xref: /illumos-gate/usr/src/uts/i86pc/io/pcplusmp/apic.c (revision 9c88ac3ab4edaa5e8c0130ed1b4b376ea57c545a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 1993, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 /*
26  * Copyright (c) 2010, Intel Corporation.
27  * All rights reserved.
28  */
29 /*
30  * Copyright (c) 2017, Joyent, Inc.  All rights reserved.
31  */
32 
33 /*
34  * To understand how the pcplusmp module interacts with the interrupt subsystem
35  * read the theory statement in uts/i86pc/os/intr.c.
36  */
37 
38 /*
39  * PSMI 1.1 extensions are supported only in 2.6 and later versions.
40  * PSMI 1.2 extensions are supported only in 2.7 and later versions.
41  * PSMI 1.3 and 1.4 extensions are supported in Solaris 10.
42  * PSMI 1.5 extensions are supported in Solaris Nevada.
43  * PSMI 1.6 extensions are supported in Solaris Nevada.
44  * PSMI 1.7 extensions are supported in Solaris Nevada.
45  */
46 #define	PSMI_1_7
47 
48 #include <sys/processor.h>
49 #include <sys/time.h>
50 #include <sys/psm.h>
51 #include <sys/smp_impldefs.h>
52 #include <sys/cram.h>
53 #include <sys/acpi/acpi.h>
54 #include <sys/acpica.h>
55 #include <sys/psm_common.h>
56 #include <sys/apic.h>
57 #include <sys/pit.h>
58 #include <sys/ddi.h>
59 #include <sys/sunddi.h>
60 #include <sys/ddi_impldefs.h>
61 #include <sys/pci.h>
62 #include <sys/promif.h>
63 #include <sys/x86_archext.h>
64 #include <sys/cpc_impl.h>
65 #include <sys/uadmin.h>
66 #include <sys/panic.h>
67 #include <sys/debug.h>
68 #include <sys/archsystm.h>
69 #include <sys/trap.h>
70 #include <sys/machsystm.h>
71 #include <sys/sysmacros.h>
72 #include <sys/cpuvar.h>
73 #include <sys/rm_platter.h>
74 #include <sys/privregs.h>
75 #include <sys/note.h>
76 #include <sys/pci_intr_lib.h>
77 #include <sys/spl.h>
78 #include <sys/clock.h>
79 #include <sys/cyclic.h>
80 #include <sys/dditypes.h>
81 #include <sys/sunddi.h>
82 #include <sys/x_call.h>
83 #include <sys/reboot.h>
84 #include <sys/hpet.h>
85 #include <sys/apic_common.h>
86 #include <sys/apic_timer.h>
87 
88 /*
89  *	Local Function Prototypes
90  */
91 static void apic_init_intr(void);
92 
93 /*
94  *	standard MP entries
95  */
96 static int	apic_probe(void);
97 static int	apic_getclkirq(int ipl);
98 static void	apic_init(void);
99 static void	apic_picinit(void);
100 static int	apic_post_cpu_start(void);
101 static int	apic_intr_enter(int ipl, int *vect);
102 static void	apic_setspl(int ipl);
103 static int	apic_addspl(int ipl, int vector, int min_ipl, int max_ipl);
104 static int	apic_delspl(int ipl, int vector, int min_ipl, int max_ipl);
105 static int	apic_disable_intr(processorid_t cpun);
106 static void	apic_enable_intr(processorid_t cpun);
107 static int		apic_get_ipivect(int ipl, int type);
108 static void	apic_post_cyclic_setup(void *arg);
109 
110 #define	UCHAR_MAX	UINT8_MAX
111 
112 /*
113  * The following vector assignments influence the value of ipltopri and
114  * vectortoipl. Note that vectors 0 - 0x1f are not used. We can program
115  * idle to 0 and IPL 0 to 0xf to differentiate idle in case
116  * we care to do so in future. Note some IPLs which are rarely used
117  * will share the vector ranges and heavily used IPLs (5 and 6) have
118  * a wide range.
119  *
120  * This array is used to initialize apic_ipls[] (in apic_init()).
121  *
122  *	IPL		Vector range.		as passed to intr_enter
123  *	0		none.
124  *	1,2,3		0x20-0x2f		0x0-0xf
125  *	4		0x30-0x3f		0x10-0x1f
126  *	5		0x40-0x5f		0x20-0x3f
127  *	6		0x60-0x7f		0x40-0x5f
128  *	7,8,9		0x80-0x8f		0x60-0x6f
129  *	10		0x90-0x9f		0x70-0x7f
130  *	11		0xa0-0xaf		0x80-0x8f
131  *	...		...
132  *	15		0xe0-0xef		0xc0-0xcf
133  *	15		0xf0-0xff		0xd0-0xdf
134  */
135 uchar_t apic_vectortoipl[APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL] = {
136 	3, 4, 5, 5, 6, 6, 9, 10, 11, 12, 13, 14, 15, 15
137 };
138 	/*
139 	 * The ipl of an ISR at vector X is apic_vectortoipl[X>>4]
140 	 * NOTE that this is vector as passed into intr_enter which is
141 	 * programmed vector - 0x20 (APIC_BASE_VECT)
142 	 */
143 
144 uchar_t	apic_ipltopri[MAXIPL + 1];	/* unix ipl to apic pri	*/
145 	/* The taskpri to be programmed into apic to mask given ipl */
146 
147 /*
148  * Correlation of the hardware vector to the IPL in use, initialized
149  * from apic_vectortoipl[] in apic_init().  The final IPLs may not correlate
150  * to the IPLs in apic_vectortoipl on some systems that share interrupt lines
151  * connected to errata-stricken IOAPICs
152  */
153 uchar_t apic_ipls[APIC_AVAIL_VECTOR];
154 
155 /*
156  * Patchable global variables.
157  */
158 int	apic_enable_hwsoftint = 0;	/* 0 - disable, 1 - enable	*/
159 int	apic_enable_bind_log = 1;	/* 1 - display interrupt binding log */
160 
161 /*
162  *	Local static data
163  */
164 static struct	psm_ops apic_ops = {
165 	apic_probe,
166 
167 	apic_init,
168 	apic_picinit,
169 	apic_intr_enter,
170 	apic_intr_exit,
171 	apic_setspl,
172 	apic_addspl,
173 	apic_delspl,
174 	apic_disable_intr,
175 	apic_enable_intr,
176 	(int (*)(int))NULL,		/* psm_softlvl_to_irq */
177 	(void (*)(int))NULL,		/* psm_set_softintr */
178 
179 	apic_set_idlecpu,
180 	apic_unset_idlecpu,
181 
182 	apic_clkinit,
183 	apic_getclkirq,
184 	(void (*)(void))NULL,		/* psm_hrtimeinit */
185 	apic_gethrtime,
186 
187 	apic_get_next_processorid,
188 	apic_cpu_start,
189 	apic_post_cpu_start,
190 	apic_shutdown,
191 	apic_get_ipivect,
192 	apic_send_ipi,
193 
194 	(int (*)(dev_info_t *, int))NULL,	/* psm_translate_irq */
195 	(void (*)(int, char *))NULL,	/* psm_notify_error */
196 	(void (*)(int))NULL,		/* psm_notify_func */
197 	apic_timer_reprogram,
198 	apic_timer_enable,
199 	apic_timer_disable,
200 	apic_post_cyclic_setup,
201 	apic_preshutdown,
202 	apic_intr_ops,			/* Advanced DDI Interrupt framework */
203 	apic_state,			/* save, restore apic state for S3 */
204 	apic_cpu_ops,			/* CPU control interface. */
205 };
206 
207 struct psm_ops *psmops = &apic_ops;
208 
209 static struct	psm_info apic_psm_info = {
210 	PSM_INFO_VER01_7,			/* version */
211 	PSM_OWN_EXCLUSIVE,			/* ownership */
212 	(struct psm_ops *)&apic_ops,		/* operation */
213 	APIC_PCPLUSMP_NAME,			/* machine name */
214 	"pcplusmp v1.4 compatible",
215 };
216 
217 static void *apic_hdlp;
218 
219 /* to gather intr data and redistribute */
220 static void apic_redistribute_compute(void);
221 
222 /*
223  *	This is the loadable module wrapper
224  */
225 
226 int
227 _init(void)
228 {
229 	if (apic_coarse_hrtime)
230 		apic_ops.psm_gethrtime = &apic_gettime;
231 	return (psm_mod_init(&apic_hdlp, &apic_psm_info));
232 }
233 
234 int
235 _fini(void)
236 {
237 	return (psm_mod_fini(&apic_hdlp, &apic_psm_info));
238 }
239 
240 int
241 _info(struct modinfo *modinfop)
242 {
243 	return (psm_mod_info(&apic_hdlp, &apic_psm_info, modinfop));
244 }
245 
246 static int
247 apic_probe(void)
248 {
249 	/* check if apix is initialized */
250 	if (apix_enable && apix_loaded())
251 		return (PSM_FAILURE);
252 
253 	/*
254 	 * Check whether x2APIC mode was activated by BIOS. We don't support
255 	 * that in pcplusmp as apix normally handles that.
256 	 */
257 	if (apic_local_mode() == LOCAL_X2APIC)
258 		return (PSM_FAILURE);
259 
260 	/* continue using pcplusmp PSM */
261 	apix_enable = 0;
262 
263 	return (apic_probe_common(apic_psm_info.p_mach_idstring));
264 }
265 
266 static uchar_t
267 apic_xlate_vector_by_irq(uchar_t irq)
268 {
269 	if (apic_irq_table[irq] == NULL)
270 		return (0);
271 
272 	return (apic_irq_table[irq]->airq_vector);
273 }
274 
275 void
276 apic_init(void)
277 {
278 	int i;
279 	int	j = 1;
280 
281 	psm_get_ioapicid = apic_get_ioapicid;
282 	psm_get_localapicid = apic_get_localapicid;
283 	psm_xlate_vector_by_irq = apic_xlate_vector_by_irq;
284 
285 	apic_ipltopri[0] = APIC_VECTOR_PER_IPL; /* leave 0 for idle */
286 	for (i = 0; i < (APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL); i++) {
287 		if ((i < ((APIC_AVAIL_VECTOR / APIC_VECTOR_PER_IPL) - 1)) &&
288 		    (apic_vectortoipl[i + 1] == apic_vectortoipl[i]))
289 			/* get to highest vector at the same ipl */
290 			continue;
291 		for (; j <= apic_vectortoipl[i]; j++) {
292 			apic_ipltopri[j] = (i << APIC_IPL_SHIFT) +
293 			    APIC_BASE_VECT;
294 		}
295 	}
296 	for (; j < MAXIPL + 1; j++)
297 		/* fill up any empty ipltopri slots */
298 		apic_ipltopri[j] = (i << APIC_IPL_SHIFT) + APIC_BASE_VECT;
299 	apic_init_common();
300 
301 #if !defined(__amd64)
302 	if (cpuid_have_cr8access(CPU))
303 		apic_have_32bit_cr8 = 1;
304 #endif
305 }
306 
307 static void
308 apic_init_intr(void)
309 {
310 	processorid_t	cpun = psm_get_cpu_id();
311 	uint_t nlvt;
312 	uint32_t svr = AV_UNIT_ENABLE | APIC_SPUR_INTR;
313 
314 	apic_reg_ops->apic_write_task_reg(APIC_MASK_ALL);
315 
316 	ASSERT(apic_mode == LOCAL_APIC);
317 
318 	/*
319 	 * We are running APIC in MMIO mode.
320 	 */
321 	if (apic_flat_model) {
322 		apic_reg_ops->apic_write(APIC_FORMAT_REG, APIC_FLAT_MODEL);
323 	} else {
324 		apic_reg_ops->apic_write(APIC_FORMAT_REG, APIC_CLUSTER_MODEL);
325 	}
326 
327 	apic_reg_ops->apic_write(APIC_DEST_REG, AV_HIGH_ORDER >> cpun);
328 
329 	if (apic_directed_EOI_supported()) {
330 		/*
331 		 * Setting the 12th bit in the Spurious Interrupt Vector
332 		 * Register suppresses broadcast EOIs generated by the local
333 		 * APIC. The suppression of broadcast EOIs happens only when
334 		 * interrupts are level-triggered.
335 		 */
336 		svr |= APIC_SVR_SUPPRESS_BROADCAST_EOI;
337 	}
338 
339 	/* need to enable APIC before unmasking NMI */
340 	apic_reg_ops->apic_write(APIC_SPUR_INT_REG, svr);
341 
342 	/*
343 	 * Presence of an invalid vector with delivery mode AV_FIXED can
344 	 * cause an error interrupt, even if the entry is masked...so
345 	 * write a valid vector to LVT entries along with the mask bit
346 	 */
347 
348 	/* All APICs have timer and LINT0/1 */
349 	apic_reg_ops->apic_write(APIC_LOCAL_TIMER, AV_MASK|APIC_RESV_IRQ);
350 	apic_reg_ops->apic_write(APIC_INT_VECT0, AV_MASK|APIC_RESV_IRQ);
351 	apic_reg_ops->apic_write(APIC_INT_VECT1, AV_NMI);	/* enable NMI */
352 
353 	/*
354 	 * On integrated APICs, the number of LVT entries is
355 	 * 'Max LVT entry' + 1; on 82489DX's (non-integrated
356 	 * APICs), nlvt is "3" (LINT0, LINT1, and timer)
357 	 */
358 
359 	if (apic_cpus[cpun].aci_local_ver < APIC_INTEGRATED_VERS) {
360 		nlvt = 3;
361 	} else {
362 		nlvt = ((apic_reg_ops->apic_read(APIC_VERS_REG) >> 16) &
363 		    0xFF) + 1;
364 	}
365 
366 	if (nlvt >= 5) {
367 		/* Enable performance counter overflow interrupt */
368 
369 		if (!is_x86_feature(x86_featureset, X86FSET_MSR))
370 			apic_enable_cpcovf_intr = 0;
371 		if (apic_enable_cpcovf_intr) {
372 			if (apic_cpcovf_vect == 0) {
373 				int ipl = APIC_PCINT_IPL;
374 				int irq = apic_get_ipivect(ipl, -1);
375 
376 				ASSERT(irq != -1);
377 				apic_cpcovf_vect =
378 				    apic_irq_table[irq]->airq_vector;
379 				ASSERT(apic_cpcovf_vect);
380 				(void) add_avintr(NULL, ipl,
381 				    (avfunc)kcpc_hw_overflow_intr,
382 				    "apic pcint", irq, NULL, NULL, NULL, NULL);
383 				kcpc_hw_overflow_intr_installed = 1;
384 				kcpc_hw_enable_cpc_intr =
385 				    apic_cpcovf_mask_clear;
386 			}
387 			apic_reg_ops->apic_write(APIC_PCINT_VECT,
388 			    apic_cpcovf_vect);
389 		}
390 	}
391 
392 	if (nlvt >= 6) {
393 		/* Only mask TM intr if the BIOS apparently doesn't use it */
394 
395 		uint32_t lvtval;
396 
397 		lvtval = apic_reg_ops->apic_read(APIC_THERM_VECT);
398 		if (((lvtval & AV_MASK) == AV_MASK) ||
399 		    ((lvtval & AV_DELIV_MODE) != AV_SMI)) {
400 			apic_reg_ops->apic_write(APIC_THERM_VECT,
401 			    AV_MASK|APIC_RESV_IRQ);
402 		}
403 	}
404 
405 	/* Enable error interrupt */
406 
407 	if (nlvt >= 4 && apic_enable_error_intr) {
408 		if (apic_errvect == 0) {
409 			int ipl = 0xf;	/* get highest priority intr */
410 			int irq = apic_get_ipivect(ipl, -1);
411 
412 			ASSERT(irq != -1);
413 			apic_errvect = apic_irq_table[irq]->airq_vector;
414 			ASSERT(apic_errvect);
415 			/*
416 			 * Not PSMI compliant, but we are going to merge
417 			 * with ON anyway
418 			 */
419 			(void) add_avintr((void *)NULL, ipl,
420 			    (avfunc)apic_error_intr, "apic error intr",
421 			    irq, NULL, NULL, NULL, NULL);
422 		}
423 		apic_reg_ops->apic_write(APIC_ERR_VECT, apic_errvect);
424 		apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0);
425 		apic_reg_ops->apic_write(APIC_ERROR_STATUS, 0);
426 	}
427 
428 	/* Enable CMCI interrupt */
429 	if (cmi_enable_cmci) {
430 
431 		mutex_enter(&cmci_cpu_setup_lock);
432 		if (cmci_cpu_setup_registered == 0) {
433 			mutex_enter(&cpu_lock);
434 			register_cpu_setup_func(cmci_cpu_setup, NULL);
435 			mutex_exit(&cpu_lock);
436 			cmci_cpu_setup_registered = 1;
437 		}
438 		mutex_exit(&cmci_cpu_setup_lock);
439 
440 		if (apic_cmci_vect == 0) {
441 			int ipl = 0x2;
442 			int irq = apic_get_ipivect(ipl, -1);
443 
444 			ASSERT(irq != -1);
445 			apic_cmci_vect = apic_irq_table[irq]->airq_vector;
446 			ASSERT(apic_cmci_vect);
447 
448 			(void) add_avintr(NULL, ipl,
449 			    (avfunc)cmi_cmci_trap,
450 			    "apic cmci intr", irq, NULL, NULL, NULL, NULL);
451 		}
452 		apic_reg_ops->apic_write(APIC_CMCI_VECT, apic_cmci_vect);
453 	}
454 }
455 
456 static void
457 apic_picinit(void)
458 {
459 	int i, j;
460 	uint_t isr;
461 
462 	/*
463 	 * Initialize and enable interrupt remapping before apic
464 	 * hardware initialization
465 	 */
466 	apic_intrmap_init(apic_mode);
467 
468 	/*
469 	 * On UniSys Model 6520, the BIOS leaves vector 0x20 isr
470 	 * bit on without clearing it with EOI.  Since softint
471 	 * uses vector 0x20 to interrupt itself, so softint will
472 	 * not work on this machine.  In order to fix this problem
473 	 * a check is made to verify all the isr bits are clear.
474 	 * If not, EOIs are issued to clear the bits.
475 	 */
476 	for (i = 7; i >= 1; i--) {
477 		isr = apic_reg_ops->apic_read(APIC_ISR_REG + (i * 4));
478 		if (isr != 0)
479 			for (j = 0; ((j < 32) && (isr != 0)); j++)
480 				if (isr & (1 << j)) {
481 					apic_reg_ops->apic_write(
482 					    APIC_EOI_REG, 0);
483 					isr &= ~(1 << j);
484 					apic_error |= APIC_ERR_BOOT_EOI;
485 				}
486 	}
487 
488 	/* set a flag so we know we have run apic_picinit() */
489 	apic_picinit_called = 1;
490 	LOCK_INIT_CLEAR(&apic_gethrtime_lock);
491 	LOCK_INIT_CLEAR(&apic_ioapic_lock);
492 	LOCK_INIT_CLEAR(&apic_error_lock);
493 	LOCK_INIT_CLEAR(&apic_mode_switch_lock);
494 
495 	picsetup();	 /* initialise the 8259 */
496 
497 	/* add nmi handler - least priority nmi handler */
498 	LOCK_INIT_CLEAR(&apic_nmi_lock);
499 
500 	if (!psm_add_nmintr(0, (avfunc) apic_nmi_intr,
501 	    "pcplusmp NMI handler", (caddr_t)NULL))
502 		cmn_err(CE_WARN, "pcplusmp: Unable to add nmi handler");
503 
504 	/*
505 	 * Check for directed-EOI capability in the local APIC.
506 	 */
507 	if (apic_directed_EOI_supported() == 1) {
508 		apic_set_directed_EOI_handler();
509 	}
510 
511 	apic_init_intr();
512 
513 	/* enable apic mode if imcr present */
514 	if (apic_imcrp) {
515 		outb(APIC_IMCR_P1, (uchar_t)APIC_IMCR_SELECT);
516 		outb(APIC_IMCR_P2, (uchar_t)APIC_IMCR_APIC);
517 	}
518 
519 	ioapic_init_intr(IOAPIC_MASK);
520 }
521 
522 #ifdef	DEBUG
523 void
524 apic_break(void)
525 {
526 }
527 #endif /* DEBUG */
528 
529 /*
530  * platform_intr_enter
531  *
532  *	Called at the beginning of the interrupt service routine to
533  *	mask all level equal to and below the interrupt priority
534  *	of the interrupting vector.  An EOI should be given to
535  *	the interrupt controller to enable other HW interrupts.
536  *
537  *	Return -1 for spurious interrupts
538  *
539  */
540 /*ARGSUSED*/
541 static int
542 apic_intr_enter(int ipl, int *vectorp)
543 {
544 	uchar_t vector;
545 	int nipl;
546 	int irq;
547 	ulong_t iflag;
548 	apic_cpus_info_t *cpu_infop;
549 
550 	/*
551 	 * The real vector delivered is (*vectorp + 0x20), but our caller
552 	 * subtracts 0x20 from the vector before passing it to us.
553 	 * (That's why APIC_BASE_VECT is 0x20.)
554 	 */
555 	vector = (uchar_t)*vectorp;
556 
557 	/* if interrupted by the clock, increment apic_nsec_since_boot */
558 	if (vector == apic_clkvect) {
559 		if (!apic_oneshot) {
560 			/* NOTE: this is not MT aware */
561 			apic_hrtime_stamp++;
562 			apic_nsec_since_boot += apic_nsec_per_intr;
563 			apic_hrtime_stamp++;
564 			last_count_read = apic_hertz_count;
565 			apic_redistribute_compute();
566 		}
567 
568 		/* We will avoid all the book keeping overhead for clock */
569 		nipl = apic_ipls[vector];
570 
571 		*vectorp = apic_vector_to_irq[vector + APIC_BASE_VECT];
572 
573 		apic_reg_ops->apic_write_task_reg(apic_ipltopri[nipl]);
574 		apic_reg_ops->apic_send_eoi(0);
575 
576 		return (nipl);
577 	}
578 
579 	cpu_infop = &apic_cpus[psm_get_cpu_id()];
580 
581 	if (vector == (APIC_SPUR_INTR - APIC_BASE_VECT)) {
582 		cpu_infop->aci_spur_cnt++;
583 		return (APIC_INT_SPURIOUS);
584 	}
585 
586 	/* Check if the vector we got is really what we need */
587 	if (apic_revector_pending) {
588 		/*
589 		 * Disable interrupts for the duration of
590 		 * the vector translation to prevent a self-race for
591 		 * the apic_revector_lock.  This cannot be done
592 		 * in apic_xlate_vector because it is recursive and
593 		 * we want the vector translation to be atomic with
594 		 * respect to other (higher-priority) interrupts.
595 		 */
596 		iflag = intr_clear();
597 		vector = apic_xlate_vector(vector + APIC_BASE_VECT) -
598 		    APIC_BASE_VECT;
599 		intr_restore(iflag);
600 	}
601 
602 	nipl = apic_ipls[vector];
603 	*vectorp = irq = apic_vector_to_irq[vector + APIC_BASE_VECT];
604 
605 	apic_reg_ops->apic_write_task_reg(apic_ipltopri[nipl]);
606 
607 	cpu_infop->aci_current[nipl] = (uchar_t)irq;
608 	cpu_infop->aci_curipl = (uchar_t)nipl;
609 	cpu_infop->aci_ISR_in_progress |= 1 << nipl;
610 
611 	/*
612 	 * apic_level_intr could have been assimilated into the irq struct.
613 	 * but, having it as a character array is more efficient in terms of
614 	 * cache usage. So, we leave it as is.
615 	 */
616 	if (!apic_level_intr[irq]) {
617 		apic_reg_ops->apic_send_eoi(0);
618 	}
619 
620 #ifdef	DEBUG
621 	APIC_DEBUG_BUF_PUT(vector);
622 	APIC_DEBUG_BUF_PUT(irq);
623 	APIC_DEBUG_BUF_PUT(nipl);
624 	APIC_DEBUG_BUF_PUT(psm_get_cpu_id());
625 	if ((apic_stretch_interrupts) && (apic_stretch_ISR & (1 << nipl)))
626 		drv_usecwait(apic_stretch_interrupts);
627 
628 	if (apic_break_on_cpu == psm_get_cpu_id())
629 		apic_break();
630 #endif /* DEBUG */
631 	return (nipl);
632 }
633 
634 void
635 apic_intr_exit(int prev_ipl, int irq)
636 {
637 	apic_cpus_info_t *cpu_infop;
638 
639 	apic_reg_ops->apic_write_task_reg(apic_ipltopri[prev_ipl]);
640 
641 	cpu_infop = &apic_cpus[psm_get_cpu_id()];
642 	if (apic_level_intr[irq])
643 		apic_reg_ops->apic_send_eoi(irq);
644 	cpu_infop->aci_curipl = (uchar_t)prev_ipl;
645 	/* ISR above current pri could not be in progress */
646 	cpu_infop->aci_ISR_in_progress &= (2 << prev_ipl) - 1;
647 }
648 
649 intr_exit_fn_t
650 psm_intr_exit_fn(void)
651 {
652 	return (apic_intr_exit);
653 }
654 
655 /*
656  * Mask all interrupts below or equal to the given IPL.
657  */
658 static void
659 apic_setspl(int ipl)
660 {
661 	apic_reg_ops->apic_write_task_reg(apic_ipltopri[ipl]);
662 
663 	/* interrupts at ipl above this cannot be in progress */
664 	apic_cpus[psm_get_cpu_id()].aci_ISR_in_progress &= (2 << ipl) - 1;
665 	/*
666 	 * this is a patch fix for the ALR QSMP P5 machine, so that interrupts
667 	 * have enough time to come in before the priority is raised again
668 	 * during the idle() loop.
669 	 */
670 	if (apic_setspl_delay)
671 		(void) apic_reg_ops->apic_get_pri();
672 }
673 
674 /*ARGSUSED*/
675 static int
676 apic_addspl(int irqno, int ipl, int min_ipl, int max_ipl)
677 {
678 	return (apic_addspl_common(irqno, ipl, min_ipl, max_ipl));
679 }
680 
681 static int
682 apic_delspl(int irqno, int ipl, int min_ipl, int max_ipl)
683 {
684 	return (apic_delspl_common(irqno, ipl, min_ipl,  max_ipl));
685 }
686 
687 static int
688 apic_post_cpu_start(void)
689 {
690 	int cpun;
691 	static int cpus_started = 1;
692 
693 	/* We know this CPU + BSP  started successfully. */
694 	cpus_started++;
695 
696 	splx(ipltospl(LOCK_LEVEL));
697 	apic_init_intr();
698 
699 	/*
700 	 * since some systems don't enable the internal cache on the non-boot
701 	 * cpus, so we have to enable them here
702 	 */
703 	setcr0(getcr0() & ~(CR0_CD | CR0_NW));
704 
705 	APIC_AV_PENDING_SET();
706 
707 	/*
708 	 * We may be booting, or resuming from suspend; aci_status will
709 	 * be APIC_CPU_INTR_ENABLE if coming from suspend, so we add the
710 	 * APIC_CPU_ONLINE flag here rather than setting aci_status completely.
711 	 */
712 	cpun = psm_get_cpu_id();
713 	apic_cpus[cpun].aci_status |= APIC_CPU_ONLINE;
714 
715 	apic_reg_ops->apic_write(APIC_DIVIDE_REG, apic_divide_reg_init);
716 	return (PSM_SUCCESS);
717 }
718 
719 /*
720  * type == -1 indicates it is an internal request. Do not change
721  * resv_vector for these requests
722  */
723 static int
724 apic_get_ipivect(int ipl, int type)
725 {
726 	uchar_t vector;
727 	int irq;
728 
729 	if ((irq = apic_allocate_irq(APIC_VECTOR(ipl))) != -1) {
730 		if ((vector = apic_allocate_vector(ipl, irq, 1))) {
731 			apic_irq_table[irq]->airq_mps_intr_index =
732 			    RESERVE_INDEX;
733 			apic_irq_table[irq]->airq_vector = vector;
734 			if (type != -1) {
735 				apic_resv_vector[ipl] = vector;
736 			}
737 			return (irq);
738 		}
739 	}
740 	apic_error |= APIC_ERR_GET_IPIVECT_FAIL;
741 	return (-1);	/* shouldn't happen */
742 }
743 
744 static int
745 apic_getclkirq(int ipl)
746 {
747 	int	irq;
748 
749 	if ((irq = apic_get_ipivect(ipl, -1)) == -1)
750 		return (-1);
751 	/*
752 	 * Note the vector in apic_clkvect for per clock handling.
753 	 */
754 	apic_clkvect = apic_irq_table[irq]->airq_vector - APIC_BASE_VECT;
755 	APIC_VERBOSE_IOAPIC((CE_NOTE, "get_clkirq: vector = %x\n",
756 	    apic_clkvect));
757 	return (irq);
758 }
759 
760 /*
761  * Try and disable all interrupts. We just assign interrupts to other
762  * processors based on policy. If any were bound by user request, we
763  * let them continue and return failure. We do not bother to check
764  * for cache affinity while rebinding.
765  */
766 
767 static int
768 apic_disable_intr(processorid_t cpun)
769 {
770 	int bind_cpu = 0, i, hardbound = 0;
771 	apic_irq_t *irq_ptr;
772 	ulong_t iflag;
773 
774 	iflag = intr_clear();
775 	lock_set(&apic_ioapic_lock);
776 
777 	for (i = 0; i <= APIC_MAX_VECTOR; i++) {
778 		if (apic_reprogram_info[i].done == B_FALSE) {
779 			if (apic_reprogram_info[i].bindcpu == cpun) {
780 				/*
781 				 * CPU is busy -- it's the target of
782 				 * a pending reprogramming attempt
783 				 */
784 				lock_clear(&apic_ioapic_lock);
785 				intr_restore(iflag);
786 				return (PSM_FAILURE);
787 			}
788 		}
789 	}
790 
791 	apic_cpus[cpun].aci_status &= ~APIC_CPU_INTR_ENABLE;
792 
793 	apic_cpus[cpun].aci_curipl = 0;
794 
795 	i = apic_min_device_irq;
796 	for (; i <= apic_max_device_irq; i++) {
797 		/*
798 		 * If there are bound interrupts on this cpu, then
799 		 * rebind them to other processors.
800 		 */
801 		if ((irq_ptr = apic_irq_table[i]) != NULL) {
802 			ASSERT((irq_ptr->airq_temp_cpu == IRQ_UNBOUND) ||
803 			    (irq_ptr->airq_temp_cpu == IRQ_UNINIT) ||
804 			    (apic_cpu_in_range(irq_ptr->airq_temp_cpu)));
805 
806 			if (irq_ptr->airq_temp_cpu == (cpun | IRQ_USER_BOUND)) {
807 				hardbound = 1;
808 				continue;
809 			}
810 
811 			if (irq_ptr->airq_temp_cpu == cpun) {
812 				do {
813 					bind_cpu =
814 					    apic_find_cpu(APIC_CPU_INTR_ENABLE);
815 				} while (apic_rebind_all(irq_ptr, bind_cpu));
816 			}
817 		}
818 	}
819 
820 	lock_clear(&apic_ioapic_lock);
821 	intr_restore(iflag);
822 
823 	if (hardbound) {
824 		cmn_err(CE_WARN, "Could not disable interrupts on %d"
825 		    "due to user bound interrupts", cpun);
826 		return (PSM_FAILURE);
827 	}
828 	else
829 		return (PSM_SUCCESS);
830 }
831 
832 /*
833  * Bind interrupts to the CPU's local APIC.
834  * Interrupts should not be bound to a CPU's local APIC until the CPU
835  * is ready to receive interrupts.
836  */
837 static void
838 apic_enable_intr(processorid_t cpun)
839 {
840 	int	i;
841 	apic_irq_t *irq_ptr;
842 	ulong_t iflag;
843 
844 	iflag = intr_clear();
845 	lock_set(&apic_ioapic_lock);
846 
847 	apic_cpus[cpun].aci_status |= APIC_CPU_INTR_ENABLE;
848 
849 	i = apic_min_device_irq;
850 	for (i = apic_min_device_irq; i <= apic_max_device_irq; i++) {
851 		if ((irq_ptr = apic_irq_table[i]) != NULL) {
852 			if ((irq_ptr->airq_cpu & ~IRQ_USER_BOUND) == cpun) {
853 				(void) apic_rebind_all(irq_ptr,
854 				    irq_ptr->airq_cpu);
855 			}
856 		}
857 	}
858 
859 	if (apic_cpus[cpun].aci_status & APIC_CPU_SUSPEND)
860 		apic_cpus[cpun].aci_status &= ~APIC_CPU_SUSPEND;
861 
862 	lock_clear(&apic_ioapic_lock);
863 	intr_restore(iflag);
864 }
865 
866 /*
867  * If this module needs a periodic handler for the interrupt distribution, it
868  * can be added here. The argument to the periodic handler is not currently
869  * used, but is reserved for future.
870  */
871 static void
872 apic_post_cyclic_setup(void *arg)
873 {
874 _NOTE(ARGUNUSED(arg))
875 
876 	cyc_handler_t cyh;
877 	cyc_time_t cyt;
878 
879 	/* cpu_lock is held */
880 	/* set up a periodic handler for intr redistribution */
881 
882 	/*
883 	 * In peridoc mode intr redistribution processing is done in
884 	 * apic_intr_enter during clk intr processing
885 	 */
886 	if (!apic_oneshot)
887 		return;
888 
889 	/*
890 	 * Register a periodical handler for the redistribution processing.
891 	 * Though we would generally prefer to use the DDI interface for
892 	 * periodic handler invocation, ddi_periodic_add(9F), we are
893 	 * unfortunately already holding cpu_lock, which ddi_periodic_add will
894 	 * attempt to take for us.  Thus, we add our own cyclic directly:
895 	 */
896 	cyh.cyh_func = (void (*)(void *))apic_redistribute_compute;
897 	cyh.cyh_arg = NULL;
898 	cyh.cyh_level = CY_LOW_LEVEL;
899 
900 	cyt.cyt_when = 0;
901 	cyt.cyt_interval = apic_redistribute_sample_interval;
902 
903 	apic_cyclic_id = cyclic_add(&cyh, &cyt);
904 }
905 
906 static void
907 apic_redistribute_compute(void)
908 {
909 	int	i, j, max_busy;
910 
911 	if (apic_enable_dynamic_migration) {
912 		if (++apic_nticks == apic_sample_factor_redistribution) {
913 			/*
914 			 * Time to call apic_intr_redistribute().
915 			 * reset apic_nticks. This will cause max_busy
916 			 * to be calculated below and if it is more than
917 			 * apic_int_busy, we will do the whole thing
918 			 */
919 			apic_nticks = 0;
920 		}
921 		max_busy = 0;
922 		for (i = 0; i < apic_nproc; i++) {
923 			if (!apic_cpu_in_range(i))
924 				continue;
925 
926 			/*
927 			 * Check if curipl is non zero & if ISR is in
928 			 * progress
929 			 */
930 			if (((j = apic_cpus[i].aci_curipl) != 0) &&
931 			    (apic_cpus[i].aci_ISR_in_progress & (1 << j))) {
932 
933 				int	irq;
934 				apic_cpus[i].aci_busy++;
935 				irq = apic_cpus[i].aci_current[j];
936 				apic_irq_table[irq]->airq_busy++;
937 			}
938 
939 			if (!apic_nticks &&
940 			    (apic_cpus[i].aci_busy > max_busy))
941 				max_busy = apic_cpus[i].aci_busy;
942 		}
943 		if (!apic_nticks) {
944 			if (max_busy > apic_int_busy_mark) {
945 			/*
946 			 * We could make the following check be
947 			 * skipped > 1 in which case, we get a
948 			 * redistribution at half the busy mark (due to
949 			 * double interval). Need to be able to collect
950 			 * more empirical data to decide if that is a
951 			 * good strategy. Punt for now.
952 			 */
953 				if (apic_skipped_redistribute) {
954 					apic_cleanup_busy();
955 					apic_skipped_redistribute = 0;
956 				} else {
957 					apic_intr_redistribute();
958 				}
959 			} else
960 				apic_skipped_redistribute++;
961 		}
962 	}
963 }
964 
965 
966 /*
967  * The following functions are in the platform specific file so that they
968  * can be different functions depending on whether we are running on
969  * bare metal or a hypervisor.
970  */
971 
972 /*
973  * Check to make sure there are enough irq slots
974  */
975 int
976 apic_check_free_irqs(int count)
977 {
978 	int i, avail;
979 
980 	avail = 0;
981 	for (i = APIC_FIRST_FREE_IRQ; i < APIC_RESV_IRQ; i++) {
982 		if ((apic_irq_table[i] == NULL) ||
983 		    apic_irq_table[i]->airq_mps_intr_index == FREE_INDEX) {
984 			if (++avail >= count)
985 				return (PSM_SUCCESS);
986 		}
987 	}
988 	return (PSM_FAILURE);
989 }
990 
991 /*
992  * This function allocates "count" MSI vector(s) for the given "dip/pri/type"
993  */
994 int
995 apic_alloc_msi_vectors(dev_info_t *dip, int inum, int count, int pri,
996     int behavior)
997 {
998 	int	rcount, i;
999 	uchar_t	start, irqno;
1000 	uint32_t cpu = 0;
1001 	major_t	major;
1002 	apic_irq_t	*irqptr;
1003 
1004 	DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: dip=0x%p "
1005 	    "inum=0x%x  pri=0x%x count=0x%x behavior=%d\n",
1006 	    (void *)dip, inum, pri, count, behavior));
1007 
1008 	if (count > 1) {
1009 		if (behavior == DDI_INTR_ALLOC_STRICT &&
1010 		    apic_multi_msi_enable == 0)
1011 			return (0);
1012 		if (apic_multi_msi_enable == 0)
1013 			count = 1;
1014 	}
1015 
1016 	if ((rcount = apic_navail_vector(dip, pri)) > count)
1017 		rcount = count;
1018 	else if (rcount == 0 || (rcount < count &&
1019 	    behavior == DDI_INTR_ALLOC_STRICT))
1020 		return (0);
1021 
1022 	/* if not ISP2, then round it down */
1023 	if (!ISP2(rcount))
1024 		rcount = 1 << (highbit(rcount) - 1);
1025 
1026 	mutex_enter(&airq_mutex);
1027 
1028 	for (start = 0; rcount > 0; rcount >>= 1) {
1029 		if ((start = apic_find_multi_vectors(pri, rcount)) != 0 ||
1030 		    behavior == DDI_INTR_ALLOC_STRICT)
1031 			break;
1032 	}
1033 
1034 	if (start == 0) {
1035 		/* no vector available */
1036 		mutex_exit(&airq_mutex);
1037 		return (0);
1038 	}
1039 
1040 	if (apic_check_free_irqs(rcount) == PSM_FAILURE) {
1041 		/* not enough free irq slots available */
1042 		mutex_exit(&airq_mutex);
1043 		return (0);
1044 	}
1045 
1046 	major = (dip != NULL) ? ddi_driver_major(dip) : 0;
1047 	for (i = 0; i < rcount; i++) {
1048 		if ((irqno = apic_allocate_irq(apic_first_avail_irq)) ==
1049 		    (uchar_t)-1) {
1050 			/*
1051 			 * shouldn't happen because of the
1052 			 * apic_check_free_irqs() check earlier
1053 			 */
1054 			mutex_exit(&airq_mutex);
1055 			DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: "
1056 			    "apic_allocate_irq failed\n"));
1057 			return (i);
1058 		}
1059 		apic_max_device_irq = max(irqno, apic_max_device_irq);
1060 		apic_min_device_irq = min(irqno, apic_min_device_irq);
1061 		irqptr = apic_irq_table[irqno];
1062 #ifdef	DEBUG
1063 		if (apic_vector_to_irq[start + i] != APIC_RESV_IRQ)
1064 			DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: "
1065 			    "apic_vector_to_irq is not APIC_RESV_IRQ\n"));
1066 #endif
1067 		apic_vector_to_irq[start + i] = (uchar_t)irqno;
1068 
1069 		irqptr->airq_vector = (uchar_t)(start + i);
1070 		irqptr->airq_ioapicindex = (uchar_t)inum;	/* start */
1071 		irqptr->airq_intin_no = (uchar_t)rcount;
1072 		ASSERT(pri >= 0 && pri <= UCHAR_MAX);
1073 		irqptr->airq_ipl = (uchar_t)pri;
1074 		irqptr->airq_vector = start + i;
1075 		irqptr->airq_origirq = (uchar_t)(inum + i);
1076 		irqptr->airq_share_id = 0;
1077 		irqptr->airq_mps_intr_index = MSI_INDEX;
1078 		irqptr->airq_dip = dip;
1079 		irqptr->airq_major = major;
1080 		if (i == 0) /* they all bound to the same cpu */
1081 			cpu = irqptr->airq_cpu = apic_bind_intr(dip, irqno,
1082 			    0xff, 0xff);
1083 		else
1084 			irqptr->airq_cpu = cpu;
1085 		DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msi_vectors: irq=0x%x "
1086 		    "dip=0x%p vector=0x%x origirq=0x%x pri=0x%x\n", irqno,
1087 		    (void *)irqptr->airq_dip, irqptr->airq_vector,
1088 		    irqptr->airq_origirq, pri));
1089 	}
1090 	mutex_exit(&airq_mutex);
1091 	return (rcount);
1092 }
1093 
1094 /*
1095  * This function allocates "count" MSI-X vector(s) for the given "dip/pri/type"
1096  */
1097 int
1098 apic_alloc_msix_vectors(dev_info_t *dip, int inum, int count, int pri,
1099     int behavior)
1100 {
1101 	int	rcount, i;
1102 	major_t	major;
1103 
1104 	mutex_enter(&airq_mutex);
1105 
1106 	if ((rcount = apic_navail_vector(dip, pri)) > count)
1107 		rcount = count;
1108 	else if (rcount == 0 || (rcount < count &&
1109 	    behavior == DDI_INTR_ALLOC_STRICT)) {
1110 		rcount = 0;
1111 		goto out;
1112 	}
1113 
1114 	if (apic_check_free_irqs(rcount) == PSM_FAILURE) {
1115 		/* not enough free irq slots available */
1116 		rcount = 0;
1117 		goto out;
1118 	}
1119 
1120 	major = (dip != NULL) ? ddi_driver_major(dip) : 0;
1121 	for (i = 0; i < rcount; i++) {
1122 		uchar_t	vector, irqno;
1123 		apic_irq_t	*irqptr;
1124 
1125 		if ((irqno = apic_allocate_irq(apic_first_avail_irq)) ==
1126 		    (uchar_t)-1) {
1127 			/*
1128 			 * shouldn't happen because of the
1129 			 * apic_check_free_irqs() check earlier
1130 			 */
1131 			DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msix_vectors: "
1132 			    "apic_allocate_irq failed\n"));
1133 			rcount = i;
1134 			goto out;
1135 		}
1136 		if ((vector = apic_allocate_vector(pri, irqno, 1)) == 0) {
1137 			/*
1138 			 * shouldn't happen because of the
1139 			 * apic_navail_vector() call earlier
1140 			 */
1141 			DDI_INTR_IMPLDBG((CE_CONT, "apic_alloc_msix_vectors: "
1142 			    "apic_allocate_vector failed\n"));
1143 			rcount = i;
1144 			goto out;
1145 		}
1146 		apic_max_device_irq = max(irqno, apic_max_device_irq);
1147 		apic_min_device_irq = min(irqno, apic_min_device_irq);
1148 		irqptr = apic_irq_table[irqno];
1149 		irqptr->airq_vector = (uchar_t)vector;
1150 		ASSERT(pri >= 0 && pri <= UCHAR_MAX);
1151 		irqptr->airq_ipl = (uchar_t)pri;
1152 		irqptr->airq_origirq = (uchar_t)(inum + i);
1153 		irqptr->airq_share_id = 0;
1154 		irqptr->airq_mps_intr_index = MSIX_INDEX;
1155 		irqptr->airq_dip = dip;
1156 		irqptr->airq_major = major;
1157 		irqptr->airq_cpu = apic_bind_intr(dip, irqno, 0xff, 0xff);
1158 	}
1159 out:
1160 	mutex_exit(&airq_mutex);
1161 	return (rcount);
1162 }
1163 
1164 /*
1165  * Allocate a free vector for irq at ipl. Takes care of merging of multiple
1166  * IPLs into a single APIC level as well as stretching some IPLs onto multiple
1167  * levels. APIC_HI_PRI_VECTS interrupts are reserved for high priority
1168  * requests and allocated only when pri is set.
1169  */
1170 uchar_t
1171 apic_allocate_vector(int ipl, int irq, int pri)
1172 {
1173 	int	lowest, highest, i;
1174 
1175 	highest = apic_ipltopri[ipl] + APIC_VECTOR_MASK;
1176 	lowest = apic_ipltopri[ipl - 1] + APIC_VECTOR_PER_IPL;
1177 
1178 	if (highest < lowest) /* Both ipl and ipl - 1 map to same pri */
1179 		lowest -= APIC_VECTOR_PER_IPL;
1180 
1181 #ifdef	DEBUG
1182 	if (apic_restrict_vector)	/* for testing shared interrupt logic */
1183 		highest = lowest + apic_restrict_vector + APIC_HI_PRI_VECTS;
1184 #endif /* DEBUG */
1185 	if (pri == 0)
1186 		highest -= APIC_HI_PRI_VECTS;
1187 
1188 	for (i = lowest; i <= highest; i++) {
1189 		if (APIC_CHECK_RESERVE_VECTORS(i))
1190 			continue;
1191 		if (apic_vector_to_irq[i] == APIC_RESV_IRQ) {
1192 			apic_vector_to_irq[i] = (uchar_t)irq;
1193 			ASSERT(i >= 0 && i <= UCHAR_MAX);
1194 			return ((uchar_t)i);
1195 		}
1196 	}
1197 
1198 	return (0);
1199 }
1200 
1201 /* Mark vector as not being used by any irq */
1202 void
1203 apic_free_vector(uchar_t vector)
1204 {
1205 	apic_vector_to_irq[vector] = APIC_RESV_IRQ;
1206 }
1207 
1208 /*
1209  * Call rebind to do the actual programming.
1210  * Must be called with interrupts disabled and apic_ioapic_lock held
1211  * 'p' is polymorphic -- if this function is called to process a deferred
1212  * reprogramming, p is of type 'struct ioapic_reprogram_data *', from which
1213  * the irq pointer is retrieved.  If not doing deferred reprogramming,
1214  * p is of the type 'apic_irq_t *'.
1215  *
1216  * apic_ioapic_lock must be held across this call, as it protects apic_rebind
1217  * and it protects apic_get_next_bind_cpu() from a race in which a CPU can be
1218  * taken offline after a cpu is selected, but before apic_rebind is called to
1219  * bind interrupts to it.
1220  */
1221 int
1222 apic_setup_io_intr(void *p, int irq, boolean_t deferred)
1223 {
1224 	apic_irq_t *irqptr;
1225 	struct ioapic_reprogram_data *drep = NULL;
1226 	int rv;
1227 
1228 	if (deferred) {
1229 		drep = (struct ioapic_reprogram_data *)p;
1230 		ASSERT(drep != NULL);
1231 		irqptr = drep->irqp;
1232 	} else
1233 		irqptr = (apic_irq_t *)p;
1234 
1235 	ASSERT(irqptr != NULL);
1236 
1237 	rv = apic_rebind(irqptr, apic_irq_table[irq]->airq_cpu, drep);
1238 	if (rv) {
1239 		/*
1240 		 * CPU is not up or interrupts are disabled. Fall back to
1241 		 * the first available CPU
1242 		 */
1243 		rv = apic_rebind(irqptr, apic_find_cpu(APIC_CPU_INTR_ENABLE),
1244 		    drep);
1245 	}
1246 
1247 	return (rv);
1248 }
1249 
1250 
1251 uchar_t
1252 apic_modify_vector(uchar_t vector, int irq)
1253 {
1254 	apic_vector_to_irq[vector] = (uchar_t)irq;
1255 	return (vector);
1256 }
1257 
1258 char *
1259 apic_get_apic_type(void)
1260 {
1261 	return (apic_psm_info.p_mach_idstring);
1262 }
1263 
1264 void
1265 apic_switch_ipi_callback(boolean_t enter)
1266 {
1267 	ASSERT(enter == B_TRUE);
1268 }
1269 
1270 int
1271 apic_detect_x2apic(void)
1272 {
1273 	return (0);
1274 }
1275 
1276 void
1277 apic_enable_x2apic(void)
1278 {
1279 	cmn_err(CE_PANIC, "apic_enable_x2apic() called in pcplusmp");
1280 }
1281 
1282 void
1283 x2apic_update_psm(void)
1284 {
1285 	cmn_err(CE_PANIC, "x2apic_update_psm() called in pcplusmp");
1286 }
1287