		DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: irq=0x%x "
1080 		    "dip=0x%p vector=0x%x origirq=0x%x pri=0x%x\n", irqno,
1081 		    (void *)irqptr->airq_dip, irqptr->airq_vector,
1082 		    irqptr->airq_origirq, pri));
1083 	}
1084 	mutex_exit(&airq_mutex);
1085 	return (rcount);
1086 }
1087 
1088 /*
1089  * This function allocates "count" MSI-X vector(s) for the given "dip/pri/type"
1090  */
1091 int
1092 apic_alloc_msix_vectors(dev_info_t *dip, int inum, int count, int pri,
1093     int behavior)
1094 {
1095 	int	rcount, i;
1096 	major_t	major;
1097 
1098 	mutex_enter(&airq_mutex);
1099 
1100 	if ((rcount = apic_navail_vector(dip, pri)) > count)
1101 		rcount = count;
1102 	else if (rcount == 0 || (rcount < count &&
1103 	    behavior == DDI_INTR_ALLOC_STRICT)) {
1104 		rcount = 0;
1105 		goto out;
1106 	}
1107 
1108 	if (apic_check_free_irqs(rcount) == PSM_FAILURE) {
1109 		/* not enough free irq slots available */
1110 		rcount = 0;
1111 		goto out;
1112 	}
1113 
1114 	major = (dip != NULL) ? ddi_driver_major(dip) : 0;
1115 	for (i = 0; i < rcount; i++) {
1116 		uchar_t	vector, irqno;
1117 		apic_irq_t	*irqptr;
1118 
1119 		if ((irqno = apic_allocate_irq(apic_first_avail_irq)) ==
1120 		    (uchar_t)-1) {
1121 			/*
1122 			 * shouldn't happen because of the
1123 			 * apic_check_free_irqs() check earlier
1124 			 */
1125 			DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msix_vectors: "
1126 			    "apic_allocate_irq failed\n"));
1127 			rcount = i;
1128 			goto out;
1129 		}
1130 		if ((vector = apic_allocate_vector(pri, irqno, 1)) == 0) {
1131 			/*
1132 			 * shouldn't happen because of the
1133 			 * apic_navail_vector() call earlier
1134 			 */
1135 			DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msix_vectors: "
1136 			    "apic_allocate_vector failed\n"));
1137 			rcount = i;
1138 			goto out;
1139 		}
1140 		apic_max_device_irq = max(irqno, apic_max_device_irq);
1141 		apic_min_device_irq = min(irqno, apic_min_device_irq);
1142 		irqptr = apic_irq_table[irqno];
1143 		irqptr->airq_vector = (uchar_t)vector;
1144 		ASSERT(pri >= 0 && pri <= UCHAR_MAX);
1145 		irqptr->airq_ipl = (uchar_t)pri;
1146 		irqptr->airq_origirq = (uchar_t)(inum + i);
1147 		irqptr->airq_share_id = 0;
1148 		irqptr->airq_mps_intr_index = MSIX_INDEX;
1149 		irqptr->airq_dip = dip;
1150 		irqptr->airq_major = major;
1151 		irqptr->airq_cpu = apic_bind_intr(dip, irqno, 0xff, 0xff);
1152 	}
1153 out:
1154 	mutex_exit(&airq_mutex);
1155 	return (rcount);
1156 }
1157 
1158 /*
1159  * Allocate a free vector for irq at ipl. Takes care of merging of multiple
1160  * IPLs into a single APIC level as well as stretching some IPLs onto multiple
1161  * levels. APIC_HI_PRI_VECTS interrupts are reserved for high priority
1162  * requests and allocated only when pri is set.
1163  */
1164 uchar_t
1165 apic_allocate_vector(int ipl, int irq, int pri)
1166 {
1167 	int	lowest, highest, i;
1168 
1169 	highest = apic_ipltopri[ipl] + APIC_VECTOR_MASK;
1170 	lowest = apic_ipltopri[ipl - 1] + APIC_VECTOR_PER_IPL;
1171 
1172 	if (highest < lowest) /* Both ipl and ipl - 1 map to same pri */
1173 		lowest -= APIC_VECTOR_PER_IPL;
1174 
1175 #ifdef	DEBUG
1176 	if (apic_restrict_vector)	/* for testing shared interrupt logic */
1177 		highest = lowest + apic_restrict_vector + APIC_HI_PRI_VECTS;
1178 #endif /* DEBUG */
1179 	if (pri == 0)
1180 		highest -= APIC_HI_PRI_VECTS;
1181 
1182 	for (i = lowest; i <= highest; i++) {
1183 		if (APIC_CHECK_RESERVE_VECTORS(i))
1184 			continue;
1185 		if (apic_vector_to_irq[i] == APIC_RESV_IRQ) {
1186 			apic_vector_to_irq[i] = (uchar_t)irq;
1187 			ASSERT(i >= 0 && i <= UCHAR_MAX);
1188 			return ((uchar_t)i);
1189 		}
1190 	}
1191 
1192 	return (0);
1193 }
1194 
1195 /* Mark vector as not being used by any irq */
1196 void
1197 apic_free_vector(uchar_t vector)
1198 {
1199 	apic_vector_to_irq[vector] = APIC_RESV_IRQ;
1200 }
1201 
1202 /*
1203  * Call rebind to do the actual programming.
1204  * Must be called with interrupts disabled and apic_ioapic_lock held
1205  * 'p' is polymorphic -- if this function is called to process a deferred
1206  * reprogramming, p is of type 'struct ioapic_reprogram_data *', from which
1207  * the irq pointer is retrieved.  If not doing deferred reprogramming,
1208  * p is of the type 'apic_irq_t *'.
1209  *
1210  * apic_ioapic_lock must be held across this call, as it protects apic_rebind
1211  * and it protects apic_get_next_bind_cpu() from a race in which a CPU can be
1212  * taken offline after a cpu is selected, but before apic_rebind is called to
1213  * bind interrupts to it.
1214  */
1215 int
1216 apic_setup_io_intr(void *p, int irq, boolean_t deferred)
1217 {
1218 	apic_irq_t *irqptr;
1219 	struct ioapic_reprogram_data *drep = NULL;
1220 	int rv;
1221 
1222 	if (deferred) {
1223 		drep = (struct ioapic_reprogram_data *)p;
1224 		ASSERT(drep != NULL);
1225 		irqptr = drep->irqp;
1226 	} else
1227 		irqptr = (apic_irq_t *)p;
1228 
1229 	ASSERT(irqptr != NULL);
1230 
1231 	rv = apic_rebind(irqptr, apic_irq_table[irq]->airq_cpu, drep);
1232 	if (rv) {
1233 		/*
1234 		 * CPU is not up or interrupts are disabled. Fall back to
1235 		 * the first available CPU
1236 		 */
1237 		rv = apic_rebind(irqptr, apic_find_cpu(APIC_CPU_INTR_ENABLE),
1238 		    drep);
1239 	}
1240 
1241 	return (rv);
1242 }
1243 
1244 
1245 uchar_t
1246 apic_modify_vector(uchar_t vector, int irq)
1247 {
1248 	apic_vector_to_irq[vector] = (uchar_t)irq;
1249 	return (vector);
1250 }
1251 
1252 char *
1253 apic_get_apic_type(void)
1254 {
1255 	return (apic_psm_info.p_mach_idstring);
1256 }
1257 
1258 void
1259 apic_switch_ipi_callback(boolean_t enter)
1260 {
1261 	ASSERT(enter == B_TRUE);
1262 }
1263 
1264 int
1265 apic_detect_x2apic(void)
1266 {
1267 	return (0);
1268 }
1269 
1270 void
1271 apic_enable_x2apic(void)
1272 {
1273 	cmn_err(CE_PANIC, "apic_enable_x2apic() called in pcplusmp");
1274 }
1275 
1276 void
1277 x2apic_update_psm(void)
1278 {
1279 	cmn_err(CE_PANIC, "x2apic_update_psm() called in pcplusmp");
1280 }
1281